IMAGES OF SEMISTABLE GALOIS REPRESENTATIONS

KENNETH A. RIBET

In memory of Olga Taussky-Todd

1. Introduction.

Let p be an odd prime number. Suppose first that E is a semistable elliptic curve over **Q**. The action of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ on the group of p-division points of E defines a representation

$$\rho_{E,p} \colon \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{\mathbf{GL}}(2, \mathbf{F}_p).$$

Serre has shown that this representation is surjective whenever it is irreducible [26, Prop. 21], [29, §3.1]. Serre's arguments prove more generally the surjectivity of all continuous irreducible representations

$$\rho \colon \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathbf{GL}(2, \mathbf{F}_p)$$

which are *semistable* in the sense of [15, §1]. (Recall that ρ is semistable if the determinant of ρ is the mod p cyclotomic character χ , the Serre conductor of ρ is square free, and the Serre weight of ρ is either 2 or p+1. Here, the weight and conductor are the invariants defined in [28].)

In this article, we treat the situation where \mathbf{F}_p is replaced by a finite field of characteristic p, or more generally by a finite product $\mathbf{F} = \prod F_i$ of finite fields of characteristic p. A continuous representation $\rho: \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to$ $\mathbf{GL}(2, \mathbf{F})$ may then be viewed as a product of components $\rho_i: \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to$ $\mathbf{GL}(2, F_i)$. We shall assume that each ρ_i is irreducible and semistable. Since the determinant of each ρ_i is then the mod p cyclotomic character, the image of ρ is contained in the group

$$A := \{ M \in \mathbf{GL}(2, \mathbf{F}) \mid \det M \in \mathbf{F}_p^* \}.$$

Making the supplementary hypothesis $p \ge 5$, we show below that the image of ρ is **GL**(2, **F**)-conjugate to

$$\{M \in \mathbf{GL}(2, \mathbf{F}') \mid \det M \in \mathbf{F}_p^*\},\$$

where \mathbf{F}' is the subalgebra of \mathbf{F} generated by the traces $\operatorname{tr}(\rho(\sigma))$ for $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$. (See Theorem 3.2 and Corollary 3.3.) In particular, $\rho(\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})) = A$ if and only if \mathbf{F} is generated as an \mathbf{F}_p -algebra by the traces.

Applying the lifting techniques of [25], we deduce an analogous result for certain *p*-adic representations of $\text{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$.

Our results have evident relevance to the study of the Galois representations defined by semistable abelian varieties over \mathbf{Q} which are products of abelian varieties with large fields of endomorphisms. (In [23], the author referred to these as abelian varieties of " \mathbf{GL}_2 type.") While the computation of \mathbf{F}' seems to be difficult to perform in certain cases, it can be carried out for the mod p representations coming from $J_0(N)$ if N is a prime and p is a prime number satisfying some mild conditions. In fact, our original goal was to find the image of the p-adic representation attached to $J_0(N)$, thus answering questions which were formulated by R. Coleman and B. Kaskel in connection with [10] and [2]. It is a pleasure to thank them for their continuing encouragement and interest in this work.

2. Representations over a finite field.

Let \mathbf{F} be a finite field, and let p be the characteristic of \mathbf{F} . We will assume that p is odd; most of our results will require that p be at least 5. Suppose that

$$\rho \colon \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathbf{GL}(2,\mathbf{F})$$

is an irreducible representation whose determinant is the mod p cyclotomic character χ : Gal $(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathbf{F}_p^* \hookrightarrow \mathbf{F}^*$. Let $k(\rho)$ and $N(\rho)$ be the weight and conductor of ρ in the sense of Serre [28, §§1-2]. As we recalled above, Oesterlé [15, §1] has defined the notion of semistability: ρ is *semistable* if the conductor $N(\rho)$ of ρ is square free and Serre's weight $k(\rho)$ is either 2 or p+1.

The definition of the conductor shows that $N(\rho)$ is square free if and only if $\rho(\sigma)$ is unipotent whenever σ belongs to an inertia subgroup of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ for a prime $\ell \neq p$. To illuminate the condition on $k(\rho)$, we let I be an inertia subgroup of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ for the prime p. The semisimplification of $\rho_{|I}$ is described by a pair of characters $\varphi, \varphi' \colon I \Rightarrow \overline{\mathbf{F}}^*$, cf. [28, §2]. Since det ρ is the cyclotomic character χ , we have in particular $\varphi\varphi' = \chi$. If $k(\rho)$ is one of 2, p+1, then $\{\varphi, \varphi'\}$ is either $\{1, \chi\}$ or else the set of fundamental characters $\psi, \psi' \colon I \to \overline{\mathbf{F}}^*$ of level 2 ([28, §2]). It follows that the order of $\varphi'\varphi^{-1}$ (a character which is defined only up to inversion) is either p-1 or p+1.

Lemma 2.1. Assume that p > 3 and that ρ is a semistable irreducible

representation as above. Let ϵ : Gal $(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathbf{F}^*$ be a continuous character. If $\epsilon \otimes \rho$ is semistable, then ϵ is trivial.

Proof. By definition, the representation $\epsilon \otimes \rho$ sends each $\sigma \in \text{Gal}(\mathbf{Q}/\mathbf{Q})$ to the product $\epsilon(\sigma) \cdot \rho(\sigma) \in \mathbf{GL}(2, \mathbf{F})$. If ρ and $\epsilon \otimes \rho$ are both semistable, then ϵ is certainly unramified outside p, since both $\rho(\sigma)$ and $\epsilon(\sigma) \cdot \rho(\sigma)$ are unipotent whenever σ belongs to an inertia group for a prime $\ell \neq p$. Moreover, ϵ^2 is the trivial character, since the determinants of ρ and $\epsilon \otimes \rho$ coincide. Hence ϵ is either the trivial character, as desired, or the quadratic character $\chi^{\frac{p-1}{2}}$. One checks easily, however, that no pair of characters drawn from the set $\{1, \chi, \psi, \psi'\}$ have a quadratic ratio.

Remark. The lemma does not extend to cover the case p = 3. To see this, consider the modular forms $f = \sum a_n q^n$ and $g = \sum b_n q^n$ which correspond to the two strong modular elliptic curves of conductor 89. As B. Gross explains in the last paragraphs of [8], these forms define irreducible mod 3 representations ρ_f and ρ_g of $\text{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ whose restrictions to a decomposition group for 3 are direct sums of two characters. Further, although ρ_f and ρ_g are semistable, the two representations are twists of each other by the mod 3 cyclotomic character. (In other words, f and g are "companions" of each other in Serre's language.)

To verify this latter fact, we can cite [8, Th. 13.10] along with Gross, or perform a numerical calculation with gp [1] to check that the mod 3 congruence $b_p \equiv {p \choose 3} a_p$ holds for $3 \le p \le 200$. Using the results of J. Sturm [33], we can then conclude that it holds for all $p \ge 3$.

It perhaps is worth recalling at this juncture that an irreducible mod p semistable representation ρ is absolutely irreducible. This follows easily from the fact that $\rho(\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}))$ contains a matrix with distinct eigenvalues in \mathbf{F}_p^* . Such a matrix is obtained by taking $\rho(c)$, where c is a complex conjugation—because det ρ is the cyclotomic character, which is odd, the eigenvalues of $\rho(c)$ are +1 and -1. These are distinct because p is odd.

Proposition 2.2. If ρ is semistable, then the image of ρ has order divisible by p.

Proof. Let $G = \rho(\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}))$, and assume that the order of G is prime to p. Since the semistability hypothesis implies that ramification subgroups of G for primes $\ell \neq p$ are unipotent, these ramification groups are forced to be trivial. In other words, we have $N(\rho) = 1$ and the representation ρ is unramified outside p. As Serre remarks in a note on page 710 of [27, Vol. III], an analogue of the argument of Tate [34] shows that there are no irreducible representations ρ with this property when p = 3.

KENNETH A. RIBET

Now assume that $p \geq 5$ and write \overline{G} for the image of G in $\mathbf{PGL}(2, \mathbf{F})$. Group theory shows that \overline{G} is either cyclic or dihedral, or else one of the three exceptional groups \mathbf{S}_4 , \mathbf{A}_4 , \mathbf{A}_5 [26, §2.5]. In fact, \overline{G} cannot be cyclic, since the cyclicity of \overline{G} would imply that G is abelian, and hence that ρ is not absolutely irreducible.

To rule out the other cases, one considers an inertia subgroup \overline{I} of \overline{G} for the prime p. We know that \overline{I} is a cyclic group of order either p + 1 or p - 1. Indeed, \overline{I} may be viewed as the image of $I \subset \text{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ under the character φ/φ' which we introduced above. This character has order either p-1 or p+1; its image is cyclic because it is a finite subgroup of $\overline{\mathbf{F}}^*$.

Assume now that \overline{G} is dihedral, and let Z be the center of \overline{G} . It is evident that \overline{I} is contained in Z, since \overline{I} is a cyclic subgroup of a dihedral group and the order of \overline{I} is greater than 2. Accordingly, the quadratic extension of \mathbf{Q} corresponding to Z is everywhere unramified—this contradiction excludes the dihedral case and shows that \overline{G} must be one of the three exceptional groups.

However, as observed in the proof of [26, Prop. 21], the fact that \overline{I} has an element of order $p \pm 1$ rules out the groups \mathbf{S}_4 , \mathbf{A}_4 , \mathbf{A}_5 in case $p \geq 7$. Thus we are left only with the possibility that p = 5, in which case \overline{G} is either \mathbf{S}_4 or \mathbf{A}_4 , since its order is prime to 5 by assumption. The group \overline{I} is then cyclic of order 4, since \mathbf{S}_4 has no element of order 6. Also, we have $\overline{G} \approx \mathbf{S}_4$, since \mathbf{A}_4 has no element of order 4. Consider the quotient \mathbf{S}_3 of \mathbf{S}_4 . This quotient allows us to produce an \mathbf{S}_3 -extension of \mathbf{Q} which is ramified only at 5 and such that the inertia groups for 5 in the extension have order 2. However, there certainly is no such extension, since the class number of $\mathbf{Q}(\sqrt{5})$ is 1.

Corollary 2.3 (cf. [29, Prop. 1]). Let ρ be as in Proposition 2.2, and suppose that p > 2. Then the image of ρ contains a subgroup isomorphic to $\mathbf{SL}(2, \mathbf{F}_p)$. In particular, if $\mathbf{F} = \mathbf{F}_p$, then ρ is surjective.

Proof. The second statement is a consequence of the first, since the cyclotomic character χ : $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathbf{F}_p^*$ is surjective. To prove the first statement, we proceed as in [26, §2.4]. Namely, let $g \in G$ be an element of order p, and let v be a non-zero vector in $\mathbf{F} \oplus \mathbf{F}$ which is fixed by g. Since ρ is irreducible, G cannot fix the line generated by v; therefore, there is an $r \in G$ such that v and rv form a basis of $\mathbf{F} \oplus \mathbf{F}$. With respect to this basis, g has the form $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$, while rgr^{-1} has the form $\begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}$. Scaling one of the vectors v, rv, we may assume that a = 1. Hence, in an appropriate basis, G contains the elements $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}$. A well known theorem

of L. E. Dickson (cf. [7, Th. 2.8.4]) states that the group generated by these elements has a subgroup isomorphic to $\mathbf{SL}(2, \mathbf{F}_p)$. In fact, a more precise statement is true for $p \neq 3$: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}$ generate the group $\mathbf{SL}(2, \mathbf{F}')$, where $\mathbf{F}' = \mathbf{F}_p(b)$.

Our aim now is to complement the Corollary by determining the exact image of ρ in a situation generalizing that where $\mathbf{F} = \mathbf{F}_p$. The situation which we have in mind is that where \mathbf{F} is a minimal field of definition for ρ in the sense that it is generated over \mathbf{F}_p by the numbers $\operatorname{tr}(\rho(\sigma))$ for $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$. We first show in this case that \mathbf{F} is also a minimal field of definition for ρ as a projective representation, at least when $p \geq 5$.

For the following lemma, let $\overline{\mathbf{F}}$ be an algebraic closure of \mathbf{F} and consider an arbitrary subfield K of $\overline{\mathbf{F}}$. We view G and \overline{G} inside $\mathbf{GL}(2, \overline{\mathbf{F}})$ and $\mathbf{PGL}(2, \overline{\mathbf{F}})$, respectively.

Lemma 2.4. Suppose that ρ semistable and that $p \geq 5$. Then \overline{G} lies in $\mathbf{PGL}(2, K)$ if and only if G lies in $\mathbf{GL}(2, K)$.

Proof. If G lies in $\mathbf{GL}(2, K)$, then it is evident that \overline{G} is contained in $\mathbf{PGL}(2, K)$. Conversely, suppose $\overline{G} \subseteq \mathbf{PGL}(2, K)$. Then certainly $G \subseteq \overline{\mathbf{F}}^* \cdot \mathbf{GL}(2, K)$. Let $\alpha \colon \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \overline{\mathbf{F}}^*/K^*$ be the composite homomorphism

$$\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \xrightarrow{\rho} G \hookrightarrow \overline{\mathbf{F}}^* \mathbf{GL}(2, K) \to (\overline{\mathbf{F}}^* \mathbf{GL}(2, K)) / \mathbf{GL}(2, K) = \overline{\mathbf{F}}^* / K^*.$$

For $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$, we have $\alpha(\sigma) = 1$ whenever the trace of $\rho(\sigma)$ is a nonzero element of K. Indeed, write $\rho(\sigma) = t \cdot M$, with $M \in \operatorname{\mathbf{GL}}(2, K)$ and $t \in \overline{\mathbf{F}}^*$. Then $\operatorname{tr}(\rho(\sigma)) = t \cdot \operatorname{tr}(M)$ and we have $\operatorname{tr} M \in K$. If $\operatorname{tr}(\rho(\sigma))$ belongs to K^* , then t lies in K, so that $\rho(\sigma)$ is an element of $\operatorname{\mathbf{GL}}(2, K)$. In particular, $\alpha(\sigma) = 1$ whenever the trace of $\rho(\sigma)$ is a non-zero element of \mathbf{F}_p .

Let M now be the finite abelian extension of \mathbf{Q} which is cut out by α . We seek to show that α is identically 1, i.e., that $M = \mathbf{Q}$. We first prove that α is unramified outside p by using the remark about traces. If σ belongs to an inertia subgroup of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ for a prime $\ell \neq p$, then $\rho(\sigma)$ is unipotent, so that its trace is 2. Since p is odd, 2 is a non-zero element of \mathbf{F}_p , and we may conclude that $\alpha(\sigma) = 1$.

Thus M is a finite abelian extension of \mathbf{Q} which is unramified outside p. Moreover, $[M: \mathbf{Q}]$ is prime to p, since $\overline{\mathbf{F}}^*$ has no elements of order p. Hence one has $M \subseteq \mathbf{Q}(\mu_p)$; equivalently, α factors through the mod p cyclotomic character χ .

Now let I be an inertia group for p in $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$. It suffices to show that there is an element σ of I for which $\alpha(\sigma) = 1$ and for which $\chi(\sigma)$ is a generator of the cyclic group \mathbf{F}_p^* . The semisimplification of $\rho_{|I}$ is described by a pair of characters $\varphi, \varphi' \colon I \Rightarrow \overline{\mathbf{F}}^*$, cf. [28, §2]. As we mentioned above, one has either $\{\varphi, \varphi'\} = \{1, \chi\}$ or $\{\varphi, \varphi'\} = \{\psi, \psi^p\}$, where ψ and ψ^p are the fundamental characters of level 2. Suppose first that we are in the former case, and let $\sigma \in I$ be such that $t = \chi(\sigma)$ is a generator of \mathbf{F}_p^* . Then $\operatorname{tr}(\rho(\sigma)) = 1 + t$ is non-zero since $p \neq 3$. Thus $\alpha(\sigma) = 1$, as required. In the latter case, choose $\sigma \in I$ so that $t = \psi(\sigma)$ generates $\psi(I) \approx \mathbf{F}_{p^2}^*$. Then $\chi(\sigma) = t^{p+1}$ is a generator of \mathbf{F}_p^* ; note that $\chi = \psi\psi' = \psi^{p+1}$. On the other hand, $\operatorname{tr}(\rho(\sigma)) = t + t^p$. The number t^{p-1} cannot be -1, since it has order p + 1. Since $\operatorname{tr}(\rho(\sigma))$ is non-zero, we may conclude $\alpha(\sigma) = 1$.

Theorem 2.5. Assume that ρ is semistable, that $p \ge 5$ and that \mathbf{F} is generated over \mathbf{F}_p by the set $\{\operatorname{tr}(\rho(\sigma)) | \sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})\}$. Then

$$\rho(\operatorname{Gal}(\mathbf{Q}/\mathbf{Q})) = \{ M \in \operatorname{\mathbf{GL}}(2, \mathbf{F}) \mid \det M \in \mathbf{F}_p^* \}.$$

Proof. It is clear that $G = \rho(\operatorname{Gal}(\mathbf{Q}/\mathbf{Q}))$ is contained in the indicated matrix group because det ρ is \mathbf{F}_p^* -valued. Since the image of det ρ is precisely \mathbf{F}_p^* , the theorem amounts to the statement that G contains $\operatorname{SL}(2, \mathbf{F})$. An equivalent assertion is that the commutator subgroup of G contains a subgroup isomorphic to $\operatorname{SL}(2, \mathbf{F})$.

Let k be a finite extension of \mathbf{F}_p which contains \mathbf{F} and which has even degree over \mathbf{F}_p . Since $\det(G) \subseteq \mathbf{F}_p^*$, the subgroup \overline{G} of $\mathbf{PGL}(2,k)$ lies in $\mathbf{PSL}(2,k)$. Dickson [4, Ch. XII] has enumerated all subgroups of $\mathbf{PSL}(2,k)$; his list is summarized in [4, §260].

To situate \overline{G} within Dickson's list, we recall that the order of \overline{G} is divisible by p by Proposition 2.2, and that the identity representation $G \to \mathbf{GL}(2, \overline{\mathbf{F}})$ is irreducible. (The representation ρ is irreducible over \mathbf{F} by hypothesis. It is then absolutely irreducible, as was noted above.) It follows that \overline{G} is one of the groups enumerated in [4, §251–§253]. Since we have assumed $p \geq 5$, the final conclusion is easy to state: After replacing \overline{G} by a conjugate of \overline{G} inside $\mathbf{PGL}(2, k)$, we have either $\overline{G} = \mathbf{PSL}(2, K)$ or $\overline{G} = \mathbf{PGL}(2, K)$, for some subfield K of k.

Thus, in either case one has $\overline{G} \subseteq \mathbf{PGL}(2, K)$. From the Lemma, $G \subseteq \mathbf{GL}(2, K)$. In particular, $\operatorname{tr}(\rho(\sigma)) \in K$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$. Since these numbers generate \mathbf{F} over \mathbf{F}_p , $\mathbf{F} \subseteq K$. On the other hand, $\mathbf{SL}(2, K) \subseteq k^* \cdot G$ because \overline{G} contains $\mathbf{PSL}(2, K)$. On taking commutators, we obtain $\mathbf{SL}(2, K) \subseteq [G, G]$, and therefore $\mathbf{SL}(2, F) \subseteq [G, G]$. As indicated above, this proves the theorem.

In the spirit of [26, Th. 4], let us choose an inertia group I for p in $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ and define X to be the smallest closed normal subgroup of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ which contains I. **Theorem 2.6.** In the situation of Theorem 2.5

$$\rho(X) = \{ M \in \mathbf{GL}(2, \mathbf{F}) \mid \det M \in \mathbf{F}_n^* \}.$$

Proof. By Theorem 2.5, the group $G = \rho(\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}))$ is the group of matrices in $\operatorname{\mathbf{GL}}(2, \mathbf{F})$ with determinants in \mathbf{F}_p^* . Let $H = \rho(X)$; thus H is a normal subgroup of G. Let \overline{H} and \overline{G} be the images of H and G in $\operatorname{\mathbf{PGL}}(2, \mathbf{F})$. The group \overline{G} is either $\operatorname{\mathbf{PSL}}(2, \mathbf{F})$ or $\operatorname{\mathbf{PGL}}(2, \mathbf{F})$, according as the degree of \mathbf{F} over \mathbf{F}_p is even or odd. The discussion above shows that the order of His at least $p - 1 \ge 4$. Therefore, the intersection $H \cap \operatorname{\mathbf{PSL}}(2, \mathbf{F})$ has order at least 2. Since $\operatorname{\mathbf{PSL}}(2, \mathbf{F})$ is normal in \overline{G} , $H \cap \operatorname{\mathbf{PSL}}(2, \mathbf{F})$ is a non-trivial normal subgroup of $\operatorname{\mathbf{PSL}}(2, \mathbf{F})$. Accordingly, it is all of $\operatorname{\mathbf{PSL}}(2, \mathbf{F})$; in other words, \overline{H} contains $\operatorname{\mathbf{PSL}}(2, \mathbf{F})$. On taking commutators as above, we see that H contains $\operatorname{\mathbf{SL}}(2, \mathbf{F})$. Because the mod p cyclotomic character maps Ionto \mathbf{F}_p^* , it follows now that H = G.

Remark 1. In the context of Theorem 2.6, one may consider the more general situation where \mathbf{F} is not necessarily generated by the traces $\operatorname{tr}(\rho(\sigma))$ for $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$. Let \mathbf{F}' be the subfield of \mathbf{F} which is generated by these traces. Because complex conjugation acts in ρ as a matrix with distinct rational eigenvalues, a well known theorem of I. Schur [24, IX a] (cf. [35, Lemme I.1]) implies that ρ can be conjugated into a representation with values in $\operatorname{GL}(2, \mathbf{F}')$. The theorem applies to this latter representation, and shows that its image is the group of matrices in $\operatorname{GL}(2, \mathbf{F}')$ whose determinants lie in the multiplicative group of the prime field \mathbf{F}_p .

To prove the well known statement that there is a model for ρ over \mathbf{F}' , one may proceed alternatively by direct computation, along the lines suggested by Wiles [36, p. 483].

Remark 2. The referee has asked whether Theorem 2.5 extends to the case p = 3. The answer is negative; in fact, a counterexample is furnished by the abelian surface $J_0(23)$. Recall that $J_0(23)$ has "real multiplication" by the Hecke ring **T** associated with the space of weight-two cusp forms on $\Gamma_0(23)$. The algebra $\mathbf{T} \otimes \mathbf{Q}$ is the real quadratic field $\mathbf{Q}(\sqrt{5})$, and **T** is the ring of integers of $\mathbf{T} \otimes \mathbf{Q}$. The group V of 3-division points on $J_0(23)$ is a two-dimensional vector space over the field $\mathbf{F} := \mathbf{T}/3\mathbf{T}$, which has nine elements. The action of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ on V is given by a homomorphism ρ : $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{Aut}_{\mathbf{F}} V \approx \mathbf{GL}(2, \mathbf{F})$. As we shall see in §5, this representation is semistable; it is irreducible because 3 is prime to 23 - 1. Moreover, the traces $\operatorname{tr}(\rho(\sigma))$ generate \mathbf{F} ; indeed, the trace of a Frobenius element Frob₂ for the prime 2 satisfies $x^2 + x - 1 = 0$. In view of Theorem 2.5, it is very tempting to guess that the image of ρ contains $\mathbf{SL}(2, \mathbf{F})$. Equivalently, consider the composite

of ρ and the natural homomorphism $\mathbf{GL}(2, \mathbf{F}) \to \mathbf{PGL}(2, \mathbf{F})$; let \overline{G} be the image of this composite, so that \overline{G} is a subgroup of $\mathbf{PSL}(2, \mathbf{F})$. The guess that the image of ρ contains $\mathbf{SL}(2, \mathbf{F})$ means that $\overline{G} = \mathbf{PSL}(2, \mathbf{F})$.

What information do we have about G? The group G is "irreducible" (i.e., acts transitively on $\mathbf{P}^1(\mathbf{F})$) since ρ is irreducible. Also, the order of \overline{G} is divisible by 3, as one sees by considering an inertia subgroup of G for the prime 23. Finally, the order of \overline{G} is divisible by 5 because of the information concerning tr($\rho(\text{Frob}_2)$), which implies that $\rho(\text{Frob}_2)$ has order 5. The results of Dickson used above thus permit only two possibilities for \overline{G} : either \overline{G} is all of $\mathbf{PSL}(2, \mathbf{F})$, or else the alternating group \mathbf{A}_5 .

Rather to the author's surprise, calculations based on [14, Table B] suggested strongly that \bar{G} is in fact the smaller of these two groups. The author's suspicion that this was the case deepened when he learned that there is an \mathbf{A}_5 -extension of \mathbf{Q} which is ramified only at 3 and 23: the second line of [6, Table 1] shows that the splitting field of the polynomial $x^5 + 3x^3 + 6x^2 + 9$ is such an extension. Subsequently, Jean-François Mestre carried out computations which confirm that this latter \mathbf{A}_5 -extension is indeed the extension of \mathbf{Q} which is cut out by the projective representation deduced from ρ . In particular, one has $\bar{G} \approx \mathbf{A}_5$.

3. Products.

We next consider finite products of representations as above, keeping fixed the prime number p. Thus let F_1, \ldots, F_t $(t \ge 1)$ be finite fields of characteristic p, where p is a prime which is different from 2 and 3. Let \mathbf{F} be the finite étale \mathbf{F}_p -algebra $F_1 \times \cdots \times F_t$. Suppose that ρ : $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathbf{GL}(2, \mathbf{F})$ is a continuous homomorphism, so that ρ is a product of representations ρ_i $(i = 1, \ldots, t)$ as above. We will assume that each ρ_i is semistable and irreducible, and also that det $\rho_i = \chi$ for $i = 1, \ldots, t$. With the evident convention, the latter hypothesis may be summarized by the formula det $\rho = \chi$.

For each $\sigma \in \text{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$, we obtain an element $\text{tr}(\rho(\sigma))$ of \mathbf{F} by considering the trace of the matrix $\rho(\sigma)$. Motivated by the remark above, we let \mathbf{F}' be the subalgebra of \mathbf{F} generated by the $\text{tr}(\rho(\sigma))$.

Lemma 3.1. The representation ρ has a model over \mathbf{F}' .

Proof. As we have seen, each component ρ_i has a model over the subfield of F_i generated by the traces tr($\rho_i(\sigma)$). After replacing ρ_i by such a model (and F_i by the trace field in question), we arrive at a situation in which \mathbf{F}' maps surjectively onto each factor F_i .

As one knows, \mathbf{F}' is then isomorphic to a partial product of the factors F_i . To see this explicitly, we let $\pi \colon \mathbf{F} \to F_i$ be the projections $(x_1, \ldots, x_t) \mapsto x_i$ and consider the following relation on the set $\{1, \ldots, t\}$: $i \sim j$ if and only if the map $\pi_i \times \pi_j : \mathbf{F}' \to F_i \times F_j$ is not surjective. It is easy to see that this relation is an equivalence relation and that $i \sim j$ if and only if there is an isomorphism $\sigma \colon F_i \xrightarrow{\sim} F_j$ so that $\pi_j = \sigma \circ \pi_i$ on \mathbf{F}' . If there is such an isomorphism, it is unique; we denote it σ_{ji} . One shows that

$$\mathbf{F}' = \{ (x_1, \dots, x_t) \in \mathbf{F} \mid x_j = \sigma_{ji}(x_i) \text{ for all pairs } (i, j) \text{ such that } i \sim j \}.$$

In particular, \mathbf{F}' is isomorphic to the product $\prod_{i \in I} F_i$, where I is a set of representatives for the equivalence \sim .

By the Brauer-Nesbitt theorem, ρ_j and ${}^{\sigma_{ji}}\rho_i$ are isomorphic whenever iand j are equivalent. (The two representations have the same trace and determinant.) Replace ρ_j by ${}^{\sigma_{ji}}\rho_i$ for all equivalent pairs (i, j) with $i \in I$. Then the representation ρ , a priori with values in $\mathbf{GL}(2, \mathbf{F})$, takes values in $\mathbf{GL}(2, \mathbf{F}')$.

Theorem 3.2. One has

$$\rho(\operatorname{Gal}(\mathbf{Q}/\mathbf{Q})) = \{ M \in \mathbf{GL}(2, \mathbf{F}) \mid \det M \in \mathbf{F}_p^* \}$$

if and only if $\mathbf{F}' = \mathbf{F}$.

Proof. The necessity is clear, since the trace function $\mathbf{SL}(2, \mathbf{F}) \to \mathbf{F}$ is surjective. For the sufficiency, as in the proof of Theorem 2.5, one must show that $\rho(\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}))$ contains $\mathbf{SL}(2, \mathbf{F})$. Let $H = \rho(\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})) \cap \mathbf{SL}(2, \mathbf{F})$, so that H is a subgroup of the product $\mathbf{SL}(2, F_1) \times \cdots \times \mathbf{SL}(2, F_t)$. By Theorem 2.5, H projects onto each factor $\mathbf{SL}(2, F_i)$. Because each group $\mathbf{SL}(2, F_i)$ is its own commutator subgroup, the "two principle" [19, 3.3] implies that H is the full product of the $\mathbf{SL}(2, F_i)$ if and only if H maps onto each product $\mathbf{SL}(2, F_i) \times \mathbf{SL}(2, F_i)$ for $i \neq j$.

Assume, then, that we have $i \neq j$, and suppose that the image of the product $\rho_i \times \rho_j$ does not contain $\mathbf{SL}(2, F_i) \times \mathbf{SL}(2, F_j)$. By exploiting results of Dieudonné and Hua, one may construct: (i) An isomorphism $\omega \colon F_i \xrightarrow{\sim} F_j$, and (ii) a continuous homomorphism $\epsilon \colon \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to F_j^*$ such that ${}^{\omega}\rho_i$ and $\rho_j \otimes \epsilon$ are isomorphic representations of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ over F_j . This statement was proved during the course of the proof of [19, Th. 3.8] — the theorem itself states merely that ${}^{\omega}\rho_i$ and $\rho_j \otimes \epsilon$ have equal traces and determinants.

By Lemma 3.1, however, we have $\epsilon = 1$; thus ${}^{\omega}\rho_i \approx \rho_j$. Accordingly, we have $\omega(\operatorname{tr}(\rho_i(\sigma))) = \operatorname{tr}(\rho_j(\sigma))$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$. This means that the image of $\operatorname{tr}(\rho(\sigma))$ in $F_i \times F_j$ lies in the subalgebra $\{(x, \omega x) | x \in F_i\}$ of $F_i \times F_j$. Thus the quantities $\operatorname{tr}(\rho(\sigma))$ fail to generate $F_i \times F_j$ over \mathbf{F}_p . This contradicts the hypothesis that they generate the full product \mathbf{F} over \mathbf{F}_p .

Corollary 3.3. Assume that ρ is as in Theorem 3.2. Then the image of ρ is conjugate in $\mathbf{GL}(2, \mathbf{F})$ to the group

$$\{M \in \mathbf{GL}(2, \mathbf{F}') \mid \det M \in \mathbf{F}_p^*\}.$$

Proof. By Lemma 3.1, there is a model for ρ over \mathbf{F}' : after conjugating by a matrix in $\mathbf{GL}(2, \mathbf{F})$, we make ρ take values in $\mathbf{GL}(2, \mathbf{F}')$. Applying the Theorem to this model, we arrive at the desired conclusion.

We continue the discussion begun with Theorem 2.6, letting X be the subgroup of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ which appears in the statement of that result.

Theorem 3.4. In the situation of Theorem 3.2, suppose that $\mathbf{F} = \mathbf{F}'$. Then $\rho(X) = \{ M \in \mathbf{GL}(2, \mathbf{F}) \mid \det M \in \mathbf{F}_p^* \}.$

Proof. The group $\rho(X)$ is a normal subgroup of $G = \rho(\operatorname{Gal}(\mathbf{Q}/\mathbf{Q}))$. By Theorem 3.2, $G = \{ M \in \operatorname{\mathbf{GL}}(2, \mathbf{F}) \mid \det M \in \mathbf{F}_p^* \}$. The intersection $\rho(X) \cap$ $\operatorname{\mathbf{SL}}(2, \mathbf{F})$ is then normal in $\operatorname{\mathbf{SL}}(2, \mathbf{F})$; it maps onto each factor $\operatorname{\mathbf{SL}}(2, F_i)$ by Theorem 2.6. On taking commutators with elements of $\operatorname{\mathbf{SL}}(2, \mathbf{F})$ of the form $(1, \ldots, 1, \alpha, 1, \ldots, 1)$, we see that $\rho(X) \cap \operatorname{\mathbf{SL}}(2, \mathbf{F})$ contains $\operatorname{\mathbf{SL}}(2, F_i)$ (viewed as a subgroup of $\operatorname{\mathbf{SL}}(2, \mathbf{F})$) for each *i*. It follows that $\rho(X)$ contains $\operatorname{\mathbf{SL}}(2, \mathbf{F})$. We then obtain $\rho(X) = G$, since the mod *p* cyclotomic character is totally ramified at *p*.

4. Lifts.

Again suppose that p is a prime ≥ 5 and let $\mathcal{O}_1, \ldots, \mathcal{O}_t$ be integer rings of finite-degree unramified extensions of \mathbf{Q}_p . For each i, let $\tilde{\rho}_i \colon \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to$ $\mathbf{GL}(2, \mathcal{O}_i)$ be a continuous representation whose determinant is the p-adic cyclotomic character $\tilde{\chi} \colon \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathbf{Z}_p^*$. Let $\tilde{\rho}$ be the product of the $\tilde{\rho}_i$, so that $\tilde{\rho}$ is a p-adic representation $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathbf{GL}(2, \mathcal{O})$, where $\mathcal{O} := \prod \mathcal{O}_i$. The diagonal embedding $\mathbf{Z}_p \hookrightarrow \mathcal{O}$ induces an inclusion $\mathbf{Z}_p^* \hookrightarrow \mathcal{O}^*$. We clearly have $\tilde{\rho}(\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})) \subseteq \mathcal{A}$, where

$$\mathcal{A} = \{ M \in \mathbf{GL}(2, \mathcal{O}) \mid \det M \in \mathbf{Z}_p^* \}.$$

Let $\mathbf{F} = \mathcal{O}/p\mathcal{O}$, and let $\rho: \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathbf{GL}(2, \mathbf{F})$ be the reduction of $\tilde{\rho} \mod p$.

In the following statement, X is again the closed normal subgroup of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ which is generated by the inertia groups for p in $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$.

Theorem 4.1. Suppose that the mod p reduction of each $\tilde{\rho}_i$ is semistable and irreducible. Assume that \mathbf{F} is generated as an \mathbf{F}_p -algebra by the traces $\operatorname{tr} \rho(g)$ with $g \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$. Then $\tilde{\rho}(X) = \tilde{\rho}(\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})) = \mathcal{A}$.

Remark. Using Nakayama's Lemma, one may reformulate the trace hypothesis as the apparently stronger assertion that \mathcal{O} is generated as a \mathbb{Z}_{p} -algebra by the traces tr $\tilde{\rho}(g)$ with $g \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

Proof. The group $\tilde{\rho}(\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}))$ and its subgroup $\tilde{\rho}(X)$ are closed subgroups of \mathcal{A} whose determinants are equal to all of \mathbf{Z}_p^* . It suffices to show that $\tilde{\rho}(X)$ contains $\mathbf{SL}(2, \mathcal{O})$. We recall the following fact (see [25, p. IV-23] and [19, Th. 2.1]):

Proposition 4.2. Let \mathcal{G} be a closed subgroup of $\mathbf{GL}(2, \mathcal{O})$ and let $\overline{\mathcal{G}}$ be the image of \mathcal{G} in $\mathbf{GL}(2, \mathcal{O}/p\mathcal{O})$. If $\overline{\mathcal{G}}$ contains $\mathbf{SL}(2, \mathcal{O}/p\mathcal{O})$, then \mathcal{G} contains $\mathbf{SL}(2, \mathcal{O})$.

Proof. On taking $\mathcal{G} = \tilde{\rho}(X)$, we now obtain the required inclusion $\tilde{\rho}(X) \supseteq$ **SL**(2, \mathcal{O}) from Theorem 3.4.

5. Semistable abelian varieties of GL_2 -type over Q.

Let A be an abelian variety over \mathbf{Q} for which $\mathbf{Q} \otimes \operatorname{End}_{\mathbf{Q}} A$ is a number field of degree equal to the dimension of A. Suppose that the ring $R = \operatorname{End}_{\mathbf{Q}} A$ is the full ring of integers in the field $\mathbf{Q} \otimes \operatorname{End}_{\mathbf{Q}} A$. (After replacement of Aby an isogenous abelian variety, this hypothesis is always verified.) Let \mathfrak{m} be a maximal ideal of R and let $A[\mathfrak{m}]$ be the kernel of \mathfrak{m} on A, i.e., the group of points in $A(\overline{\mathbf{Q}})$ which are annihilated by all elements of \mathfrak{m} . It is easy to check that $A[\mathfrak{m}]$ is free of rank two over $\mathbf{F} = R/\mathfrak{m}$, cf. [32, Prop. 10, p. 56]. In fact, the representation

$$\rho \colon \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathbf{GL}(2,\mathbf{F})$$

defined by the action of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ on $A[\mathfrak{m}]$ is just the mod \mathfrak{m} reduction of the \mathfrak{m} -adic representation of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ which is attached to A. As usual, we denote by p the characteristic of \mathbf{F} .

Proposition 5.1. Assume that p is odd, that ρ is irreducible, and that A is semistable over \mathbf{Q} . Then ρ is a semistable representation.

Proof. We first show that the determinant of ρ is the mod p cyclotomic character χ . According to the statement of [23, Lemma 3.1], we have det $\rho = \epsilon \chi$, where ϵ is a Dirichlet character $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to R^*$ which depends only

on A (i.e., is independent of \mathfrak{m}) and which is ramified only at primes of bad reduction for A. In fact, the proof of this Lemma shows that ϵ is unramified at a prime q whenever the following condition is satisfied: there is a prime λ of R such that the determinant of the λ -adic representation of Ais unramified at q. Now fix q and take any prime λ not dividing q. By a well known result of Grothendieck [9, Prop. 3.5], each element of an inertia subgroup for q in Gal($\overline{\mathbf{Q}}/\mathbf{Q}$) acts unipotently in the λ -adic representation for A. In particular, the determinant of this representation is unramified at q. Thus ϵ is unramified at every prime number q, so that ϵ is the trivial character.

The same proposition of Grothendieck, applied to the **m**-adic representation for A, shows that the conductor of ρ is square free. We may paraphrase this statement by saying that ρ is semistable outside p. Furthermore, results of Raynaud [16] imply that $k(\rho) = 2$, so that ρ is semistable at p, whenever ρ is finite at p. (See [28, Prop. 4, p. 189].) It remains only to show that $k(\rho) = p+1$ if ρ is not finite at p.

For this, we consider $A[\mathfrak{m}]$ as a subgroup of A[p], and view both as modules for a decomposition group D_p in $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ for the prime p. As explained in the proof of [21, Lemma 6.2], one may deduce from Grothendieck's study in SGA7I that A[p] is an extension of an unramified D_p -module by a subgroup $A[p]^{\mathrm{f}}$ which is finite, i.e., which extends to a finite flat group scheme over \mathbf{Z}_p . Were $A[\mathfrak{m}]$ contained in $A[p]^{\mathrm{f}}$, $A[\mathfrak{m}]$ would be finite, contrary to assumption. Hence $A[\mathfrak{m}]$ has an unramified quotient. This implies that the restriction of ρ to D_p has the form $\begin{pmatrix} \theta_1 \chi & * \\ 0 & \theta_2 \end{pmatrix}$, where the θ_i are unramified characters. The recipe for $k(\rho)$ given in [28, §2] then sets $k(\rho) = p+1$. (Compare Remarque (1) on page 188 of [28].)

6. Application to $J_0(N)$ for prime N.

Let N be a prime number, and consider the abelian variety $J = J_0(N)$ over **Q**. In this section and the next, we will study the action of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ on torsion points of J. The first work in this direction was the investigation of Shimura [30], which concerns the mod p representation of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ defined by $J_0(11)$, when p lies between 7 and 97. Shimura's discussion was completed by Serre [26, §5.5], who determined for all p the image of the mod p representation attached to $J_0(11)$. Subsequently, Lang-Trotter [12], Part I, §8; calculated the image of the (adelic) representation of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ defined by all torsion points of $J_0(11)$.

In what follows, we generalize some of the results of Serre and Lang-Trotter to the case where 11 is replaced by an arbitrary prime. We exploit the insights of Mazur's article [13], which makes an extensive study of the action of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ on torsion points of $J_0(N)$, and the recent thesis of B. Kaskel [10], which determines the image of the adelic representation defined by $J_0(37)$. There is a certain amount of overlap with the joint article [2].

Let **T** be the ring of Hecke operators $\mathbf{Z}[\ldots, T_n, \ldots]$, considered as a ring of endomorphisms of $J_0(N)$. To orient the reader, we recall that **T** is the full ring of endomorphisms of $J_0(N)$ [13, p. 95]. To avoid the situation where Nis very small, we will assume that $J_0(N) \neq 0$. This means that N = 11 or that $N \geq 17$.

Let p be a prime number ≥ 5 .

Proposition 6.1. The quotient $\mathbf{T}/p\mathbf{T}$ is generated by the operators T_n with n prime to pN.

Proof. Let S be the space of cusp forms of weight 2 on $\Gamma_0(N)$ over \mathbf{F}_p . We view S as the mod p reduction of the space of weight-two forms on $\Gamma_0(N)$ with integral q-expansions. (See [13, Ch. II, §4] for a comparison of several possible definitions of S.) We consider the bilinear pairing $\alpha \colon \mathbf{T}/p\mathbf{T} \times S \to \mathbf{F}_p$ which maps (T, f) to the initial coefficient of q in the Fourier expansion of f|T. It is well known that α is a perfect pairing; this is explained, for example, in [20, §1]. To prove the Proposition, then, it suffices to prove that there is no non-zero element $f = \sum a_n q^n$ of S which satisfies $a_n = 0$ for all n prime to pN.

Suppose that $f = \sum a_n q^n$ satisfies the condition. We will show first that $a_n = 0$ for all n prime to N. If N = p there is nothing extra to prove, so we will assume for the moment that N and p are distinct. Let g be the form $\sum_{(N,n)=1} a_n q^n$, i.e., the sum

$$\sum_{n=1}^{\infty} b_n q^n, \qquad b_n = \begin{cases} a_n & \text{if } (n, N) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Then $b_n = 0$ whenever n is not a multiple of p; our aim is to show that g = 0. Now the point is that g may be considered as a weight-two mod p modular form on $\Gamma_0(N^2)$; this follows from [31, Prop. 3.64]. The hypothesis about the vanishing of the b_n means that g is annihilated by the operator $\theta = q \frac{d}{dq}$. Since p > 2, this forces g = 0 as desired, since θg has "filtration" p + 3 if g is non-zero. (This is Katz's generalization of the Serre-Swinnerton-Dyer theorem [11, p. 55].)

To complete the proof, we must show that f = 0. This follows from Proposition 4.10, Lemma 5.9 and Lemma 5.10 of [13, Ch. II].

Remark. The argument we have given is essentially that of [13], Ch. II, Prop. 14.13. The exploitation of $q\frac{d}{dq}$ to deal with the absence of T_p is a

familiar ploy—it was used by the author in [22, Prop. 2] and by Wiles in [36, Lemma, p. 491].

Suppose now that \mathfrak{m} is a maximal ideal of \mathbf{T} of residue characteristic p. (We continue to assume $p \geq 5$.) Let $J[\mathfrak{m}]$ denote the kernel of \mathfrak{m} on $J(\overline{\mathbf{Q}})$. By the results of [13], $J[\mathfrak{m}]$ defines the two-dimensional semisimple representation $\rho_{\mathfrak{m}}$ of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ which is associated with \mathfrak{m} ; this representation is irreducible if and only if \mathfrak{m} is not an Eisenstein prime of \mathbf{T} . When \mathfrak{m} is non-Eisenstein, $\rho_{\mathfrak{m}}$ is a semistable representation: this follows from the results of Deligne-Rapoport [3] to the effect J has multiplicative reduction at N, together with Proposition 5.1.

Proposition 6.2. The image of $\rho_{\mathfrak{m}}$: $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{GL}(2, \mathbf{T}/\mathfrak{m})$ is the group of elements of $\operatorname{GL}(2, \mathbf{T}/\mathfrak{m})$ having determinant in \mathbf{F}_p^* .

Proof. This mild strengthening of [13, Ch. II, Prop. 14.12] may be derived directly from Theorem 2.5. Indeed, for each prime ℓ different from p and N, the image under $\rho_{\mathfrak{m}}$ of a Frobenius element for ℓ in $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ has trace $T_{\ell} \mod \mathfrak{m}$. It follows from the Lemma above that the $T_{\ell} \mod \mathfrak{m}$ generate \mathbf{T}/\mathfrak{m} .

Remark. By using Theorem 2.6 in place of Theorem 2.5, we obtain the stronger statement that $\rho_{\mathfrak{m}}(X)$ is the group of matrices in $\mathbf{GL}(2, \mathbf{T}/\mathfrak{m})$ whose determinants lie in \mathbf{F}_p^* . A similar remark applies to the Proposition which follows.

Suppose next that $p \geq 5$ is such that *none* of the $\mathfrak{m}|p$ in \mathbf{T} is an Eisenstein prime. This means simply that $N \not\equiv 1 \mod p$. Let \mathbf{F} be the \mathbf{F}_p -algebra $\prod_{m|p} \mathbf{T}/\mathfrak{m}$, and let

$$\rho \colon \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathbf{GL}(2,\mathbf{F})$$

be the product of the $\rho_{\mathfrak{m}}$.

Proposition 6.3. The image of ρ is the group of matrices in $\mathbf{GL}(2, \mathbf{F})$ having determinant in \mathbf{F}_{p}^{*} .

Proof. Indeed, the natural map $\mathbf{T}/p\mathbf{T} \to \mathbf{F}$ is surjective by the Chinese remainder theorem. Accordingly, the Lemma implies that \mathbf{F} is generated by the images of the T_{ℓ} with ℓ prime to pN. In the language of Theorem 3.2, this means that $\mathbf{F}' = \mathbf{F}$. Applying that theorem, we find that the image of ρ is as stated.

Continuing the discussion, we add the hypothesis that the surjection $\mathbf{T}/p\mathbf{T} \to \mathbf{F}$ is an isomorphism, i.e., that p is unramified in \mathbf{T} . Then ρ is the

representation giving the action of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ on the group J[p], viewed as a free $\mathbf{T}/p\mathbf{T}$ -module of rank two. Proposition 6.3 thus furnishes a description of the Galois group of the field cut out by the *p*-division points of J. Further, as we have seen in Proposition 4.2, the result of Proposition 6.3 is equivalent to an analogous statement about the *p*-adic Galois representation defined by J. More precisely, because p in unramified in $\mathbf{T}, \mathbf{T} \otimes \mathbf{Z}_p$ is a product of discrete valuation rings. The Tate module $\operatorname{Ta}_p(J)$ of J is then automatically free of rank two over $\mathbf{T} \otimes \mathbf{Z}_p$. After choosing a basis of $\operatorname{Ta}_p(J)$, we may summarize the action of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ on the *p*-power division points of J by a homomorphism

$$\tilde{\rho} \colon \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathbf{GL}(2, \mathbf{T} \otimes \mathbf{Z}_p).$$

By Propositions 4.2 and 6.3, we find that the image of $\tilde{\rho}$ is "as large as possible":

Theorem 6.4. Suppose that p is unramified in \mathbf{T} and that p is prime to $6 \cdot (N-1)$. Then $\tilde{\rho}(\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})) = \{ M \in \operatorname{\mathbf{GL}}(2, \mathbf{T} \otimes \mathbf{Z}_p) | \det M \in \mathbf{Z}_p^* \}.$

Remark. We obtain the more precise equality

$$\tilde{\rho}(X) = \{ M \in \mathbf{GL}(2, \mathbf{T} \otimes \mathbf{Z}_p) \mid \det M \in \mathbf{Z}_p^* \}$$

from Theorem 3.4 and Proposition 4.2.

7. Complements.

We continue our study of $J = J_0(N)$, where N is a prime number by studying products of *p*-adic representations attached to J. We are motivated by the discussions of [25, Ch. IV, §3] and [26, §4.4], whose tools serve very well in this context.

For each prime p, let $\operatorname{Ta}_p(J)$ be the \mathbb{Z}_p -adic Tate module of J and write ρ_p (rather than $\tilde{\rho}$, as above) for the p-adic representation of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ which is associated to J:

 $\tilde{\rho}$: Gal $(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{Aut}_{\mathbf{T}\otimes\mathbf{Z}_n}(\operatorname{Ta}_p(J)) \subset \operatorname{Aut}_{\mathbf{T}\otimes\mathbf{Q}_n}(\operatorname{Ta}_p(J)\otimes\mathbf{Q}).$

Let G_p be the image of ρ_p . This group was determined in Theorem 6.4 for most prime numbers p. We shall describe the p-adic Lie algebra of G_p in general; thus we determine G_p "up to finite groups" even when (or especially when) p does not satisfy the hypothesis to Theorem 6.4.

We recall that Mazur proved [13, Ch. II, §15-§17] that $\operatorname{Ta}_p(J)$ is free of rank two over $\mathbf{T} \otimes \mathbf{Z}_p$ when p is odd, and also in many circumstances when p = 2. In this favorable situation, we may view G_p as a closed subgroup of $\mathbf{GL}(2, \mathbf{T} \otimes \mathbf{Z}_p)$. In any case, $\operatorname{Ta}_p(J) \otimes \mathbf{Q}_p$ is free of rank two over the \mathbf{Q}_p algebra $\mathbf{T} \otimes \mathbf{Q}_p$ by [13, Ch. II, Lemma 7.7]. Hence we may always regard G_p as a closed subgroup of $\mathbf{GL}(2, E)$, where $E = \mathbf{T} \otimes \mathbf{Q}_p$. Note that Eis a commutative semisimple \mathbf{Q}_p -algebra, i.e., the product of fields which are finite extensions of \mathbf{Q}_p . Because the determinant of ρ_p is the *p*-adic cyclotomic character, we have $G_p \subseteq H_p$, where

$$H_p := \{ M \in \mathbf{GL}(2, E) \mid \det M \in \mathbf{Q}_p^* \}.$$

Proposition 7.1. The group G_p is open in H_p .

Proof. Let \mathfrak{g} and \mathfrak{h} be the *p*-adic Lie algebras of G_p and H_p , respectively. Thus

$$\mathfrak{g} \subseteq \mathfrak{h} = \mathbf{Q}_p \times \mathfrak{sl}_2(E),$$

where $\mathfrak{sl}_2(E) = [\mathfrak{h}, \mathfrak{h}]$ is the Lie algebra of two-by-two matrices over E with trace 0. Since the *p*-adic cyclotomic character has infinite order, g is not contained in $\mathfrak{sl}_2(E)$. The proposition states that $\mathfrak{g} = \mathfrak{h}$.

The equality $\mathfrak{g} = \mathfrak{h}$ is proved as [18, Th. 4.5.4] in the special case where $\mathbf{T} \otimes \mathbf{Q}$ is a field, i.e., where J is a simple abelian variety. (Note that $\operatorname{End}_{\overline{\mathbf{Q}}} J = \operatorname{End}_{\mathbf{Q}} J$, as was proved in [17]; hence J is simple over \mathbf{Q} if and only if it is absolutely simple.) In the general case, J is isogenous over \mathbf{Q} to a product $A_1 \times \cdots \times A_t$ of simple abelian varieties to which [18, Th. 4.5.4] applies. Thus \mathfrak{g} and \mathfrak{h} have equal images in $\operatorname{End}_{\mathbf{D}}(A_i) \otimes \mathbf{Q}_p$) for each i. Moreover, one knows that $\operatorname{End}_{\mathfrak{g}}(\operatorname{Ta}_p(J)) = E = \operatorname{End}_{\mathfrak{h}}(\operatorname{Ta}_p(J))$. Indeed, the Tate conjecture for abelian varieties, which was proved in [5], implies that $\operatorname{End}_{\mathfrak{g}}(\operatorname{Ta}_p(J)) = (\operatorname{End}_{\overline{\mathbf{Q}}} J) \otimes \mathbf{Q}_p$. On the other hand, one knows by [17] that $(\operatorname{End}_{\overline{\mathbf{Q}}} J) \otimes \mathbf{Q} = \mathbf{T} \otimes \mathbf{Q}$; hence $(\operatorname{End}_{\overline{\mathbf{Q}}} J) \otimes \mathbf{Q}_p = E$, as was claimed. The proof of [18, Th. 4.4.10] now yields the required equality $\mathfrak{g} = \mathfrak{h}$.

For each set of prime numbers S, let

$$\rho_S \colon \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \prod_{p \in S} \operatorname{Aut}(\operatorname{Ta}_p(J))$$

be the product of the ρ_p for p in S. Let G_S be the image of ρ_S , so that G_S is a closed subgroup of the product $\prod_{p \in S} G_p$.

Corollary 7.2. If S is a finite set of primes, then G_S is open in $H_S := \prod_{p \in S} H_p$.

Proof. The assertion to be proved follows from Proposition 7.1 and an argument due to Serre [25, Lemma 4, p. IV-24]:

Fix $p \in S$ for the moment, and ensure by a change of basis if necessary that G_p is a subgroup of $\mathbf{GL}(2, \mathbb{R})$, where \mathbb{R} is the ring of integers of \mathbb{E} . Let **F** be the product of the residue fields of the factors of R, and let G'_p be the kernel of the composition

$$G_p \hookrightarrow \mathbf{GL}(2, R) \to \mathbf{GL}(2, F).$$

Clearly, G'_p has finite index in G_p , so that G'_p is open in H_p by Proposition 7.1. Further, G'_p is a pro-p group; in fact, it is a projective limit of nilpotent groups of p-power order.

Let G'_S be the inverse image of $\prod_{p \in S} G'_p$ in G_S . Since G'_S is a subgroup of $\prod_{p \in S} G'_p$, it is pro-nilpotent. Thus G'_S is the product of its Sylow subgroups. Now the *p*-Sylow subgroup of G'_S has finite index in G_p . Thus G'_S has finite index in $\prod_{p \in S} G_p$, a group which is open in H_S by Proposition 7.1. Hence G_S is open in H_S .

Theorem 7.3 (Kaskel [10]). Assume that N does not belong to S. Then $G_S = \prod_{p \in S} G_p$.

Proof. We first consider the case where S is finite, arguing by induction on the size of S. The statement to be proved is evident if S has at most one element, so we may assume that $S = T \coprod \{p\}$ and that the statement is true with S replaced by T. We must show that the natural injection $G_S \hookrightarrow G_T \times G_p$ is an isomorphism, or equivalently that the Galois extensions of \mathbf{Q} cut out by ρ_T and ρ_p are linearly disjoint. Let K be the intersection of these two fields. Then K is ramified only at N, since ρ_p is ramified only at N and at p, while ρ_T is unramified at p. Further, the inertia groups for the prime N in the image of ρ_p are pro-p groups since $J_0(N)$ is semistable at N. Similarly, the inertia groups for N in the image of ρ_T are profinite groups for N in Gal (K/\mathbf{Q}) are trivial, so that K is an everywhere unramified extension of \mathbf{Q} . This gives $K = \mathbf{Q}$ and proves the linear disjointness.

The case where S is not necessarily finite now follows, since G_S is closed and dense in $\prod_{p \in S} G_p$.

Corollary 7.4. Let S be the set of prime numbers p which are prime both to 6(N-1) and to the discriminant of **T**. Then

$$G_S = \prod_{p \in S} \{ M \in \mathbf{GL}(2, \mathbf{T} \otimes \mathbf{Z}_p) \mid \det M \in \mathbf{Z}_p^* \}.$$

Proof. We shall give two proofs of this result, the first in spirit of Kaskel's theorem. For each $p \in S$, we have $G_p = \{ M \in \mathbf{GL}(2, \mathbf{T} \otimes \mathbf{Z}_p) \mid \det M \in \mathbf{Z}_p^* \}$ by Theorem 6.4. Let T be the set of primes $p \in S$ which are different from N; thus $S = T \coprod \{N\}$ if N is prime to the discriminant of \mathbf{T} and S = T if not.

We clearly have $G_T = \prod_{p \in T} \{ M \in \mathbf{GL}(2, \mathbf{T} \otimes \mathbf{Z}_p) \mid \det M \in \mathbf{Z}_p^* \}$ by Kaskel's theorem and Theorem 6.4. This gives what is wanted if S = T. In what follows, we suppose to the contrary that N belongs to S.

The idea now is to analyze the subgroup G_S of $G_T \times G_N$ as in the proof above. Let K/\mathbf{Q} now be the obstruction to the equality $G_S = G_T \times G_N$. In other words, K is the intersection of the two extensions of \mathbf{Q} whose Galois groups are the images of G_T and G_N . Clearly, K is ramified only at N. Moreover, I is an inertia group for N in $\operatorname{Gal}(K/\mathbf{Q})$, then the order of I (as a supernatural number) is divisible only by the primes in T. In particular, this order is prime to N(N-1). On the other hand, it is easy to see that only N and primes dividing N-1 can intervene in the order of an inertia group for N in the image of ρ_N . Indeed, the restriction of ρ_N to an inertia group for N in $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ has the form $\begin{pmatrix} \chi * \\ 0 & 1 \end{pmatrix}$, where χ is the N-adic cyclotomic character. Hence K is unramified at N, and we obtain the required equality $G_S = G_T \times G_N$ as in the proof of Kaskel's theorem.

To make a second proof of the equality

$$G_S = \prod_{p \in S} \{ M \in \mathbf{GL}(2, \mathbf{T} \otimes \mathbf{Z}_p) \mid \det M \in \mathbf{Z}_p^* \},\$$

we fix a prime p in T and let X be the group which we considered in Theorem 2.6 and Theorem 3.4. We have $\rho_p(X) = \{ M \in \mathbf{GL}(2, \mathbf{T} \otimes \mathbf{Z}_p) \mid \det M \in \mathbf{Z}_p^* \}$ as explained in the remark at the end of the preceding section. On the other hand, if p' is an element of S which is different from p, $\rho_{p'}$ is unramified at p and therefore $\rho_{p'}(X) = \{1\}$. Thus $\rho_S(X)$ contains

$$\{ M \in \mathbf{GL}(2, \mathbf{T} \otimes \mathbf{Z}_p) \mid \det M \in \mathbf{Z}_p^* \},\$$

viewed as a subgroup of the product. Hence we have

$$G_S \supseteq \prod_{p \in T} \{ M \in \mathbf{GL}(2, \mathbf{T} \otimes \mathbf{Z}_p) \mid \det M \in \mathbf{Z}_p^* \}.$$

This gives what is wanted if S = T, so we assume once again that N belongs to S. Then G_S is a subgroup of the product

$$\prod_{p \in S} \{ M \in \mathbf{GL}(2, \mathbf{T} \otimes \mathbf{Z}_p) \mid \det M \in \mathbf{Z}_p^* \}$$

which maps onto $\{M \in \mathbf{GL}(2, \mathbf{T} \otimes \mathbf{Z}_N) | \det M \in \mathbf{Z}_N^*\}$ by Theorem 6.4. Moreover G_S contains the kernel of the natural projection

$$\prod_{p \in S} \{ M \in \mathbf{GL}(2, \mathbf{T} \otimes \mathbf{Z}_p) \mid \det M \in \mathbf{Z}_p^* \}$$
$$\rightarrow \{ M \in \mathbf{GL}(2, \mathbf{T} \otimes \mathbf{Z}_N) \mid \det M \in \mathbf{Z}_N^* \}.$$

Therefore G_S is the full product.

For our final result, we consider the product $\rho_{\rm f}$ of all of the representations ρ_p , i.e., the representation ρ_S where S is the set of all prime numbers. We view $\rho_{\rm f}$ as taking values in

$$\{M \in \mathbf{GL}(2, \mathbf{T} \otimes \mathbf{Q}_2) \mid \det M \in \mathbf{Q}_2^*\} \times \prod_{p \neq 2} \{M \in \mathbf{GL}(2, \mathbf{T} \otimes \mathbf{Z}_p) \mid \det M \in \mathbf{Z}_p^*\},\$$

a group that we will call \mathcal{A} . (We separate 2 from the odd primes since it is not known that Ta₂ is free of rank two over $\mathbf{T} \otimes \mathbf{Z}_2$.)

Theorem 7.5. The image of $\rho_{\rm f}$ is an open subgroup of \mathcal{A} .

Proof. Let \mathcal{A}_p be the *p*th component of \mathcal{A} , so that we have $\mathcal{A} = \prod \mathcal{A}_p$, with the product extended over all primes. Let S be the set of those p which are prime to 6(N-1)N and to the discriminant of \mathbf{T} . Fix $p \in S$ and let X be the subgroup of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ which we have considered repeatedly: the closed subgroup of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ generated by all inertia groups for p. As we have seen, $\rho_p(X) = \mathcal{A}_p$; on the other hand $\rho_{p'}(X) = \{1\}$ for $p' \neq p$. Hence $\rho_f(X) = \mathcal{A}_p$, where \mathcal{A}_p is considered as a subgroup of the product \mathcal{A} . On varying p, we find that $\rho_f\left(\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})\right)$ contains the group $\prod_{p \in S} \mathcal{A}_p$, i.e., the kernel of the projection $\mathcal{A} \to \prod_{p \notin S} \mathcal{A}$. On the other hand, the image of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ in this finite product is open by Corollary 7.2. Hence $\rho_f\left(\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})\right)$ is open in the full product.

References

- C. Batut, D. Bernardi, H. Cohen and M. Olivier, *GP/PARI*, Available by anonymous ftp from megrez.math.u-bordeaux.fr or math.ucla.edu, in the directory /pub/pari.
- [2] R. Coleman, B. Kaskel and K. Ribet, *Torsion points on* $X_0(N)$, Contemporary Math., to appear.
- [3] P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Lecture Notes in Math., Vol. 349, Springer-Verlag, Berlin and New York, (1973), 143-316.
- [4] L.E. Dickson, Linear groups with an exposition of the Galois field theory, Dover, New York, 1958.
- [5] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., 73 (1983), 349-366.
- [6] G. Frey (Ed.) On Artin's conjecture for odd 2-dimensional representations, Lecture Notes in Math., Vol. 1585, Springer-Verlag, Berlin-Heidelberg-New York, 1994.
- [7] D. Gorenstein, *Finite Groups*, Chelsea, New York, 1980.

KENNETH A. RIBET

- B.H. Gross, A tameness criterion for Galois representations associated to modular forms mod p, Duke Math. J., 61 (1990), 445-517.
- [9] A. Grothendieck, SGA7 I, Exposé IX, Lecture Notes in Math., Vol. 288, Springer-Verlag, Berlin and New York, (1972), 313-523.
- [10] B. Kaskel, The adelic representation associated to $X_0(37)$, PhD. thesis, UC Berkeley, May, 1996.
- [11] N.M. Katz, A result on modular forms in characteristic p, Lecture Notes in Math., Vol. 601, Springer-Verlag, Berlin and New York, (1977), 53-61.
- [12] S. Lang and H. Trotter, Frobenius distributions in GL₂-extensions, Lecture Notes in Math., Vol. 504, Springer-Verlag, Berlin and New York, 1976.
- B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. IHES, 47 (1977), 33-186.
- [14] T. Miyake, *Modular forms*, Springer-Verlag, Berlin and New York, 1989.
- [15] J. Oesterlé, Travaux de Wiles (et Taylor, ...), Partie II, Séminaire Bourbaki, 804 (1995).
- [16] M. Raynaud, Schémas en groupes de type (p,..., p), Bull. Soc. Math. France, 102 (1974), 241-280.
- [17] K.A. Ribet, Endomorphisms of semi-stable abelian varieties over number fields, Annals of Math., 101 (1975), 555-562.
- [18] _____, Galois action on division points of abelian varieties with many real multiplications, Am. J. Math., 98 (1976), 751-804.
- [19] _____, On l-adic representations attached to modular forms, Invent. Math., 28 (1975), 245-275.
- [20] _____, Mod p Hecke operators and congruences between modular forms, Invent. Math., 71 (1983), 193-205.
- [21] _____, On modular representations of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ arising from modular forms, Invent. Math., **100** (1990), 431-476.
- [22] _____, Multiplicities of p-finite mod p Galois representations in $J_o(Np)$, Boletim da Sociedade Brasileira de Matemática, Nova Série, **21** (1991), 177-188.
- [23] _____, Abelian varieties over Q and modular forms, 1992 Proceedings of KAIST Mathematics Workshop, Taejon, Korea Advanced Institute of Science and Technology, (1992), 53-79.
- [24] I. Schur, Arithmetische Untersuchungen über endliche Gruppen linearer Substitutionen, Sitz. Pr. Akad. Wiss., (1906), 164-184; Gesam. Abhl., I, 177-197, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1973.
- [25] J.-P. Serre, Abelian l-adic representations and elliptic curves, Addison-Wesley Publ. Co., Redding, Mass., 1989.
- [26] _____, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math., 15 (1972), 259-331.
- [27] _____, *Œuvres*, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1986.
- [28] _____, Sur les représentations modulaires de degré 2 de Gal($\overline{\mathbf{Q}}/\mathbf{Q}$), Duke Math. J., 54 (1987), 179-230.
- [29] _____, *Travaux de Wiles* (et Taylor, ...), Partie I, Séminaire Bourbaki, **803** (1995).

296

- [30] G. Shimura, A reciprocity law in non-solvable extensions, Journal für die reine und angewandte Mathematik, **221** (1966), 209-220.
- [31] _____, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, Princeton, 1971.
- [32] G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its applications to number theory, Second printing corrected, Math. Society of Japan, Tokyo, 1975.
- [33] J. Sturm, On the congruence of modular forms, Lecture Notes in Math., Vol. 1240, Springer-Verlag, Berlin and New York, (1987), 275-280.
- [34] J. Tate, The non-existence of certain Galois extensions of Q unramified outside 2, Contemporary Mathematics, 174 (1994), 153-156.
- [35] J.-L. Waldspurger, Quelques propriétés arithmétiques de certaines formes automorphes sur GL(2), Compositio Math., 54 (1985), 121-171.
- [36] A. Wiles, Modular elliptic curves and Fermat's Last Theorem, Annals of Math., 141 (1995), 443-551.

This article was begun while the author was a research professor at the MSRI, where research was supported in part by NSF grant DMS-9022140. This work was further supported by the investigator's NSF Grants DMS 88-06815 and DMS 93-06898. The author thanks the referee for a number of interesting suggestions and questions and Ian Kiming and Jean-François Mestre for carrying out computations in connection with the example discussed at the end of §2.

UNIVERSITY OF CALIFORNIA BERKELEY, CA 94720-3840 USA *E-mail address*: ribet@math.berkeley.edu