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FINITE GROUPS ACTING ON HOMOLOGY MANIFOLDS
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To the memory of Olga Taussky-Todd

1. Introduction.

In this paper we study homology manifolds T admitting the action of a fi-
nite group preserving the structure of a regular CW-complex on T . The
CW-complex is parameterized by a poset and the topological properties of
the manifold are translated into a combinatorial setting via the poset. We
concentrate on n-manifolds which admit a fairly rigid group of automor-
phisms transitive on the n-cells of the complex. This allows us to make
yet another translation from a combinatorial into a group theoretic setting.
We close by using our machinery to construct representations on manifolds
of the Monster, the largest sporadic group. Some of these manifolds are
of dimension 24, and hence candidates for examples to Hirzebruch’s Prize
Question in [HBJ], but unfortunately closer inspection shows the Â-genus
of these manifolds is 0 rather than 1, so none is a Hirzebruch manifold.

In order to state our results precisely we need to recall some definitions
and introduce a few concepts. The geometric realization functor T associates
to each poset X a topological space T (X) and to each x ∈ X a closed
subspace T (x) of T (X). The cells T (x), x ∈ X, supply a cell structure on
T (X) parametrized by X. In addition there is a simplicial complex O(X)
associated to X called the order complex of X and a canonical triangulation
ϕ : O(X)→ T (X) of T (X) by O(X).

An automorphism of a space T with cell structure (T (x) : x ∈ X) is a
homeomorphism α of T permuting the cells and preserving the triangulation
ϕ : O(X) → T . See Section 7 for a precise definition. In particular there
is a natural isomorphism between the automorphisms of the space with cell
structure and the automorphisms of X. The automorphism α is lower ad-
missible if α induces the identity map on T (x) ∩ T (x)α for each cell T (x).

Assume T is a connected homology n-manifold with cell structure supplied
by a poset X. A reflection through an (n − 1)-cell T (x) is a nontrivial
automorphism of the space T with cell structure fixing each member of
T (x). There is at most one reflection through T (x).
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Let A be a poset of height n with a least element a0, I the set of elements
of A of height 1, G a group, and ρ : I → G a map from I into the set of
involutions of G such that G = 〈ρ(I)〉 is generated by the image of ρ. For
a ∈ A let

A(≤ a) = {b ∈ A : b ≤ a}, I(a) = I ∩ A(≤ a), Qa = 〈ρ(I(a))〉

and P (G, ρ,A) the poset with vertex set
∐
a∈AG/Qa and Qag ≤ Qbh if and

only if a ≤ b and Qag ⊆ Qbh. The triple (G, ρ,A) is thin if A(> a0) is
thin and residually connected. In the literature thin residually connected
posets are sometimes called abstract polytopes; cf. [MS]. We show there
is a bijection between the class of abstract polytopes P admitting a lower
admissible group of automorphisms transitive on maximal elements of P and
the class of thin triples; cf. Remark 1 in Section 4.

The triple (G, ρ,A) is a manifold triple of height n if A(> a0) is a homol-
ogy (n − 1)-manifold and sphere, and for each a ∈ A of height at least 2,
P (Qa, ρa,A(< a)) is a homology sphere, where ρa is the restriction of ρ to
I(a). We prove the following two theorems which show that the notion of
a connected homology manifold with cell structure admitting the rigid ac-
tion of a group transitive on n-cells is equivalent to the notion of a manifold
triple.

Theorem 1. Let T be a connected homology n-manifold with cell structure
supplied by a poset X, and G a lower admissible group of automorphisms of
T transitive on n-cells of T . Let T (x) be a n-cell of T . Then
(1) There is a reflection ρ(i) through each (n− 1)-cell i below x, G is gen-

erated by the set of all such reflections, and G is the subgroup generated
by all reflections of the automorphism group of the space T with cell
structure.

(2) Let A be the dual of X(≤ x). Then (G, ρ,A) is a manifold triple of
rank n and X is isomorphic to the dual of P (G, ρ,A).

Theorem 2. Let (G, ρ,A) be a manifold triple of height n and X the
dual of P (G, ρ,A). Then the geometric realization T = T (X) is a connected
homology n- manifold with cell structure supplied by X and G is a lower
admissible group of automorphisms of the space T transitive on the n-cells
of T .

If (G, ρ,A) is a manifold triple then for each a ∈ A, (Qa, ρa,A(< a)) is
also a manifold triple and Pa = P (Ga, ρa,A(< a)) is a homology sphere, so
it is important to investigate the case where P = P (G, ρ,A) is a homology
sphere. One very strong result in this direction uses an idea of Davis in [D]
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and shows the isotropy groups Qa, a ∈ A, in our rigid action of G on T (P )
are all spherical Coxeter groups:

Theorem 3. If (G, ρ,A) is a manifold triple of height n such that P (G, ρ,A)
is a homology n-sphere then (G, ρ(I)) is a spherical Coxeter system.

It remains to decide the possible structures for the big cell A and the
nature of the map a 7→ Qa from A into the poset of all subgroups of G,
particularly in the case where P (G, ρ,A) is a homology sphere. Perhaps the
following two results are our strongest in this direction.

Theorem 4. Let (G, ρ,A) be a manifold triple of height n such that P =
P (G, ρ,A) is a homology sphere, ρ is injective, and I(a) 6= I(b) for a < b in
A. Then (G, ρ(I)) is a spherical Coxeter system of rank n + 1 or n and P
is the Coxeter complex C of (G, ρ(I)) or its suspension, (i.e. the join C ∗S0

of C with a 0-sphere) respectively.

Theorem 5. Let (G, ρ,A) be a thin triple such that A is of height n
with A(> a0) a homology (n− 1)-sphere and manifold, and for each a ∈ A,
(Qa, ρ(I(a))) is a spherical Coxeter system of rank the height of a. Then
(G, ρ,A) is a manifold triple.

Theorem 5 supplies one means for constructing representations of a group
G on manifolds. We use it in Section 13 to construct representations of the
Monster of dimension ranging from 7 to 14, and observe in Example 2 in
Section 12 that it can be used to construct representations on 2-dimensional
manifolds of most any group generated by involutions. Then taking prod-
ucts of such examples we obtain many 24 dimensional representations of the
Monster. See Section 11 for a brief discussion of Hirzebruch’s Prize Question.

In Section 4 of [D], Davis proves results similar to Theorems 1 through
3 under the assumption that the big cell A(> a0) is a simplex and ρ is
injective. Of course he does so in a different language. The preprint [A]
contains results on manifolds parametrized by the cell complexes of [CCC],
which are more general than regular CW-complexes.

2. Generalities on simplicial complexes and posets.

Let n be a nonnegative integer, I = {0, . . . , n}, and K an (abstract) n-
dimensional simplicial complex. Write K for the vertex set of K and Σ(K)
for the set of simplices of K. Write Σk(K) for the set of k-simplices of K.
We call the n-simplices of K chambers. A wall of a chamber C is an (n−1)-
simplex of C. The chamber graph of K is the graph on the chambers of K
in which chambers C and D are adjacent if C ∩D is a wall of C.
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We say K is residually connected if K is connected, LinkK(s) is connected
for each k-simplex s with k < n − 1, and LinkK(s) 6= ∅ for each (n − 1)-
simplex s.

A complex K is a typed complex with type function τ if

τ : K → I ′

is a function from the vertex set of K into some index set I ′ which is injective
on simplices. For example if I ′ = I is of order n+ 1 this just says the graph
of K is a Tits geometry with type function τ . The type of a simplex s is its
image τ(s) ⊆ I ′.

A morphism α : K → L of typed complexes over I ′ is a simplicial map
preserving type. That is τ(vα) = τ(v) for each vertex v of K. We write
Aut(K, τ) for the group of automorphisms of K in the category of typed
complexes.

A geometric complex is a typed complex over I in which each simplex is
contained in a chamber.

For example if P is a poset, the order complex O(P ) of P is the simplicial
complex with vertex set P and simplices the finite chains of P . Define P
to be residually connected if O(P ) is residually connected and define the
chamber graph of P to be that of O(P ). If the set P (≤ x) of vertices y of
P with y ≤ x is of finite height then O(P ) is a typed complex with type
function the height function. The barycentric subdivision of a complex K is
the order complex of its poset of simplices, partially ordered by inclusion.
Write sd(K) for the barycentric subdivision of K; thus sd(K) is a typed
complex with respect to the height function.

An automorphism g of K is said to be admissible if whenever g fixes a
simplex s of K then g fixes each vertex of s. Notice if g is admissible then
the set Fix(g) of all simplices of K fixed by g is a subcomplex of K.

Similarly g is strongly admissible if g fixes each vertex of s∩sg for each
simplex s of K. A group G of automorphisms is admissible, strongly admis-
sible if each of its elements is admissible, strongly admissible, respectively.
We say G is topologically regular if whenever g0, . . . , gk ∈ G and {v0, . . . , vk}
and {v0g0, . . . , vkgk} are k-simplices of K, then there exists g ∈ G with
vig = vigi for each i.

(2.1) Let G be a group of automorphisms of K. Then
(1) G is strongly admissible if and only if vG∩ s = {v} for each simplex s

of K and each v ∈ s.
(2) If G is topologically regular then G is strongly admissible.
(3) G is topologically regular if and only if Gs controls fusion in LinkK(s)

for each simple s of K. That is for each vertex v of K, the pointwise
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stablizer Gs of the simplex s is transitive on vG ∩ LinkK(s).

Proof. Parts (1) and (2) are easy and appear for example in Section 1 of
Chapter III of [Br]. Let s = {v0, . . . , vk} be a k-simplex of K. Assume G
is topologically regular and let g ∈ G and x, xg ∈ LinkK(s). Then s ∪ {x}
and s ∪ {xg} are simplices of K, so as G is topologically regular there is
h ∈ G with vih = vi for each i and xh = xg. That is h ∈ Gs and xh = xg,
so Gs is transitive on xG ∩ LinkK(s). Conversely assume Gs controls fusion
in LinkK(s) for each s. Let {v0g0, . . . , vkgk} be a simplex; we must show
there is g ∈ G with vig = vigi for each i. We proceed by induction on k;
the remark is trivial when k = 0. Let t = s− {vk}; by induction on k there
is h ∈ G with vih = vigi for i 6= k, so replacing t by th, we may assume
vi = vigi for i 6= k. Then as Gt controls fusion in LinkK(t), there is g ∈ Gt

with vkg = vkgk, completing the proof.

(2.2) Let G be a group of automorphisms of K. Then
(1) G is strongly admissible on sd(K).
(2) G is topologically regular on sd2(K).
(3) If G is admissible on K then Fixsd(K)(G) = sd(FixK(G)) and dim(K)

= dim(sd(K)).
(4) K and sd(K) have the same homotopy type.

Proof. Part (4) is well known. Parts (1) and (2) are easy and appear as
Proposition 1.1 in Chapter III of [Br]. Part (3) is trivial.

(2.3) Let G be a group of automorphisms of K and C = {v0, . . . , vn} a
chamber of K. Then
(1) If there exists a G-invariant type function τ : K → I ′ making K into

a typed complex then G is strongly admissible.
(2) If G is strongly admissible then G is admissible.
(3) If G is strongly admissible, transitive on chambers, and each simplex

of K is contained in a chamber, then there is a unique type function τ :
K → I preserved by G with τ(vi) = i and making K into a geometric
complex.

Proof. If K is a typed complex with type function τ preserved by G, then
for g ∈ G and s a simplex of K, t = s ∩ sg is the simplex of s and of sg
of type τ(t), so as g preserves type, g fixes each vertex of t. That is G is
strongly admissible and (1) is established.

Part (2) is trivial. Assume G is chamber transitive and each simplex is
contained in a chamber. Then each vertex is in viG for some i. Therefore
if G is strongly admissible, we can define τ : K → I by τ(vig) = i, and τ is
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well defined, since if vig = vj then vj ∈ C ∩ Cg, so by strong admissiblity,
vi = vig = vj. Visibly τ is the unique G-invariant function from K to I with
τ(vi) = i. Finally if s is a simplex of K then sg ⊆ C for some g ∈ G, so as τ
is injective on C and G-invariant, τ is injective on s. Thus K is a geometric
complex with type function τ , completing the proof of (3).

(2.4) Let G be a group of automorphisms of K and C = {v0, . . . , vn} a
chamber of K. Assume G is admissible and chamber transitive and each
simplex of K is contained in a chamber. Then the following are equivalent:
(1) G is strongly admissible.
(2) Gvi is chamber transitive on LinkK(vi) for each i ∈ I.
(3) Gs is chamber transitive on LinkK(s) for each simplex s of K.
(4) G is topologically regular on K.

Proof. Assume Gvi is chamber transitive on LinkK(vi) for each i ∈ I. Sup-
pose v ∈ s∩ sg for some g ∈ G, some vertex v, and some simplex s. As G is
chamber transitive and s is contained in a chamber, we may take v = vi and
s = C. Then as Gv is chamber transitive on LinkK(v), there is h ∈ Gv with
Cgh = C. Now as G is admissible, gh fixes each vertex of C, so v = vgh
and hence vg = vh−1 = v. That is G is strongly admissible. Thus (2) im-
plies (1). On the other hand if G is strongly admissible, s ⊆ C, and d is a
chamber in LinkK(s) then D = d∪ s is a chamber of K, so D = Cg for some
g ∈ G. Then s ⊆ C ∩Cg, so as G is strongly admissible, g ∈ Gs. That is (1)
implies (3). Trivally, (3) impies (2). As G is chamber transitive and each
simplex is contained in a chamber, (3) is equivalent to Gs controlling fusion
in LinkK(s), which is in turn equivalent to (4) by 2.1.3.

3. Upper admissible representations.

In this section P is a poset of finite height n. A k-cell of P is an element of
P of height k.

A group G of automorphisms of P is said to be lower admissible if each
g ∈ G fixes P (≤ x) ∩ P (≤ xg) pointwise for each x ∈ P . We define upper
admissiblity dually.

Examples. (1) If G is a strongly admissible group of automorphisms of the
simplicial complex K then G is a lower admissible group of automorphisms
of the poset sd(K).

(2) Let A be a poset and F = (Qa : a ∈ A) a family of subgroups of a
group G. Assume F is compatible; that is Qa ≤ Qb for all a, b ∈ A with
a ≤ b. Define P (F) to be the poset consisting of the disjoint union of the
coset spaces G/Qa with Qag ≤ Qbh if and only if a ≤ b and Qag ⊆ Qbh.
Then visibly



FINITE GROUPS ACTING ON HOMOLOGY MANIFOLDS 9

(3.1) G is represented as a upper admissible group of automorphisms of
P (F) by right multiplication.

We have a partial converse to Lemma 3.1:

(3.2) Let G be represented as a upper admissible group of automorphisms
of P transitive on 0-cells, let y be a 0-cell of P , A = P (≥ y), and for a ∈ A
let Qa = Ga and F = (Qa : a ∈ A). Then A is a set of representatives for
the orbits of G on P and the map ag 7→ Qag is a G-equivariant isomorphism
of P with P (F).

Proof. As P is of finite height, each cell is above a 0-cell, so as G is transitive
on 0-cells, each cell is conjugate to a member of A. Then as G is upper
admissible, A is a set of representatives for the orbits of G on P .

Let ϕ : P → P (F) be the map ϕ : ag 7→ Qag. As A is a set of represen-
tatives for the orbits of G on P and Qa = Ga, the map ϕ is a well defined
bijection. Next ag ≤ bh iff a ≤ bhg−1. So if ag ≤ bh then y ≤ b, bhg−1, so
b = bhg−1 and hence bh = bg so that Qbh = Qbg. Also ag ≤ bh = bg so a ≤ b
and hence ϕ(ag) = Qag ≤ Qbg = Qbh = ϕ(bh). Similarly we can reverse
the direction of the argument, and so conclude ϕ is an isomomorphism of
posets.

For a ∈ A, let Fa = (Qb : b < a) be the compatible family of subgroups
of Qa indexed by the poset A(< a).

(3.3) Let F = (Qa : a ∈ A) be a compatible family of subgroups of a group
G indexed by a poset A, let P = P (F), a ∈ A, and x = Qa ∈ P . Then
(1) P (> x) = {Qb : a < b} is isomorphic to A(> a).
(2) P (< x) ∼= P (Fa).
(3) P is connected iff A is connected and G = 〈F〉.
(4) P is residually connected iff A is residually connected, G = 〈F〉, and

Qa = 〈Fa〉 for each a ∈ A of height at least 2.

Proof. First x < Qbg iff a ≤ b and Qa ⊆ Qbg iff Qbg = Qb and a ≤ b, so (1)
holds. Simliarly Qbg < x iff b < a and Qbg ⊆ Qa iff b < a and g ∈ Qa, so (2)
holds.

Let Ai, i ∈ I, be the connected components of A, Hi = 〈Qa : a ∈ Ai〉,
and

∆i =
⋃
a∈Ai

QaHi.

Now for a ∈ Ai, we just saw that Qa is adjacent to Qb for a ≤ b and to Qcg for
c < a and g ∈ Qa, so ∆i contains all cells adjacent to Qa. Further Qa acts on
the connected component Γ(a) of P containing Qa and {Qa : a ∈ Ai} ∼= Ai
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is connected, so Γ(a) = Γ(b) = Γ(i) for a, b ∈ Ai, so Hi acts on Γ(i). Thus
as ∆i is the union of Hi orbits of cells in Ai, ∆i ⊆ Γ(i) and then as all cells
adjacent to Qa are contained in ∆i, we conclude ∆i = Γ(i). Therefore P is
connected iff A is connected and G = QaG = QaHi = Hi. That is (3) holds.
Finally parts (1)-(3) imply part (4).

4. Thin complexes and posets.

In this section K is an n-dimensional simplicial complex. We say K is thin
if each simplex of K is contained in a chamber and for each (n− 1)-simplex
s of K, LinkK(s) is of order 2. If Link(s) is of order 2, a reflection through s
is an automorphism of K fixing each vertex of s and interchanging the two
vertices of Link(s).

Let P be a poset of finite height n. The poset is thin if its order complex
is thin.
Remark. (1) Thin residually connected posets of height n are called
abstract n-polytopes; see [MS] for example. An abstract polytope is regular if
it possesses a chamber transitive group of automorphisms. Regular abstract
polytopes have been studied extensively; eg. [MS]. We will study abstract
polytopes with a weaker symmetry condition: a lower admissible group of
automorphisms transitive on n-cells. For if G is transitive on chambers of
a poset P then by 2.3.1 and Example 1 in Section 3, G is lower admissible
and transitive on n-cells of sd(O(P )).

If P is thin and x is an (n − 1)-cell, then there are 2 n-cells above x,
and a reflection through x is an automorphism of P fixing P (≤ x) pointwise
and interchanging the two n-cells above x. Similarly we define reflections
through 1-cells dually.

(4.1) Let K be thin with a connected chamber graph and G a group of
automorphisms of K. Then
(1) GC = 1 for each chamber C of K.
(2) For each simplex s of K, Gs acts faithfully on LinkK(s).
(3) If s is an (n − 1)-simplex of K then there is at most one reflection

through s and either Gs = 1 or Gs = 〈rs〉, where rs is the reflection
through s.

Proof. As K is thin with a connected chamber graph, a standard argument
establishes (1). Then (1) implies (2). If s is an n − 1-simplex, then as K
is thin, |LinkK(s)| = 2. Then as Gs is faithful on LinkK(s) by (2), (3)
holds.

(4.2) Let P be thin poset of height n with a connected chamber graph, G
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a group of automorphisms of P , z an n-cell of P , W the set of (n− 1)-cells
below z, and O(P ) the group generated by all reflections through (n−1)-cells
of P . Then
(1) If GP (≤w) 6= 1 for each w ∈ W then O(P ) = 〈rw : w ∈ W〉 ≤ G and

O(P ) is transitive on the n-cells of P .
(2) If G is lower admissible and transitive on the n-cells of P then GP (≤w)

6= 1 for each w ∈ W and G = O(P ).

Proof. Let w ∈ W. As P is thin there is exactly one more n-cell y above w.
If G is transitive on n-cells there is g ∈ G with zg = y. Therefore

P (≤ w) ⊆ P (≤ z) ∩ P (≤ zg),

so if G is lower admissible then g ∈ GP (≤w), so GP (≤w) 6= 1, proving half of
(2).

Conversely assume GP (≤w) 6= 1 for each w ∈ W. Then by 4.1.3 applied to
K = O(P ), GP (≤w) = 〈rw〉 ∼= Z2, where rw is the unique reflection through
w and zrw = y. Let H = 〈rw : w ∈ W〉. To complete the proof of (2) and to
establish (1), it remains to show H = O(P ) is transitive on n-cells and if G
is lower admissible then H = G. If H is transitive on n-cells and G is lower
admissible then G = HGz = HGP (≤z) = H, since by 4.1.1, GP (≤z) = 1.
Further as H contains each reflection through a member of W, and as H is
transitive on n-cells, H contains all reflections, so H = O(P ). Therefore it
remains to show H is transitive on n-cells.

Let Γ be the graph on the n-cells of P with a adjacent to b if there is a
common (n−1)-cell below a and b. As the chamber graph of P is connected,
so is Γ. Further if w < y, z is an (n − 1)-cell then zrw = y. That is if y is
adjacent to z then y ∈ zH. Now if H is not transitive on n-cells, there exists
y at minimal distance d from z subject to y /∈ zH. By minimality of d there
is x adjacent to y with x ∈ zH. Then as u ∈ zH for each u adjacent to z
and x ∈ zH, y ∈ xH = zH, contrary to the choice of y. This completes the
proof of the lemma.

(4.3) Let A be a poset of height n with a unique 0-cell a0 and F = (Qa :
a ∈ A) a compatible family of subgroups of a group G. Then P (F) is an
abstract polytope if and only if the following conditions hold:
(1) Qa0 = 1.
(2) For each 1-cell a of A, Qa is of order 2.
(3) A(> a0) is an abstract polytope.
(4) Qb = 〈Qa : a ≤ b and h(a) = 1〉 for each b ∈ A.
(5) G = 〈F〉.
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Proof. Let P = P (F) and Q0 = Qa0 . By 3.3, P is residually connected iff A
is residually connected, G = 〈F〉, and Qb = 〈Fb〉 for each b ∈ A of height at
least 2. Notice the last condition is equivalent to (4) when Q0 = 1.

Next A ∼= P (≥ Q0) by 3.3, so if P is an abstract polytope then (3)
holds. By 4.1.1, Q0 = 1. Further if a is a 1-cell in A then by 3.3, P (<
Qa) ∼= Qa/Q0

∼= Qa is of order 2, so (2) holds. Thus (1)-(5) are necessary
conditions.

Conversely assume (1)-(5); then we have seen that P is residually con-
nected. Next if Qag ≤ Qbh with h(Qbh) = h(Qag) + 2 then a < b with
h(a) = h(b)+2 and by 3.3, the intervals (Qag,Qbh)P ∼= (a, b)A are of order 2
by (3). If Qbh is a 1-cell then b is a 1-cell and P (< Qbh) ∼= Qb/Q0 is of order 2
by (1) and (2). Finally if Qbg is an n−1-cell then by 3.3, P (> Qbg) ∼= A(> b)
is of order 2 by (3). So P is thin and (1)-(5) are sufficient.

Let I be a finite index set and ρ : I → G a map such that ρ(i) is an
involution for each i ∈ I. For J ⊆ I define

PJ = 〈ρ(j) : j ∈ J〉.
The groups PJ , J ⊆ I, are the parabolics of the pair (G, ρ).

Define the Coxeter matrix of (G, ρ) to be the matrix M = (mij) defined
by mij = |ρ(i)ρ(j)| and the Coxeter diagram ∆ of (G, ρ) to be the Coxeter
diagram of its Coxeter matrix. That is ∆ is the diagram whose nodes are
the elements of I and with an edge of weight mi,j−2 between distinct nodes
i and j.

We have a graph induced on I by the Coxeter diagram ∆ via i adjacent to
j if there is an edge between i and j of weight at least 1; i.e. if mi,j > 2. We
say ∆ is connected if its graph is connected, and more generally define the
connected components of ∆ to be the connected components of its graph.

Define a thin triple of height n to be a triple (G, ρ,A) such that
(T1) G is a group.
(T2) A is a poset of height n with a unique element a0 of height 0, A(> a0)

is thin, and A(> a0) is residually connected if n > 1.
(T3) Let I be the set of 1-cells of A. Then ρ : I → G is a function with

ρ(i) an involution for each i ∈ I and G = 〈ρ(I)〉.
Let F = F(G, ρ,A) be the family of subgroups F = (Qa : a ∈ A) with

Qa = PI(a) the parabolic determined by I(a) = {i : i ≤ a}. The family F
is the family of parabolics of (G, ρ,A) and the poset P (F) is the parabolic
poset of (G, ρ,A) and is denoted by P (G, ρ,A).

(4.4) Let (G, ρ,A) be a thin triple, F = (Qa : a ∈ A) the parabolic family
and P = P (F) the parabolic poset of (G, ρ,A). Then
(1) P is an abstract polytope and G is an upper admissible group of auto-
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morphisms of P transitive on 0-cells of P .
(2) F is a set of representatives for the orbits of G on P and for a ∈ A,

h(Qa) = h(a) and Qa is the stablizer in G of the cell a.
(3) For each i ∈ I, ρ(i) is the reflection through the 1-cell Qi of P .

Proof. By definition, Q0 = Qa0 = PI(a0) = P∅ = 1 and for i ∈ I, Qi =
Pi = 〈ρ(i)〉 is of order 2. By hypothesis, A(> a0) is an abstract polytope
and G = 〈F〉. By construction Qa = PI(a) = 〈Qi : i ≤ a and h(i) = 1〉.
Therefore by 4.3, P is an abstract polytope. By 3.1, G is an upper admissible
group of automorphisms of P and by construction (2) holds so as a0 is the
unique 0-cell in A, G is transitive on 0-cells. Finally part (3) holds by the
dual of 4.1.3.

(4.5) Let P be an abstract polytope, a0 a 0-cell of P , and G an upper
admissible group of automorphisms of P transitive on 0-cells. Let A = P (≥
a0), I the set of 1-cells in A, and ρ(i) the reflection through i ∈ I. Then
(1) G = O(P ) is the group generated by all reflections through 1-cells of

P .
(2) (G, ρ,A) is a thin triple and P ∼= P (G, ρ,A) via the G-equivariant map

ag 7→ Qag.
(3) Qa = O(P (< a)) for each a ∈ A.

Proof. Part (2) follows from 3.2 and part (1) from the dual of 4.2.2. For
a ∈ A, P (< a) is an abstract polytope and Qa = Ga is transitive on 0-cells
of P (< a), so (1) implies (3).

Remark. (1) Theorems 4.4 and 4.5 show the notion of a thin triple
(G, ρ,A) and the notion of an abstract polytope admitting G as an up-
per admissible group of automorphisms transitive on 0-cells are equivalent.
Namely the map (G, ρ,A) 7→ P (G, ρ,A) induces a bijection between the
collection of isomorphism classes of thin triples and the collection of iso-
morphism classes of abstract polytopes with an upper admissible group of
automorphisms transitive on 0-cells. The inverse of this bijection is induced
by P 7→ (O(P ), ρ,A), where a0 is some fixed 0-cell of P , A = P (≥ a0) and
ρ(i) is the reflection through i.

5. Generalities on triangulations.

Let Rn be n-dimensional Euclidean space. An affine subspace of Rn is a
coset U + x of a linear subspace U of Rn. The dimension of the affine
subspace U + x is dim(U), with the empty set of dimension −1.
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A subset C of Rn is convex if for each x, y ∈ C and each real number t
with 0 ≤ t ≤ 1, tx+ (1− t)y ∈ C. The intersection of any family of convex
sets is convex, so for each subset S if Rn there is a smallest convex subset
[S] of Rn containing S. We call [S] the convex closure of S. Recall that if
S = {v0, . . . , vk} then

[S] =

{
k∑
i=0

aivi : 0 ≤ ai ∈ R, and
∑
i

ai = 1

}

with this expression being unique if S is affine independent; that is if the
affine subspace generated by S is of affine dimension k.

Let K be a finite dimensional simplicial complex with vertex set K and
simplices Σ. A triangulation of a topological space T by K is a map ϕ of Σ
into the set of closed subspaces of T together with homeomorphisms

ϕs : ϕ(s)→ ϕ̂(s) = [u(s, v) : v ∈ s] ⊂ Rk

for each k-simplex s of K such that:

(T1) For s, t ∈ Σ, ϕ(s) ∩ ϕ(t) = ϕ(s ∩ t), where ϕ(∅) = ∅.
(T2) T =

⋃
s∈Σ ϕ(s) and C ⊆ T is closed in T if and only if C ∩ ϕ(s) is

closed in ϕ(s) for all s ∈ Σ.
(T3) For each k-simplex s of K and t ⊆ s, ϕ̂(s) = [u(s, v) : v ∈ s] is of

affine dimension k and ϕt,s = ϕs ◦ ϕ−1
t acts on ϕ̂(t) = [u(t, v) : v ∈ t] via

ϕt,s :
∑
v∈t avu(t, v) 7→∑

v∈t avu(s, v).

A morphism of topological spaces ϕi : Ki → T i, i = 1, 2, with triangulation
is a pair (α, β) where α : K1 → K2 is a simplicial map, β : T 1 → T 2 is
continuous, and for each s ∈ Σ1,

(T1) β(ϕ1(s)) ⊆ ϕ2(α(s)), and
(T2) αs ◦ ϕ1

s = ϕ2
α(s) ◦ β, where αs : ϕ̂1(s)→ ϕ̂2(α(s)) is defined by

αs :
∑
v∈s

avu(s, v) 7→
∑
v∈s

avu(α(s), α(v)).

Any pair ϕi : K → Ti, i = 1, 2, of triangulations of topological spaces Ti
by K are isomorphic and there exists a canonical triangulation ϕ : K → T =
T (K) called the geometric realization of K. Moreover T extends to a functor
from the category of simplicial complexes to the category of triangulated
topological spaces. Namely if α : K → K̄ is a simplicial map, then α extends
to a map T (α) : ϕ→ ϕ̄. In particular this shows that Aut(K) ∼= Aut(ϕ).

Let β be a homeomorphism of T = T (K) permuting the cells ϕ(s), s ∈ Σ.
Then β induces a permutation α : Σ → Σ of Σ via β(ϕ(s)) = ϕ(α(s)). As
t ⊆ s if and only if ϕ(t) ⊆ ϕ(s), the map α is an automorphism α : K → K.
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We say that β preserves the cell structure of T if αs ◦ ϕs = ϕα(s) ◦ β, where
αs is the map defined in Axiom (T2) for morphisms of triangulations. In
otherwords the set G of all homeomorphims β preserving the cell structure
on T forms a group and the maps

α 7→ (α, β) 7→ β

are isomorphisms Aut(K) ∼= Aut(ϕ) ∼= G. Thus we can regard the auto-
morphism group of the triangulated space T to be the group of all homeo-
morphisms preserving the cell structure on T , and that group is naturally
isomorphic to Aut(K).

Finally define an automorphism β of the triangulated space T to be ad-
missible if whenever β acts on a cell ϕ(s) then β induces the identity map
on ϕ(s) and define β to be strongly admissible if β induces the identity on
ϕ(s)∩ϕ(s)β for each cell ϕ(s). Notice that β is admissible if and only if the
automorphism α of K corresponding to β is an admissible automorphism of
K and β is strongly admissible if and only if α is strongly admissible.

6. Manifolds.

Let n be a nonnegative integer. A topological n-manifold is a nonempty Haus-
dorff space T which is locally isomorphic to n-dimensional Euclidean space;
that is each point of T has a neighborhood homeomorphic to a neighbor-
hood of Rn. Let R = Z or a field. A R-homology n-manifold is a nonempty
Hausdorff space T such that for each point t ∈ T ,

Hi(T, T − {t}, R) ∼=
{

0 if i 6= n

R if i = n

}
.

We say T is a homology n-manifold if R = Z and T is a p-homology n-
manifold if R is a field of prime characteristic p.

(6.1) Each topological n-manifold T is a homology n-manifold.

Proof. See Lemma 35.1 and Example 1 in Section 35 of [M].

Let K be a simplicial complex. We say K is a R-homology n-sphere if
dim(K) = n and K has the R-homology of an n-sphere. That is H̃i(K,R) =
0 for i 6= n and H̃n(K,R) ∼= R. A R-homology (-1)-sphere is an empty
simplicial complex. We define K to be a R-homology n-manifold if LinkK(s)
is a R- homology (n−k−1)-sphere for each k-simplex s and each 0 ≤ k < n.
For s a simplex of K and ϕ : K → T (K) the geometric realization of K, let

I(s) = ϕ(s)−
⋃
t⊂s

ϕ(t)
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be the interior of ϕ(s).

(6.2) Let K be a finite dimensional simplicial complex. Then
(1) K is a R-homology n-manifold if and only if the geometric realization

T of K is a R-homology n-manifold.
(2) Assume K is a connected R-homology n-manifold. Then K is thin and

residually connected. Further LinkK(s) is finite for each simplex s of
K.

Proof. If the geometric realization T of K is a R-homology n- manifold then
by Theorem 63.2 in [M], K is a R-homology n-manifold. Conversely assume
K is a R-homology n-manifold and let x ∈ T . Then x ∈ I(s) for a unique
simplex s of K. Let k = dim(s). If k = n then

I(s) = T −
⋃

s6=t∈Σ(K)

ϕ(t)

so I(s) is open in T and as ϕ(s) is homeomorphic to a closed n-ball, I(s) ∼=
Rn. So I(s) is a neighborhood of T homeomorphic to Rn, and hence by
Theorem 35.1 and Example 1 in Section 35.1 of [M], Hi(T, T − {x}, R) is
isomorphic to R or 0 for i = n, i 6= n, respectively.

So assume k < n. Then by Lemma 63.1 in [M],

Hi(T, T − {x}, R) ∼= H̃i−k−1(LinkK(s), R)

so that Hi(T, T − {x}, R) is 0 unless i = n, where it is R.
So (1) is established. Thus we may assume K is a connected R-homology

n-manifold. Then H0(LinkK(s), R) ∼= R so LinkK(s) is connected for each
k- simplex s such that 0 ≤ k < n − 1, while LinkK(s) is of order 2 if
k = n − 1. Therefore K is residually connected and thin of dimension n.
Finally by Exercise 4 on page 377 of [M], LinkK(s) is finite for each simplex
s, completing the proof of (2).

Suppose K is finite of dimension n. We say K is R-orientable if there
exists an orientation of the n- simplices of K such that∑

s∈Σn(K)

s

is a cycle in Cn(K,R).

(6.3) If K is a connected R-homology n- manifold with Hn(K,R) 6= 0 then
K is finite and orientable and Hn(K,R) ∼= R.

Proof. If Hn(K,R) 6= 0 then by Exercise 4 on page 377 of [M], K is finite
and then Corollary 65.3 in [M] completes the proof.
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(6.4) Let K be a finite dimensional simplicial complex which is a p-homolo-
gy n-sphere for some prime p and G a p-group acting strongly admissibly on
K. Then
(1) FixK(G) is a p-homology r-sphere for some −1 ≤ r ≤ n.
(2) If K is a homology p-manifold then r = dim(FixK(G)) and either

r = −1 and FixK(G) = ∅, or r = 0 and FixK(G) is disconnected of
order 2, or r > 0 and FixK(G) is a connected p-homology r- manifold.

Proof. Part (1) is a special case of Smith’s Theorem. If G is topologically
regular on K it appears as Theorem 5.1 in [Br], so it remains to reduce to
the case G topologically regular. But by 2.2, K and sd2(K) have the same
homotopy type, G is topologically regular on sd2(K), and Fixsd2(K)(G) =
sd2(FixK(G)). By the first remark, sd2(K) is a p-homology n-sphere, so by
the second remark and Smith’s Theorem, Fixsd2(K)(G) is a p-homology r-
sphere, and then by the first and third remarks, FixK(G) ' sd2(FixK(G)) =
Fixsd2(K)(G) is too.

Similarly (2) is well known and can be retrieved using Theorem 2.2 in
Chapter 5 of [Bo]. Alternatively [A] contains a sketch of a proof of this fact
in our special situation, following Bredon in Theorem 2.1 in Chapter IV of
[Br].

(6.5) Let K be a homology n-manifold. Then:
(1) K is a p-homology manifold for each prime p.
(2) If K is a homology n-sphere then K is a p-homology n-sphere for each

prime p.

Proof. Notice (2) implies (1), so assume K is a homology sphere. Let C̃∗ be
the augmented chain complex for K. Thus H̃k(K) is 0 if k 6= n and Z if
k = n. Let x ∈ C̃k with ∂(x) = py for some y ∈ C̃k−1. Then 0 = ∂2(x) =
∂(py) = p∂(y), so y ∈ Z̃k−1(K) and hence there is z ∈ C̃k with ∂(z) = y.
Then 0 = ∂(x − pz), so if k 6= n there is u ∈ C̃k+1 with ∂(u) = x − pz ≡ x
mod pC̃k. Hence H̃k(K,Fp) = 0 for k 6= n, so it remains to show the top
homology is 1-dimensional.

Now relax the assumption that K is a homology manifold and sphere, and
assume instead that K is thin and residually connected. Let

x =
∑

s∈Σn(K)

ass ∈ C̃n.

Then
∂(x) =

∑
s,i

(−1)iassi =
∑

t∈Σn−1(K)

(εt,sas + εt,s′as′)t
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where s, s′ are the n-simplices above the (n− 1)-simplex t and εt,s = (−1)i,
where t = si. Thus ∂(x) ∈ pC̃n−1 if and only if

as′ ≡ −εt,sεt,s′as mod p

for all t ∈ Σn−1(K). Hence as the graph on Σn(K)∪Σn−1(K) with s adjacent
to t if t ⊂ s, is connected, we conclude that if K is a homology n- sphere then
∂(x) ∈ pC̃n−1 if and only if x ∈ pZ+π, where π =

∑
s css is the fundamental

cycle with cs = ±1 for all s and εt,scs + εt,s′cs′ = 0 for all t ∈ Σn−1(K).
This completes the proof of (2). Further if K is only thin and residually
connected, we see that π =

∑
s s is a cycle over F2, so we have shown:

(6.6) If K is thin and residually connected then K is F2-orientable.

7. Combinatorial cell complexes.

The notion of a combinatorial cell complex (X, f) is defined in [CCC]. We
will consider only the case where (X, f) is the simplicial cell complex of the
poset X. That is X is a poset in which each element is of finite height and
for x ∈ X, f(x) = X(≤ x). The posets f(x), x ∈ X, are the cells of (X, f)
and the boundary of the cell f(x) is ḟ(x) = f(x)−{x}. The faces of the cell
are its subposets f(x)(≤ v), v ∈ f(x).

From Section 5, there is a functor T from the category of posets to the
category of topological spaces which associates to X its geometric realization
T (X) = T (O(X)). Further T (X) is the union of the closed subspaces T (x) =
T (f(x)), x ∈ X, which supply T (X) with a cell structure parametrized by X.
A topological space with cell structure over X is just a space homeomorphic
to T (X). By construction

(7.1) There is a triangulation ϕ : O(X)→ T (X) of the geometric realiza-
tion of X by O(X).

Because of 7.1, the homology, cohomolgy, and fundamental group of the
geometric realization T (X) of X are the same as that of O(X) (defined
combinatorially), and we define H∗(X) = H∗(O(X)), H∗(X) = H∗(O(X)),
and π1(X) = π1(O(X)).

Recall a space with cell structure over X is just a copy of T (X), so we
can regard any such space as T (X). An automorphism of a space with cell
structure is an automorphism α of the triangulated space ϕ : O(X)→ T (X)
(as defined in Section 5) permuting the cells T (x), x ∈ X. In particular from
Section 5, α is induced from a unique automorphism of O(X) and then as
α permutes the cells T (x), x ∈ X, α preserves height, so α is induced by an
automorphism of X. That is the group of automorphisms of a space with
cell structure over X is isomorphic to Aut(X).
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We next discuss cellular homology. Define the n-skeleton of X to be

Xn = {x ∈ X : h(x) ≤ n}.
Let On = O(Xn) be the order complex of the n-skeleton of X. If s is a
k-simplex of K = O(X) then order s = {v0, . . . , vk} so that vi ≤ vi+1 for
each i. Use this ordering of s to define the oriented simplex

s = v0 · · · vk = v0 ∧ · · · ∧ vk.
Then these oriented simplices are generators for Ck(K) the kth member
of the simplical chain group C∗(K) = (Cn(K) : n) with boundary map ∂
defined by

∂(s) =
k∑
i=0

(−1)isi

where si = v0 ∧ · · · ∧ vi−1 ∧ vi+1 ∧ · · · ∧ vk. If h(x) = n, a typical member of
Cn(f(x)) is of the form

∑
s assx, where the sum is over all (n− 1)-simplices

s of ḟ(x) and as ∈ Z. Notice H̃n−1(ḟ(x)) = Z̃n−1(ḟ(x)). Let

D(x) =

{∑
s

assx :
∑
s

ass ∈ Z̃n−1(ḟ(x))

}
≤ Cn(f(x))

so that D(x) ∼= H̃n−1(ḟ(x)), and define

Dn(X) =
⊕

h(x)=n

D(x) ∼=
⊕

h(x)=n

H̃n−1(ḟ(x)).

Finally define the boundary map on the chain complex D∗(X) = (Dn(X) :
0 ≤ n ∈ Z) by

∂n : Dn(X)→ Dn−1(X)∑
x,s

ax,ssx 7→
∑
x,s

ax,ss.

We call D∗(X) the cellular chain complex of X and ∂ the cellular boundary
map. The cellular homology of X is Hc

∗(X) = H∗(D∗(X)).

Theorem 7.2. If O(ḟ(x)) is homology spherical for each x ∈ X then
the ordinary homology H∗(X) of X is isomorphic to the cellular homology
Hc
∗(X).

Proof. This is Theorem 12.16 in [CCC].

Define X̂ to be the dual poset of X. That is X and X̂ are the same as
sets with the ordering . on X̂ defined by x . y if and only if y ≤ x. Then
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for x ∈ X̂, define f̂(x) = X(≥ x) and f̌(x) = f̂(x)− {x}, giving rise to the
dual complex (X̂, f̂) of (X, f). Then of course

(7.3) O(X) = O(X̂), so X and X̂ have the same homology and fundamen-
tal group.

Theorem 7.4. Let X be a poset of height n and R be Z or a field. Then
the following are equivalent.
(1) The geometric realization of X is a R-homology n-manifold.
(2) For each x ∈ X of height h, f̌(x) is a R-homology (n − h − 1)-sphere

and ḟ(x) is a R-homology (h− 1)-sphere.
(3) For each x ∈ X of height 0 and each y ∈ X of height n, f̌(x) and ḟ(y)

are both R-homology (n−1)-spheres and R-homology (n−1)-manifolds.

Proof. First we recall that the geometric realizations of X and K = O(X)
are the same, and by 6.2.1, that space is a R-homology n-sphere if and only
if LinkK(s) is a homology (n− k − 1)-sphere for each k-simplex s of K. So
let s = {v0, . . . , vk} be a k-simplex of K with vi ≤ vj for i ≤ j. Notice

(a) If vk is of height k then LinkK(s) ∼= f̌(vk).
The dual of (a) is:

(b) If v0 is of height n− k then LinkK(s) ∼= ḟ(v0).

Observe that (a) and (b) together with paragraph one of this proof show
that (1) implies (2). Similarly if K is a R-homology manifold, so are all its
links, so (a) and (b) show that (1) implies (3). Conversely

LinkK(s) = ḟ(v0) ∗ S1 ∗ · · · ∗ Sk ∗ f̌(vk)

is the join of ḟ(x0), f̌(vk), and the intervals

Si = f̌(vi−1) ∩ ḟ(vi)

so as the join of a R-homology p-sphere with a R-homology q-sphere is a
R-homology p+ q+1-sphere, to show (2) implies (1), it suffices to show that
(2) implies that Si is a homology dim(Si)-sphere, since dim(LinkK(s)) =
n− k − 1. This follows from (2) using the argument in the next paragraph.

Finally assume (3). For x ∈ X of height h, x ≤ y for some y of height
n. If x = y then by hypothesis ḟ(x) is a R-homology (n− 1)-sphere. If not
then as ḟ(y) is a R-homology manifold, ḟ(y)(< x) = ḟ(x) is a R-homology
(h− 1)-sphere. By duality, f̌(x) is a R-homology (n− h− 1)-sphere, so (3)
implies (2).

Finally we find in Theorem 15.15 of [CCC] that:
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(7.5) There is an equivalence of categories between the category of regular
CW-complexes and posets X in which O(ḟ(x)) is an (n− 1)-sphere for each
x ∈ X of height n and each 1 ≤ n ≤ h(X).

8. Poincaré duality.

In this section R = Z or R is a field and X is a poset of height n such
that the geometric realization T (X) of X is a R-homology n- manifold.
Let K = O(X) be the order complex and X̂ the dual poset. We say X
is a R-homology n-manifold if its geometric realization is an R-homology
n-manifold.

From Section 7, we have the celluar chain complex D∗ = D∗(X) and
the homology of X is isomorphic to the homology of D∗. Similarly let D̂∗ =
D∗(X̂) be the cellular chain complex of X̂. By 7.3, D̂∗ has the same homology
as D∗.

Recall from Section 7 that

Dk =
⊕

h(x)=k

D(x)

whereD(x) ∼= H̃k−1(ḟ(x)). AsX is aR-homology n-manifold, H̃k−1(ḟ(x), R)
∼= R by 7.4. Thus D(x) = Rσx, where σx = dxx and dx is a generator for
H̃k−1(ḟ(x), R). Similarly D̂(x) = Rσ̂x with σx = d̂xx.

Let D∗ be the cochain complex complex for D∗. Thus

Dp(X,R) = Hom(Dp(X), R)

with the coboundary operator δ : Dp(X,R)→ Dp+1(X,R) the dual of

∂p : Dp+1(X,R)→ Dp(X,R).

Following [M], write 〈a, b〉 for the image of b ∈ Dp under a ∈ Dp =
Hom(Dp, R). We have the natural basis (σx : h(x) = p) for Dp and as
X is finite this basis is finite. Let (σ∗x : h(x) = p) be the dual basis for Dp.
Recall the coboundary operator δ is defined by

〈δ(a), b〉 = 〈a, ∂(b)〉 for each a ∈ Dp and b ∈ Dp+1.

The standard proof of Poincaré duality such as in Section 65 of [M] estab-
lishes the following result, which gives an explicit isomorphism between the
cochain complex and the dual chain complex. Details can be found in [A].

Theorem 8.1. Assume X is an orientable R-homology n-manifold. Then
we can choose orientations for σ̂x, x ∈ X, so that the map φ : σ∗x 7→ σ̂x
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defines an isomorphism φ : Dn−p → D̂p, 0 ≤ p ≤ n, of the cellular cochain
complex for X with the dual chain complex for X with φ ◦ δ = ∂ ◦ φ.

Corollary 8.2 (Poincaré Duality). If X is an orientable R-homology
n-manifold then Hp(X,R) ∼= Hn−p(X,R) for each 0 ≤ p ≤ n.

Proof. By 8.1, Hp(X,R) ∼= Hn−p(X̂, R), while as remarked earlier, 7.3 says
Hn−p(X̂, R) ∼= Hn−p(X,R).

(8.3) Let X be an orientable R-homology n-manifold. Then
(1) If R is a field then Hp(X,R) ∼= Hn−p(X,R).
(2) If R = Z then

Tor(Hp−1(X)) ∼= Tor(Hn−p(X)) and r(Hp(X)) = r(Hn−p(X)),

where r(G) is the rank of G/Tor(G) as a Z-module for a finitely gen-
erated abelian group G.

Proof. This follows from 8.2 and the Universal Coefficient Theorem; cf. 53.1
and 53.5 in [M].

9. Posets as manifolds.

In this section R = Z or R is a field. Further X is a poset of finite height n.
A subset Y of X is lower closed if X(≤ y) ⊆ Y for each y ∈ Y . Define

upper closed subsets dually.

(9.1) Assume X is an R-homology n- manifold, 0 < m < n, Y is an upper
closed subset of X whose minimal elements are of height m in X, and Z is
a lower closed subset of X whose maximal elements are of height m in X.
Assume Y and Z are abstract polytopes and R-orientable, and Y ∩ Z = {v}
is of order 1. Then Hm(X,R) 6= 0, so X is not a R-homology sphere.

Proof. For x ∈ X, let σx, σ̂x be the fundamental cycles for D(x) and D̂(x)
supplied in Section 8. As Z is an abstract polytope, R-orientable, and lower
closed, γ =

∑
x cxσx ∈ Cm(Z,R) is a cycle, where the sum is over those x ∈ Z

of height m and cx = ±1. As Z is lower closed, Cm(Z,R) ⊆ Dm(X,R) and
the boundary map on Cm(Z,R) is the restriction of the boundary map on
Dm(X,R), so γ is a cycle in Dm(X,R). We show γ is not a boundary
in Dm(X,R) to complete the proof. Assume otherwise; then there is α ∈
Dm+1(X,R) with ∂(α) = γ.

Similarly Ŷ is thin, residually connected, R-orientable, and lower closed
in X̂, so Ŷ has a fundamental cycle β and β is a cycle in Dn−m(X̂, R). Now
Theorem 8.1 supplies us with an isomorphism

φ : Dm(X,R)→ Dn−m(X̂, R)
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with φ ◦ δ = ∂ ◦ φ and φ(σ∗x) = σ̂x for x ∈ X of height m. Let θ = φ−1(β).
Then

φ(δ(θ)) = ∂(φ(θ)) = ∂(β) = 0

so as φ is injective, δ(θ) = 0. Hence

0 = 〈0, α〉 = 〈δ(θ), α〉 = 〈θ, ∂(α)〉 = 〈θ, γ〉.
Now β =

∑
x bxσ̂x, where the sum is over those x ∈ Y of height m and

bx = ±1, so
θ = φ−1(β) =

∑
x

bxσ
∗
x.

Similarly γ =
∑
x cxσx with cx = ±1 and thus

0 = 〈θ, γ〉 =
∑
x

bxcx.

However Y ∩Z = {v} is of order 1 and h(y) ≥ m and h(z) ≤ m for y ∈ Y and
z ∈ Z, so h(v) = m. Thus 0 = bvcv = ±1, a contradiction. This completes
the proof of the lemma.

Recall the notion of a thin triple from Section 4. An R-homology manifold
triple of height n is a thin triple (G, ρ,A) of height n such that:

(RM1) A(> a0) is a R-homology manifold and R-homology sphere, and;
(RM2) For each a ∈ A of height at least 2, P (Qa, ρa,A(< a)) is an R-

homology sphere, where ρa is the restriction of ρ to I(a).

(9.2) If (G, ρ,A) is a R-homology manifold triple of height n then its
parabolic poset P is an R-homology n-manifold and G is an upper admissible
group of automorphisms of P transitive on 0-cells of P .

Proof. By 4.4 the last two remarks hold and by 3.3.1, A ∼= P (≥ a0). Then
by 7.4, it remains to show P (< x) and P (> x) are R-homology (n−m− 1)
and m-spheres, respectively, for each x ∈ P of height m. But by 4.4 we may
take x = Qa for some a ∈ A, so P (> x) ∼= A(> a) is a R-homology sphere
by (RM1) and 3.3.1. Similarly P (< a) ∼= P (Qa, ρa,A(< a)) is a R-homology
sphere by (RM2) and 3.3.2.

(9.3) Assume X is a connected R-homology n-manifold and G is an upper
admissible group of automorphisms of X transitive on 0-cells. Let a0 be a
0-cell, A = X(≥ a0), I the 1-cells in A, and ρ(i) the reflection through i ∈ I.
Then (G, ρ,A) is a R-homology manifold triple and X ∼= P (G, ρ,A).

Proof. By 6.2.2, X is an abstract polytope. By 4.5, (G, ρ,A) is a thin
triple and X ∼= P (G, ρ,A). By 7.4, A(> a0) is a R-homology manifold and
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sphere and X(< a) is a R-homology sphere for each a ∈ A. Then by 3.3.2,
P (Qa, ρa,A(< a)) ∼= X(< a), completing the proof.

Remark. (1) Lemmas 9.2 and 9.3 show that the notion of an R- ho-
mology manifold triple and the notion of a poset with an upper admissible
group transitive on 0-cells, which is an R-homology manifold, are equivalent.
Moreover 9.2 implies Theorem 2 and 4.2 and 9.3 imply Theorem 1.

Example. (1) Let (G,S) be a spherical Coxeter system of rank m and A the
poset of all proper subsets of S. Then a0 = ∅ is the unique member of A of
height 0, A(> a0) is an abstract (m− 2)-polytope, and S is the set of 1-cells
of A. Thus if we define ρ : S → G by ρ(s) = s, then (G, ρ,A) is a thin triple
of height m− 1. The poset P (G, ρ,A) is the Coxeter complex of the Coxeter
system (G,S) and it is well known that the geometric realization of the
Coxeter complex of a spherical Coxeter system of rank m is homeomorphic
to the (m− 1)-sphere. See for example Theorem 66.28 in [CR].

Further for a ∈ A of height k, (Qa, Sa) is well known to be a Coxeter
system of rank k, where Sa = {s ∈ S : s ∈ a}, and the Coxeter complex is
residually connected; cf. 29.13 in [FGT]. Thus (RM2) is also satisfied, so
the Coxeter complex is a manifold triple of height m− 1 and a sphere.
Remark. (2) We are now in a position to prove Theorem 5. Assume
(G, ρ,A) satisfies the hypotheses of Theorem 5. Then (RM1) is satisfied by
hypothesis, so it remains to verify (RM2). But this follows from Example
1.

Example. (2) Let G be a group generated by a set S of m involutions. We
construct a faithful representation of G on a 2-dimensional manifold. Let A
be the poset with least element a0 and A(> a0) a 2m-gon. Let I be the set of
1-cells of A. Pick any bijection ρ : I → S. Then (G, ρ,A) is a manifold triple
of height 2. This follows from Theorem 5. Namely as 2m-gons are 1-spheres,
(RM1) is satisfied. Further if a ∈ A is of height 2, then as A(> a0) is a 2m-
gon, (a0, a)A = {b, c} is of order 2, so 〈ρ(b), ρ(c)〉 = Qa is a dihedral group
and (Qa, {ρ(b), ρ(c)}) is a Coxeter system of rank 2. Thus (RM2) holds by
Example 1.

(9.4) Let S be a set of involutions generating a group G such that for each
r ∈ S, there exists a subset Pr of G such that
(1) 1 ∈ Pr.
(2) Pr ∩ Prr = ∅.
(3) For r, s ∈ S and g ∈ Pr, if sg /∈ Pr then sg = r.
Then (G,S) is a Coxeter system.

Proof. This is Lemma 4.2.1 in [D] and comes from page 18 of [Bb].
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(9.5) Let (G, ρ,A) be a thin triple, P = P (G, ρ,A) the parabolic poset of
the triple, U = P 1 the 1-skeleton of P , I the set of 1-cells of A, and S = ρ(I).
Then either:
(1) (G,S) is a Coxeter system, or;
(2) There exists i ∈ I such that 1 and ρ(i) are in the same connected

component of U − FixU(ρ(i)).

Proof. This is essentially Lemma 4.2 in [D]; we include a proof for complete-
ness. Assume (2) is false and for r ∈ S define Pr to consist of those g ∈ G
such that 1 and g are in the same connected component of Yr = U−FixU(r).
We show the subsets Pr satisfy (1), (2), and (3) of lemma 9.4, so that by
that lemma, (G,S) is a Coxeter system.

Recall that by definition of P , the 0-cells of P are the members of G and
G acts by right multiplication on P , so the stabilizer of each 0-cell is trivial.
In particular G ⊆ Yr, so our definition of Pr makes sense. For g, h ∈ G,
write ∼r for the equivalence relation on G defined by g∼rh if g and h are in
the same connected component of Yr. Thus Pr is the equivalence class of ∼r
containing 1 and in particular 1 ∈ Pr.

Next r permutes the connected components of Yr and as (2) fails, r /∈ Pr,
so as r = 1 · r ∈ Prr, Prr 6= Pr, so Pr ∩ Prr = ∅.

Finally let r, s ∈ S and g ∈ Pr with sg /∈ Pr. Then g∼r1�rsg, so g�rsg
and hence 1 and s are in distinct connected components of Yrg−1 = U −
FixU(rg

−1
). Now s = ρ(i) for some i ∈ I and if Qi /∈ Fix(rg

−1
) then 1 <

Qi > s is a path in U − Fix(rg
−1

), a contradiction. Thus Qi ∈ Fix(rg
−1

), so
as 〈s〉 is the stablizer in G of Qi, rg

−1
= s. That is sg = r, completing the

proof.

(9.6) Let (G, ρ,A) be a 2-homology manifold triple of height n with parabo-
lic poset X a 2-homology n-sphere. Let I be the set of 1-cells of A and
S = ρ(I). Then (G,S) is a spherical Coxeter system.

Proof. The proof comes from Proposition 4.4 in [D]. If (G,S) is a Coxeter
system then by 6.3, X is finite, so G is finite and hence (G,S) is spherical.
Thus we may assume (G,S) is not a Coxeter system, so by 9.5 there exists
i ∈ I such that 1 and r = ρ(i) are in the same connected component of
U −FixU(r), where U = X1 is the 1-skeleton of X. Let x1, . . . , xk be a path
in U−FixU(r) from 1 to r with no repeats. Then x0, x1, . . . , xk, x0 is a cycle,
where x0 = Qi. Hence Z = {x0, . . . , xk} is a 1-submanifold of X. Notice
Z is lower closed since if h(xi) = 1 then X(< xi) = {xi−1, xi+1} ⊂ Z. By
construction the maximal members of Z are 1-cells.

Next let Y = FixX(r). As the stabilizer in G of each 0-cell is trivial, the
minimal members of Y are the 1-cells fixed by r, so Y ∩ Z = {x0}. As G
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is upper admissible, Y is upper closed. By Smith’s Theorem, 6.4, Y is a
2-homology (n− 1)-manifold. By 6.6, Y and Z are orientable. But now 9.1
says H1(X,F2) 6= 0, contradicting X a 2-homology n-sphere.

Remark. (3) Notice 9.6 implies Theorem 3.

(9.7) If (G, ρ,A) is a 2-homology manifold triple and a ∈ A, then
(Qa, ρ(I(a))) is a spherical Coxeter system.

Proof. Observe (Qa, ρa,A(≤ a)) is a 2-homology manifold triple whose para-
bolic poset is a 2-homology sphere, so by 9.6, (Qa, ρ(I(a))) is a spherical
Coxeter system.

10. Regular 2-homology manifolds which are spheres.

In this section X is a poset of finite height n and G is an upper admis-
sible group of automorphisms of X transitive on 0-cells. Assume X is a
2-homology n-manifold and a 2-homology n-sphere. Let a0 be a 0-cell of X,
A = X(≥ a0), I the set of 1-cells in A, ρ(i) the reflection through i ∈ I, and
R = {ρ(i) : i ∈ I}. By 9.3, (G, ρ,A) is a 2-homology manifold triple and X
is isomorphic to the parabolic poset of (G, ρ,A).

Let Pow(I) be the power set of I and φ : A → Pow(I) be the map
φ(a) = I(a) for a ∈ A.

Let Ga be the stabilizer in G of a ∈ A. By 4.4, Ga = PI(a) is the parabolic
generated by Ra = ρ(I(a)), the set of reflections through the set I(a) of
1-cells between a0 and a. Throughout this section we assume:

Hypothesis 10.1. Distinct 0-cells of X are below at most one 1- cell of
X.

(10.2) ρ : I → R is a bijection.

Proof. If ρ(i) = ρ(j) then a0, a0ρ(i) ≤ i, j, so as distinct 0-cells are below at
most one 1- cell, i = j. Indeed the injectivity of ρ is equivalent to Hypothesis
10.1.

(10.3) (G,R) is a spherical Coxeter system.

Proof. This is 9.6.

(10.4) Let x ∈ A be of height m < n, L = I(x),

M =
⋃
y>x

I(y)− L
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H = PM the parabolic of G determined by M , and Y the subset of X which
is the image of B = A(≥ x) under H. Assume

(∗) |I(y)| = |I(x)|+ 1 for each (m+ 1)− cell y above x.

Then Y is upper closed, the minimal members of Y are m-cells, and Y is an
abstract polytope.

Proof. As B is upper closed, so is Y and by construction the minimal mem-
bers of Y are the m-cells xH of X.

Next H is an upper admissible group of automorphisms of the poset Y
transitive on the set xH of 0-cells of Y with B = Y (≥ x), so setting H =
(Hb : b ∈ B), 3.2 says Y is isomorphic to P (H) and H is a compatible family
of subgroups of H. We verify the hypotheses of 4.3 for H,H, and conclude
from that lemma that Y ∼= P (H) is an abstract polytope. First B(> x)
is a 2-homology (n − m − 1)-manifold and sphere, and hence an abstract
polytope as A(> a0) is a 2-homology (n − 1)-manifold and sphere. Second
Hx = PM ∩ PL = PM∩L as (G,R) is a Coxeter system. But M ∩ L = ∅, so
PL∩M = 1.

Similarly for a ∈ B of B-height 1, Ga = PI(a) with I(a) = L ∪ {i(a)} for
some i(a) ∈M by hypothesis (∗). Now

Ha = PM ∩ PI(a) = PM∩I(a) = Pi(a) = 〈ρ(i(a))〉

so Ha is of order 2. Similarly for b ∈ B,

Hb = PM ∩ PI(b) = PM∩I(b) = 〈Pi(a) : a ≤ b and hB(a) = 1〉
= 〈Ha : a ≤ b and hB(a) = 1〉.

Finally
H = PM = 〈Pi(a) : hB(a) = 1〉 = 〈H〉.

Thus we have shown that Y is an abstract polytope, completing the proof.

Define a k-subset J of I to be A-simplicial if

φ : φ−1(Pow(J)) ∩ Ak → Pow(J)

is an isomorphism. Define λ : Pow(I)→ Z by

λ(J) = max{m ≤ k : L is A-simplicial for all L ∈ Pow(J)m}.
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(10.5) Let J be an (m+1)-subset of I with λ(J) ≥ m−1 and assume each
m-subset L of J is of the form I(cL) for some m-cell cL with φ : A(≤ cL)→
Pow(L) an isomorphism. Let

D = φ−1(Pow(J)m−1) ∪ {cL : L is an m-subset of J},

D = PJ , and Z the subset of X consisting of all D-conjugates of members
of D. Then Z is a lower closed subset of Xm which is a 2-homology m-
manifold.

Proof. The proof is much the same as that of the previous lemma. As D is
lower closed with D ⊆ Xm, so is Z. Our hypotheses say φ : D → Pow(J)m

is an isomorphism. In particular D(> a0) is a 2-homology (m − 1)-sphere
and for c ∈ D, Gc = PI(c) = Dc. Now complete the proof as in the previous
lemma.

(10.6) Let 0 ≤ h ≤ n and assume:
(∗) For all x ∈ Ah and y ∈ X with x < y that I(x) 6= I(y).

Then either
(1) φ : Ah → Pow(I)h is an isomorphism. Further if h < n then φ :

Ah+1 → Pow(I)h+1 is a surjection, while if h = n then |I| = n+ 1 and
X is isomorphic to the Coxeter complex for (G,R), or

(2) n = h, X has exactly two n-cells u and v, |I| = n, X = {u, v} ∗Xn−1,
φ : An−1 → Pow(I)n−1 is an isomorphism, and Xn−1 is isomorphic to
the Coxeter complex for (G,R).

Proof. We prove the lemma by induction on h and n. For h = 0, (1) holds
as a0 is the unique 0-cell of A and the empty set is the unique 0-subset of I.
So a minimal counter example satisfies n ≥ h > 0.

If φ is an isomorphism of Ah with Pow(I)h and h 6= n, let k = h+1, while
if φ is not an isomorphism, let k = h. If φ is an isomorphism and h = n,
then as A(> a0) is a 2-homology (n− 1)-sphere, |I| = n+ 1. But now X is
isomorphic to the Coxeter complex for (G,R) and (1), holds, so if h = n we
may assume φ is not an isomorphism.

Let J be a k-subset of I and m = k− 1. If m = h then by hypothesis, φ :
Am → Pow(I)m is an isomorphism, while if m < h this holds by minimality
of h.

Suppose first J 6= I(a) for some k-cell a of A. Define D, D, and Z as
in 10.5. By the previous paragraph, the map c 7→ I(c) is an isomorphism
between Dm and Pow(J)m, so by 10.5, Z is a lower closed 2-homology m-
manifold with maximal elements the images cD under D of the m-cells c in
D.
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Notice that if y is an k-cell then (Gy, ρy,A(< y)) satisfies our hypotheses
and is of height m < n, so by minimality of n, A(< y) ∼= Pow(I(y))m and
I(y) is of order k.

Pick j0 ∈ J and let L = J − {j0}. We have seen there is an m-cell x with
I(x) = L. By the previous paragraph, if y is an k-cell then |I(y)| = k =
m+1 = |I(x)|+1. Thus we may apply the construction of 10.4 to this x and
obtain a subgroup H of G and a thin residually closed subcomplex Y which
is upper closed with minimal elements xH. By 6.6, Z and Y are orientable.

Now x ∈ Y ∩ Z and as Z ⊆ Xm and the minimal members of Y are in
xH, if y ∈ Y ∩ Z then y = xg for some g ∈ H. But also y = cd for some
d ∈ D and some m-cell c of Z, so c = x and g ∈ Gxd = PLd ⊆ D = PJ , as
L ⊂ J . Thus

g ∈ H ∩D = PM ∩ PJ = PM∩J .

But J = L∪ {j0} with L∩M = ∅ and j0 /∈M as J 6= I(u) for any u. Thus
g ∈ H ∩ D = 1, so y = x. That is Y ∩ Z = {x}. But now 9.1 supplies a
contradiction.

Thus we have established the surjectivity of our map. In particular if
k = h+ 1 then (1) holds, so from now on we may take k = h.

Next suppose I(u) = J = I(v) for distinct h-cells u and v. We saw
above that φ : A(≤ w) → Pow(J)m is an isomorphism for w = u, v, so
X(< u) = X(< v) = Z. Thus Z0 = {u, v} ∪ Z = {u, v} ∗ Z is a lower closed
2-homology h- manifold. Now if h = n then as X(> x) is of order 2 for
each m-cell x ∈ Z, X(> x) = {u, v}. But now if we let Γ consist of n and
n − 1 cells of X and Σ = Γ ∩ Z0, then Γ(y) ⊆ Σ for each y ∈ Σ, so as Γ
is connected, Γ = Σ and hence X = Z0, so that (2) holds. Thus we may
assume h < n.

Let y be an (h + 1)-cell. Then (Gy, ρy,A(< y)) satisfies our hypotheses
and is of height h, so by a previous case either I(y) is of order h+ 1 and

φ : A(< y)→ Pow(I(y))h

is an isomorphism, or A(< y) has just 2 h- cells a and b and I(y) = I(a) =
I(b). But the latter case contradicts hypothesis (∗), so the former holds.

Given this observation, we can repeat an argument above on u in place
of x to obtain a thin residually connected upper closed subcomplex Y0 with
Y0 ∩ Z0 = {u}. Hence once again 9.1 supplies a contradiction, completing
the proof.

Remark. Notice that Theorem 10.6 implies Theorem 4.
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11. Hirzebruch’s Prize Question.

In [FLM], Frenkel, Lepowsky, and Meurman construct a vertex operator al-
gebra whose automorphism group is the largest sporadic group the Monster.
Vertex operator algebras are the algebraic version of physicist’s conformal
field theory. There are also geometric versions of conformal field theory, al-
though as I understand it, no geometric formalism yet exists for conformal
field theory which is satisfactory to mathematicians. However some kind of
metaprinciple says there should exist a geometric object corresponding to
the Monster vertex operator algebra.

In that direction Hirzebruch has posed the following problem in [HBJ]:

Prize Question: Does there exist a 24-dimensional compact, orientable,
differentiable manifoldX (admitting the action of the Monster) with p1(X) =
0, w2(X) = 0, Â(X) = 1, and Â(X,TC) = 0?

Here p1(X) is the first Pontrjagin class of X, w2(X) is the second Stiefel-
Whitney class, Â(X) is the Â-genus of X, and Â(X,TC) is the twisted
Â-genus of the complex tangent bundle TC = TX ⊗C.

Theorem 5 applies to groups G which are close to being spherical Coxeter
groups, in the sense that G is generated by a set S of involutions such that
for many subsets J of S, (〈J〉, J) is a spherical Coxeter system. Examples
of such groups include certain subgroups of the Bimonster, including the
Monster. Thus Theorem 5 can be used to construct representations of the
Monster on manifolds.

The Bimonster is the wreath product of the Monster by a group of order
2. Thus the Bimonster B has a normal subgroup M1×M2 of index 2 and B is
M1M2 extended by an involution t interchanging M1 and M2. In particular
B is transitive on the involutions in B −M1M2 and CM1M2(t) is a diagonal
subgroup of M1 ×M2 isomorphic to the Monster.

In [CNS], Conway, Norton, and Soicher show that there exists a set Γ ⊆
B −M1M2 of 26 involutions generating B and admitting the structure of a
projective plane of order 3 in such a way that if i, j ∈ Γ are distinct then
|ij| = 3 if i and j are incident in Γ and |ij| = 2 otherwise. Further the full
group A of automorphisms of the projective plane is induced on Γ in B. Call
Γ a set of Conway-Norton-Soicher involutions.

We have the usual Coxeter diagram ∆ defined on Γ. Define a subset J
of Γ to be spherical if the restriction ∆J of ∆ to J is spherical and define
J to be B- spherical if (〈J〉, J) is a spherical Coxeter system. Thus if J
is B-spherical then J is spherical. We seek manifold triples (G, ρ,A) with
G ≤ B and ρ(I) ⊆ Γ satisfying the hypotheses of Theorem 5. Thus if a ∈ A
then A(≤ a) is simplicial and ρ(I(a)) is a B-spherical subset of Γ.

In Section 12, we record various results about the action of A on spherical
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and B-spherical subsets of Γ. Then in Section 13 we use Theorem 5 and
these results to construct manifolds admitting the action of subgroups G
of the Bimonster with dimensions ranging from 5 to 14. Notice that the
height of our triple (G, ρ,A) is |I(a)| for a a maximal cell of A and hence
bounded by 16 by Lemma 12.1. The actual bound when G is the Monster
or Bimonster is smaller; 14 may be best possible. Namely by 12.1, the only
class of spherical sets of rank 16 has diagram 4D4. Up to conjugation it
consists of all points distinct from a fixed point p plus the four lines through
p. But it is not B-spherical by 12.3, so the bound of 16 cannot be attained.

The geometric realization T (L) of any link L in any poset P = P (G, ρ,A)
we construct is smoothly isomorphic to a sphere, so T (P ) is a topological
manifold admitting a canonical smooth differential structure. As G has a
subgroup G∗ of index 2 with ρ(I) ⊆ G − G∗, T (P ) is orientable. When
G = B, the centralizer in G of each t ∈ Γ is a copy of the Monster, and
Smith Theory says the fixed points T of t on T (P ) is a 2- homology manifold
of dimension h(P ) − 1, which then admits the action of CM1M2(t), a group
isomorphic to the Monster. Presumably this space is actually a manifold.
Then for example in the case when T (P ) is 9-dimensional, we could take the
product of three copies of T to obtain a 24-dimensional manifold admitting
the Monster.

However the manifolds we construct are unfortunately not candidates for
the Hirzebruch manifold. This is because our reflections are inducing ori-
entation reversing diffeomorphisms of these manifolds, so the Pontrjagin
numbers of the manifolds are 0, and hence the Â-genus is 0 rather than 1.

12. The poset of spherical subsets of the plane of order 3.

Let V be a 3-dimensional vector space over the field F of order 3 and π
the projective plane over the field of order 3. Thus π consists of the points
(1-dimensional subspaces of V ) and lines (2-dimensional subspaces of V ) of
V together with the incidence relation of inclusion between points and lines.

Associate a Coxeter matrix M = (mi,j) of size 26 to π by letting mi,i = 1
and for i 6= j let mi,j = 3 if i is incident to j in π and mi,j = 2 otherwise.
Then each subset J of π inherits a Coxeter diagram ∆J from the Coxeter
diagram defined on π by the Coxeter matrix M . A subset J is spherical if its
Coxeter diagram is spherical. The type of J is the type of its Coxeter diagram
∆J . Write J⊥ for the set of vertices i ∈ π orthogonal to each member of J ;
that is mi,j = 2 for each j ∈ J .

Let P be the poset of all spherical subsets of π partially ordered by inclu-
sion. We call the members of P of order k, k-cells. We regard the empty set
as spherical, so φ is the unique 0-cell. The k-cells are the members of P of
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height k.
Let A be the group of all automorphisms of π. Thus A = L〈τ〉 where

L = PSL(V ) ∼= L3(3) is the projective special linear group on V and τ
is a polarity of π. Thus τ induces an outer automorphism on L and A =
Aut(L) ∼= Aut(L3(3)).

We record the following two results without proof. They can be retrieved
from tables in Section 11 of [CNS], although those tables are supplied with-
out proof too. Alternatively, proofs of 12.1 and 12.2 appear in [A].

(12.1) The maximal cells of P have the following types and A is transitive
on cells of each type:
(1) 13A1 of rank 13.
(2) 4D4 of rank 16.
(3) 3A5 of rank 15.
(4) A11 ⊕A4 of rank 15.
(5) D5 ⊕ 3A3 of rank 14.
(6) D6 ⊕ 2A3 ⊕ 2A1 of rank 14.
(7) D8 ⊕ 2A3 or rank 14.
(8) E6 ⊕ 2A2 ⊕A3 of rank 13.
(9) E7 ⊕A1 ⊕A2 ⊕A3 of rank 13.

(10) E8 ⊕A2 ⊕A3 of rank 13.

(12.2) A is transitive on connected spherical cells of each type.

(12.3) A spherical subset J of I is not B-spherical if and only if Y ⊆ J ⊆
X, where X is maximal spherical and Y is one of the following sums of
connected components of X: 2D4, D6⊕ 2A1, E7⊕A1, D8, or E8. Further if
σ : W → 〈ρ(Y )〉 is the corresponding Coxeter cover then ker(σ) = 〈z1 · · · zr〉
where zi generates the center of the ith direct factor of W .

Proof. A stronger assertion seems to be made on page 44 of [CNS], but the
assertion given here is the best that could be possible and is presumably
what the authors of [CNS] intended.

Let J be spherical but not B-spherical. Then J ⊆ X maximal spherical.
Then J ⊆ X1 ∪ · · · ∪ Xr with Xi a connected component of X and Ji =
Xi ∩ J 6= ∅. Let Hi = 〈ρ(Ji)〉 and σ : W → H = H1 · · ·Hr the Coxeter
covering of H and W = W1 × · · ·Wr, σ(Wi) = Hi.

From 12.2, A is transitive on connected spherical subsets Z of I of each
type and from [CNS], particularly Table 3, Z is B-spherical except when Z
is of type D8 or E8, where the kernel of the Coxeter covering is the center of
order 2. For example each Z is a subset of a maximal connected subset of
type A11, D8 or E8 and all subsets of A11 and all proper subsets of D8 or E8
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are B-spherical. Thus unless Xi = Ji is of type D8 or E8, Ji is B-spherical,
and we may assume the latter.

Then [ker(σ),Wi] ≤ ker(σ) ∩ Wi = 1, so ker(σ) ≤ Z(W ). Hence the
projection zi of z ∈ ker(σ) on Wi is contained in Z(Wi) of order at most 2.
Further if zi 6= 1 then σ(zi) = σ(zz−1

i ) ∈ CH(〈ρ(Xi)〉) so Ji = Xi. Hence if
J is chosen to be minimal non B-spherical then ker(σ) = z1 . . . zr with zi of
order 2 generating Z(Wi) and Ji = Xi. It follows that Ji is of type A1, D4,
D6, D8, E7, or E8. If Ji is of type D8 or E8 then J = Ji by minimality of J
and the lemma holds. If Ji of type D4 then all components of X are of type
D4 and from page 44 of [CNS], 2D4 is not B-spherical, so the lemma holds.
If J1 is of type D6 then J⊥1 = 3A3⊕2A1, so as Z(Wi) 6= 1, Ji must be of type
A1 for i > 1 and then from page 44 of [CNS], J is minimal non B-spherical
if and only if J is of type D6⊕2A1. A similar argument works for J1 of type
E7. This leaves the case J of type kA1. From 12.1 and the cases eliminated,
X is of type 13A1, which is B- spherical from the discussion at the top of
page 45 of [CNS].

13. Manifolds for subgroups of the Bimonster.

Continue the hypotheses and notation of Section 12. In particular V is a 3-
dimensional vector space over the field F of order 3, π is the projective plane
of V , and P is the poset of all spherical subsets of π ordered by inclusion.

We construct manifold triples (G, ρ,A) with G a subgroup of the Bimon-
ster B, and A a subposet of P , and I ⊆ π. The map ρ : I → B is induced
by the Conway-Norton-Soicher embedding. As A is a subposet of P , the
map φ : A → Pow(I) is an injection whose image is contained in P and
for a ∈ A, A(≤ a) ∼= Pow(I(a)) via φ. We choose A so that its members
are B-spherical and hence P (Ga, ρa,A(≤ a)) is the Coxeter complex of the
sphericial Coxeter system (Ga, ρ(I(a))), and thus is a sphere.

Remark 1. Let I ⊆ π, G = 〈ρ(I)〉, I = I1 ∪ · · · ∪ Im a partition of I with
|Ii| > 1 for each i, and Ki a simplicial complex with vertex set Ii such that
Ki is a homology sphere and manifold. Let Bi = sd(Ki) be the barycentric
subdivision of Ki regarded as a poset, and let Ai = Bi∪{∅} be the extended
poset with unique 0-cell ∅ and Bi = Ai(> ∅). Finally let A = A1×· · ·×Am
be the product poset consisting of all subsets J = J1∪· · ·∪Jm with Ji ∈ Ai.
Then

h(A) =
m∑
i=1

h(Ai)

and A(> ∅) is the join B1 ∪ · · · ∪ Bm of homology spheres and manifolds,
so A(> ∅) is a homology sphere and manifold. Thus if each cell J in A is
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B-spherical, then by remarks above and Theorem 5, (G, ρ,A) is a manifold
triple of height h(A).

Notice that to check that J isB-spherical amounts by 12.3 to checking that
the diagram of J is spherical and contains none of the excluded subdiagrams
2D4, D6 ⊕ 2A1, E7 ⊕ A1, D8, or E8. In particular if ∆J is spherical and
contains no 2D4 or D6 subdiagrams then J is B-sphericial.
Remark 2. In all but the last example in this section, Ai is the poset
of all proper subsets of Ii and hence Ai(> ∅) is a sphere and manifold and
h(Ai) = |Ii| − 1. Hence

h(A) =
m∑
i=1

h(Ai) =
m∑
i=1

(|Ii| − 1) = |I| −m.

In each case if J ∈ A then ∆J contains no 2D4 or D6 subdiagram, so
by Remark 1, J is B-spherical and (G, ρ,A) is a manifold triple of height
|I| −m.

Example 1. Let I have the Y555 diagram of [CNS]. That is |I| = 16 and the
diagram of I is a “Y” with a central node and three legs with A5 diagrams
connected to the central node at one end. From [CNS], 〈ρ(I)〉 = B is the
Bimonster. Let I1 be any subset of I of order at least 2 containing the central
node and contained in the unique subset of I whose diagram is D4. Thus
the diagram of I1 is A2, A3, or D4. Finally let I = I1∪· · ·∪Im be a partition
of I containing I1 with |Ii| > 1 for each i.

Then the diagram of each J ∈ A is the sum of diagrams of type A, so it is
spherical and contains no subdiagram of type 2D4 or D6. Hence by Remark
1, we have a manifold triple (G, ρ,A) of height |I| −m = 16−m. As m can
range between 2 and 8, we get manifolds of dimension between 8 and 14 by
varying our partition.

Let X = P (B, ρ,A). For t ∈ ρ(I), M = CM1M2(t) is the Monster and
acts faithfully on the 2-homology manifold FixX(t) of dimension h(X) − 1,
ranging between 7 and 13.

Example 2. Let I have the Y553 diagram. From [CNS]

G = 〈ρ(I)〉 = CB(t) ∼= Z2 ×M
where M is the Monster and t ∈ Γ. We proceed as in Example 1, obtaining
partitions of I into m parts, 2 ≤ m ≤ 7, and manifolds of dimension |I|−m =
14−m between 7 and 12.

Example 3. Let I have the Y443, Y432, or Y332 diagram. Then from [CNS],
G = 〈ρ(I)〉 is isomorphic to M(24)/Z2, M(23) × Z2, or M(22)/E4, respec-
tively, so G is essentially a Fischer group. Proceeding as in Examples 1 and
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2, we obtain manifolds for these groups with dimensions ranging between 5
and 10.

Example 4. This example is a little different. Choose I to have the diagram
in Figure 1.b on page 28 of [CNS]. Then G = 〈ρ(I)〉 is again isomorphic to
Z2 ×M . There is a subset I1 of I of order 6 with diagram of type Ã5 and
I is obtained by adding three legs with diagrams of type A3. Consider any
partition I = I1∪· · ·∪Im containing I1 with |Ii| > 1. For i 6= 1 let Ai be the
poset of all proper subsets of Ii, but form A1 as in Remark 1 with respect
to the 1-dimensional complex K1 whose 1-simplices are the edges in the Ã5

diagram on I1. Thus K1 is a 1-sphere, so by Remark 1 we get a manifold
triple (G, ρ,A) of height

2 + |I| − 6− (m− 1) = 12−m

producing manifolds for Z2 ×M of dimension between 7 and 10.
The preprint [A] contains other examples.
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