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BLOCKS OF FULLY GRADED RINGS

Everett C. Dade

To the memory of Olga Taussky-Todd

We develop Clifford Theory, through the Fong-Reynolds
Theorem, for blocks of a ring R fully graded by a finite group
G, with respect to an arbitrary G-invariant subring S of R.
Our only assumption is that R be a finite sum of indecompos-
able subrings.

The writing of this paper was precipitated by a curious observation re-
lating the blocks of a G-ring T, for some finite group G, to the blocks of
the fixed subring TG of G acting on T. We shall say the an arbitrary ring
“has finite block theory” if it is a finite direct sum of indecomposable sub-
rings. The curious observation is that a G-ring T has finite block theory
whenever its fixed subring TG has finite block theory. This is easily proved
in Theorem 2.2 below. Incidently the converse statement can be false, as
Example 2.4 below shows.

A fully G-graded ring R, as defined in [U] or §4 below, is a G-graded ring
whose σ-components form a group under multiplication. The centralizer
of the identity component R1 in any such R is naturally a G-ring C. The
fixed subring CG of G in C is exactly the center Z(R) of R (see [U] or §5
below). This allows us to apply the above observation to C, concluding
in Theorem 5.6 that R has finite block theory if and only if C does. We
can even obtain a one to one correspondence between blocks of R and G-
conjugacy classes of blocks of C, whether or not R has finite block theory
(see Theorem 5.8 below).

When the fully G-graded ring R has finite block theory, we can repro-
duce Clifford theory for its blocks, as far as the Fong-Reynolds Theorem
(Theorem 8.12 below). Following the observation of Ellers [E] that ordinary
Clifford theory works just as well over arbitrary G-invariant subalgebras
of group algebras, we develop this theory over an arbitary “G-invariant”
subring S of R (see §8 below). One intermediate result in an otherwise
straightforward development is surprisingly delicate to prove. It is Theo-
rem 6.6 below, which says that an idempotent e of C which is orthogonal
to all its G-conjugates eσ 6= e must lie in the restriction R[H] of R to its
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stabilizer H in G. Once this is out of the way, the rest of Clifford theory is
easy.

Perhaps the most interesting part of this paper is to be found in §10 below,
where we speculate about some possible extensions of the theories discussed
here. The question of whether our curious observation about G-rings has a
counterpart for G-graded rings is particularly intriguing. We wish we could
answer it.

This paper, like the entire journal issue to which it belongs, is dedicated
to the memory of the late Olga Taussky-Todd. My first hesitant steps in
mathematical research, along with those of so many other young mathemati-
cians, were guided and encouraged by her. I was privileged to coauthor a
few papers [DT1], [DT2], [DRTW] with her and others, notably a joint
effort [DTZ] with the late Hans Zassenhaus. But she also read over and im-
proved many of my other works. More than forty years ago she introduced
me to Max Deuring’s Algebren, thus sparking a life-long interest in rings and
algebras. The present paper is only the latest consequence of that long ago
act.

1. Finite block theory.

When we speak of a ring R, we mean an associative ring with identity
element 1 = 1R. Any subring S of R must have an identity element 1S,
but this identity element need not coincide with 1R. When 1S is equal to
1R we say that S is a unitary subring of R. Similary, a homomorphism
γ : R → T of rings need not send 1R to 1T. If it does, we say that γ is
identity-preserving.

Any R-module M, whether right, left or two-sided, is understood to be
unitary, in the sense that multiplication by 1R is the identity map ofM onto
itself. We write Mod(R) for the abelian category of all right R-modules
and their R-homomorphisms. If M,N ∈ Mod(R) (i.e., if M and N are
right R-modules), then HomR(M,N) denotes the additive group of all R-
homomorphisms of M into N.

We denote by Z(R) the center of a ring R, and by ZI(R) the set of all
idempotents in Z(R). The set ZI(R) is naturally a Boolean algebra, with
Boolean operations

e ∧ f = ef = fe, e ∨ f = e+ f − ef and e′ = 1− e(1.1)

for any e, f ∈ ZI(R). The zero element 0 = 0R and identity element 1 = 1R
of the ring R are also the zero and identity elements of the Boolean algebra
ZI(R).
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The fact that ZI(R) is a Boolean algebra gives us two sets of names for
most basic properties of idempotents in the ring Z(R). Thus two idempotents
e, f in Z(R) are orthogonal, in the sense that ef = fe = 0, if and only if they
are disjoint in the Boolean algebra ZI(R), in the sense that e∧f = f ∧e = 0.
Furthermore an idempotent e is primitive in Z(R), i.e., is non-zero but not
the sum of two non-zero orthogonal idempotents in Z(R), if and only if it
is an atom in the Boolean algebra ZI(R), i.e., is non-zero but not the join
of two disjoint non-zero elements in ZI(R). Of course distinct primitive
idempotents in Z(R) are always orthogonal, just as distinct atoms in ZI(R)
are always disjoint.

We define a block B of a ring R to be an ordered pair (R, e) consisting of
R and a primitive idempotent e of Z(R). We denote by Blk(R) the (possibly
empty) set of all such blocks of R, and by 1B the primitive idempotent of
Z(R) lying in a given block B = (R, 1B) of R. Thus the 1B, for B ∈ Blk(R),
are both the distinct primitive idempotents in the ring Z(R) and the distinct
atoms in the Boolean algebra ZI(R). Note that this definition of blocks
ensures that two blocks B and B′ are equal if and only if they are blocks of
the same ring R corresponding to the same primitive idempotent 1B = 1B′
in Z(R).

Definition 1.2. A ring R has finite block theory if the set Blk(R) is finite
and 1R is the finite sum

1R =
∑

B∈Blk(R)

1B(1.3)

of pairwise orthogonal idempotents in Z(R).

There a couple of different ways of expressing this property of R.

Proposition 1.4. A ring R has finite block theory if and only if the set
ZI(R) of all idempotents in Z(R) is finite. This happens if and only if Blk(R)
is finite and R is the finite direct sum

R =
.∑

B∈Blk(R)

R1B(1.5)

of indecomposable subrings.

Proof. If R has finite block theory, then ZI(R) has a finite number of atoms
1B, for B ∈ Blk(R). Since these atoms are pairwise disjoint elements in the
Boolean algebra ZI(R), their sum in R is also their join∨

B∈Blk(R)

1B =
∑

B∈Blk(R)

1B = 1R
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in ZI(R). So the Boolean algebra ZI(R) has a finite number n ≥ 0 of distinct
atoms, and its identity element is the join of those atoms. This implies that
ZI(R) is isomorphic to the Boolean algebra of all subsets of its set of atoms,
and hence has finite order 2n (see [B, Chapt. III, Th. 4]).

Conversely, if the Boolean algebra ZI(R) is finite, then it has a finite
number n ≥ 0 of distinct atoms 1B, for B ∈ Blk(R), and is isomorphic to
the Boolean algebra of all subsets of its set of atoms. Hence its identity
element is the finite join of its atoms. As above, this is equivalent to (1.3).
Therefore R has finite block theory if and only if ZI(R) is finite.

Since the idempotents 1B, for B ∈ Blk(R), are pairwise orthogonal and
central inR, the decomposition (1.3) of 1R is equivalent to the decomposition
(1.5) of R. The primitivity in Z(R) of each idempotent 1B in the former
decomposition is equivalent to the indecomposability of each subring R1B
in the latter decomposition. So the remaining statement of the proposition
holds.

Corollary 1.6. If a ring R has finite block theory, then the distinct idem-
potents in Z(R) are the finite sums

1B =
∑
B∈B

1B,(1.7)

where B runs over all subsets of the finite set Blk(R).

Proof. We follow the convention that empty sums or joins are always zero.
So the idempotent 1B in (1.7) is zero when the subset B of Blk(R) is empty.

We saw in the above proof that the Boolean algebra ZI(R) is generated
by its finite number of atoms 1B for B ∈ Blk(R). It follows that the distinct
elements in ZI(R) are the joins

1B =
∨
B∈B

1B,

where B runs over all subsets of the finite set Blk(R). But this join 1B is
equal to the sum on the right side of (1.7) by (1.1), because the atoms 1B,
for B ∈ B, are pairwise disjoint. Hence the corollary holds.

One final remark about rings with finite block theory is

Proposition 1.8. A ring R has finite block theory if and only if its center
Z(R) has finite block theory.

Proof. The set ZI(R) of all idempotents in Z(R) is also the set ZI
(
Z(R)

)
of all

idempotents in Z
(
Z(R)

)
= Z(R). So the former set is finite if and only if the

latter is. By Proposition 1.4 this implies the present proposition.



BLOCKS OF FULLY GRADED RINGS 89

2. G-rings.

Let G be any multiplicative group. We denote by 1 = 1G the identity element
of G. We use exponential notation for the conjugation action of G on itself.
So conjugation by any τ ∈ G sends any element σ ∈ G to στ = τ−1στ ∈ G,
and any subset H ⊆ G to Hτ = τ−1Hτ ⊆ G.

A G-ring T is a ring, also called T, together with an action of the group G
as automorphisms of the ring T. We write the action of G on T exponentially,
so that any σ ∈ G sends any t ∈ T to tσ ∈ T. We also use exponential
notation for the fixed subring

TH = { t ∈ T | tσ = t, for all σ ∈ H }(2.1)

in T of any subgroup H of G.
A G-subring S of a G-ring T is any subringS of T such that S is invariant

under the action of G on T. That action then restricts to one of G on S,
making S a G-ring in its own right. Evidently the center Z(T) is always a
unitary G-subring of T.

The following curious result will be our major tool for proving that certain
rings have finite block theory.

Theorem 2.2. Let G be a finite multiplicative group, and T be a G-ring
whose fixed subring TG has finite block theory. Then T has finite block theory.

Proof. The fixed subring Z(T)G of the G-subring Z(T) is clearly a unitary
subring of Z(TG). Since TG has finite block theory, its center Z(TG) has only
a finite number of distinct idempotents by Proposition 1.4. Hence there are
only a finite number n of distinct idempotents in the subring Z(T)G of Z(TG).

As usual, we write |S| for the cardinality of any set S. So |G| is the order
of the finite group G. Suppose that T does not have finite block theory. Then
Proposition 1.4 tells us that the Boolean algebra ZI(T) of all idempotents
in Z(T) is infinite. In particular, there is some finite subset E of ZI(T) such
that

2n|G| < |E|.
The definition (1.1) of the operations in ZI(T) implies that the action of

group G on the ring T restricts to one of G as automorphisms of the Boolean
algebra ZI(T). The union

E ′ =
⋃
σ∈G
Eσ

of the translates of the finite set E by elements of the finite group G is a
finite, G-invariant subset of ZI(T) satisfying

2n|G| < |E| ≤ |E ′|.
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The Boolean subalgebra B of ZI(T) generated by E ′ is both finite and G-
invariant. It follows (see [B, Chapt. III, Th. 4]) that it is the full Boolean
algebra on its atoms, which form a G-invariant subset F of some finite
cardinality m = |F|. Hence B has order 2m. The inclusion E ′ ⊆ B and the
above inequalities imply that

2n|G| < |E ′| ≤ |B| = 2m.

So we have
n|G| < m = |F|.

Let F1,F2, . . . ,Fh be the distinct G-orbits in the finite G-set F . Each
orbit Fi satisfies

0 < |Fi| ≤ |G|.
Since F is the disjoint union of the Fi, we conclude that

n|G| < |F| =
h∑
i=1

|Fi| ≤
h∑
i=1

|G| = h|G|.

Therefore
n < h.

The members of F are atoms in the Boolean subalgebra B of ZI(T). So
they are pairwise disjoint non-zero elements in ZI(T). This implies that the
joins

gi =
∨
f∈Fi

f =
∑
f∈Fi

f,

for i = 1, 2, . . . , h, are non-zero, pairwise disjoint elements of ZI(R). Fur-
thermore, each gi is fixed by G, and hence lies in Z(T)G. So g1, g2, . . . gh
are h distinct idempotents in Z(T)G. This is impossible, because h > n and
Z(T)G has exactly n distinct idempotents (see the first paragraph of this
proof). Thus the theorem must hold.

The following example shows that the equivalent of the above theorem
need not be valid for infinite G.

Example 2.3. Let Z be the ring of all ordinary integers. We form a ring
T whose additive group is a free Z-module with a basis consisting of the
identity element 1 = 1T and an infinite number of other elements ei, one for
each i ∈ Z. Multiplication in T is determined by the rule that

eiej =

{
ei if i = j,
0 if i 6= j,
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for any i, j ∈ Z, and the fact that 1 is the two-sided identity element of T.
It is straightforward to verify that T is a commutative ring with an infinite
number of distinct blocks (T, ei) for i ∈ Z. So T does not have finite block
theory.

Let G be the infinite cyclic group 〈σ〉 on one generator σ. We make G act
as automorphisms of the ring T so that

(ei)σ
j

= ei+j and 1σ
j

= 1

for all i, j ∈ Z. Then T becomes a G-ring whose fixed subring TG just
consists of all multiples n1T of 1T for n ∈ Z. So TG ' Z has finite block
theory with just one block (TG, 1), even though T does not have finite block
theory.

Our next example shows that the converse to Theorem 2.2 need not hold,
even when the group G is finite.

Example 2.4. Let T and the ei, for i ∈ Z, be as in Example 2.3. We
form a two-sided unitary T-moduleM. The additive group ofM is a free Z-
module with a basis consisting of one element mi,j for each pair of elements
i, j ∈ Z such that i < j. The module multiplication in M is determined
by Z-bilinearity, the fact that right or left multiplication by 1T must be the
identity map of M onto itself, and the rule that

eimi′,j′ej =

{
mi′,j′ if i = i′ and j = j′,
0 otherwise,

for any i, i′, j′, j ∈ Z with i′ < j′.
We make the direct sum T ⊕M of the additive groups T and M into a

ring with the multiplication given by

(t⊕m)(t′ ⊕m′) = (tt′)⊕ (tm′ +mt′)

for any t, t′ ∈ T and m,m′ ∈ M. Here, of course, tt′ is computed in the
ring T, and tm′+mt′ in the two-sided T-moduleM. It is straightforward to
verify that

Z(T⊕M) = Z(1T ⊕ 0M) = Z1T⊕M ' Z.
So T⊕M has finite block theory, with (T⊕M, 1) as its only block.

Let G be the cyclic group 〈τ〉 generated by an element τ of order two. We
make G act as automorphisms of the ring T⊕M so that

(t⊕m)τ = t⊕ (−m)
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for any t ∈ T and m ∈M. Then the fixed subring (T ⊕M)G in the G-ring
T ⊕M is T ⊕ 0, which is isomorphic to T as a ring. We know from the
discussion in Example 2.3 that the ring T has an infinite number of blocks.
Hence the isomorphic ring (T⊕M)G does not have finite block theory, even
though T⊕M has finite block theory.

3. G-graded rings.

Let G be any multiplicative group. A G-graded ring R is a ring, also denoted
by R, together with a decomposition

(3.1 a) R =
.∑

σ∈G
Rσ

of R as a direct sum of additive subgroups Rσ, whose products in the ring
R satisfy

(3.1 b) RσRτ ⊆ Rστ
for all σ, τ ∈ G. The decomposition (3.1a) is the G-grading of R, and the
additive subgroup Rσ is the σ-component of R for any σ ∈ G. We always
have

1R ∈ R1.(3.2)

So the identity component R1 is a unitary subring of R, and each σ-compo-
nent Rσ is a two-sided R1-submodule of R.

For the rest of this section we fix a multiplicative group G and a G-graded
ring R. Given a subset H ⊆ G, we denote by R[H] the additive subgroup

(3.3 a) R[H] =
.∑

σ∈H
Rσ

of R. By convention R[H] is zero when H is empty. If H is a subgroup of
G, then R[H] is a unitary subring of R. In that case the H-grading (3.3a)
turns R[H] into an H-graded ring with the σ-component

(3.3 b) R[H]σ = Rσ

for any σ ∈ H. We call this H-graded ring R[H] the restriction of R to H.
Let H be a subgroup of G. An H-graded subring S of R is any subring

S of the ring R such that

(3.4 a) S =
.∑

σ∈H
(S ∩Rσ).
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Such an S is itself an H-graded ring with the σ-component

(3.4 b) Sσ = S ∩Rσ
for any σ ∈ H. Clearly R[H] is the unique largest H-graded subring of R.

For our purposes the most important subring of R is the centralizer

C = CR(R1) = { c ∈ R | cr1 = r1c for all r1 ∈ R1 }(3.5)

of the identity component R1. It follows easily from (3.1) that:

The centralizer C is a unitary G-graded subring of R.(3.6)

For any σ ∈ G the σ-component of C is the centralizer

Cσ = C(R1 in Rσ) = { c ∈ Rσ | cr1 = r1c for all r1 ∈ R1 }
of R1 in Rσ.

In particular, the identity component of C is the center

C1 = C(R1 in R1) = Z(R1)(3.7)

of R1. Since C1 ⊆ R1 centralizes C = CR(R1), and contains the common
identity element 1R of C and R1, we have:

The identity component C1 is a unitary central subring(3.8)

of both R1 and C.

If H is any subgroup of G, then H\G (which we pronounce as “H under
G”) will denote the set of all left cosets Hτ of H in G. The group G acts
on the set H\G, with any σ ∈ G sending any T ∈ H\G to Tσ ∈ H\G. An
H\G-graded R-module M is a right R-module, also calledM, together with
a decomposition

(3.9 a) M =
.∑

T∈H\G
MT

of M as a direct sum of additive subgroups MT , whose products with the
σ-components of R satisfy

(3.9 b) MTRσ ⊆MTσ

for any T ∈ H\G and σ ∈ G. The decomposition (3.9a) is the H\G-grading
of M, and the additive subgroup MT is the T -component of M for any
T ∈ H\G.



94 EVERETT C. DADE

An H\G-graded R-submodule N of an H\G-graded R-module M is any
R-submodule N of the R-module M such that

(3.10 a) N =
.∑

T∈H\G
(MT ∩N).

Any such N is itself an H\G-graded R-module, with the T -component

(3.10 b) NT =MT ∩N

for any T ∈ H\G. Furthermore, the factor R-module M/N is naturally
H\G-graded, with the T -component

(M/N)T = (MT +N)/N 'MT/NT(3.11)

for any T ∈ H\G.
We form a category GrMod(H\G,R), whose objects are the H\G-graded

R-modules, and whose morphisms φ :M→ N are those homomorphisms of
the underlying R-modules which preserve H\G-gradings, in the sense that

φ(MT ) ⊆ NT(3.12)

for any T ∈ H\G. For fixed objects M,N ∈ GrMod(H\G,R), the mor-
phisms φ : M → N in GrMod(H\G,R) form a group GrHomH\G,R(M,N)
under addition of module homomorphisms. It follows that GrMod(H\G,R)
is an additive category, with composition of maps as multiplication.

We indicate that φ :M→ N is a morphism in GrMod(H\G,R) by saying
that it is a homomorphism of H\G-graded R-modules. In that case the
kernel

ker(φ) = {m ∈M | φ(m) = 0 }
of φ is an H\G-graded R-submodule of M, and the image φ(M) of φ is
an H\G-graded R-submodule of N. It follows that the injection of ker(φ)
into M and the projection of N onto N/φ(M) are a kernel and cokernel, re-
spectively, for the morphism φ in the category GrMod(H\G,R). With this
observation it is easy to see that GrMod(H\G,R) is an abelian category,
in which monomorphisms, epimorphisms and isomorphisms are just those
morphisms which are monomorphisms, epimorphisms or isomorphisms, re-
spectively, of the underlying R-modules.

The inclusions (3.9b) imply that the H-component of any H\G-graded
R-moduleM is an R[H]-submoduleMH ofM. Furthermore, any homomor-
phism φ :M→ N of H\G-graded R-modules restricts to a homomorphism
φH : MH → NH of right R[H]-modules. It follows that restriction to H-
components is an additive functor (·)H from GrMod(H\G,R) to Mod(R[H]).
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Since G is the disjoint union of the cosets T ∈ H\G, the G-graded ring
R is the direct sum

(3.13 a) R =
.∑

T∈H\G
R[T ]

of additive subgroups. It follows easily from (3.1b) and (3.3a) that

(3.13 b) R[T ]Rσ ⊆ R[Tσ]

for any T ∈ H\G and σ ∈ G. So the H\G-grading (3.13a) turns the regular
right R-module R into an H\G-graded R-module.

Any right R[H]-module K induces a right R-module K⊗R = K⊗R[H] R.
Each coset T = Hτ ∈ H\G is closed under left multiplication by elements
of H. Hence the corresponding summand R[T ] in (3.13a) is a left R[H]-
submodule of R. It follows that K ⊗R is, after natural identifications, the
direct sum

(3.14 a) K⊗R =
.∑

T∈H\G
K⊗R[T ]

of additive subgroups. In view of (3.13b) we have

(3.14 b) (K⊗R[T ])Rσ ⊆ K⊗R[Tσ]

for any T ∈ H\G and σ ∈ G. Hence the H\G-grading (3.14a) turns K⊗R
into an H\G-graded R-module. Any homomorphism ψ : K → L of right
R[H]-modules induces a homomorphism ψ ⊗R : K ⊗R → L ⊗R of H\G-
graded R-modules, sending k ⊗ r to ψ(k) ⊗ r for any k ∈ K and r ∈ R. In
this way induction from R[H] to R becomes an additive functor · ⊗R from
Mod(R[H]) to GrMod(H\G,R).

The composite functor (· ⊗ R)H : Mod(R[H]) → Mod(R[H]) sends any
right R[H]-module K to the H-component K ⊗ R[H] of the induced H\G-
graded R-module K ⊗ R. Since these tensor products are over R[H], the
natural map

(3.15 a) γK : k 7→ k ⊗ 1R

is an isomorphism of K onto K⊗R[H] as right R[H]-modules. It is straight-
forward to verify that:

The above isomorphisms γK form a natural equivalence γ
(3.15b)

between the identity functor on the category Mod(R[H])

and the composite functor (· ⊗R)H : Mod(R[H])→ Mod(R[H]).
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4. Fully graded rings.

By a fully G-graded ring R we mean a G-graded ringR in which the inclusion
(3.1b) is equality

RσRτ = Rστ(4.1)

for any σ, τ ∈ G. Such rings are also called strongly G-graded (see [D]).
Notice that the product RσRτ in (4.1), like all our products of additive
subgroups of R, is the additive subgroup of R generated by the products
rσr
′
τ ∈ R of elements rσ ∈ Rσ and r′τ ∈ Rτ , and not just the set of those

products.
For the rest of this paper we assume that:

Hypothesis 4.2. G is an arbitrary multiplicative group, and R is a fully
G-graded ring.

Our main interest is in the case of finite G. But enough results hold for
arbitrary G to make it undesirable to restrict ourselves just to finite groups.

The following consequence of (4.1) has many uses.

Lemma 4.3. Given any τ ∈ G, there exist a finite number n ≥ 1 of
elements s1, s2, . . . , sn ∈ Rτ−1 and t1, t2, . . . , tn ∈ Rτ such that

1R = s1t1 + s2t2 + · · ·+ sntn.

Proof. Equation (4.1) for σ = τ−1 is

R1 = Rτ−1Rτ .

Since 1R lies in R1 by (3.2), this implies the lemma.

We first apply the above lemma in the study of the structure of R as a
module over its restriction to a subgroup H of G. Specifically, we use it to
prove:

Lemma 4.4. Suppose that elements s1, s2, . . . , sn and t1, t2, . . . , tn satisfy
the conditions in Lemma 4.3 for some τ ∈ G. For any subgroup H of G, the
left R[H]-submodule R[Hτ ] of R is projective and generated by t1, t2, . . . , tn.
Similarly, the right R[H]-submodule R[τ−1H] of R is projective and gener-
ated by s1, s2, . . . , sn.
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Proof. By left-right symmetry we only need prove the lemma for R[Hτ ]. The
fact that the subset Hτ of G is closed under left multiplication by elements
of H implies that R[Hτ ] is a left R[H]-submodule of R. Since si ∈ Rτ−1 for
each i = 1, 2, . . . , n, we have

rsi ∈ R[Hτ ]Rτ−1 ⊆ R[Hττ−1] = R[H]

for any r ∈ R[Hτ ]. It follows that the map

Φ : r 7→ (rs1, rs2, . . . , rsn)

is a homomorphism of the left R[H]-module R[Hτ ] into the external direct
sum

R[H](n) = R[H]⊕R[H]⊕ · · · ⊕R[H]

of n copies of the regular left R[H]-module R[H]. Similarly, the product uti
lies in R[H]Rτ ⊆ R[Hτ ] for any u ∈ R[H] and i = 1, 2, . . . , n. Hence the
map

Ψ : (u1, u2, . . . , un) 7→ u1t1 + u2t2 + · · ·+ untn

is a homomorphism of R[H](n) into R[Hτ ] as left R[H]-modules. The com-
posite homomorphism ΨΦ : R[Hτ ]→ R[Hτ ] is the identity map, because

Ψ
(
Φ(r)

)
= rs1t1 + rs2t2 + · · ·+ rsntn = r(s1t1 + s2t2 + · · ·+ sntn) = r1 = r

for any r ∈ R[Hτ ]. We conclude that R[Hτ ] is generated by t1, t2, . . . , tn
as a left R[H]-module, and is isomorphic to a direct summand of the free
left R[H]-module R[H](n). So it is a projective left R[H]-module, and the
lemma is proved.

What we really need is the following consequence of the preceding lemma.

Proposition 4.5. If Hypothesis 4.2 holds, then R is projective as both a
left and a right module over its restriction R[H] to any subgroup H of G.

Proof. By left-right symmetry we only need prove the proposition for the
left R[H]-module R. Because G is the disjoint union of the left cosets T =
Hτ ∈ H\G, the left R[H]-module R is the direct sum

R =
.∑

T∈H\G
R[T ]

of left R[H]-submodules. Lemma 4.4 tells us that each summand R[T ] =
R[Hτ ] in this decomposition is a projective left R[H]-module. Hence so is
their direct sum R. Thus the proposition holds.
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There is an equality similar to (4.1) for components of H\G-graded R-
modules.

Lemma 4.6. If M is an H\G-graded R-module, then

MTRσ =MTσ

for any T ∈ H\G and σ ∈ G.

Proof. We know from (3.9b) that

MTRσ ⊆MTσ.

Since
1R ∈ R1 = Rσ−1Rσ

by (3.2) and (4.1), we have

MTσ = (MTσ)1R ⊆MTσRσ−1Rσ ⊆MTσσ−1Rσ =MTRσ.

Hence the lemma holds.

We apply the above lemma to prove:

Proposition 4.7. If Hypothesis 4.2 holds and H is any subgroup of
G, then a homomorphism φ : M → N of H\G-graded R-modules is a
monomorphism, epimorphism or isomorphism if and only if its restriction
φH : MH → NH to H-components is a monomorphism, epimorphism or
isomorphism, respectively.

Proof. The kernel of φ is an H\G-graded R-submodule K of M. Its H-
component KH is the kernel of the restriction φH of φ toMH . Clearly KH = 0
when K = 0. Conversely, if KH = 0, then Lemma 4.6 for the H\G-graded
R-module K implies that

KT = KHσ = KHRσ = 0

for any coset T = Hσ ∈ H\G. Hence

K =
.∑

T∈H\G
KT = 0.

Thus we have shown that K = 0 if and only if KH = 0, i.e., that φ is a
monomorphism if and only if φH is a monomorphism.
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The image of φ is an H\G-graded R-submodule L of N. Its H-component
LH is the image of φH . The H\G-graded factor R-module N/L has an
H-component (N/L)H isomorphic to NH/LH . So NH/LH = 0 whenever
N/L = 0. Conversely, if NH/LH = 0, then (N/L)H = 0. As above, this and
Lemma 4.6 for the H\G-graded R-module N/L imply that N/L = 0. Thus
we have shown that N/L = 0 if and only if NH/LH = 0, i.e., that φ is an
epimorphism if and only if φH is an epimorphism.

The homomorphism φ is an isomorphism if and only if it is both a mono-
morphism and an epimorphism. We have seen above that this happens if
and only if φH is both a monomorphism and an epimorphism, i.e., if and
only if φH is an isomorphism. So the proposition is proved.

Any H\G-graded R-module M restricts to a right R[H]-module MH ,
from which we can form the induced H\G-graded R-module (MH) ⊗R as
in (3.14). There is a natural homomorphism δM of the R-module (MH)⊗R
into M, sending m⊗ r to

δM(m⊗ r) = mr ∈M(4.8)

for any m ∈MH and r ∈ R. We use these homomorphisms in the following
explicit version of [NRvO, 3.12].

Proposition 4.9. If Hypothesis 4.2 holds and H is any subgroup of G,
then the map δM : (MH) ⊗R → M is an isomorphism of H\G-graded R-
modules for anyM ∈ GrMod(H\G,R) . These isomorphisms form a natural
equivalence δ between the composite functor

(·)H ⊗R : GrMod(H\G,R)→ GrMod(H\G,R)

and the identity functor on GrMod(H\G,R). Hence the two functors

(·)H : GrMod(H\G,R)→ Mod(R[H])

and

· ⊗R : Mod(R[H])→ GrMod(H\G,R)

form an equivalence between the abelian categories GrMod(H\G,R) and
Mod(R[H]).

Proof. The R-homomorphism δM sends the T -component (MH) ⊗ R[T ] of
(MH)⊗R onto the additive subgroup MHR[T ] of M for any T ∈ H\G. It
follows from (3.9b) that

MHR[T ] =
∑
σ∈T
MHRσ ⊆

∑
σ∈T
MHσ.
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Since Hσ = T for any σ in the left coset T of H, this last sum is just
MT . Hence δM sends (MH) ⊗ R[T ] into MT . So δM : (MH) ⊗ R → M is
a homomorphism of H\G-graded R-modules. The restriction of δM to H-
components is the natural isomorphism of (MH)⊗R[H] = (MH)⊗R[H]R[H]
onto the right R[H]-moduleMH . We conclude from this and Proposition 4.7
that δM is an isomorphism. Thus the first statement of the proposition holds.

It is straightforward to verify that the δM form a natural transformation δ
of the composite functor (·)H ⊗ R into the identity functor on
GrMod(H\G,R ). Because each δM is an isomorphism, this natural trans-
formation is a natural equivalence. We know from (3.15b) that the other
composite functor (· ⊗ R)H is naturally equivalent to the identity func-
tor on Mod(R[H]). Therefore the remaining statements of the proposition
hold.

5. Centralizers of identity components.

As in (3.5) we define C to be the unitary G-graded subring CR(R1) of our
fully G-graded ring R. There is a natural action of the group G as automor-
phisms of the ring C (see [U]). Since we’re going to need various properties
of this action, we discuss its definition in detail.

Lemma 5.1. If c ∈ C and τ ∈ G, then there is a unique element cτ ∈ R
such that

(5.2 a) rτc
τ = crτ

for all rτ ∈ Rτ . This element cτ is given by

(5.2 b) cτ =
n∑
i=1

sicti ∈ R

whenever s1, s2, . . . , sn and t1, t2, . . . , tn satisfy the conditions in Lemma 4.3.

Proof. Suppose that cτ ∈ R satisfies (5.2a) for all rτ ∈ Rτ . If s1, s2, . . . , sn
and t1, t2, . . . , tn satisfy the conditions in Lemma 4.3, then each ti lies in Rτ .
So cti = tic

τ by (5.2a). This implies that

n∑
i=1

sicti =
n∑
i=1

sitic
τ = 1cτ = cτ .

Hence (5.2b) holds if (5.2a) does. This proves that there can be at most one
cτ ∈ R satisfying (5.2a).
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There are always some elements s1, s2, . . . , sn and t1, t2, . . . , tn satisfying
the conditions in Lemma 4.3. We can use these elements to define cτ ∈ R
by (5.2b). Since each si lies in Rτ−1 , its product rτsi with any rτ ∈ Rτ lies
in RτRτ−1 = R1. Hence rτsi commutes with c ∈ C = CR(R1). So

rτc
τ =

n∑
i=1

rτsicti =
n∑
i=1

crτsiti = crτ1 = crτ .

Therefore cτ satisfies (5.2a), and the lemma is proved.

We call the element cτ defined in the above lemma the conjugate of c ∈ C
by τ ∈ G. Of course conjugation is an action of G on C.

Proposition 5.3. If Hypothesis 4.2 holds, then cτ lies in C for any c ∈
C = CR(R1) and any τ ∈ G. The map c, τ 7→ cτ is then an action of the
group G as automorphisms of the ring C. So it makes C a G-ring.

Proof. Given τ ∈ G we may fix elements s1, s2, . . . , sn and t1, t2, . . . , tn
satisfying the conditions in Lemma 4.3. If r1 ∈ R1, then tir1 lies in RτR1 =
Rτ for all i = 1, 2, . . . , n. This and (5.2a) imply that

ctir1 = tir1c
τ

for any c ∈ C and i = 1, . . . , n. In view of (5.2b) it follows that

cτr1 =
n∑
i=1

sictir1 =
n∑
i=1

sitir1c
τ = 1r1c

τ = r1c
τ .

So cτ ∈ R commutes with any r1 ∈ R1, and hence lies in C = CR(R1).
Suppose that σ is also an element of G. Then (5.2a) says that r′σc

σ = cr′σ
for any c ∈ C and r′σ ∈ Rσ. Since cσ lies in C by the above arguments, the
element (cσ)τ is defined and satisfies rτ (cσ)τ = cσrτ for any rτ ∈ Rτ . It
follows that

r′σrτ (c
σ)τ = r′σc

σrτ = cr′σrτ

for any such r′σ and rτ . By (4.1) the products r′σrτ generate Rστ as an
additive group. So (cσ)τ satisfies r′′στ (c

σ)τ = cr′′στ for all r′′στ ∈ Rστ . Hence
(cσ)τ = cστ by Lemma 5.1. Any element c ∈ C = CR(R1) satisfies r1c = cr1

for all r1 ∈ R1. So c1 = c by Lemma 5.1. Therefore the map c, τ 7→ cτ is an
action of the group G on the set C.

If c, d ∈ C and τ ∈ G, then (5.2a) tells us that

rτ (cτ + dτ ) = rτc
τ + rτd

τ = crτ + drτ = (c+ d)rτ
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and
rτ (cτdτ ) = crτd

τ = cdrτ

for any rτ ∈ Rτ . Applying Lemma 5.1, we conclude that (c+ d)τ = cτ + dτ

and (cd)τ = cτdτ . Therefore the bijection c 7→ cτ is an automorphism of the
ring C, and the proposition is proved.

Conjugation restricts properly to subgroups of G.

Proposition 5.4. If Hypothesis 4.2 holds, then the restriction of R
to any subgroup H of G is a fully H-graded ring R[H]. The centralizer
CR[H](R[H]1) of the identity component in R[H] is equal as an H-graded
ring to the restriction C[H] of the centralizer C = CR(R1) to H. The conju-
gation action of H on C[H], as defined by Lemma 5.1 for the fully H-graded
ring R[H], is the restriction of the conjugation action of G on C, as defined
by Lemma 5.1 for the fully G-graded ring R.

Proof. It follows from (3.3b) and (4.1) that

R[H]σR[H]τ = RσRτ = Rστ = R[H]στ

for any σ, τ ∈ H. Hence R[H] is fully H-graded.
By (3.6) the σ-component of CR[H](R[H]1) is

C(R[H]1 in R[H]σ) = C(R1 in Rσ) = Cσ

for any σ ∈ H. It follows that

CR[H](R[H]1) =
.∑

σ∈H
C(R[H]1 in R[H]σ) =

.∑
σ∈H
Cσ = C[H]

as H-graded rings.
If c ∈ CR[H](R[H]1) and τ ∈ H, then the τ -conjugate of c, as defined by

Lemma 5.1 for the fullyH-graded ringR[H], is the unique element cτ ∈ R[H]
such that rτcτ = crτ for all rτ ∈ R[H]τ . Since R[H]τ is equal to Rτ , this cτ

is also the unique element in R such that rτcτ = crτ for all rτ ∈ Rτ . So it
is the τ -conjugate of c ∈ C, as defined by Lemma 5.1 for the fully G-graded
ring R. Thus the proposition holds.

The fixed subring under conjugation is easy to compute.

Proposition 5.5. If Hypothesis 4.2 holds, then the fixed subring CG of G
in C = CR(R1) satisfies

CG = Z(R) = Z(C)G ⊆ Z(C).
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Proof. By (5.2a) an element c ∈ C lies in CG if and only if it centralizes Rτ for
every τ ∈ G. Clearly this happens if and only if c centralizes R =

∑
τ∈GRτ .

Hence CG is the intersection Z(R) ∩ C. Since the centralizer C of R1 must
contain Z(R), this implies that CG = Z(R). It follows that CG is contained
in Z(C), and so must equal Z(C)G. Thus the proposition holds.

One elementary consequence of the above proposition and Theorem 2.2
is:

Theorem 5.6. If G is a finite group, then a fully G-graded ring R has
finite block theory if and only if its subring C = CR(R1) has finite block
theory.

Proof. Suppose that R has finite block theory. Then Z(R) has finite block
theory by Proposition 1.8. Since CG is equal to Z(R) by Proposition 5.5, it
also has finite block theory. Then C has finite block theory by Theorem 2.2.

Conversely, suppose that C has finite block theory. Then Proposition 1.4
tells us that Z(C) has only a finite number of distinct idempotents. We know
from Proposition 5.5 that Z(R) is a subring of Z(C). Hence Z(R) has only
a finite number of distinct idempotents. So R has finite block theory by
Proposition 1.4, and the theorem is proved.

In fact, we can always describe the blocks of R in terms of those of C
when G is finite, whether or not R has finite block theory. The conjugation
action of the group G on the ring C must permute among themselves the
distinct primitive idempotents 1C , for C ∈ Blk(C), of Z(C). So there is an
induced conjugation action of G on the set Blk(C), with any τ ∈ G sending
any block C ∈ Blk(C) to the unique conjugate block Cτ of C such that

1Cτ = (1C)τ .(5.7)

We write BlkG(C) for the set of all G-orbits C in Blk(C) under this action.

Theorem 5.8. If G is a finite group, then there is a one to one corre-
spondence between all blocks B of any fully G-graded ring R and all G-orbits
C ∈ BlkG(C) of blocks of the subring C = CR(R1) of R. Two such B and C
correspond if and only if

1B = 1C =
∑
C∈C

1C ∈ Z(C)G = Z(R).(5.9)
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Proof. Let B be any block of R. Then 1B is a primitive idempotent in
Z(R) = CG. It follows that C is the direct sum

C = C1B u C(1− 1B)(5.10)

of G-subrings. The fixed subring of the first summand in this decomposition
is the indecomposable subring (C1B)G = CG1B = Z(R)1B. Hence (C1B)G

has finite block theory. Because G is finite, Theorem 2.2 tells us that the
G-ring C1B has finite block theory.

The decomposition (5.10) implies that the distinct primitive idempotents
in Z(C1B) are the 1C , where C runs over the set C of all blocks C ∈ Blk(C)
such that 1C lies in C1B. Since the G-ring C1B has finite block theory,
Corollary 1.6 tells us that the distinct idempotents in Z(C1B) are just the
finite sums

1C′ =
∑
C′∈C′

1C′ ,(5.11)

where C′ runs over all subsets of C. It is clear from (5.7) that such a sum 1C′
is fixed by G if and only if the subset C′ is invariant under conjugation by
G. Because the ring (C1B)G = Z(R)1B is indecomposable, its only non-zero
idempotent is its identity element 1B. It follows that C must have only one
non-empty G-invariant subset C′, and that 1C′ is equal to 1B. This forces C
to be a G-orbit in BlkG(C) such that (5.9) holds.

Conversely, suppose that C is any G-orbit in BlkG(C). Then C is a finite
set, and the second equation in (5.9) defines an idempotent 1C in Z(C)G. The
1C , for C ∈ C, are the distinct primitive idempotents in the G-subring

Z(C)1C =
.∑

C∈C
Z(C)1C

of Z(C). It follows that the distinct idempotents in Z(C)1C are the finite sums
1C′ in (5.11), where C′ runs over all subsets of C. Because C is a G-orbit,
the only such 1C′ which is non-zero and G-invariant is 1C. Hence the unique
non-zero idempotent in

(
Z(C)1C

)G
is the identity element 1C of that subring.

But Proposition 5.5 implies that

(
Z(C)1C

)G
= Z(C)G1C = Z(R)1C.

Therefore 1C is a primitive idempotent in Z(R), and there is a unique block
B of R such that (5.9) holds.
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6. Orthogonal conjugate idempotents.

We continue to discuss the centralizer C = CR(R1) of the identity component
in the fully G-graded ring R of Hypothesis 4.2. The conjugation action of
G must permute among themselves the idempotents of the G-ring C. Let e
be one of those idempotents, and H be its stabilizer

H = { τ ∈ G | eτ = e }
in G. Each left coset T = Hσ of H in G determines a unique T -conjugate
eT of e such that

eT = eτ ∈ C(6.1)

for all τ ∈ T . The resulting idempotents eT , for T ∈ H\G, are the distinct
G-conjugates of e.

We’re going to investigate the case where the G-conjugates of e are pair-
wise orthogonal, i.e., where

eSeT =

{
eS if S = T ,
0 if S 6= T ,

(6.2)

for any S, T ∈ H\G. So all our present assumptions are collected in:

Hypothesis 6.3. G is a multiplicative group, R is a fully G-graded ring,
C is the G-ring CR(R1), and H is the stabilizer in G of some idempotent
e ∈ C satisfying (6.2).

We begin by discussing the right ideal eR of R.

Lemma 6.4. The right ideal eR is projective as both a right R-module
and a right R[H]-module. It is also an H\G-graded R-module, with the
T -component

(eR)T = eR[T ] = eReT(6.5)

for any T ∈ H\G.

Proof. Since eR is a direct summand of the regular rightR-moduleR = eRu
(1−e)R, it is projective as a right R-module. We know from Proposition 4.5
that R is projective as a right R[H]-module. Hence so is its direct summand
eR.

If S ∈ H\G and σ ∈ S, then (6.1) and (5.2a) imply that

Rσe
S = Rσeσ = eRσ.
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Hence
R[S]eS =

∑
σ∈S
Rσe

S =
∑
σ∈S

eRσ = eR[S].

This and (6.2) tell us that

eR[S]eT = R[S]eSeT =

{
R[S]eS = eR[S] if S = T ,
0 if S 6= T ,

for any S, T ∈ H\G. It follows that

eReT =
∑

S∈H\G
eR[S]eT = eR[T ]

for any T ∈ H\G, and that

eR =
∑

T∈H\G
eR[T ] =

∑
T∈H\G

eReT .

Because the idempotents eT , for T ∈ H\G, are pairwise orthogonal, we
conclude that eR is the direct sum of its additive subgroups (eR)T defined
by (6.5) for any T ∈ H\G. Since

eR[T ]Rσ ⊆ eR[Tσ]

for any T ∈ H\G and σ ∈ G, this direct sum decomposition is an H\G-
grading making eR an H\G-graded R-module. So the lemma is proved.

Our goal in this section is the surprisingly delicate proof of:

Theorem 6.6. If Hypothesis 6.3 holds, then the idempotent e must lie in
Z(R[H]) = C[H]H .

Proof. By Lemma 6.4 the right ideal eR is the direct sum

eR =
.∑

T∈H\G
eR[T ]

of its T -components (eR)T = eR[T ] for T ∈ H\G. Since right multiplication
by any σ ∈ H fixes the coset H ∈ H\G, and permutes among themselves all
the other cosets T ∈ H\G, it follows that eR is the direct sum

eR = eR[H]u eR[G−H]
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of its R[H]-submodules eR[H] and

eR[G−H] =
.∑

T∈H\G
T 6=H

eR[T ].

Because eR is projective as a right R[H]-module (see Lemma 6.4), so is its
direct summand eR[H].

The map φ : r 7→ er is an epimorphism of R[H] onto eR[H] as right R[H]-
modules. Since eR[H] is projective, there is some right ideal I in R[H] such
that

R[H] = Iu ker(φ).

The projection of R[H] onto I in this decomposition sends 1 = 1R = 1R[H]

to an idempotent f ∈ R[H] such that

I = fR[H] and ker(φ) = (1− f)R[H].

It follows that the epimorphism φ restricts to an isomorphism φ′ : r 7→ er of
fR[H] onto eR[H] as right R[H]-modules. Furthermore, this isomorphism
sends f to

ef = φ′(f) = φ(1) = e1 = e.(6.7)

If T ∈ H\G, then

fR[T ] ⊆ R[H]R[T ] ⊆ R[HT ] = R[T ].

Because R is the direct sum of its additive subgroups R[T ], for T ∈ H\G,
it follows that its right ideal fR is the direct sum

fR =
.∑

T∈H\G
fR[T ]

of additive subgroups. This H\G-grading makes fR an H\G-graded R-
module, since

fR[T ]Rσ ⊆ fR[Tσ]

for any T ∈ H\G and σ ∈ G.
In view of (6.7) we have

efR[T ] = eR[T ]

for each T ∈ H\G. It follows that left multiplication by e is an epimorphism
Φ′ : r 7→ er of fR onto eR as H\G-graded R-modules. This epimorphism
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restricts to the isomorphism φ′ of the H-component fR[H] of fR onto the
H-component eR[H] of eR. So it must be an isomorphism of fR onto eR
by Proposition 4.7.

Since the H-component eR[H] of eR is equal to eReH = eRe by (6.5),
the H-component fR[H] of the isomorphic H\G-graded module fR must
satisfy

fR[H] = fRe.

In particular, the element fe = f1e must lie in fR[H] ⊆ R[H]. But (5.2a)
implies that e commutes with every element of Rσ for each σ in its stabilizer
H. Hence e centralizes the direct sum R[H] of all those Rσ. Because f lies in
R[H], we conclude from this and (6.7) that e = ef = fe lies in the center of
R[H]. That center is equal to C[H]H by Proposition 5.5, applied to the fully
H-graded ring R[H] in Proposition 5.4. So the theorem is proved.

7. Morita equivalent subrings.

Now we’re going to assume that the stabilizer H of the idempotent e in
Hypothesis 6.3 has finite index in G. So e has only a finite number of
distinct G-conjugates eT , for T ∈ H\G. Since these conjugates are pairwise
orthogonal by (6.2), their sum

(7.1 a) E =
∑

T∈H\G
eT

is an idempotent in CG satisfying

(7.1 b) eE = Ee = e.

The fixed subring CG is equal to Z(R) by Proposition 5.5. Hence its
idempotent E determines a decomposition of the ring R as the direct sum

R = RE uR(1− E)(7.2)

of subrings. This decomposition allows us to consider Mod(RE) as the full
additive subcategory of Mod(R) having as objects all right R-modules M
such that ME =M.

The idempotent e lies in Z(R[H]) by Theorem 6.6. So it determines a
decomposition of the ring R[H] as the direct sum

R[H] = R[H]euR[H](1− e)(7.3)
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of subrings. As above, this allows us to consider Mod(R[H]e) to be the full
additive subcategory of Mod(R[H]) having as objects all rightR[H]-modules
K satisfying Ke = K.

Proposition 7.4. The idempotent e lies in the direct summand RE of
R. The direct summand R[H]e = eRe of R[H] is the subring e(RE)e of
RE. Furthermore, the two-sided ideal (RE)e(RE) = ReR of RE is equal
to RE.

Proof. It follows immediately from (7.1b) that e = eE lies in RE. We know
from (6.5) for T = H that R[H]e = eR[H] is the subring eRe of R. In
view of (7.1b) this subring is equal to e(RE)e. Similarly, the two-sided ideal
(RE)e(RE) of RE is equal to the two-sided ideal ReR of R. If T ∈ H\G
and τ ∈ T , then

eT = eτ ∈ Rτ−1eRτ ⊆ ReR = (RE)e(RE)

by (6.1) and (5.2b). Hence the ideal (RE)e(RE) of RE contains the sum
E in (7.1a). Since E is the identity element of RE, we conclude that
(RE)e(RE) = RE. Thus the proposition is proved.

Because e is an idempotent generating RE as a two-sided ideal, the two
rings R[H]e = e(RE)e and RE are Morita equivalent. We’re going to
describe the resulting equivalence between the categories Mod(R[H]e) and
Mod(RE) in a way that emphasizes its relation with the equivalence between
the categories Mod(R[H]) and GrMod(H\G,R) in Proposition 4.9. All the
work is done in two lemmas.

Lemma 7.5. Any right RE-module M is also an H\G-graded R-module,
with the T -componentMeT for any T ∈ H\G. Any homomorphism φ :M→
N of right RE-modules is also a homomorphism of H\G-graded R-modules.
Thus Mod(RE) is naturally a full additive subcategory of GrMod(H\G,R).
The H-component functor (·)H : GrMod(H\G,R)→ Mod(R[H]) sends any
object M in this subcategory to the R[H]-submodule Me of M. It also sends
any morphism φ :M→ N in this subcategory to its restriction to a morphism
φe : Me → Ne in Mod(R[H]). Hence (·)H restricts to an additive functor
(·)e sending Mod(RE) into the subcategory Mod(R[H]e) of Mod(R[H]).

Proof. The decomposition (7.1a) of E as a finite sum of the pairwise orthog-
onal idempotents eT gives a decomposition of M =ME as the finite direct
sum

M =
.∑

T∈H\G
MeT
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of additive subgroups. It follows from (6.1) and (5.2a) that

(MeT )Rσ =MeτRσ =MRσeτσ =MeTσ

for any T ∈ H\G, any τ ∈ T , and any σ ∈ G. Hence the first statement of
the lemma holds.

Clearly any homomorphism φ :M→ N of right RE-modules sends MeT

into NeT for any T ∈ H\G. So φ is also a homomorphism of H\G-graded R-
modules. Thus the second statement of the lemma holds. This immediately
implies the third statement.

The H-component functor (·)H : GrMod(H\G,R) → Mod(R[H]) dis-
cussed in §3 sends any object M in the subcategory Mod(RE) to its H-
component MeH = Me, which certainly lies in Mod(R[H]e). It also sends
any morphism φ : M → N in Mod(RE) to its restriction to a homomor-
phism φH = φe of MH =Me into NH = Ne as right R[H]-modules. So the
remaining statements of the lemma hold.

Lemma 7.6. If K is any right R[H]e-module, then the H\G-graded R-
module K ⊗ R = K ⊗R[H] R is equal to (K ⊗ R)E, and hence is also a
right RE-module. The T -component K ⊗ R[T ] of K ⊗ R is equal to (K ⊗
R)eT for any T ∈ H\G. So the induction functor · ⊗ R : Mod(R[H]) →
GrMod(H\G,R) sends the subcategory Mod(R[H]e) of Mod(R[H]) into the
subcategory Mod(RE) of GrMod(H\G,R).

Proof. Of course we regard K as a rightR[H]-module using the decomposition
(7.3) of R[H]. Since the idempotent e lies in R[H], we have

K⊗R[T ] = (Ke)⊗R[T ] = K⊗ (eR[T ])

for any T ∈ H\G. It view of (6.5) this last expression is equal to

K⊗ (eReT ) = (Ke)⊗ (ReT ) = (K⊗R)eT ,

where all tensor products are over R[H]. It follows that

K⊗R =
.∑

T∈H\G
(K⊗R[T ]) =

.∑
T∈H\G

(K⊗R)eT = (K⊗R)E.

So the lemma holds.

We can now state the equivalent of the Fong-Reynolds Theorem [F, V.2.5]
for our present situation as:

Theorem 7.7. If Hypothesis 6.3 holds with H of finite index in G, and if
E is the central idempotent (7.1 a) of R, then the H-component functor and
the induction functor restrict to additive functors

(·)e : Mod(RE)→ Mod(R[H]e) and ·⊗R : Mod(R[H]e)→ Mod(RE),
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which form an equivalence between the abelian categories Mod(RE) and
Mod(R[H]e).

Proof. This is an immediate consequence of the preceding two lemmas and
Proposition 4.9.

Of course the above equivalence between the categories Mod(RE) and
Mod(R[H]e) is a Morita equivalence between the rings RE and R[H]e. So
it induces an isomorphism between the centers Z(RE) and Z(R[H]e) of those
rings. This isomorphism can also be described in a more convenient form.
We start with the observation that

Proposition 7.8. The center Z(RE)= Z(R)E is the fixed subring (CE)G=
CGE in the G-subring CE of C. The center Z(R[H]e) = Z(R[H])e is the
fixed subring (C[H]e)H = C[H]He in the H-subring C[H]e of C[H].

Proof. Because the idempotent E lies in CG, which is contained in Z(C) by
Proposition 5.5, the G-ring C is the direct sum

C = CE u C(1− E)

of G-subrings. Hence CG is the direct sum

CG = (CE)G u
(
C(1− E)

)G
of its subrings (CE)G = CGE and

(
C(1−E)

)G
= CG(1−E). Since CG = Z(R)

by Proposition 5.5, this last decomposition coincides with the decomposition

Z(R) = Z(R)E u Z(R)(1− E)

of Z(R) as a direct sum of its subrings Z(R)E = Z(RE) and Z(R)(1−E) =
Z
(
R(1 − E)

)
. So the first statement of the proposition is proved. The

second statement is proved similarly, using the fully H-graded ringR[H], the
centralizer C[H] of its identity component, and the idempotent e ∈ Z(R[H])
in place of R, C and E, respectively (see Proposition 5.4).

Suppose that c ∈ CH and T ∈ H\G. As in (6.1), we may define the
T -conjugate cT ∈ C of c to be the common value of the τ -conjugates cτ for
τ ∈ T . Then the trace map trGH : CH → CG is the homomorphism of additive
groups sending c ∈ CH to the finite sum

trGH(c) =
∑

T∈H\G
cT ,(7.9)
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computed in C. Comparing this with (7.1a), we see that E is the trace trGH(e)
of e ∈ C[H]H ⊆ CH . We use the trace map in the following description of
the isomorphism between Z(RE) and Z(R[H]e).

Theorem 7.10. If Hypothesis 6.3 holds with H of finite index in G, and
if E is the central idempotent trGH(e) of R, then multiplication by e is an
isomorphism

λe : z 7→ ze = ez(7.11)

of the ring Z(RE) = CGE onto the ring Z(R[H]e) = C[H]He. The inverse
isomorphism is the restriction of the trace map trGH : CH → CG = Z(R) to
the subring C[H]He of CH .

Proof. The idempotent e in the subring Z(R[H]) of R certainly commutes
with any element z ∈ Z(R). It follows that multiplication by e is a homo-
morphism of Z(R) into the center of the subring eRe of R. We know from
Proposition 7.4 that this subring is equal to R[H]e. In view of (7.1b) this
homomorphism sends E to Ee = e. Thus its restriction to Z(RE) = Z(R)E
is an identity-preserving homomorphism λe of that ring into Z(R[H]e).

By Proposition 7.8 the center Z(RE) is the subring CGE of CG. Hence
any element z ∈ Z(RE) lies in (CE)H and is fixed under conjugation by any
element of either G or H\G. Its image λe(z) ∈ Z(R[H]e) lies in the subring
C[H]He of CH by Proposition 7.8. So the trace trGH

(
λe(z)

)
is defined. It

follows from (7.9) and (7.1a) that

trGH
(
λe(z)

)
=

∑
T∈H\G

(ze)T =
∑

T∈H\G
zT eT =

∑
T∈H\G

zeT = zE = z.

Thus the restriction of trGH is a left inverse to λe : Z(RE)→ Z(R[H]e).
If w ∈ Z(R[H]e) = C[H]He, then trGH(w) lies in CG and satisfies

trGH(w)E = trGH(w) trGH(e) =
∑

S,T∈H\G
wSeT .

Because w is equal to we, it follows from (6.2) that

wSeT = (we)SeT = wSeSeT =

{
wSeS = wS if S = T ,
0 if S 6= T ,

for any S, T ∈ H\G. Hence

trGH(w)E =
∑

S∈H\G
wS = trGH(w).
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So trGH(w) lies in CGE = Z(RE), and λe
(
trGH(w)

)
is defined.

We compute that

λe
(
trGH(w)

)
= trGH(w)e =

∑
T∈H\G

wT e.

But w is equal to we, and eT is orthogonal to the idempotent e = eH

whenever T ∈ H\G is different from H. Hence

trGH(w)e =
∑

T∈H\G
wT eT e = wHeHe = we = w.

Therefore trGH : Z(R[H]e) → Z(RE) is a right inverse to λe : Z(RE) →
Z(R[H]e), as well as a left inverse. So the theorem is proved.

It remains to be seen that the isomorphism λe of Z(RE) onto Z(R[H]e) in
the above theorem is actually the isomorphism ι associated with the equiv-
alence of Mod(RE) with Mod(R[H]e) in Theorem 7.7. The latter isomor-
phism can be described as sending any z ∈ Z(RE) to the unique element
ι(z) ∈ Z(R[H]e) such that the functor (·)e sends the RE-endomorphism
m 7→ mz of any right RE-moduleM to the R[H]e-endomorphism k 7→ kι(z)
of the right R[H]e-module Me. Since (·)e is just restriction to Me, the fol-
lowing observation shows that λe is indeed ι.

Proposition 7.12. If M is any right RE-module, and z is any element
of Z(RE), then the R-endomorphism m 7→ mz of M restricts to the R[H]-
endomorphism k 7→ kλe(z) of Me.

Proof. Clearly any element k ∈Me satisfies k = ke. It follows from this and
(7.11) that

kz = kez = kλe(z).

So the proposition holds.

8. G-invariant subrings.

The most natural idempotents e ∈ C satisfying (6.2) are the block idempo-
tents of G-invariant subrings of our fully G-graded ring R. By a G-invariant
subring of R we mean a subring S of R such that

Rτ−1SRτ = S(8.1)

for every τ ∈ G. It follows immediately from (4.1) and (3.3a) that:

The restriction of R to any normal subgroup N of G(8.2)

is a unitary, G-invariant subring R[N ] of R.
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So such subrings always exist.
From now on we fix an arbitrary G-invariant subring S of R. For our

purposes the most important property of S is:

Proposition 8.3. The center Z(S) of S is a G-subring of C = CR(R1).

Proof. We first show the the identity element 1S of S lies in C, i.e., that
(1S)r1 = r11S for any r1 ∈ R1. Since 1R lies in R1 by (3.2), it follows from
(8.1) for τ = 1 that

(1S)r1 = (1R1S)r1 ∈ R1SR1 = S.

So
(1S)r1 =

(
(1S)r1

)
1S = (1S)r11S.

By left-right symmetry, r11S is also equal to (1S)r11S, and hence to (1S)r1.
Thus 1S lies in C.

The above argument shows that the product (1S)r1 = r11S lies in S for
each r1 ∈ R1. Hence this product commutes with any z ∈ Z(S). It follows
that

zr1 = (z1S)r1 = z
(
(1S)r1

)
= (r11S)z = r1

(
(1S)z

)
= r1z.

Therefore Z(S) is a subring of C.
If z ∈ Z(S) and τ ∈ G, then (5.2b) and (8.1) imply that

zτ =
n∑
i=1

sizti ∈ Rτ−1SRτ = S,

for some s1, s2, . . . , sn ∈ Rτ−1 and t1, t2, . . . , tn ∈ Rτ . Furthermore, (5.2a)
tells us that

zτr′τ−1srτ = r′τ−1(zτ )τ
−1
srτ = r′τ−1zsrτ = r′τ−1szrτ = r′τ−1srτz

τ

for any r′τ−1 ∈ Rτ−1 , any s ∈ S, and any rτ ∈ Rτ . The resulting products
r′τ−1srτ generate S as an additive group by (8.1). Hence zτ both lies in S
and centralizes S. So zτ lies in Z(S), and the proposition is proved.

The conjugation action of G on the G-subring Z(S) of C must permute
among themselves the primitive idempotents 1C , for C ∈ Blk(S), of that
subring. As in (5.7), we conclude that there is a natural conjugation action
of the group G on the set Blk(S), with any τ ∈ G sending any block C of
S to the unique conjugate block Cτ ∈ Blk(S) such that

1Cτ = (1C)τ ∈ Z(S).(8.4)
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Now we fix a block C ∈ Blk(S) and its stabilizer GC in G. So all our
current assumptions are gathered in:

Hypothesis 8.5. G is a multiplicative group, R is a fully G-graded ring,
S is a G-invariant subring of R, and C is a block of S with stabilizer GC

in G.

The idempotent 1C of Z(S) lies in C by Proposition 8.3. Its distinct G-
conjugates (1C)τ are distinct primitive idempotents 1Cτ in Z(S), and hence
are pairwise orthogonal. So Hypothesis 6.3 holds with e = 1C and H = GC .
This allows us to reproduce the above relations between G, R, S and C on
a smaller scale.

Proposition 8.6. If Hypothesis 8.5 holds, then the restriction R[GC ] is a
fully GC-graded ring. The intersection SC = R[GC ] ∩ S is a unitary GC-
invariant subring of R[GC ]. The idempotent 1C lies in Z(SC). Furthermore,
the direct summand SC1C of SC is equal to the direct summand S1C of S.
Hence there is a unique GC-invariant block CC of SC such that 1CC = 1C.
So Hypothesis 8.5 holds with GC, R[GC ], SC, and CC in place of G, R, S
and C, respectively.

Proof. The first statement of the proposition holds by Proposition 5.4. Since
R[GC ] and S are unitary subrings of R, their intersection SC is a unitary
subring of each of them. If τ ∈ GC , then (3.3a), (4.1) and (8.1) imply that

Rτ−1SCRτ = Rτ−1(R[GC ] ∩S)Rτ ⊆
Rτ−1R[GC ]Rτ ∩Rτ−1SRτ = R[GC ] ∩S = SC .

Similarly we have
RτSCRτ−1 ⊆ SC .

Since 1 = 1R lies in R1 = Rτ−1Rτ by (3.2) and (4.1), we conclude that

SC = 1(SC)1 ⊆ Rτ−1RτSCRτ−1Rτ ⊆ Rτ−1SCRτ .

Therefore Rτ−1SCRτ is equal to SC for any τ ∈ GC , and the second state-
ment of the proposition is proved.

Theorem 6.6 for e = 1C and H = GC tells us that 1C lies in Z(R[GC ]).
Since 1C already lies in Z(S), this implies that it lies in Z(SC). The direct
summand S1C = 1CS of S is contained in 1CR1C , which is equal to the
direct summand R[GC ]1C = 1CR[GC ] of R[GC ] by (6.5) for e = 1C and
T = H = GC . Hence S1C is contained in SC = R[GC ]∩S. This forces S1C
to equal SC1C . Thus the third and fourth statements of the proposition
hold.
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Because 1C is a primitive idempotent in Z(S), the ring S1C is indecom-
posable. Hence so is the equal ring SC1C . Therefore 1C is a primitive idem-
potent in Z(SC). So there is a unique block CC of SC such that 1CC = 1C .
The GC-invariance of 1C implies that of both 1CC and CC . Thus the fifth
statement of the proposition holds. The remaining statement follows from
the preceding ones.

In order to apply the results in §7 we must assume that the stabilizer GC

has finite index in G, i.e., that C belongs to a finite G-orbit C of blocks of
S. Then the equivalent of the idempotent E in (7.1a) is the finite sum

1C =
∑
C′∈C

1C′(8.7)

of pairwise orthogonal idempotents 1C′ in Z(S). The decompositions (7.2)
and (7.3) now become the decompositions

(8.8 a) R = R1C uR(1− 1C)

and

(8.8 b) R[GC ] = R[GC ]1CC uR[GC ](1− 1CC )

of R and R[GC ] as direct sums of subrings.
We say that a block B of R lies over the block C of S if the idempotent

1B1C = 1C1B in C is non-zero. In that case we also say that C lies under
B. We denote by Blk(R | C ) the set of all blocks B of R lying over C.
Similarly, we say that a block B′ of R[GC ] lies over the block CC of SC ,
or that CC lies under B′, if the idempotent 1B′1CC = 1CC1B′ of C[GC ] is
non-zero. We denote by Blk(R[GC ] | CC ) the set of all blocks B′ of R[GC ]
lying over CC .

Proposition 8.9. If C belongs to a finite G-orbit C of blocks of S, then
the 1B, for B ∈ Blk(R | C ), are the distinct primitive idempotents in the
center Z(R1C) of the summand R1C in (8.8 a). Furthermore, the 1B′, for
B′ ∈ Blk(R[GC ] | CC ) are the distinct primitive idempotents in the center
Z(R[GC ]1CC ) of the summand R[GC ]1CC in (8.8 b).

Proof. Fix a block B ∈ Blk(R). The primitive idempotent 1B of Z(R) must
lie in exactly one of the summands R1C and R(1 − 1C) in (8.8a). If 1B
lies in R(1 − 1C), then 1B1C = 0. Since 1C1C = 1C by (8.7), this implies
that 1B1C = 1B1C1C = 0. Therefore B does not lie over C when 1B lies in
R(1− 1C).
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On the other hand, if 1B lies in R1C, then

0 6= 1B = 1B1C =
∑
C′∈C

1B1C′ .

So B lies over some block C ′ ∈ C. Since C ′ is equal to Cτ for some τ ∈ G,
and 1B ∈ Z(R) = CG is fixed by τ , we have

(1B1C)τ = (1B)τ (1C)τ = 1B1C′ 6= 0.

Hence 1B1C 6= 0, and B lies over C when 1B lies in R1C.
Because the primitive idempotents of Z(R1C) are exactly those primitive

idempotents of Z(R) which lie in the summand R1C in (8.8a), the above ar-
guments prove the first statement in the proposition. The second statement
is proved similarly, using GC , R[GC ], SC and CC in place of G, R, S and
C, respectively, as in Proposition 8.6.

Now we can apply Theorem 7.10 to obtain:

Theorem 8.10. If Hypothesis 8.5 holds and C belongs to a finite G-orbit
C in Blk(S), then multiplication by 1C is an isomorphism λC of the ring
Z(R1C) onto the ring Z(R[GC ]1CC ). The inverse isomorphism is a restriction
of the trace map from GC to G. These isomorphisms induce a bijection of
Blk(R | C ) onto Blk(R[GC ] | CC ), sending any block B of R lying over C
to the unique block BC of R[GC ] lying over CC such that

λC(1B) = 1B1C = 1BC and trGGC (1BC ) = 1B.

Proof. This is an immediate consequence of Proposition 8.9 and of Theo-
rem 7.10 applied to the idempotents e = 1C = 1CC and E = 1C.

We say that a block B ∈ Blk(R | C ) is linked by Clifford theory for C to
the unique block BC ∈ Blk(R[GC ] | CC ) corresponding to it in the above
theorem.

Lemma 8.11. If B ∈ Blk(R | C ) is linked to BC ∈ Blk(R[GC ] | CC ) by
Clifford theory for C, then Hypothesis 6.3 holds with e = 1BC and H = GC.
In this case the idempotent E in (7.1 a) is just 1B.

Proof. The idempotent 1BC is the product 1B1C of two idempotents in C,
and hence lies in C. Since 1B ∈ Z(R) = CG is G-invariant, we have

(1BC )τ = (1B)τ (1C)τ = 1B1Cτ
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for any τ ∈ G. In particular, GC stabilizes 1BC . If τ ∈ G−GC , then 1Cτ is
orthogonal to 1C , and commutes with 1B ∈ Z(R). Hence

(1BC )τ1BC = 1B1Cτ1B1C = 1B1Cτ1C = 0 6= 1BC

in this case. We conclude that GC is precisely the stabilizer of 1BC in G,
and that the distinct G-conjugates of 1BC are pairwise orthogonal. Thus the
first statement of the lemma holds.

The idempotent corresponding to E in (7.1a) is the trace trGGC (1BC ) of
the idempotent 1BC corresponding to e, taken from its stabilizer H = GC

to G. By Theorem 8.10 this trace sends 1BC to 1B. That is the remaining
statement of the lemma.

Now we can state the Fong-Reynolds Theorem 7.7 in a more familiar form.

Theorem 8.12. Suppose that Hypothesis 8.5 holds, and that C belongs
to a finite G-orbit C of blocks of S. If B ∈ Blk(R | C ) is linked to
BC ∈ Blk(R[GC ] | CC ) by Clifford theory for C, then multiplication by 1BC
and induction from R[GC ] to R restrict to additive functors

(·)1BC : Mod(R1B)→ Mod(R[GC ]1BC )

and

· ⊗R : Mod(R[GC ]1BC )→ Mod(R1B),

which form an equivalence between the abelian categories Mod(R1B) and
Mod(R[GC ]1BC ).

Proof. In view of Lemma 8.11 this follows immediately from Theorem 7.7
for e = 1BC and E = 1B.

9. Clifford theory.

In order to obtain the conclusions of the preceding section for every block B
of R, we shall assume from now on that G, R and S satisfy:

Hypothesis 9.1. G is a finite multiplicative group, R is a fully G-graded
ring having finite block theory, and S is a unitary, G-invariant subring of
R.

Then we have:

Proposition 9.2. If Hypothesis 9.1 holds, then any G-subring D of C =
CR(R1) has finite block theory. Hence any G-invariant subring S′ of R has
finite block theory. In particular, S has finite block theory.
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Proof. Since R has finite block theory, Proposition 1.4 tells us that the set
ZI(R) of all idempotents in Z(R) is finite. We know from Proposition 5.5
that ZI(R) is the set of all idempotents in CG = Z(R). If D is a G-subring
of C, then its fixed subring DG is a subring of CG. Hence DG contains only a
finite number of distinct idempotents, and so must have finite block theory
by Proposition 1.4. Now Theorem 2.2 tells us that D has finite block theory.

Let S′ be any G-invariant subring of R. Proposition 8.3 tells us that
Z(S′) is a G-subring of C. So Z(S′) has finite block theory by the above
arguments. Then S′ has finite block theory by Proposition 1.8. Thus the
proposition holds.

We denote by BlkG(S) the set of all G-orbits under the conjugation action
(8.4) of G on Blk(S). We write 1C for the idempotent associated with any
orbit C ∈ BlkG(S) by (8.7).

Proposition 9.3. If Hypothesis 9.1 holds, the the ring R is the direct sum

R =
.∑

C∈BlkG(S)

R1C(9.4)

of G-invariant subrings R1C, each of which has finite block theory.

Proof. We know from Proposition 9.2 that S has finite block theory. Since
S is also a unitary subring of R (see Hypothesis 9.1), it follows from (1.3)
that its identity element 1R is the finite sum

1R =
∑

C∈Blk(S)

1C

of pairwise orthogonal primitive idempotents in Z(S). The finite set Blk(S)
is the disjoint union of its G-orbits C ∈ BlkG(S). So 1R is also the finite
sum

1R =
∑

C∈BlkG(S)

1C

of pairwise orthogonal idempotents

1C =
∑
C∈C

1C .

Each of these last idempotents lies in CG, which is equal to Z(R) by Propo-
sition 5.5. So this last decomposition of 1R implies that R is the direct sum
(9.4) of subrings.



120 EVERETT C. DADE

The idempotent 1C ∈ Z(R) commutes with Rτ for any C ∈ BlkG(S) and
τ ∈ G. Hence

Rτ−1(R1C)Rτ = (Rτ−1RRτ )1C = R1C.

So R1C is a G-invariant subring of R. As such it has finite block theory by
Proposition 9.2. Thus the proposition holds.

Recall from the preceding section that a block C of S lies under a block
B of R if the idempotent 1B1C = 1C1B in R is not zero. The final step in
Clifford theory for blocks is:

Theorem 9.5. If Hypothesis 9.1 holds, then the blocks of S lying under a
fixed block B ∈ Blk(R) form a single G-orbit C ∈ BlkG(S). This orbit C is
determined by the fact that 1B lies in the direct summand R1C in (9.4).

Proof. The primitive central idempotent 1B ofRmust lie in exactly one of the
direct summands R1C in (9.4). Thus there is a unique G-orbit C ∈ BlkG(S)
such that 1B ∈ R1C. Then Proposition 8.9 tells us that B lies over every
block C ∈ C and over no other block of S. So the theorem holds.

Of course Theorems 8.10 and 8.12 now hold for any block B of R and any
block C of S lying under B. In particular, B is linked by Clifford theory for
C to a unique block BC of the restriction R[GC ] of R to the stabilizer GC

of C. Furthermore, the abelian categories Mod(R1B) and Mod(R[GC ]1BC )
are Morita equivalent.

10. Questions.

The above discussion raises a couple of interesting questions which we cannot
answer. There is a natural duality between G-rings and G-graded rings,
based on the fact that both are special cases of H-rings in the sense of [CS],
where the Hopf algebra H is the group ring ZG in the former case and its
dual in the latter one. This allows us to formulate the dual statement to
Theorem 2.2 in the form of:

Question 10.1. If G is a finite group and R is any G-graded ring whose
identity component R1 has finite block theory, does R have finite block
theory?

Surprisingly enough, the answer to this question is yes when G has order 2
or 3. This can be shown by direct and brutal calculation of all possible central
idempotents in R. However the computations required for this approach
become impossibly complicated as the order of G increases. So any attempt
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to give a positive answer to this question for all G must be based on some
other idea.

Rings graded by a finite abelian group G behave very much like G∗-rings,
where G∗ is the finite dual group to G. So the fact that Question 10.1 has a
positive answer for a few small abelian groups may be an accident. Before
raising this question to the status of a conjecture, it would be wise to see a
few non-commutative examples.

One possible consequence of a positive answer to Question 10.1 is:

Proposition 10.2. Suppose that G is a finite group and that R is a fully
G-graded ring with finite block theory. If the answer to Question 10.1 is
always yes, then the restriction R[H] of R to any subgroup H of G also has
finite block theory.

Proof. The identity component R1 is a G-invariant subring of R by (8.2),
and so has finite block theory by Proposition 9.2. A positive answer to
Question 10.1 for the H-graded ring R[H] would then imply the proposi-
tion.

Of course, the conclusion of the above proposition might hold even if the
answer to Question 10.1 turns out to be no in general.

It is somewhat annoying that we need to assume that the fully G-graded
ring R has finite block theory in order to show that each of its blocks B lies
over a single G-orbit of blocks of a G-invariant subring S (see Theorem 9.5).
In view of the relations between blocks of R and G-orbits of blocks of C in
Theorem 5.8, we might hope that this global assumption can be avoided,
i.e., that we have a positive answer to:

Question 10.3. If G is a finite group and S is a G-invariant subring of a
fully G-graded ring R, does every block B of R lie over a G-conjugacy class
C of blocks of S?

We don’t have a single example illustrating this question in a situation
where R does not have finite block theory. So it is much more speculative
than the preceding question. We should remark that the problem is to find
one block C of S lying under a given block B of R. Once such a C exists,
the rest is easy.
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