A GENERALIZATION OF A RESULT OF SINNOTT

H. KISILEVSKY

To the memory of Olga Taussky-Todd, a friend, a collegue and an inspiration

1. Sinnott's Theorem.

Let p be a prime number and suppose that Γ is a pro-p-group isomorphic to \mathbb{Z}_p , the additive group of p-adic integers. For each integer n, let $\Gamma_n = p^n \Gamma$ and $G_n = \Gamma/\Gamma_n$.

Let A be a discrete Γ -module and define

$$A_n = A^{\Gamma_n} = \{ a \in A \mid \gamma(a) = a \text{ for all } \gamma \in \Gamma_n \}.$$

Then $A = \bigcup A_n$.

Proposition 1. If A_n is finite for all n, then

$$|A_{n+1}| \equiv |A_n| \pmod{p^{n+1}}.$$

Proof. A_{n+1} is a finite G_{n+1} -module so that

$$A_{n+1} = B \cup C$$

where B is the set of those elements in A_{n+1} not fixed by any non-trivial element of G_{n+1} , and $C = A_{n+1} \setminus B$. Since G_{n+1} is a cyclic group it follows that every element of C is fixed by the the subgroup of order p in G_{n+1} , and so $C \subseteq A^{\Gamma_n} = A_n$. The opposite inclusion is clear so $C = A_n$. Counting we have,

$$|A_{n+1}| = |B| + |A_n|.$$

Since B is a union of orbits each of which contains p^{n+1} elements it follows that

$$|A_{n+1}| \equiv |A_n| \pmod{p^{n+1}}.$$

H. KISILEVSKY

Corollary 1. If A_n is finite for all n, then $\lim_{n\to\infty} |A_n|$ exists p-adically.

Proof. It follows from Proposition 1 that for all $m \ge n$

$$|A_m| \equiv |A_n| \pmod{p^{n+1}}.$$

Hence the sequence $\{|A_n|\}_{n=1,2,\dots}$ is a *p*-adic Cauchy sequence and therefore has a *p*-adic limit.

Let k_{∞}/k be a \mathbb{Z}_p -extension of number fields (resp. function fields over finite fields) and denote by C_n the ideal class group (resp. the group of divisor classes of degree zero) of the n^{th} -layer k_n of k_{∞}/k . For any set S of prime numbers, finite or infinite, let $C_n(S)$ be the largest subgroup of C_n whose order is divisible only by primes in S. Let

$$C(S) = \lim C_n(S)$$

be the direct limit with respect to the natural maps induced by extension of ideals.

We obtain the following generalization of a result of Sinnott (proved in the case of a cyclotomic \mathbb{Z}_p -extension of a CM ground field and for the "minus" class number).

Corollary 2 (Sinnott [S]). Let k_{∞}/k be a \mathbb{Z}_p -extension of the global field k. For any set of prime numbers S, if $p \notin S$, then $\lim_{n\to\infty} |C_n(S)|$ exists p-adically.

Proof. Since $p \notin S$ it follows that for $n \leq m$, the natural map $C_n(S) \longrightarrow C_m(S)$ is an injection. Then $C(S) = \bigcup C_n(S)$ and

$$C_n(S) = C(S)^{\Gamma_n}.$$

The result then follows from Proposition 1.

Remark. It is a consequence of Iwasawa theory that $\lim_{n\to\infty} |C_n(S)|$ exists *p*-adically for *any* set *S* of primes.

Corollary 3 (Washington [W]). Let k_{∞}/k be a \mathbb{Z}_p -extension of global fields and let l be a prime $l \neq p$. Take $S = \{l\}$ so that $C_n(S)$ is the l-primary part of the class group of k_n . If $|C_n(S)| = l^{a_n}$, then either $\{a_n\}$ is eventually constant or else there is a constant c, independent of n such that $a_n \geq cp^n$ for infinitely many n.

Proof. It follows from Proposition 1 that

$$l^{a_{n+1}} \equiv l^{a_n} \pmod{p^{n+1}}$$

and therefore $a_{n+1} - a_n$ is divisible by the order of $l \pmod{p^{n+1}}$. For large n this order is cp^n for some constant $c \pmod{p^n}$ for large $\{a_n\}$ is eventually constant or else $a_n \ge cp^n$ for infinitely many n.

2. Function fields.

Let k_{∞}/k be the constant \mathbb{Z}_p -extension of the function field k, and let h_n be the number of divisor classes of degree zero (the class number) of the n^{th} layer k_n . Denote by h'_n the "prime-to-p" part of h_n so that $h'_n = h_n/p^{e_n} = h_n(S)$ where S is the set of all primes other than p, and e_n is the largest power of p in h_n . Then h_n is given by

$$h_n = \prod_{i=1}^{2g} (1 - \alpha_i^{p^n}) = p^{e_n} h'_n$$

where

$$\zeta_k(s) = Z_k(t) = \frac{\prod (1 - \alpha_i t)}{(1 - t)(1 - qt)}$$

is the ζ -function of k, $q = p^f$ is the order of the finite field of k, and $t = q^{-s}$. The numbers α_i are algebraic integers with $\alpha_i \overline{\alpha}_i = q$.

Let $K = \mathbb{Q}(\alpha_1, \ldots, \alpha_{2g})$ be the field generated over the rational field \mathbb{Q} by the reciprocal roots of $Z_k(t)$, and fix \mathcal{P} a prime ideal of K dividing p. We compute the \mathcal{P} -adic limit $\lim_{n\to\infty} h'_n$ in a completion $K_{\mathcal{P}}$ of K. Note that if α_i is not a \mathcal{P} -unit then

$$\lim_{n \to \infty} (1 - \alpha_i^{p^n}) = 1,$$

and hence

$$\lim_{n \to \infty} h'_n = \lim_{n \to \infty} h_n / p^{e_n} = \lim_{n \to \infty} p^{-e_n} \prod^{\circ} (1 - \alpha_i^{p^n})$$

where the product is taken over those *i* such that α_i is a \mathcal{P} -unit. Observe also that if α is a 1-unit, (i.e., if α is congruent to 1 mod \mathcal{P}), then we can define u_n by the equation

$$\alpha^{p^n} = 1 + p^n u_n.$$

Taking p-adic logarithms we find,

$$p^n \log_p \alpha = p^n u_n - p^{2n} u_n^2 / 2 + \cdots$$

 \mathbf{SO}

$$u_n \equiv \log_p \alpha \pmod{p^n}.$$

Now

$$p^{-e_n} \prod^{\circ} (1 - \alpha_i^{p^n}) = p^{-e_n} \prod' (1 - \alpha_i^{p^n}) \cdot \prod'' (1 - \alpha_i^{p^n})$$

where the product \prod' is taken over those *i* such that α_i is a 1-unit, and \prod'' is taken over those *i* such that α_i is a \mathcal{P} -unit but not a 1-unit. Let $\nu_i \in \mathbb{Q}$

be the *p*-adic valuation of $\log \alpha_i$. Let λ be the number of *i* such that α_i is a 1-unit. Since h'_n is prime to *p*, it follows that

$$e_n = \lambda n + \sum_{i=1}^{\lambda} \nu_i,$$

for all sufficiently large n, and that

$$\lim_{n \to \infty} p^{-e_n} \prod' (1 - \alpha_i^{p^n}) = (-1)^{\lambda} \frac{\prod' \log_p \alpha_i}{p \sum \nu_i}.$$

Since $\lim_{n\to\infty} h'_n$ and $\lim_{n\to\infty} p^{-e_n} \prod' (1-\alpha_i^{p^n})$ exist *p*-adically, it follows that

$$\lim_{n \to \infty} \prod'' (1 - \alpha_i^{p^n})$$

exists.

For any unit $\beta \in K_{\mathcal{P}}$

$$\beta = \omega(\beta) \cdot \langle \beta \rangle$$

where $\omega(\beta)$ is a root of unity of order dividing $p^r - 1$ with $p^r = N_{K/\mathbb{Q}}(\mathcal{P})$ and $\langle \beta \rangle$ a 1-unit. It is then clear that

$$\omega(\beta) = \lim_{n \to \infty} \beta^{p^{rn}}.$$

Since the limit $\lim_{n\to\infty} \prod'' (1-\alpha_i^{p^n})$ exists, it can be computed by letting *n* run through multiples of *r*, and we obtain the following:

Proposition 2. For the constant \mathbb{Z}_p -extension of function fields we have

$$\lim_{n \to \infty} h'_n = (-1)^{\lambda} \cdot \frac{\prod' \log_p \alpha_i}{p \sum \nu_i} \cdot \prod'' (1 - \omega(\alpha_i)).$$

Corollary 4. For the constant \mathbb{Z}_p -extension of function fields and for any integer j,

$$\prod''(1-\omega(\alpha_i)) = \prod''(1-\omega^j(\alpha_i)).$$

This can be proved directly using the fact that $Z_k(t)$ is a rational function in $\mathbb{Q}(t)$.

References

[S] W. Sinnott, Talk given at Iwasawa Conference, MSRI, 1985.

 [W] L.C. Washington, The non-p-part of the class number in a cyclotomic Z_p-extension, Invent. Math., 49(1) (1978), 87-97.

This work was supported in part by grants from NSERC and FCAR.

CONCORDIA UNIVERSITY 1455 DE MAISONNEUVE BLVD. WEST MONTRÉAL, QUEBEC, H3G 1M8, CANADA *E-mail address*: kisilev@cicma.concordia.ca