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1. Introduction.

Let p be an odd prime number. Suppose first that E is a semistable elliptic
curve over Q. The action of Gal(Q/Q) on the group of p-division points
of E defines a representation

ρE,p : Gal(Q/Q)→ GL(2,Fp).

Serre has shown that this representation is surjective whenever it is irre-
ducible [26, Prop. 21], [29, §3.1]. Serre’s arguments prove more generally
the surjectivity of all continuous irreducible representations

ρ : Gal(Q/Q)→ GL(2,Fp)

which are semistable in the sense of [15, §1]. (Recall that ρ is semistable if the
determinant of ρ is the mod p cyclotomic character χ, the Serre conductor
of ρ is square free, and the Serre weight of ρ is either 2 or p+1. Here, the
weight and conductor are the invariants defined in [28].)

In this article, we treat the situation where Fp is replaced by a finite
field of characteristic p, or more generally by a finite product F =

∏
Fi of

finite fields of characteristic p. A continuous representation ρ : Gal(Q/Q)→
GL(2,F) may then be viewed as a product of components ρi : Gal(Q/Q)→
GL(2, Fi). We shall assume that each ρi is irreducible and semistable. Since
the determinant of each ρi is then the mod p cyclotomic character, the image
of ρ is contained in the group

A := {M ∈ GL(2,F) | detM ∈ F∗p }.

Making the supplementary hypothesis p ≥ 5, we show below that the image
of ρ is GL(2,F)-conjugate to

{M ∈ GL(2,F′) | detM ∈ F∗p },
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where F′ is the subalgebra of F generated by the traces tr
(
ρ(σ)

)
for σ ∈

Gal(Q/Q). (See Theorem 3.2 and Corollary 3.3.) In particular,
ρ
(

Gal(Q/Q)
)

= A if and only if F is generated as an Fp-algebra by the
traces.

Applying the lifting techniques of [25], we deduce an analogous result for
certain p-adic representations of Gal(Q/Q).

Our results have evident relevance to the study of the Galois represen-
tations defined by semistable abelian varieties over Q which are products
of abelian varieties with large fields of endomorphisms. (In [23], the author
referred to these as abelian varieties of “GL2 type.”) While the computation
of F′ seems to be difficult to perform in certain cases, it can be carried out
for the mod p representations coming from J0(N) if N is a prime and p is
a prime number satisfying some mild conditions. In fact, our original goal
was to find the image of the p-adic representation attached to J0(N), thus
answering questions which were formulated by R. Coleman and B. Kaskel
in connection with [10] and [2]. It is a pleasure to thank them for their
continuing encouragement and interest in this work.

2. Representations over a finite field.

Let F be a finite field, and let p be the characteristic of F. We will assume
that p is odd; most of our results will require that p be at least 5. Suppose
that

ρ : Gal(Q/Q)→ GL(2,F)

is an irreducible representation whose determinant is the mod p cyclotomic
character χ : Gal(Q/Q) → F∗p ↪→ F∗. Let k(ρ) and N(ρ) be the weight
and conductor of ρ in the sense of Serre [28, §§1-2]. As we recalled above,
Oesterlé [15, §1] has defined the notion of semistability: ρ is semistable if
the conductor N(ρ) of ρ is square free and Serre’s weight k(ρ) is either 2
or p+1.

The definition of the conductor shows that N(ρ) is square free if and only
if ρ(σ) is unipotent whenever σ belongs to an inertia subgroup of Gal(Q/Q)
for a prime ` 6= p. To illuminate the condition on k(ρ), we let I be an
inertia subgroup of Gal(Q/Q) for the prime p. The semisimplification of ρ|I
is described by a pair of characters ϕ,ϕ′ : I ⇒ F

∗
, cf. [28, §2]. Since det ρ is

the cyclotomic character χ, we have in particular ϕϕ′ = χ. If k(ρ) is one of
2, p+1, then {ϕ,ϕ′} is either {1, χ} or else the set of fundamental characters
ψ,ψ′ : I → F

∗
of level 2 ([28, §2]). It follows that the order of ϕ′ϕ−1 (a

character which is defined only up to inversion) is either p−1 or p+1.

Lemma 2.1. Assume that p > 3 and that ρ is a semistable irreducible
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representation as above. Let ε : Gal(Q/Q)→ F∗ be a continuous character.
If ε⊗ ρ is semistable, then ε is trivial.

Proof. By definition, the representation ε ⊗ ρ sends each σ ∈ Gal(Q/Q) to
the product ε(σ) ·ρ(σ) ∈ GL(2,F). If ρ and ε⊗ρ are both semistable, then ε
is certainly unramified outside p, since both ρ(σ) and ε(σ)·ρ(σ) are unipotent
whenever σ belongs to an inertia group for a prime ` 6= p. Moreover, ε2 is
the trivial character, since the determinants of ρ and ε⊗ ρ coincide. Hence
ε is either the trivial character, as desired, or the quadratic character χ

p−1
2 .

One checks easily, however, that no pair of characters drawn from the set
{ 1, χ, ψ, ψ′ } have a quadratic ratio.

Remark. The lemma does not extend to cover the case p = 3. To see this,
consider the modular forms f =

∑
anq

n and g =
∑
bnq

n which correspond
to the two strong modular elliptic curves of conductor 89. As B. Gross
explains in the last paragraphs of [8], these forms define irreducible mod 3
representations ρf and ρg of Gal(Q/Q) whose restrictions to a decomposition
group for 3 are direct sums of two characters. Further, although ρf and ρg
are semistable, the two representations are twists of each other by the mod 3
cyclotomic character. (In other words, f and g are “companions” of each
other in Serre’s language.)

To verify this latter fact, we can cite [8, Th. 13.10] along with Gross, or
perform a numerical calculation with gp [1] to check that the mod 3 congru-
ence bp ≡

(
p
3

)
ap holds for 3 ≤ p ≤ 200. Using the results of J. Sturm [33], we

can then conclude that it holds for all p ≥ 3.

It perhaps is worth recalling at this juncture that an irreducible mod p
semistable representation ρ is absolutely irreducible. This follows easily from
the fact that ρ

(
Gal(Q/Q)

)
contains a matrix with distinct eigenvalues in F∗p.

Such a matrix is obtained by taking ρ(c), where c is a complex conjuga-
tion because det ρ is the cyclotomic character, which is odd, the eigenvalues
of ρ(c) are +1 and −1. These are distinct because p is odd.

Proposition 2.2. If ρ is semistable, then the image of ρ has order divisible
by p.

Proof. Let G = ρ
(
Gal(Q/Q)

)
, and assume that the order of G is prime

to p. Since the semistability hypothesis implies that ramification subgroups
of G for primes ` 6= p are unipotent, these ramification groups are forced to
be trivial. In other words, we have N(ρ) = 1 and the representation ρ is
unramified outside p. As Serre remarks in a note on page 710 of [27, Vol. III],
an analogue of the argument of Tate [34] shows that there are no irreducible
representations ρ with this property when p = 3.



280 KENNETH A. RIBET

Now assume that p ≥ 5 and write G for the image of G in PGL(2,F).
Group theory shows that G is either cyclic or dihedral, or else one of the
three exceptional groups S4, A4, A5 [26, §2.5]. In fact, G cannot be cyclic,
since the cyclicity of G would imply that G is abelian, and hence that ρ is
not absolutely irreducible.

To rule out the other cases, one considers an inertia subgroup I of G
for the prime p. We know that I is a cyclic group of order either p + 1 or
p − 1. Indeed, I may be viewed as the image of I ⊂ Gal(Q/Q) under the
character ϕ/ϕ′ which we introduced above. This character has order either
p−1 or p+1; its image is cyclic because it is a finite subgroup of F

∗
.

Assume now that G is dihedral, and let Z be the center of G. It is evident
that I is contained in Z, since I is a cyclic subgroup of a dihedral group and
the order of I is greater than 2. Accordingly, the quadratic extension of Q
corresponding to Z is everywhere unramified this contradiction excludes
the dihedral case and shows that G must be one of the three exceptional
groups.

However, as observed in the proof of [26, Prop. 21], the fact that I has
an element of order p ± 1 rules out the groups S4, A4, A5 in case p ≥ 7.
Thus we are left only with the possibility that p = 5, in which case G is
either S4 or A4, since its order is prime to 5 by assumption. The group
I is then cyclic of order 4, since S4 has no element of order 6. Also, we
have G ≈ S4, since A4 has no element of order 4. Consider the quotient
S3 of S4. This quotient allows us to produce an S3-extension of Q which is
ramified only at 5 and such that the inertia groups for 5 in the extension
have order 2. However, there certainly is no such extension, since the class
number of Q(

√
5) is 1.

Corollary 2.3 (cf. [29, Prop. 1]). Let ρ be as in Proposition 2.2, and
suppose that p > 2. Then the image of ρ contains a subgroup isomorphic
to SL(2,Fp). In particular, if F = Fp, then ρ is surjective.

Proof. The second statement is a consequence of the first, since the cy-
clotomic character χ : Gal(Q/Q) → F∗p is surjective. To prove the first
statement, we proceed as in [26, §2.4]. Namely, let g ∈ G be an element
of order p, and let v be a non-zero vector in F ⊕ F which is fixed by g.
Since ρ is irreducible, G cannot fix the line generated by v; therefore, there
is an r ∈ G such that v and rv form a basis of F⊕ F. With respect to this

basis, g has the form

(
1 a
0 1

)
, while rgr−1 has the form

(
1 0
b 1

)
. Scaling one

of the vectors v, rv, we may assume that a = 1. Hence, in an appropriate

basis, G contains the elements

(
1 1
0 1

)
and

(
1 0
b 1

)
. A well known theorem
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of L. E. Dickson (cf. [7, Th. 2.8.4]) states that the group generated by these
elements has a subgroup isomorphic to SL(2,Fp). In fact, a more precise

statement is true for p 6= 3:

(
1 1
0 1

)
and

(
1 0
b 1

)
generate the group SL(2,F′),

where F′ = Fp(b).

Our aim now is to complement the Corollary by determining the exact image
of ρ in a situation generalizing that where F = Fp. The situation which we
have in mind is that where F is a minimal field of definition for ρ in the sense
that it is generated over Fp by the numbers tr

(
ρ(σ)

)
for σ ∈ Gal(Q/Q). We

first show in this case that F is also a minimal field of definition for ρ as a
projective representation, at least when p ≥ 5.

For the following lemma, let F be an algebraic closure of F and consider an
arbitrary subfieldK of F. We view G andG inside GL(2,F) and PGL(2,F),
respectively.

Lemma 2.4. Suppose that ρ semistable and that p ≥ 5. Then G lies in
PGL(2,K) if and only if G lies in GL(2,K).

Proof. If G lies in GL(2,K), then it is evident that G is contained in
PGL(2,K). Conversely, suppose G ⊆ PGL(2,K). Then certainly G ⊆
F
∗ · GL(2,K). Let α : Gal(Q/Q) → F

∗
/K∗ be the composite homomor-

phism

Gal(Q/Q) ρ→ G ↪→ F
∗
GL(2,K)→ (

F
∗
GL(2,K)

)
/GL(2,K) = F

∗
/K∗.

For σ ∈ Gal(Q/Q), we have α(σ) = 1 whenever the trace of ρ(σ) is a non-
zero element of K. Indeed, write ρ(σ) = t ·M , with M ∈ GL(2,K) and
t ∈ F

∗
. Then tr (ρ(σ)) = t · tr(M) and we have trM ∈ K. If tr (ρ(σ))

belongs to K∗, then t lies in K, so that ρ(σ) is an element of GL(2,K). In
particular, α(σ) = 1 whenever the trace of ρ(σ) is a non-zero element of Fp.

Let M now be the finite abelian extension of Q which is cut out by α. We
seek to show that α is identically 1, i.e., that M = Q. We first prove that
α is unramified outside p by using the remark about traces. If σ belongs to
an inertia subgroup of Gal(Q/Q) for a prime ` 6= p, then ρ(σ) is unipotent,
so that its trace is 2. Since p is odd, 2 is a non-zero element of Fp, and we
may conclude that α(σ) = 1.

Thus M is a finite abelian extension of Q which is unramified outside p.
Moreover, [M : Q] is prime to p, since F

∗
has no elements of order p. Hence

one has M ⊆ Q(µp); equivalently, α factors through the mod p cyclotomic
character χ.

Now let I be an inertia group for p in Gal(Q/Q). It suffices to show
that there is an element σ of I for which α(σ) = 1 and for which χ(σ) is a
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generator of the cyclic group F∗p. The semisimplification of ρ|I is described
by a pair of characters ϕ,ϕ′ : I ⇒ F

∗
, cf. [28, §2]. As we mentioned above,

one has either {ϕ,ϕ′} = {1, χ} or {ϕ,ϕ′} = {ψ,ψp}, where ψ and ψp are the
fundamental characters of level 2. Suppose first that we are in the former
case, and let σ ∈ I be such that t = χ(σ) is a generator of F∗p. Then
tr
(
ρ(σ)

)
= 1 + t is non-zero since p 6= 3. Thus α(σ) = 1, as required.

In the latter case, choose σ ∈ I so that t = ψ(σ) generates ψ(I) ≈ F∗p2 .
Then χ(σ) = tp+1 is a generator of F∗p; note that χ = ψψ′ = ψp+1. On the
other hand, tr

(
ρ(σ)

)
= t + tp. The number tp−1 cannot be −1, since it has

order p+ 1. Since tr
(
ρ(σ)

)
is non-zero, we may conclude α(σ) = 1.

Theorem 2.5. Assume that ρ is semistable, that p ≥ 5 and that F is
generated over Fp by the set { tr

(
ρ(σ)

) |σ ∈ Gal(Q/Q) }. Then

ρ
(
Gal(Q/Q)

)
= {M ∈ GL(2,F) | detM ∈ F∗p }.

Proof. It is clear that G = ρ
(
Gal(Q/Q)

)
is contained in the indicated matrix

group because det ρ is F∗p-valued. Since the image of det ρ is precisely F∗p,
the theorem amounts to the statement that G contains SL(2,F). An equiv-
alent assertion is that the commutator subgroup of G contains a subgroup
isomorphic to SL(2,F).

Let k be a finite extension of Fp which contains F and which has even
degree over Fp. Since det(G) ⊆ F∗p, the subgroup G of PGL(2, k) lies
in PSL(2, k). Dickson [4, Ch. XII] has enumerated all subgroups of
PSL(2, k); his list is summarized in [4, §260].

To situate G within Dickson’s list, we recall that the order of G is divisible
by p by Proposition 2.2, and that the identity representation G→ GL(2,F)
is irreducible. (The representation ρ is irreducible over F by hypothesis. It
is then absolutely irreducible, as was noted above.) It follows that G is one
of the groups enumerated in [4, §251–§253]. Since we have assumed p ≥ 5,
the final conclusion is easy to state: After replacing G by a conjugate of G
inside PGL(2, k), we have either G = PSL(2,K) or G = PGL(2,K), for
some subfield K of k.

Thus, in either case one has G ⊆ PGL(2,K). From the Lemma, G ⊆
GL(2,K). In particular, tr

(
ρ(σ)

) ∈ K for all σ ∈ Gal(Q/Q). Since these
numbers generate F over Fp, F ⊆ K. On the other hand, SL(2,K) ⊆
k∗ · G because G contains PSL(2,K). On taking commutators, we obtain
SL(2,K) ⊆ [G,G], and therefore SL(2, F ) ⊆ [G,G]. As indicated above,
this proves the theorem.

In the spirit of [26, Th. 4], let us choose an inertia group I for p in Gal(Q/Q)
and define X to be the smallest closed normal subgroup of Gal(Q/Q) which
contains I.
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Theorem 2.6. In the situation of Theorem 2.5

ρ(X) = {M ∈ GL(2,F) | detM ∈ F∗p }.

Proof. By Theorem 2.5, the groupG = ρ
(

Gal(Q/Q)
)

is the group of matrices
in GL(2,F) with determinants in F∗p. Let H = ρ(X); thus H is a normal
subgroup of G. Let H̄ and Ḡ be the images of H and G in PGL(2,F). The
group Ḡ is either PSL(2,F) or PGL(2,F), according as the degree of F
over Fp is even or odd. The discussion above shows that the order of H
is at least p − 1 ≥ 4. Therefore, the intersection H ∩ PSL(2,F) has order
at least 2. Since PSL(2,F) is normal in Ḡ, H ∩ PSL(2,F) is a non-trivial
normal subgroup of PSL(2,F). Accordingly, it is all of PSL(2,F); in other
words, H̄ contains PSL(2,F). On taking commutators as above, we see
that H contains SL(2,F). Because the mod p cyclotomic character maps I
onto F∗p, it follows now that H = G.

Remark 1. In the context of Theorem 2.6, one may consider the more
general situation where F is not necessarily generated by the traces tr

(
ρ(σ)

)
for σ ∈ Gal(Q/Q). Let F′ be the subfield of F which is generated by
these traces. Because complex conjugation acts in ρ as a matrix with
distinct rational eigenvalues, a well known theorem of I. Schur [24, IX a]
(cf. [35, Lemme I.1]) implies that ρ can be conjugated into a representation
with values in GL(2,F′). The theorem applies to this latter representa-
tion, and shows that its image is the group of matrices in GL(2,F′) whose
determinants lie in the multiplicative group of the prime field Fp.

To prove the well known statement that there is a model for ρ over F′, one
may proceed alternatively by direct computation, along the lines suggested
by Wiles [36, p. 483].
Remark 2. The referee has asked whether Theorem 2.5 extends to the case
p = 3. The answer is negative; in fact, a counterexample is furnished by the
abelian surface J0(23). Recall that J0(23) has “real multiplication” by the
Hecke ring T associated with the space of weight-two cusp forms on Γ0(23).
The algebra T ⊗ Q is the real quadratic field Q(

√
5), and T is the ring

of integers of T ⊗Q. The group V of 3-division points on J0(23) is a two-
dimensional vector space over the field F := T/3T, which has nine elements.
The action of Gal(Q/Q) on V is given by a homomorphism ρ : Gal(Q/Q)→
AutF V ≈ GL(2,F). As we shall see in §5, this representation is semistable;
it is irreducible because 3 is prime to 23− 1. Moreover, the traces tr

(
ρ(σ)

)
generate F; indeed, the trace of a Frobenius element Frob2 for the prime 2
satisfies x2 +x− 1 = 0. In view of Theorem 2.5, it is very tempting to guess
that the image of ρ contains SL(2,F). Equivalently, consider the composite
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of ρ and the natural homomorphism GL(2,F) → PGL(2,F); let Ḡ be the
image of this composite, so that Ḡ is a subgroup of PSL(2,F). The guess
that the image of ρ contains SL(2,F) means that Ḡ = PSL(2,F).

What information do we have about Ḡ? The group Ḡ is “irreducible”
(i.e., acts transitively on P1(F)) since ρ is irreducible. Also, the order of Ḡ
is divisible by 3, as one sees by considering an inertia subgroup of G for the
prime 23. Finally, the order of Ḡ is divisible by 5 because of the information
concerning tr

(
ρ(Frob2)

)
, which implies that ρ(Frob2) has order 5. The results

of Dickson used above thus permit only two possibilities for Ḡ: either Ḡ is
all of PSL(2,F), or else the alternating group A5.

Rather to the author’s surprise, calculations based on [14, Table B] sug-
gested strongly that Ḡ is in fact the smaller of these two groups. The au-
thor’s suspicion that this was the case deepened when he learned that there
is an A5-extension of Q which is ramified only at 3 and 23: the second line of
[6, Table 1] shows that the splitting field of the polynomial x5 +3x3 +6x2 +9
is such an extension. Subsequently, Jean-François Mestre carried out com-
putations which confirm that this latter A5-extension is indeed the extension
of Q which is cut out by the projective representation deduced from ρ. In
particular, one has Ḡ ≈ A5.

3. Products.

We next consider finite products of representations as above, keeping fixed
the prime number p. Thus let F1, . . . , Ft (t ≥ 1) be finite fields of charac-
teristic p, where p is a prime which is different from 2 and 3. Let F be the
finite étale Fp-algebra F1×· · ·×Ft. Suppose that ρ : Gal(Q/Q)→ GL(2,F)
is a continuous homomorphism, so that ρ is a product of representations ρi
(i = 1, . . . , t) as above. We will assume that each ρi is semistable and
irreducible, and also that det ρi = χ for i = 1, . . . , t. With the evident con-
vention, the latter hypothesis may be summarized by the formula det ρ = χ.

For each σ ∈ Gal(Q/Q), we obtain an element tr
(
ρ(σ)

)
of F by considering

the trace of the matrix ρ(σ). Motivated by the remark above, we let F′ be
the subalgebra of F generated by the tr

(
ρ(σ)

)
.

Lemma 3.1. The representation ρ has a model over F′.

Proof. As we have seen, each component ρi has a model over the subfield
of Fi generated by the traces tr

(
ρi(σ)

)
. After replacing ρi by such a model

(and Fi by the trace field in question), we arrive at a situation in which F′

maps surjectively onto each factor Fi.
As one knows, F′ is then isomorphic to a partial product of the factors Fi.

To see this explicitly, we let π : F→ Fi be the projections (x1, . . . , xt) 7→ xi
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and consider the following relation on the set { 1, . . . , t }: i ∼ j if and only
if the map πi × πj : F′ → Fi × Fj is not surjective. It is easy to see that
this relation is an equivalence relation and that i ∼ j if and only if there
is an isomorphism σ : Fi

∼→ Fj so that πj = σ◦πi on F′. If there is such an
isomorphism, it is unique; we denote it σji. One shows that

F′ = {(x1, . . . , xt) ∈ F | xj = σji(xi) for all pairs (i, j) such that i ∼ j}.
In particular, F′ is isomorphic to the product

∏
i∈I Fi, where I is a set of

representatives for the equivalence ∼.
By the Brauer-Nesbitt theorem, ρj and σjiρi are isomorphic whenever i

and j are equivalent. (The two representations have the same trace and
determinant.) Replace ρj by σjiρi for all equivalent pairs (i, j) with i ∈ I.
Then the representation ρ, a priori with values in GL(2,F), takes values
in GL(2,F′).

Theorem 3.2. One has

ρ
(
Gal(Q/Q)

)
= {M ∈ GL(2,F) | detM ∈ F∗p}

if and only if F′ = F.

Proof. The necessity is clear, since the trace function SL(2,F)→ F is surjec-
tive. For the sufficiency, as in the proof of Theorem 2.5, one must show that
ρ
(
Gal(Q/Q)

)
contains SL(2,F). Let H = ρ

(
Gal(Q/Q)

)∩SL(2,F), so that
H is a subgroup of the product SL(2, F1)×· · ·×SL(2, Ft). By Theorem 2.5,
H projects onto each factor SL(2, Fi). Because each group SL(2, Fi) is its
own commutator subgroup, the “two principle” [19, 3.3] implies that H is
the full product of the SL(2, Fi) if and only if H maps onto each product
SL(2, Fi)× SL(2, Fj) for i 6= j.

Assume, then, that we have i 6= j, and suppose that the image of the
product ρi×ρj does not contain SL(2, Fi)×SL(2, Fj). By exploiting results
of Dieudonné and Hua, one may construct: (i) An isomorphism ω : Fi

∼→
Fj, and (ii) a continuous homomorphism ε : Gal(Q/Q) → F ∗j such that
ωρi and ρj ⊗ ε are isomorphic representations of Gal(Q/Q) over Fj. This
statement was proved during the course of the proof of [19, Th. 3.8] —
the theorem itself states merely that ωρi and ρj ⊗ ε have equal traces and
determinants.

By Lemma 3.1, however, we have ε = 1; thus ωρi ≈ ρj. Accordingly, we
have ω

(
tr(ρi(σ))

)
= tr(ρj(σ)) for all σ ∈ Gal(Q/Q). This means that the

image of tr
(
ρ(σ)

)
in Fi×Fj lies in the subalgebra { (x, ωx) |x ∈ Fi } of Fi×Fj.

Thus the quantities tr
(
ρ(σ)

)
fail to generate Fi×Fj over Fp. This contradicts

the hypothesis that they generate the full product F over Fp.
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Corollary 3.3. Assume that ρ is as in Theorem 3.2. Then the image of ρ
is conjugate in GL(2,F) to the group

{M ∈ GL(2,F′) | detM ∈ F∗p}.

Proof. By Lemma 3.1, there is a model for ρ over F′: after conjugating by
a matrix in GL(2,F), we make ρ take values in GL(2,F′). Applying the
Theorem to this model, we arrive at the desired conclusion.

We continue the discussion begun with Theorem 2.6, letting X be the
subgroup of Gal(Q/Q) which appears in the statement of that result.

Theorem 3.4. In the situation of Theorem 3.2, suppose that F = F′. Then
ρ(X) = {M ∈ GL(2,F) | detM ∈ F∗p }.

Proof. The group ρ(X) is a normal subgroup of G = ρ
(

Gal(Q/Q)
)
. By

Theorem 3.2, G = {M ∈ GL(2,F) | detM ∈ F∗p }. The intersection ρ(X) ∩
SL(2,F) is then normal in SL(2,F); it maps onto each factor SL(2, Fi) by
Theorem 2.6. On taking commutators with elements of SL(2,F) of the form
(1, . . . , 1, α, 1, . . . , 1), we see that ρ(X)∩SL(2,F) contains SL(2, Fi) (viewed
as a subgroup of SL(2,F)) for each i. It follows that ρ(X) contains SL(2,F).
We then obtain ρ(X) = G, since the mod p cyclotomic character is totally
ramified at p.

4. Lifts.

Again suppose that p is a prime ≥ 5 and let O1, . . . ,Ot be integer rings of
finite-degree unramified extensions of Qp. For each i, let ρ̃i : Gal(Q/Q) →
GL(2,Oi) be a continuous representation whose determinant is the p-adic
cyclotomic character χ̃ : Gal(Q/Q)→ Z∗p. Let ρ̃ be the product of the ρ̃i, so
that ρ̃ is a p-adic representation Gal(Q/Q)→ GL(2,O), where O :=

∏Oi.
The diagonal embedding Zp ↪→ O induces an inclusion Z∗p ↪→ O∗. We clearly
have ρ̃

(
Gal(Q/Q)

) ⊆ A, where

A = {M ∈ GL(2,O) | detM ∈ Z∗p }.

Let F = O/pO, and let ρ : Gal(Q/Q) → GL(2,F) be the reduction of ρ̃
mod p.

In the following statement, X is again the closed normal subgroup of
Gal(Q/Q) which is generated by the inertia groups for p in Gal(Q/Q).
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Theorem 4.1. Suppose that the mod p reduction of each ρ̃i is semistable
and irreducible. Assume that F is generated as an Fp-algebra by the traces
tr ρ(g) with g ∈ Gal(Q/Q). Then ρ̃(X) = ρ̃

(
Gal(Q/Q)

)
= A.

Remark. Using Nakayama’s Lemma, one may reformulate the trace hy-
pothesis as the apparently stronger assertion that O is generated as a Zp-
algebra by the traces tr ρ̃(g) with g ∈ Gal(Q/Q).

Proof. The group ρ̃
(
Gal(Q/Q)

)
and its subgroup ρ̃(X) are closed subgroups

of A whose determinants are equal to all of Z∗p. It suffices to show that
ρ̃(X) contains SL(2,O). We recall the following fact (see [25, p. IV-23]
and [19, Th. 2.1]):

Proposition 4.2. Let G be a closed subgroup of GL(2,O) and let Ḡ be the
image of G in GL(2,O/pO). If Ḡ contains SL(2,O/pO), then G contains
SL(2,O).

Proof. On taking G = ρ̃(X), we now obtain the required inclusion ρ̃(X) ⊇
SL(2,O) from Theorem 3.4.

5. Semistable abelian varieties of GL2-type over Q.

Let A be an abelian variety over Q for which Q⊗EndQA is a number field
of degree equal to the dimension of A. Suppose that the ring R = EndQA
is the full ring of integers in the field Q⊗ EndQA. (After replacement of A
by an isogenous abelian variety, this hypothesis is always verified.) Let m be
a maximal ideal of R and let A[m] be the kernel of m on A, i.e., the group
of points in A(Q) which are annihilated by all elements of m. It is easy to
check that A[m] is free of rank two over F = R/m, cf. [32, Prop. 10, p. 56].
In fact, the representation

ρ : Gal(Q/Q)→ GL(2,F)

defined by the action of Gal(Q/Q) on A[m] is just the mod m reduction of
the m-adic representation of Gal(Q/Q) which is attached to A. As usual,
we denote by p the characteristic of F.

Proposition 5.1. Assume that p is odd, that ρ is irreducible, and that A
is semistable over Q. Then ρ is a semistable representation.

Proof. We first show that the determinant of ρ is the mod p cyclotomic
character χ. According to the statement of [23, Lemma 3.1], we have det ρ =
εχ, where ε is a Dirichlet character Gal(Q/Q) → R∗ which depends only
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on A (i.e., is independent of m) and which is ramified only at primes of
bad reduction for A. In fact, the proof of this Lemma shows that ε is
unramified at a prime q whenever the following condition is satisfied: there
is a prime λ of R such that the determinant of the λ-adic representation of A
is unramified at q. Now fix q and take any prime λ not dividing q. By a
well known result of Grothendieck [9, Prop. 3.5], each element of an inertia
subgroup for q in Gal(Q/Q) acts unipotently in the λ-adic representation
for A. In particular, the determinant of this representation is unramified
at q. Thus ε is unramified at every prime number q, so that ε is the trivial
character.

The same proposition of Grothendieck, applied to the m-adic representa-
tion for A, shows that the conductor of ρ is square free. We may paraphrase
this statement by saying that ρ is semistable outside p. Furthermore, results
of Raynaud [16] imply that k(ρ) = 2, so that ρ is semistable at p, whenever
ρ is finite at p. (See [28, Prop. 4, p. 189].) It remains only to show that
k(ρ) = p+1 if ρ is not finite at p.

For this, we consider A[m] as a subgroup of A[p], and view both as modules
for a decomposition group Dp in Gal(Q/Q) for the prime p. As explained in
the proof of [21, Lemma 6.2], one may deduce from Grothendieck’s study in
SGA7I that A[p] is an extension of an unramified Dp-module by a subgroup
A[p]f which is finite, i.e., which extends to a finite flat group scheme over Zp.
Were A[m] contained in A[p]f , A[m] would be finite, contrary to assumption.
Hence A[m] has an unramified quotient. This implies that the restriction

of ρ to Dp has the form

(
θ1χ ∗
0 θ2

)
, where the θi are unramified characters.

The recipe for k(ρ) given in [28, §2] then sets k(ρ) = p+1. (Compare
Remarque (1) on page 188 of [28].)

6. Application to J0(N) for prime N .

Let N be a prime number, and consider the abelian variety J = J0(N)
over Q. In this section and the next, we will study the action of Gal(Q/Q)
on torsion points of J . The first work in this direction was the investiga-
tion of Shimura [30], which concerns the mod p representation of Gal(Q/Q)
defined by J0(11), when p lies between 7 and 97. Shimura’s discussion was
completed by Serre [26, §5.5], who determined for all p the image of the
mod p representation attached to J0(11). Subsequently, Lang-Trotter [12],
Part I, §8; calculated the image of the (adelic) representation of Gal(Q/Q)
defined by all torsion points of J0(11).

In what follows, we generalize some of the results of Serre and Lang-
Trotter to the case where 11 is replaced by an arbitrary prime. We exploit
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the insights of Mazur’s article [13], which makes an extensive study of the
action of Gal(Q/Q) on torsion points of J0(N), and the recent thesis of
B. Kaskel [10], which determines the image of the adelic representation de-
fined by J0(37). There is a certain amount of overlap with the joint article [2].

Let T be the ring of Hecke operators Z[. . . , Tn, . . . ], considered as a ring
of endomorphisms of J0(N). To orient the reader, we recall that T is the full
ring of endomorphisms of J0(N) [13, p. 95]. To avoid the situation where N
is very small, we will assume that J0(N) 6= 0. This means that N = 11 or
that N ≥ 17.

Let p be a prime number ≥ 5.

Proposition 6.1. The quotient T/pT is generated by the operators Tn with
n prime to pN .

Proof. Let S be the space of cusp forms of weight 2 on Γ0(N) over Fp. We
view S as the mod p reduction of the space of weight-two forms on Γ0(N)
with integral q-expansions. (See [13, Ch. II, §4] for a comparison of several
possible definitions of S.) We consider the bilinear pairing α : T/pT× S →
Fp which maps (T, f) to the initial coefficient of q in the Fourier expansion
of f |T . It is well known that α is a perfect pairing; this is explained, for
example, in [20, §1]. To prove the Proposition, then, it suffices to prove that
there is no non-zero element f =

∑
anq

n of S which satisfies an = 0 for all
n prime to pN .

Suppose that f =
∑
anq

n satisfies the condition. We will show first that
an = 0 for all n prime to N . If N = p there is nothing extra to prove, so we
will assume for the moment that N and p are distinct. Let g be the form∑

(N,n)=1 anq
n, i.e., the sum

∞∑
n=1

bnq
n, bn =

{
an if (n,N) = 1,
0 otherwise.

Then bn = 0 whenever n is not a multiple of p; our aim is to show that g = 0.
Now the point is that g may be considered as a weight-two mod p modular
form on Γ0(N 2); this follows from [31, Prop. 3.64]. The hypothesis about
the vanishing of the bn means that g is annihilated by the operator θ = q d

dq
.

Since p > 2, this forces g = 0 as desired, since θg has “filtration” p + 3 if
g is non-zero. (This is Katz’s generalization of the Serre-Swinnerton-Dyer
theorem [11, p. 55].)

To complete the proof, we must show that f = 0. This follows from
Proposition 4.10, Lemma 5.9 and Lemma 5.10 of [13, Ch. II].

Remark. The argument we have given is essentially that of [13], Ch. II,
Prop. 14.13. The exploitation of q d

dq
to deal with the absence of Tp is a
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familiar ploy it was used by the author in [22, Prop. 2] and by Wiles in
[36, Lemma, p. 491].

Suppose now that m is a maximal ideal of T of residue characteristic p.
(We continue to assume p ≥ 5.) Let J [m] denote the kernel of m on J(Q).
By the results of [13], J [m] defines the two-dimensional semisimple repre-
sentation ρm of Gal(Q/Q) which is associated with m; this representation
is irreducible if and only if m is not an Eisenstein prime of T. When m
is non-Eisenstein, ρm is a semistable representation: this follows from the
results of Deligne-Rapoport [3] to the effect J has multiplicative reduction
at N , together with Proposition 5.1.

Proposition 6.2. The image of ρm : Gal(Q/Q) → GL(2,T/m) is the
group of elements of GL(2,T/m) having determinant in F∗p.

Proof. This mild strengthening of [13, Ch. II, Prop. 14.12] may be derived
directly from Theorem 2.5. Indeed, for each prime ` different from p and N ,
the image under ρm of a Frobenius element for ` in Gal(Q/Q) has trace
T` mod m. It follows from the Lemma above that the T` mod m generate
T/m.

Remark. By using Theorem 2.6 in place of Theorem 2.5, we obtain the
stronger statement that ρm(X) is the group of matrices in GL(2,T/m) whose
determinants lie in F∗p. A similar remark applies to the Proposition which
follows.

Suppose next that p ≥ 5 is such that none of the m|p in T is an Eisenstein
prime. This means simply that N 6≡ 1 mod p. Let F be the Fp-algebra∏
m|p T/m, and let

ρ : Gal(Q/Q)→ GL(2,F)

be the product of the ρm.

Proposition 6.3. The image of ρ is the group of matrices in GL(2,F)
having determinant in F∗p.

Proof. Indeed, the natural map T/pT → F is surjective by the Chinese
remainder theorem. Accordingly, the Lemma implies that F is generated by
the images of the T` with ` prime to pN . In the language of Theorem 3.2,
this means that F′ = F. Applying that theorem, we find that the image of ρ
is as stated.

Continuing the discussion, we add the hypothesis that the surjection
T/pT→ F is an isomorphism, i.e., that p is unramified in T. Then ρ is the
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representation giving the action of Gal(Q/Q) on the group J [p], viewed as a
free T/pT-module of rank two. Proposition 6.3 thus furnishes a description
of the Galois group of the field cut out by the p-division points of J . Further,
as we have seen in Proposition 4.2, the result of Proposition 6.3 is equivalent
to an analogous statement about the p-adic Galois representation defined
by J . More precisely, because p in unramified in T, T⊗ Zp is a product of
discrete valuation rings. The Tate module Tap(J) of J is then automatically
free of rank two over T ⊗ Zp. After choosing a basis of Tap(J), we may
summarize the action of Gal(Q/Q) on the p-power division points of J by a
homomorphism

ρ̃ : Gal(Q/Q)→ GL(2,T⊗ Zp).

By Propositions 4.2 and 6.3, we find that the image of ρ̃ is “as large as
possible”:

Theorem 6.4. Suppose that p is unramified in T and that p is prime to
6 · (N−1). Then ρ̃

(
Gal(Q/Q)

)
= {M ∈ GL(2,T⊗ Zp) | detM ∈ Z∗p }.

Remark. We obtain the more precise equality

ρ̃(X) = {M ∈ GL(2,T⊗ Zp) | detM ∈ Z∗p }

from Theorem 3.4 and Proposition 4.2.

7. Complements.

We continue our study of J = J0(N), where N is a prime number by studying
products of p-adic representations attached to J . We are motivated by the
discussions of [25, Ch. IV, §3] and [26, §4.4], whose tools serve very well in
this context.

For each prime p, let Tap(J) be the Zp-adic Tate module of J and write ρp
(rather than ρ̃, as above) for the p-adic representation of Gal(Q/Q) which
is associated to J :

ρ̃ : Gal(Q/Q)→ AutT⊗Zp (Tap(J)) ⊂ AutT⊗Qp
(Tap(J)⊗Q) .

Let Gp be the image of ρp. This group was determined in Theorem 6.4 for
most prime numbers p. We shall describe the p-adic Lie algebra of Gp in
general; thus we determine Gp “up to finite groups” even when (or especially
when) p does not satisfy the hypothesis to Theorem 6.4.

We recall that Mazur proved [13, Ch. II, §15-§17] that Tap(J) is free of
rank two over T⊗ Zp when p is odd, and also in many circumstances when
p = 2. In this favorable situation, we may view Gp as a closed subgroup
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of GL(2,T⊗Zp). In any case, Tap(J)⊗Qp is free of rank two over the Qp-
algebra T ⊗ Qp by [13, Ch. II, Lemma 7.7]. Hence we may always regard
Gp as a closed subgroup of GL(2, E), where E = T ⊗ Qp. Note that E
is a commutative semisimple Qp-algebra, i.e., the product of fields which
are finite extensions of Qp. Because the determinant of ρp is the p-adic
cyclotomic character, we have Gp ⊆ Hp, where

Hp := {M ∈ GL(2, E) | detM ∈ Q∗p}.
Proposition 7.1. The group Gp is open in Hp.

Proof. Let g and h be the p-adic Lie algebras of Gp and Hp, respectively.
Thus

g ⊆ h = Qp × sl2(E),

where sl2(E) = [h, h] is the Lie algebra of two-by-two matrices over E with
trace 0. Since the p-adic cyclotomic character has infinite order, g is not
contained in sl2(E). The proposition states that g = h.

The equality g = h is proved as [18, Th. 4.5.4] in the special case where
T⊗Q is a field, i.e., where J is a simple abelian variety. (Note that EndQ J =
EndQ J , as was proved in [17]; hence J is simple over Q if and only if
it is absolutely simple.) In the general case, J is isogenous over Q to a
product A1 × · · · × At of simple abelian varieties to which [18, Th. 4.5.4]
applies. Thus g and h have equal images in End(Tap(Ai) ⊗Qp) for each i.
Moreover, one knows that Endg(Tap(J)) = E = Endh(Tap(J)). Indeed, the
Tate conjecture for abelian varieties, which was proved in [5], implies that
Endg(Tap(J)) = (EndQ J)⊗Qp. On the other hand, one knows by [17] that
(EndQ J) ⊗Q = T ⊗Q; hence (EndQ J) ⊗Qp = E, as was claimed. The
proof of [18, Th. 4.4.10] now yields the required equality g = h.

For each set of prime numbers S, let

ρS : Gal(Q/Q)→
∏
p∈S

Aut(Tap(J))

be the product of the ρp for p in S. Let GS be the image of ρS, so that GS

is a closed subgroup of the product
∏
p∈S Gp.

Corollary 7.2. If S is a finite set of primes, then GS is open in HS :=∏
p∈SHp.

Proof. The assertion to be proved follows from Proposition 7.1 and an argu-
ment due to Serre [25, Lemma 4, p. IV-24]:

Fix p ∈ S for the moment, and ensure by a change of basis if necessary
that Gp is a subgroup of GL(2, R), where R is the ring of integers of E. Let
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F be the product of the residue fields of the factors of R, and let G′p be the
kernel of the composition

Gp ↪→ GL(2, R)→ GL(2, F ).

Clearly, G′p has finite index inGp, so thatG′p is open inHp by Proposition 7.1.
Further, G′p is a pro-p group; in fact, it is a projective limit of nilpotent
groups of p-power order.

Let G′S be the inverse image of
∏
p∈S G

′
p in GS. Since G′S is a subgroup of∏

p∈S G
′
p, it is pro-nilpotent. Thus G′S is the product of its Sylow subgroups.

Now the p-Sylow subgroup of G′S has finite index in Gp. Thus G′S has finite
index in

∏
p∈S Gp, a group which is open in HS by Proposition 7.1. Hence

GS is open in HS.

Theorem 7.3 (Kaskel [10]). Assume that N does not belong to S. Then
GS =

∏
p∈S Gp.

Proof. We first consider the case where S is finite, arguing by induction on the
size of S. The statement to be proved is evident if S has at most one element,
so we may assume that S = T

∐{p} and that the statement is true with S
replaced by T . We must show that the natural injection GS ↪→ GT × Gp

is an isomorphism, or equivalently that the Galois extensions of Q cut out
by ρT and ρp are linearly disjoint. Let K be the intersection of these two
fields. Then K is ramified only at N , since ρp is ramified only at N and at p,
while ρT is unramified at p. Further, the inertia groups for the prime N in
the image of ρp are pro-p groups since J0(N) is semistable at N . Similarly,
the inertia groups for N in the image of ρT are profinite groups of order
prime to p; indeed, p is not a member of T . Hence the inertia groups for N
in Gal(K/Q) are trivial, so that K is an everywhere unramified extension
of Q. This gives K = Q and proves the linear disjointness.

The case where S is not necessarily finite now follows, since GS is closed
and dense in

∏
p∈S Gp.

Corollary 7.4. Let S be the set of prime numbers p which are prime both
to 6(N − 1) and to the discriminant of T. Then

GS =
∏
p∈S
{M ∈ GL(2,T⊗ Zp) | detM ∈ Z∗p}.

Proof. We shall give two proofs of this result, the first in spirit of Kaskel’s
theorem. For each p ∈ S, we have Gp = {M ∈ GL(2,T⊗Zp) | detM ∈ Z∗p }
by Theorem 6.4. Let T be the set of primes p ∈ S which are different from N ;
thus S = T

∐{N} if N is prime to the discriminant of T and S = T if not.
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We clearly have GT =
∏
p∈T{M ∈ GL(2,T⊗Zp) | detM ∈ Z∗p } by Kaskel’s

theorem and Theorem 6.4. This gives what is wanted if S = T . In what
follows, we suppose to the contrary that N belongs to S.

The idea now is to analyze the subgroup GS of GT ×GN as in the proof
above. Let K/Q now be the obstruction to the equality GS = GT ×GN . In
other words, K is the intersection of the two extensions of Q whose Galois
groups are the images of GT and GN . Clearly, K is ramified only at N .
Moreover, I is an inertia group for N in Gal(K/Q), then the order of I (as a
supernatural number) is divisible only by the primes in T . In particular, this
order is prime to N(N − 1). On the other hand, it is easy to see that only
N and primes dividing N − 1 can intervene in the order of an inertia group
for N in the image of ρN . Indeed, the restriction of ρN to an inertia group

for N in Gal(Q/Q) has the form

(
χ ∗
0 1

)
, where χ is the N -adic cyclotomic

character. Hence K is unramified at N , and we obtain the required equality
GS = GT ×GN as in the proof of Kaskel’s theorem.

To make a second proof of the equality

GS =
∏
p∈S
{M ∈ GL(2,T⊗ Zp) | detM ∈ Z∗p},

we fix a prime p in T and let X be the group which we considered in Theo-
rem 2.6 and Theorem 3.4. We have ρp(X) = {M ∈ GL(2,T⊗Zp) | detM ∈
Z∗p } as explained in the remark at the end of the preceding section. On the
other hand, if p′ is an element of S which is different from p, ρp′ is unramified
at p and therefore ρp′(X) = {1}. Thus ρS(X) contains

{M ∈ GL(2,T⊗ Zp) | detM ∈ Z∗p },
viewed as a subgroup of the product. Hence we have

GS ⊇
∏
p∈T
{M ∈ GL(2,T⊗ Zp) | detM ∈ Z∗p}.

This gives what is wanted if S = T , so we assume once again that N belongs
to S. Then GS is a subgroup of the product∏

p∈S
{M ∈ GL(2,T⊗ Zp) | detM ∈ Z∗p }

which maps onto {M ∈ GL(2,T ⊗ ZN) | detM ∈ Z∗N } by Theorem 6.4.
Moreover GS contains the kernel of the natural projection∏

p∈S
{M ∈ GL(2,T⊗ Zp) | detM ∈ Z∗p}

→ {M ∈ GL(2,T⊗ ZN) | detM ∈ Z∗N}.
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Therefore GS is the full product.

For our final result, we consider the product ρf of all of the representa-
tions ρp, i.e., the representation ρS where S is the set of all prime numbers.
We view ρf as taking values in

{M ∈ GL(2,T⊗Q2) | detM ∈ Q∗2}×
∏
p6=2

{M ∈ GL(2,T⊗Zp) | detM ∈ Z∗p},

a group that we will call A. (We separate 2 from the odd primes since it is
not known that Ta2 is free of rank two over T⊗ Z2.)

Theorem 7.5. The image of ρf is an open subgroup of A.

Proof. Let Ap be the pth component of A, so that we have A =
∏Ap, with

the product extended over all primes. Let S be the set of those p which are
prime to 6(N − 1)N and to the discriminant of T. Fix p ∈ S and let X be
the subgroup of Gal(Q/Q) which we have considered repeatedly: the closed
subgroup of Gal(Q/Q) generated by all inertia groups for p. As we have seen,
ρp(X) = Ap; on the other hand ρp′(X) = {1} for p′ 6= p. Hence ρf(X) = Ap,
where Ap is considered as a subgroup of the product A. On varying p, we
find that ρf

(
Gal(Q/Q)

)
contains the group

∏
p∈S Ap, i.e., the kernel of the

projection A → ∏
p6∈S A. On the other hand, the image of Gal(Q/Q) in this

finite product is open by Corollary 7.2. Hence ρf

(
Gal(Q/Q)

)
is open in the

full product.
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