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ON THE SMITH NORMAL FORM OF THE VARCHENKO
BILINEAR FORM OF A HYPERPLANE ARRANGEMENT

Graham Denham and Phil Hanlon

To the memory of Olga Taussky-Todd

1. Terminology and Notation.

Let A = {H1, . . . , H`} be an arrangement of hyperplanes in Rn and let
r(A) = {R1, . . . , Rm} denote the set of regions in the complement of the
union of A. Let L(A) denote the collection of intersections of hyperplanes
in A including the empty intersection which we take to be Rn. We order
the elements of L(A) by reverse inclusion thus making it into a poset. It is
well known that this poset is a semilattice and is a geometric lattice if the
arrangement is central. We will abbreviate L(A) to L when the arrangement
is clear.

For regions S, T ∈ R(A), define n(S, T ) to be the number of hyperplanes
in A which separate S from T . In [6], Varchenko defines a matrix B = B(A)
with rows and columns indexed by the regions in R(A) by saying that the
S, T entry in B is qn(S,T ).

Example 1.1. An important example is the arrangement A consisting of
the

(n
2

)
hyperplanes Hi,j in Rn given by

Hi,j = {(x1, . . . , xn) : xi = xj}.

The reader will note that A consists of the reflecting hyperplanes for the
root system An−1 and so we denote this arrangement by An−1. Two points
(x1, . . . , xn) and (y1, . . . , yn) are in the same region of the complement if and
only if the relative orders of their coordinates are the same. So, the permu-
tations in Sn index the regions of the complement via the correspondence

σ ↔ {(x1, . . . , xn) : xσ1 < xσ2 < . . . < xσn}.
For σ, τ in Sn, the exponent of q in the σ, τ entry of B is i(στ−1), the number
of inversions of στ−1. Equivalently, B is the matrix for left multiplication
by

∑
α∈Sn q

i(α)α in CSn (the matrix with respect to the standard basis).
It is interesting to note that this matrix is studied by Zagier [10] for quite
different reasons.
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Example 1.2. For each i, let Oi denote the linear hyperplane in Rn which
consists of all vectors with a 0 in the ith coordinate. Let On denote the ar-
rangement {O1, O2, . . . , On}. In this case, r(A) has size 2n and the individual
regions can be indexed by sequences S = (s1, . . . , sn) where each si is either
+1 or −1. The sequence S corresponds to the region RS which contains all
vectors (x1, . . . , xn) where xi < 0 if and only if si = −1. Given sequences
S, T , the number of hyperplanes separating RS and RT is equal to the num-
ber of coordinates in which S and T differ.

Varchenko is interested in the bilinear forms corresponding to the matrices
B. In papers [6] and [8], Varchenko and Schechtman show that these bilinear
forms describe the analogue of Serre’s relations for quantum Kac-Moody Lie
algebras and are relevant to the representation theory of quantum groups
and the study of the corresponding hypergeometric functions.

In these applications, it is the nullspace of B that is of particular interest.
Of course, this nullspace depends on the value of the parameter q. That
motivates the following remarkable result of Varchenko which determines
those values of q for which B is singular.

Theorem 1.3 (Varchenko [6, Theorem 1.1]). The determinant of the
bilinear form of the configuration A is given by the formula

detB =
∏

X∈L(A)∗
(1− q2h(X))`(X)

where L(A)∗ is the set of non-empty intersections in L(A), where h(X) is
the number of hyperplanes containing X and where `(X) is a non-negative
integer.

In [6], Varchenko discusses two methods that can be used to compute the
exponents `(X). The first, which immediately precedes the statement of his
Theorem 1.1, is geometric. The second which comes later in the paper (4.8)
is more combinatorial. For completeness, we will briefly describe the second
method. To compute `(X), first choose a hyperplane H ∈ A which contains
X. Then 2`(X) is the number of regions P which have the property that X
is the minimal edge Y containing P ∩H.

It is interesting to see what Theorem 1.3 says in the two special cases
described above. First assume that A = An−1. This is a central arragement
and so in this case the L(A) is a lattice. It is well-known that L(A) is the
partition lattice Πn. Given a partition α = α1/α2/ . . . /αm, `(α) = 0 unless
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exactly one of the αi has size greater than 1. In that case, assume that
the blocks are ordered so that |α1| has size a > 1 and that all other blocks
have size 1. Then `(α) = (a− 2)!(n− a+ 1)!. This fact follows easily from
Varchenko’s description of ` discussed above. So in this case, we obtain
the following factorization of det(B) which had originally been derived by
Zagier [10]:

det(B) =
n∏
a=2

(1− qa(a−1))(
n
a)(a−2)!(n−a+1)!.

Next assume that A = On. This is again a central arrangment and so
L(A) will again be a lattice. In this case, the lattice L(A) is Bn, the lattice
of subsets of {1, . . . , n}. The indexing of edges by subsets is given as follows:
the subset U corresponds to the intersection of the Ou for u ∈ U .

Using the method above for computing `(X), it can be shown that

`(U) =

{
2n−1, if U is a hyperplane;
0, otherwise.

So in this case, det(B) = (1− q2)n2n−1
.

In this paper we will study the Smith Normal Form of the matrices B.
Matrix theory is the subject that Olga wrote about more than any other.
In fact, algebraic aspects of matrix theory were a particular interest of hers.
So we feel that this paper is a fitting contribution to the special issue of
the Pacific Journal of Math. in honor of Olga’s work. The authors wish to
thank Mel Hochster for many useful conversations during the course of this
research.

2. The Smith Normal Form of B.

Both examples discussed in the previous section have the property that there
is a group G acting on the arrangement A. Consider the situation where a
finite group G ⊂ GLn(Rn) acts on A hence on the vector space V with basis
consisting of r(A). In this case, G commutes with the matrix B and so B
acts on each isotypic component of the action of G on V and G acts on the
kernel of B. Varchenko [6] and Zagier [10] independently ask what can be
said about the determinant of B on the isotypic components of G on V and
what can be said about the action of G on the kernel of B for values of q
where det(B) vanishes.

In recent work, Hanlon and Stanley [2] consider these questions for the
arrangement A = An−1 discussed in Example 1.1. In this work, they are led
naturally to questions about the Smith Normal Form, over the ring Q[q], of
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the matrix B. These questions are the motivation for our investigation of
the Smith Normal Form in this paper.

2.1. Computation of the Smith Normal Form. Let SNF(B) denote the
Smith Normal Form of B over Q[q]. Recall that the Smith Normal Form is an
invariant form for simultaneous left and right multiplication by unimodular
matrices with entries in Q[q]. It is known that SNF(B) is a diagonal matrix,
SNF(B) = diag{d1, . . . , dn} where di|di+1 for each i. Our interest will be in
the factors of the di as polyomials in q. Let ψ be an irreducible polynomial in
Q[q]. For each i, let mi(ψ) denote the multiplicity of ψ as a factor of di, and
let Mψ(x) be the generating function for the mi, i.e., Mψ(x) =

∑
imi(ψ)xi.

By Varchenko’s Theorem, Mψ(x) = 0 unless ψ is a cyclotomic polynomial.

Example 2.1. Let A = {`1, `2} be the arrangement in R2 given by the
collection of the two parallel lines:

`1 = {(x, y) : x = 0}
`2 = {(x, y) : x = 1}.

The complement R2 consists of three regions:

R1 = {(x, y) : x < 0}
R2 = {(x, y) : 0 < x < 1}
R3 = {(x, y) : x > 1}.

The matrix B with respect to the regions as numbered above is:

B =

 1 q q2

q 1 q
q2 q 1

 .
There is a standard algorithm for computing the Smith Normal Form for

an n× n matrix M over a Euclidean ring A (see for example Newman [4]).
The algorithm goes as follows. Let γ denote the greatest common divisor of
the elements in the first row of M . Find a1, . . . , an ∈ A such that

∑
aim1,i =

γ. As proved in [4], it is possible to construct a unimodular matrix E
in GLn(A) with first column [a1, . . . , an]t. Right multiplication of M by
E leaves an equivalent matrix which has γ in the 1, 1 entry. Then right
multiplication of this matrix by a suitable unimodular matrix will yield a
matrix with first row [γ, 0, . . . , 0]. At this point, use a similar method to
produce via left unimodular multiplication, a matrix which has the greatest
common divisor of the first column in its 1, 1 entry and all other entries in
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column 1 equal to zero. This process may create non-zero entries in row 1
but will reduce (in the divisibility sense) the 1, 1 entry. Repeat the process
all over again until every entry of row 1 and column 1 is zero except the
1, 1 entry. Then compute the Smith Normal Form of the matrix in rows and
columns 2− n by induction on n.

When we apply this algorithm to the matrix B from Example 2.1 we go
through the series of steps:  1 0 0

q 1− q2 q − q3

q2 q − q3 1− q4


1 0 0

0 1− q2 q − q3

0 q − q3 1− q4


1 0 0

0 1− q2 0
0 q − q3 1− q2


1 0 0

0 1− q2 0
0 0 1− q2

 .
Note that some of the entries of the intermediate matrices have degree 4
which exceeds the maximum degree of any entry in either the original matrix
or in the Smith Normal Form. This phenomena of degree “blow up” will be
discussed at some length later in this section.

The conjectures put forth in this paper are based on the study of the
Smith Normal Forms of the Varchenko B matrices associated to a number
of arrangements A in dimensions 2 to 5. In theory, it should be straight-
forward to obtain this computational evidence using the standard algorithm
discussed above. However, in practice the standard algorithm, directly ap-
plied, works very poorly. There are two problems. One problem is the size of
B. The number of regions (hence the size of B) grows very quickly with the
number of hyperplanes in the arrangement. For example, the B matrix asso-
ciated with the arrangement A5 is a 720 by 720 matrix with entries which are
polynomials of degree 15. Computing the Smith Normal Form of a matrix of
that size, using the standard algorithm, is infeasible. However, a second and
more insidious problem is the blow-up of degrees of the matrix entries during
intermediate stages in the computation. The matrices that one obtains in
intermediate stages of the standard algorithm can have entries of very high
degree. For example, one computation we performed consisted of finding the
Smith Normal Form of a 9 by 9 matrix with entries which were polynomials
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of degree 15 or less. The symbolic mathematics package MAPLE ran for one
week on a SPARC-20 without ever finishing this computation. At that point,
we wrote our own code which would print out the matrices obtained at each
step of the standard algorithm. After clearing the first row, the resulting
matrix had certain entries in rows 2-9 which were of degree 30. Then, after
clearing the first column, some entries in rows 2-9 had degree close to 90.
Then after another first row clear, the degrees of some entries had exceeded
120. This growth of degrees at intermediate steps of the standard algorithm
is our guess for what was slowing down the original MAPLE computation.
This kind of problem is one that has been recognized in the computation of
the Smith Normal Form of matrices over Z. George Havas [3] has done some
excellent work on dealing with the analogous problem over the ring Z.

We are going to discuss two methods we used to improve on the standard
algorithm. Together, these improvements made possible the collection of a
significant amount of data. The first simply takes advantage of symmetries
in the matrix B. In many cases that we consider, there is a finite linear
group G of automorphisms of the arrangement. Indeed, this circumstance
motivated Varchenko to ask the original questions that we investigated. The
group G acts on the set of regions and this action commutes with B. Let χ
be an irreducible character of G which has rational character values, and let
Vχ denote the χ-isotypic component of the action of G on the vector space
V spanned by regions. Since the actions of B and G commute, B preserves
the subspace Vχ. Let Bχ denote the restriction of B to Vχ. The similarity
which transforms B into the direct sum of the Bχ is defined over Q hence
can be taken to be a unimodular matrix over Q[q]. So, the Smith Normal
Forms of B and

⊕
Bχ (over Q[q]) are equal. There is additional structure

to the matrix Bχ. It is known well-known that Bχ can be written as a direct
sum of dχ copies of a square matrix Pχ, of size mχ where dχ is the degree
the representation χ and mχ is the multiplicity of χ in the representation
V . Moreover, the matrix Pχ can be computed as the restriction of B to the
image of a primitive idempotent Eχ corresponding to the character χ in the
group algebra CG. So, if an idempotent Eχ can be found which is defined
over Q, then the collection of polynomials that occur on the diagonal of the
SNF(B) is equal to the collection of polynomials that occur on the diagonal
of the direct sum of the Smith Normal Forms of the Pχ (each Pχ repeated
dχ times).

For example, consider the case where A is the braid arrangement An−1. In
this case, the matrix B is 720 by 720 and so direct computation of its Smith
Normal Form is intractable. The group G = S6 acts on the arrangement A
and it is well-known that there exist primitive idempotents corresponding
to the irreducible representations of G which are defined over Q. The irre-
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ducible representations of G are indexed by partitions of 6. In this case, the
representation of G on V is the regular representation so the multiplicity
mχ is equal to the degree dχ. Amongst partitions of 6, the maximum value
of mχ = dχ is 16 for the partition χ = 321. So for n = 6, the computa-
tion of the Smith Normal Form of the original matrix of size 720 has been
reduced to the problem of computing the Smith Normal Forms of eleven
matrices of sizes 16 and less. This represents an enormous improvement in
computational complexity.

Even with this improvement, the computation of the Smith Normal Form
of the matrix B remains intractable in many cases because of the degree
blow-up phenomenon discussed above. For example, the computation of the
Smith Normal Form of the matrix P42 (as defined in the previous paragraph)
suffers from the blow-up of degrees at intermediate points in the computa-
tion. This was in fact the 9 by 9 matrix with entries of degree 15 or less
that was discussed above. We need a second idea to get around this degree
blow-up problem.

Suppose we are trying to compute the Smith Normal Form over Q[q] of
the matrix M . Assume in addition that we know the determinant of M
(in our case we will know the determinant of B because of Varchenko’s
Theorem). Let ψ(q) be an irreducible polynomial over Q of degree δ and
let N denote the multiplicity of ψ(q) as a factor of det(M). We can expand
any polynomial p(q) as a sum of powers of ψ(q) with coefficients that are
polynomials of degree less than δ. The idea of our second improvement is to
throw away the tail in this ψ(q)-expansion throughout the computation for
each entry of M , i.e., for each entry Mi,j we will throw away that part of the
expansion which involves powers of ψ(q) higher than F for some fixed F .

To make this more precise, fix an irreducible ψ(q) of degree δ and fix F .
Let p(q) be a polynomial with ψ(q)-expansion

p(q) =
∑
r≥0

ar(q)ψ(q)r

where each ar(q) is a polynomial of degree less than δ. Define φF (p(q)) to
be

φF (p(q)) =
F−1∑
r=0

ar(q)ψ(q)r.

Extend the notation φF to matrices by saying that
(
φF (M)

)
i,j

= φF (Mi,j).
For any matrix M we have

M = φF (M) + ψ(q)FM ′
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for some other matrix M ′. When you follow the apply the usual algorithm
(described above) for computing the Smith Normal Form of a matrix M , you
obtain a sequence of matrices, M = M0,M1, . . . ,Mk = SNF(M) where each
Mi+1 is obtained from the previous Mi by either left or right multiplication
by a unimodular matrix Ei. Consider the new algorithm, which we call the
φF -algorithm which proceeds in exactly the same way, except that after each
step you apply φF to the outcome of the previous step before proceeding.
In essence, all that the φF -algorithm does is to compute the Smith Normal
Form of our original matrix over the ring Q[q]/(ψ(q)F ). We will denote this
matrix by SNFψ(q),F (M). Note that SNFψ(q),F (M) is diagonal and that each
entry divides the previous entry modulo ψ(q)F . It is instructive to see an
example at this point.

Example 2.2. Let ψ = ψ(q) = 1 + q + q2 and let M be the matrix

M =

(
1− q − 3q2 − 6q3 − 4q4 − 2q5 2q + 4q2 + 6q3 + 4q4 + 2q5

−q − 2q2 − 3q3 − 2q4 − q5 1 + 2q + 3q2 + 2q3 + q4

)
.

It is straightforward to check that the Smith Normal Form of M over Q[q]
is

SNF(M) =

(
ψ 0
0 ψ2

)
.

Now let’s see what we get if we apply the φF -algorithm for various values of
F . If we expand each entry of the original M in terms of powers of ψ we
obtain

M =

(
ψ + 2(1 + q)ψ2 − 2ψ3 2qψ2

−qψ2 ψ2

)
.

So if we apply the φ1-algorithm to M we see at the very first step

φ1(M) =

(
0 0
0 0

)
which is already in Smith Normal Form. So SNFψ,1(M) is the zero matrix.

Similarly, when we apply φ2 to M we obtain a matrix that is already in
Smith Normal Form:

φ2(M) = SNFψ,2(M) =

(
ψ 0
0 0

)
.

Finally, when we apply the φ3-algorithm to M we go through the following
series of steps to arrive at SNFψ,3(M):(

ψ + 2(1 + q)ψ2 2qψ2

−qψ2 ψ2

)
.
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Right multiply by a unimodular to get:(
ψ + 2(1 + q)ψ2 −4q(1 + q)ψ3

−qψ2 ψ2 + 2q2ψ3

)
.

Apply φ3 to get: (
ψ + 2(1 + q)ψ2 0

−qψ2 ψ2

)
.

Left multiply by a unimodular to get:(
ψ + 2(1 + q)ψ2 0

0 ψ2

)
.

This last matrix is SNFψ,3(M). Note that successive diagonal entries do
not divide each other in Q[q] but do divide each other modulo ψ3. Also
note that we had no problem with exponent growth when we computed
SNFψ,F (M). In fact, the maximum exponent that we can encounter during
the φF -algorithm is something like 2δF .

Recall that mi(ψ) denotes the power of ψ which exactly divides the ith

diagonal entry of SNF(M). Let mi,F (ψ) denote the corresponding power of
ψ which exactly divides the ith diagonal entry of SNFψ,F (M). We claim that
mi,F (ψ) = mi(ψ) if mi(ψ) is less than F . Otherwise, mi,F (ψ) = 0.

To see this, let V be Q[q]n. We can think of M as a map from V to V .
The significance of the exponents mi(ψ) is that we can choose v1, . . . , vn,
with each vi having relatively prime coordinates, such that

Mvi ⊂ (ψmi(ψ))V.

Similarly, the significance of the exponents mi,F (ψ) is that we can choose
x1, . . . , xn, such that

Mxi ⊂ (ψmi,F (ψ))V +⊕(ψF )V.

So if we choose F to be greater than or equal to the maximum of the original
mi(ψ), we will have mi(ψ) = mi,F (ψ) for all i. In practice, one has to
determine which value of F to use since you don’t know a priori the maximum
value of the mi(ψ). The reader will note that Conjecture 3.3 stated in
the next section exactly answers this question. But until that conjecture
is proved, there remains some element of trial and error in choosing an
appropriate value of F . It is easy to tell if you have chosen F large enough
because in that case, the sum of the mi,F (ψ) equals the exact power of ψ
which divides the determinant of M . In our computational work, we used
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Conjecture 3.3 as a guide in choosing F and that led us to the optimal value
of F in every case.

How well does this algorithm work? Recall that we previously mentioned
an example in which M was a nine by nine matrix with entries of degree fif-
teen or less. In that case the usual algorithm for computing the Smith Nor-
mal Form of this matrix experienced severe exponent blow-up and had failed
to finish after a week of computation. However, using the φF -algorithm,
there was a striking speed-up. For each irreducible ψ, the computation of
the mi,F (ψ) took less than five seconds. In this case, Varchenko’s determi-
nant formula told us that there were ten irreduibles ψ that needed to be
considered. So the entire computation of the Smith Normal Form which had
failed to run in a week’s time using the standard algorithm, took less than
a minute using the φF -algorithm. In the Appendix we present some of the
results of our computations.

3. Conjectures and Results.

In the last section, we described algorithms that we implemented to com-
pute the Smith Normal Form of the Varchenko B matrices in a number of
cases. In the Appendix, the reader will find some of the results of the actual
computations. These computational results led to a number of conjectures
and suggested a number of questions. In this section we state two conjec-
tures that are based on these computations. We will prove one of the two
conjectures in the next section.

We will need one piece of notation to state the first result. Let A be an
arrangement and B the associated Varchenko matrix. For ψ an irreducible
polynomial, let tψ,i denote the number of diagonal entries in SNF(B) that
are exactly divisible by ψi. In the notation of the previous section, tψ,i is
the number of mj(ψ) that are equal to i.

Theorem 3.1. Let ψ = q − 1. Then tψ,i is equal to the dimension of the
ith graded piece of the Orlik-Solomon algebra of A. Equivalently, tψ,i is equal
to the dimension of the ith graded piece of the singular homology of Cn−AC

where AC denotes the complexification of the arrangement A. Equivalently,

tψ,i =
∑

ρ(X)=i

(−1)iµ(0, X)

where the sum is over elements X in the intersection lattice of A.

This theorem is the main result of this paper and will be proved in the
next section. It immediately suggests a question: Is there a similarly elegant
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description of the numbers tψ,i for other irreducibles ψ? At this point, the
authors do not know such a description. The reader is invited to speculate
using the data that appears in the last section.

The next conjecture is less elegant but is the fact needed by Hanlon and
Stanley to complete the proof of their conjectures in [2]. This conjecture
also provides the information needed to optimally set a parameter F for the
φF -algorithm discussed in the previous section. It concerns the maximum
value of mj(ψ) for a given irreducible ψ. Let Height(ψ,A) denote this max-
imum value for the arrangement A. We will need a definition to state the
conjecture.

Definition 3.2. Let X be an edge in the intersection lattice of A and let
ψ be an irreducible. Recall from Varchenko’s determinant formula that X
contributes a factor of the form (1−q2h(X))`(X) where h(X) is the number of
hyperplanes that contain X and `(X) is an exponent described in Section 1.
We say that X is ψ-active if

1. ψ divides 1− q2h(X).
2. The exponent `(X) is nonzero.

If L(A) contains no ψ-active elements, then Height(ψ,A) is zero. Other-
wise, let

Max(ψ,A) = max
U

∑
X∈U

Height(ψ,AX),

where the maximum is taken over all sets U ⊆ L(A)\ {1} having the prop-
erty, for distinct X,Y ∈ U , that X ∧ Y = 0.

Conjecture 3.3. Let ψ be an irreducible polynomial. Then Height(ψ,A)
is given recursively as follows:

Height(ψ,A) =

{
1 + Max(ψ,A) if 1 ∈ L(A) is ψ-active;
Max(ψ,A) otherwise.

An interesting special case to consider is the case where the ψ-active edges
in L form an antichain, and no two such edges span the whole space Rn. In
this case, Conjecture 3.3 asserts that the maximum value of mj(ψ) should
be 1. Equivalently, when q is chosen to be a root of ψ, B(q) show have a
nullspace of dimension

∑
X `(X), where the sum is taken over all edges X in

this antichain.

4. The Main Result.

In this section we will prove Theorem 3.1 stated above. Our proof will
involve some background results which we establish first.
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We shall need a notion of orientation that applies to all affine subspaces X
of Rn. Let (τ1, τ2, . . . , τn) be a fixed, ordered basis of Rn in general position
with respect to A. That is, for any affine subspace X ∈ Lk(A) and any
subset of the basis {τi1 , . . . , τir}, we have

dim span {X ∪ {τi1 , . . . , τir}} = min {n, r + dimX} ,
where vectors in X are considered as vectors of the corresponding linear
subspace. Then, for any ordered set of independent vectors (x1, x2, . . . , xn−k)
in an affine space X ∈ Lk, we define their orientation to be the sign of
det(τ1, . . . , τk, x1, . . . , xn−k): For convenience, let

τ(x1, . . . , xn−k) =
det(τ1, . . . , τk, x1, . . . , xn−k)
|det(τ1, . . . , τk, x1, . . . , xn−k)| .

From here through to Proposition 4.4 we shall summarize some results
from Varchenko and Gel’fand [7]. Let M be the complex vector space
spanned by r(A). (By way of comparison, V was the C[q]-module spanned
by r(A), so one can view M as being included in V .) Let T = M∗, its dual
space. Now, for each hyperplane H ∈ A, fix a functional αH ∈ (Rn)∗ whose
set of zeroes is exactly H. The Heaviside function xH ∈ T is defined as
follows. On a basis vector R ∈ r(A),

xH(R) =

{
0 if αH(v) < 0 for some (any) v ∈ R,
1 if αH(v) > 0.

We remark that xH is idempotent for each H ∈ A, and that products of
Heaviside functions can be regarded as characteristic functions on the re-
gions inside a cone that is bounded by a set of hyperplanes. Varchenko and
Gel’fand [7] prove the following.

Proposition 4.1. Suppose a set of hyperplanes H1, . . . , Hp is linearly de-
pendent. Let ∑

i

ciαHi = 0

for some nonzero constants {ci}. Let J+ = {Hi : ci > 0}, and J− =
{Hi : ci < 0}. Then in the ring T ,

(∗)
∏
H∈J+

xH
∏
H∈J−

(xH − 1)−
∏
H∈J−

xH
∏
H∈J+

(xH − 1) = 0.

Conversely, they show that these relations, together with the idempotence
of the generators, characterizes T :

Theorem 4.2. The ring map π : C[uH : H ∈ A] → T induced by
π(uH) = xH is surjective. The kernel of π is an ideal generated by{

x2
H − xH : H ∈ A}
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and by relations of the form (∗) induced by all sets {H1, . . . , Hp} ⊆ A of
linearly dependent hyperplanes.

It makes sense, then, to define the degree of any f ∈ T as the smallest
degree of a polynomial in the generators above that equals f . Filter T
by degree by setting T k = {f ∈ T : deg f ≤ k}. Since the generators are
idempotent, it must be the case that T = T n. Thus we have

T = T n ⊇ T n−1 ⊇ · · · ⊇ T 0 ⊃ 0.

One can define a graded map φ : Gr(T )→ A(A) as follows. On monomi-
als, φp : T p/T p−1 → Ap(A) via

φp(xH1 · · ·xHl) =

{
0 if l < p;
τ(αH1 , . . . , αHl)aH1 ∧ · · · ∧ aHl if l = p.

To verify that φ is well-defined, one checks that kerπ from Theorem (4.2) is
mapped to zero in the the Orlik-Solomon algebra A(A). Since φ is surjective
and dimA(A) = |r(A)| = dimT , φ is in fact a vector space isomorphism.
We see that Ak ∼= T k/T k−1, which means that

dimT k − dimT k−1 = [tk]π(A, t),

the coefficient of tk in the polynomial π(A, t).
Recall that M was the vector space based on the set of regions. The

filtration of T induces a filtration of M given by defining Mk = (T k−1)⊥ for
0 < k ≤ n, and M0 = M :

M = M0 ⊇M1 ⊇ · · · ⊇Mn ⊃ 0.

Our conclusion is the following:

Proposition 4.3. dimMk − dimMk+1 = [tk]π(A, t).

4.1. Some explicit elements of M . We must introduce the flag complex
from [7]. Let Fk be the complex vector space with the following basis:{

(X0, X1, . . . , Xk) : X0 = Rn, X ∈ L(A),

and Xi−1 ⊇ Xi, ρXi = i for 1 ≤ i ≤ k
}
.

Call Fk the space of flags of dimension k.
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Now define some elements of M that are indexed by flags and regions.
Let F = (X0, . . . , Xk) be a flag of dimension k, and Q ∈ r(AXk) a region.
Define the brick1 ϕ(F,Q) ∈M :

ϕ(F,Q) =
∑
U⊆[k]

(−1)|U |QU ,

where QU is an element of r(A) determined from Q, F , and U as follows.
Let βk be a vector in Xk−1\Xk. Choose the sign of βk so that the orientation
τ(βk) is positive. Proceed inductively to choose a vector βi for each 1 ≤ i ≤ k
for which βi lies in Xi−1 and not Xi, and for which τ(βk, βk−1, . . . , βi) > 0.
Choose an arbitrary point p ∈ Q, and let QU(ε) be the region containing

p± εβk ± ε2βk−1 ± · · · ± εk−1β1,

for ε > 0. The sign of εk−iβi is taken to be negative if i ∈ U , and positive
otherwise. As ε approaches zero, one can see that QU(ε) is eventually con-
stant. Call this region QU . By construction, it is also independent of the
choice of p.

By way of an example, let τ1 = (2, 1) and τ2 = (−1, 2). LetA = {`1, `2, `3},
where

`1 = {(x, y) : x = 0} ,
`2 = {(x, y) : y = 0} , and
`3 = {(x, y) : x = y} .

Let F = (R2, `1, 0); then by choosing β2 = (1, 0) and β1(0, 1), we find that
ϕ(F, 0) is supported on the following regions:

`1

`2

`3
Q∅ Q{1}

Q{1,2}Q{2}

By checking that any monomial in T k−1 is zero when applied to ϕ(F,Q),
one sees that ϕ(F,Q) is contained in Mk. Let

Bk =
{
ϕ(F,Q) : F ∈ Fk, Q ∈ r(AXk)

}
,

and B = ∪kBk, the set of all bricks. One finds:

Proposition 4.4 ([7]). The set of bricks B spans M . Specifically, Bk
spans Mk.

1A flag cochain in [7] and [8].



ON THE SMITH NORMAL FORM... 137

4.2. Applying matrix B to the bricks. This subsection relates (1− q2)k

in SNF(B) to the spaces Mk, through the following proposition, which is
similar to [6, Lemma 20.1.1].

Proposition 4.5. (1− q)k divides Bx, for each x ∈Mk.

In view of Proposition 4.3, this is almost enough to conclude that the
multiplicity of (1−q)k in SNF(B) is [tk]π(A, t), as claimed. (The multiplicity
of (1+q)k is the same.) By the familiar properties of the Smith Normal Form,
one also needs to know that the multiplicity of 1− q as a factor of detB is
exactly

∑
k k[tk]π(A, t) (and no greater); this will be shown in Subsection 4.3.

The proof of the proposition will follow some short lemmas. Since the
set of bricks spans Mk (Proposition 4.4), it is enough to show that (1− q)k
divides B · ϕ(F,Q), for each brick ϕ(F,Q) of dimension k. Recall qn(R,S)

is the (R,S)-entry of B. For a fixed brick ϕ(F,Q) ∈ Bk, we shall establish
some more notation.

Let C = Xk, the smallest subspace in the flag F . Then AC is the central
arrangement containing C. Define a function φ : [k] → 2AC by letting φ(i)
equal the set of hyperplanes in A that lie between regions Q∅ and Q{i}. Note
that φ(i) is actually contained in AC for each i.

Lemma 4.6. The sets {φ(i) : i ∈ [k]} partition AC.

Proof. For any hyperplane H ∈ AC , let j be the smallest integer for which
H ⊇ Xj. (Clearly 1 ≤ j ≤ k.) From the definition of QU , one can see that
the jth sign is the only one which effects that side of H on which QU lies.
That is, H ∈ φ(j), but H 6∈ φ(i) for i 6= j.

Now extend φ to a map Φ : 2[k] → 2AC by setting Φ(U) =
⋃
i∈U φ(i).

Lemma 4.6 states that this is a disjoint union. We should interpret Φ(U) as
the set of hyperplanes separating Q∅ and QU .

Lemma 4.7. Let R and R′ be regions of AC. Let H and H′ be the sets
of hyperplanes separating Q∅ from R and R′, respectively. Then the set of
hyperplanes separating R from R′ equals H4H′.
Proof. Let H ∈ AC be a hyperplane. Of the three regions Q∅, R, and R′,
either all three lie on the same side of H, or H separates one from the other
two. Thus, H separates R from R′ if and only if it lies in H or H′, but not
both.

Now we are in a position to prove Proposition 4.5. The lemmas make it
possible to calculate each component of B · ϕ(F,Q) explicitly, and we shall
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do so. Say
B · ϕ(F,Q) =

∑
R∈r(A)

aRR,

for some coefficients {aR}. For a given R ∈ r(A), move to a new region RC ∈
r(A), adjacent to Q, without crossing the hyperplanes of AC . (Formally, RC
is chosen to be the unique region for which both Q ⊆ RC and R and RC lie
in the same region of AC .) We have

aR =
∑

S∈r(A)

qn(R,S) [ϕ(F,Q)]S ,

=
∑
U⊆[k]

qn(R,S)(−1)|U |, by definition of ϕ(F,Q)

= qn(R,RC)
∑
U⊆[k]

(−1)|U |qn(RC ,QU ),

where the last step uses the fact that R and RC lie in the same region of
AC .

Now let H ⊆ AC be the set of hyperplanes separating Q∅ and RC . The
second lemma interprets the number of hyperplanes between RC and QU , so
that the equality above becomes

aR = qn(R,RC)
∑
U⊆[k]

(−1)|U |q|Φ(U)4H|

= qn(R,RC)+|H| ∑
U⊆[k]

(−1)|U |q|Φ(U)|−2|Φ(U)∩H|

since |A4B| = |A|+ |B| − 2 |A ∩B|,
= qn(R,RC)+|H| ∏

i∈[k]

(1− q|φ(i)|−2|φ(i)∩H|)

(1− q) divides each term of the product, (which of course may be zero), so
(1− q)k divides the coefficient aR. This completes the proof.

4.3. 1− q2 in the Determinant of B. As we mentioned before, the argu-
ment above only shows that, for each k, [tk]π(A, t) distinct invariant factors
of B are divisible by (1 − q2)k. To show further that the multiplicity of
(1− q2)k as an invariant factor of B is exactly [tk]π(A, t), one can prove the
following:

Proposition 4.8. 1− q2 divides detB exactly

d

dt
π(A, t)∣∣

t=1
=

n∑
k=0

k[tk]π(A, t)

times.
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Following the notation of Orlik and Terao [5], we let AX denote the hy-
perplanes of A that contain a subspace X, and and let AX denote the
arrangement contained in a subspace X. From Varchenko’s determinant
formula (1.3), the multiplicity of 1− q2 in detB is∑

X∈L(A)

`(X),

where `(X) is the function introduced in Section 1. It can also be expressed
as `(X) = n(X)p(X), where n(X) = |r(AX)| = π(AX , 1), and p(X) =
χ(dAX). Here, dA denotes the projectivization or “deconing” of A, and
χ(·) is the Euler characteristic of an arrangement; see [5] for more detail.
We remark that Schechtman, Terao, and Varchenko in [9] have identified
the number p(X) as Crapo’s Beta Invariant of the matroid corresponding to
A, which was first defined in [1].

Lemma 4.9 ([9]).
For any X ∈ Lk(A), we have p(X) = (−1)k−1 d

dt
π(AX , t)

∣∣
t=−1

.

Proof. By way of comparison, recall that χ(AX) = (−1)kπ(AX ,−1). The
formula is established by viewing the central arrangement AX as the cone
of dAX : See [5]. From this perspective, Orlik and Terao show that

π(AX , t) = (1 + t)π(dAX , t).
Since the characteristic polynomial χ(AX , t) = t−kπ(AX ,−t−1), we find that
χ(dAX) equals

lim
t→−1

(−1)k−1π(AX , t)/(1 + t),

the derivative at t = −1.

Thus we see that p(X) depends only on the semilattice L(A), and only
on its elements of rank no greater than k. Now we are prepared to prove the
proposition.

Proof of Proposition 4.8. The multiplicity of 1− q2 in detB is

(∗)
∑
Y

p(Y )n(Y ) =
∑

X≤Y≤Z
(−1)ρ(Z)ρ(X)µ(0̂, X)µ(Y, Z),

using Lemma 4.9 and the definition of the polynomial π(−, t). Here µ is the
Möbius function of the lattice, and ρ(X) is, once again, the rank of X ∈ L.
The sum is taken over all ordered triples X ≤ Y ≤ Z in L. Our goal is to
show that (∗) equals ∑

X

(−1)ρ(X)ρ(X)µ(0̂, X).
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Use Möbius inversion as follows. Let f(X) = ρ(X)µ(0̂, X) for all X ∈ L.
Let

S(X,Z) =
∑

X≤Y≤Z
ρ(Y )µ(X,Y )

and, for short, S(X) = S(0̂, X). Then

S(Y ) =
∑
X≤Y

f(X);

inverting this gives
f(Y ) =

∑
X≤Y

µ(X,Y )S(X).

Thus

(∗) =
∑

X≤Y≤Z
(−1)ρ(Z)f(X)µ(Y, Z)

=
∑
Y≤Z

(−1)ρ(Z)S(Y )

=
∑
Z

(−1)ρ(Z)f(Z)

=
∑
Z

(−1)ρ(Z)ρ(Z)µ(0̂, Z),

as required.

5. Computational Results.

This final section contains some of the computational results we obtained
when we computed the Smith Normal Forms of the Varchenko matrices
for various arrangements. This data is presented in the following format.
First we write down an arrangement A. The data that follows will give the
Smith Normal Form of the Varchenko matrix B = B(q) for the arrangement
A. Next, the reader will see the number of regions in the complement of
this arrangement and the determinant of the Varchenko matrix B. Note
that Varchenko’s theorem implies that this determinant will be a product
of factors of the form 1− qS and so any irreducible polynomial dividing the
determinant must be a cyclotomic polynomial. Lastly, a table with rows
indexed by d and columns indexed by i. In this table, the row indices d
and column indices i will appear in boldface along the left-hand side and
the top. The d, i entry of this table will give the number of diagonal entries
in the Smith Normal Form of B which are exactly divisible by ψd(q)i where
ψd(q) denotes the dth cyclotomic polynomial. In the notation of the previous
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section, the d, i entry of this table is the number of mj(ψd(q)) that are equal
to i.

Recall from Section 4, that for every j and for every irreducible polynomial
ψ(q), mj(ψ(q)) = mj(ψ(−q)). So for d an odd number, the dth and 2dth rows
of our table will be identical. Hence we will NOT include the 2dth rows in
the case the d is odd.

To start, we will do a simple example.

Example 5.1. The 3-Fan (also equal to the braid arrangement B3):
Let A consist of the three lines

y = 0
y = sin(2π/3)x
y = sin(4π/3)x.

There are 6 regions and

det(B) = (1− q2)6(1− q6).

The Smith Normal Form of B has diagonal entries

1
(1− q2)
(1− q2)
(1− q2)
(1− q2)2

(1− q2)(1− q6).

In the Smith Normal Form there is one entry exactly divisible by (1− q)0,
three entries exactly divisible by (1− q) and two entries exactly divisible by
(1− q)2. We indicate that in our chart with row

1 1 3 2.

We do not include a row in our chart for d = 2. Next, let ψ(q) = q2 + q + 1
which is the third cyclotomic polynomial. There are five entries in SNF(B)
that are exactly divisible by ψ(q)0 and one entry exactly divisible by ψ(q).
We denote that in our chart by the row

3 5 1 0.

We do not include a row in our chart for d = 6. So in this case our chart
looks like:
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d/i 0 1 2
1 1 3 2
3 5 1 0.

In what follows, we will present data for two infinite families of arrange-
ments.

The n-Fan Arrangement Fn: This is the arrangement in R2 consisting of
the n lines {`0, . . . , `n−1} where `j is given by the equation y = sin(2πj/n)x.
In this case the determinant of B is given by

det(B) = (1− q2)2n(1− q2n)n−2.

There are 2n regions in the complement of this arrangement.

n=1
d/i 0 1
1 1 1

n=2
d/i 0 1 2
1 1 2 1

n=3
d/i 0 1 2
1 1 3 2
3 5 1 0

n=4
d/i 0 1 2
1 1 4 3
4 6 2 0
8 6 2 0

n=5
d/i 0 1 2
1 1 5 4
5 7 3 0.
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Based on our computations in this case we were able to formulate and
prove the following result.

Theorem 5.2. The 2n diagonal entries of the Smith Normal Form of B
are:

1 (one time),
1− q2 (n times),
(1− q2)2 (one time),
(1− q2)(1− q2n) (n− 2 times).

Proof. For ψ = (1− q2) the values of the mi(ψ) given in this theorem follow
from Theorem 3.1. For other ψ dividing 1− q2n, the result has been proved
by one of the authors (G. Denham) as part of more general work which will
appear elsewhere.

The braid arrangement An−1: Recall from Section 1 that An−1 is the
arrangement in Rn consisting of the

(n
2

)
hyperplanes Hi,j = (x1, . . . , xn) :

xi = xj. In this case the determinant of B is given by

det(B) =
n∏
`=2

(1− q`(`−1))(
n
`)(`−2)!(n−`+1)!.

The Smith Normal Forms of the braid arrangements for various values of
n are given by

n=2
d/i 0 1
1 1 1

n=3
d/i 0 1 2
1 1 3 2
3 5 1 0

n=4
d/i 0 1 2 3
1 1 6 11 6
3 17 4 3 0
4 22 2 0 0
12 22 2 0 0
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n=5
d/i 0 1 2 3 4
1 1 10 35 50 24
3 70 20 30 0 0
4 102 10 8 0 0
5 114 6 0 0 0
12 100 20 0 0 0
20 114 6 0 0 0

n=6
d/i 0 1 2 3 4 5
1 1 15 85 225 274 120
3 343 106 235 36 0 0
4 564 60 96 0 0 0
5 654 36 30 0 0 0
12 540 180 0 0 0 0
15 696 24 0 0 0 0
20 648 72 0 0 0 0.

As discussed in Section 2, there is an action of the symmetric group which
commutes with matrix B. So it is possible to write the matrix B as a direct
sum:

B =
⊕
λ

fλBλ

where the sum is over partitions λ of n (which index the irreducible repre-
sentations of Sn), where fλ is the dimension of the Sn-irreducible indexed by
λ and where Bλ is the restriction of B to the image of a Young symmetrizer
of type λ. One can then compute the Smith Normal Forms of the individual
matrices Bλ. These Smith Normal Forms do not directly give you the Smith
Normal Form of B, but together they carry the same information, i.e., the
dimension of the subspace on which B acts like ψ(q)j for every irreducible
ψ(q) and for every j. In fact, the collection of SNF(Bλ) tell you more – they
give you the Sn-module structure of the space on which B acts like ψ(q)j.
Below we give the matrices SNF(Bλ) for some small values of n.

n=2
SNF(B2) =

(
1 + q

)

SNF(B12) =
(
1− q

)
SNF(B3) =

(
(1 + q)(1 + q + q2)

)
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SNF(B21) =

(
1− q2 0

0 (1− q2)2

)

SNF(B13) =
(
(1− q)(1− q + q2)

)

SNF(B4) =
(
(1 + q)(1 + q + q2)(1 + q + q2 + q3)

)

SNF(B31) =

(1− q2) 0 0
0 (1− q2)2(1 + q + q2) 0
0 0 (1− q2)3(1 + q + q2)2



SNF(B22) =

(
(1− q2)2 0

0 (1− q2)2(1− q2 + q4)

)

SNF(B212) =

(1− q2) 0 0
0 (1− q2)2(1− q + q2) 0
0 0 (1− q2)3(1− q + q2)2



SNF(B4
1) =

(
(1− q)(1− q + q2)(1− q + q2 − q3)

)
.

We’ve also computed this data for n = 5, 6 but omit that data because of
its considerable length. With this data, one can compute for each irreducible
ψ and each j, the Sn module structure of the space where B acts like ψj.
Although this character does not seem to be well-behaved for arbitrary ψ
and j, we believe that it does have a simple description for each ψ when j is
taken to be the largest possible value of j so that the corresponding space is
non-zero. However, we have not been able to formulate a precise conjecture
which describes this character.
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