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ICOSAHEDRAL GALOIS REPRESENTATIONS

Richard Taylor

To the memory of Olga Taussky-Todd

Introduction.

Let K be a number field. We will let GK denote its absolute Galois group;
and for each finite prime ℘ of K we will let G℘ ⊂ GK denote a decomposition
group for ℘, I℘ C G℘ the inertia subgroup and Frob℘ ∈ G℘/I℘ the arithmetic
Frobenius element. These are all uniquely defined up to conjugation in GK .
We will also let N℘ denote the cardinality of the residue field of ℘. If
ρ : GK → GLd(C) is a continuous representation then it has finite image.
Following Artin [2] we introduce the L-function

L(ρ, s) =
∏
℘

det(1− ρI℘(Frob℘)(N℘)−s)−1,

where the product is over all finite primes of K and where ρI℘ denotes
the representation of G℘/I℘ on the I℘ invariants of ρ. This definition is
easilly seen to independent of the choices of G℘, I℘ and Frob℘. The product
converges for the real part of s greater than 1. Brauer [3] showed that L(ρ, s)
has meromorphic continuation to the whole complex plane and satisfies a
certain functional equation relating the values at s and 1 − s. Artin [2]
conjectured that L(ρ, s) is holomorphic except for a possible pole at s = 1
when the trivial representation is a constituent of ρ. Because any such
representation is semi-simple and because L(ρ1 ⊕ ρ2, s) = L(ρ1, s)L(ρ2, s)
we see that it suffices to treat the case where ρ is irreducible. It is now
generally expected (the “strong Artin conjecture”) that in the case where
ρ is irreducible there should be a cuspidal automorphic representation π(ρ)
of GLn(AK) such that L(π(ρ), s) = L(ρ, s). This implies Artin’s original
conjecture, but appears to be strictly stronger. In the case dim ρ = 1 the
existence of π(ρ) follows from class field theory ([1]) and the holomorphy
of L(ρ, s) was known ([13]) before Artin made his more general conjecture.
The case dim ρ = d is still open for any d ≥ 2, even if K = Q.

For the rest of this article we will restrict attention to two dimensional
continuous irreducible representations ρ : GK → GL2(C). Such representa-
tions can be classified according to the image of the associated projective

337

http://nyjm.albany.edu:8000/PacJ/
http://nyjm.albany.edu:8000/PacJ/1997/v181no3.html
http://nyjm.albany.edu:8000/PacJ/1997/


338 RICHARD TAYLOR

representation proj(ρ) : GK → PGL2(C). It is known that the image of
proj(ρ) is either the dihedral group D2n of order 2n for some n ≥ 2, the al-
ternating group A4, the symmetric group S4 or the alternating group A5. In
the case that the image of proj(ρ) is dihedral then Artin proved that L(ρ, s)
is holomorphic. (In this case ρ = IndK

L χ, where L/K is a quadratic exten-
sion and χ is a one dimensional representation of GL. Artin showed that
L(ρ, s) = L(χ, s).) In this case the strong Artin conjecture is also known to
be true, for instance by the theory of theta series.

Langlands [18], using his theory of base change, succeeded in treating the
strong Artin conjecture when the image of proj(ρ) is A4. He also treated
some cases where K = Q and the image of proj(ρ) is S4. Tunnell [24] com-
bining Langlands techniques with some results on automorphic L-functions
treated the general case where the image is S4. These methods relied essen-
tially on the solubility of A4 and S4 and seem to offer little insight into the
so called icosahedral case where the image of proj(ρ) is A5.

In this article we will describe an approach to the strong Artin conjecture
for odd, irreducible, icosahedral representations ρ : GQ → GL2(C). By odd
we mean that det ρ(c) = −1, with c denoting complex conjugation. I first
outlined this approach to Wiles in 1992 when I learnt of his progress on the
Shimura-Taniyama conjecture. Since then some progress has been made on
this approach and it is perhaps time to describe the overall strategy in print.
In the first section we will recall some background material. In the next
section we will sketch the basic strategy, and in the last two sections we will
fill out this sketch somewhat.

1. Notation and background.

In this section we shall establish some notation and recall some basic facts
about modular forms. We will let H denote the upper half complex plane.
By a modular form of weight k and level N we shall mean a holomorphic
function f : H → C such that

1. f((az + b)/(cz + d)) = (cz + d)kf(z) for all

(
a b
c d

)
∈ Γ1(N),

2. for all

(
a b
c d

)
∈ SL2(Z) and for thr real part of z in any bounded

interval f((az + b)/(cz + d)) → 0 as the imaginary part of z tends to
infinity.

Here Γ1(N) denotes the set of

(
a b
c d

)
∈ SL2(Z) such that c ≡ d − 1 ≡

0 mod N . We will let Sk(N) denote the finite dimensional complex vector
space of modular forms of weight k and level N . This space has a natural
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action of (Z/NZ)× by d 7→ 〈d〉, where f |〈d〉(z) = (cz+d)−kf((az+b)/(cz+d))

for any

(
a b
c d

)
∈ SL2(Z) with c ≡ 0 mod N and d ≡ d mod N . Any f ∈

Sk(N) can be expressed
∞∑
n=1

cn(f)qn,

where q = e2πiz.
If p6 |N is a prime number we define an operator Tp on Sk(N) by

f |Tp(z) =
∞∑
n=1

cnp(f)qn +
∞∑
n=1

cn(f |〈p〉)qnp.

If p|N is a prime then we define an operator Up on Sk(N) by

f |Up(z) =
∞∑
n=1

cnp(f)qn.

For any n ∈ Z≥1 we define an operator T (n) on Sk(N) by the formulae
1. T (mn) = T (m)T (n) if (m,n) = 1,
2. T (pr) = U r

p if p|N ,
3.

∑∞
r=0 T (pr)Xr = (1− TpX + pk−1〈p〉X2)−1 if p6 |N .

We have the useful formula c1(f |T (n)) = cn(f). Finally we define Sp =
pk−2〈p〉 = (T (p)2 − T (p2))/p if p6 |N .

We let Tk(N) denote the Z-algebra generated by 〈d〉 for d ∈ (Z/NZ)×, by
Tp for p6 |N and by Up for p|N all acting on Sk(N). It is also the Z-algebra
generated by the T (n) for all n ∈ Z≥1 acting on Sk(N). It is commutative
and finitely generated as an abelian group. The pairing

Sk(N) × (Tk(N)⊗Z C) −→ C
(f , T ⊗ λ) 7−→ λc1(f |T ),

is perfect. For any ring R we define Sk(N,R) = Hom Z(Tk(N), R). If R ⊂ C
then Sk(N,R) is simply the space of f ∈ Sk(N) with cn(f) ∈ R for all n. An
element f ∈ Sk(N,R) is called an eigenform if the map f : Tk(N)→ R is a
ring homomorphism. For R ⊂ C, f is an eigenform if and only if f (as an
element of Sk(N)) is a common eigenvector for all the elements of Tk(N).

Suppose l|N . Then Hida introduced the idempotent e = limn→∞ Un!
l ∈

Tk(N) ⊗ Zl. It has the property that Ul is a unit in e(Tk(N) ⊗ Zl) and is
topologically nilpotent in (1−e)(Tk(N)⊗Zl). Now suppose l 6 |N . Then Hida
showed that there exists a finite torsion free Λ = Zl[[X]]-algebra T0(N) with
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distinguished elements T (n) for all n ∈ Z≥1 such that for any k ≥ 1 and any
r ≥ 0there is a map

T0(N)/((1 +X)l
r − (1 + p)l

r(k−1))T0(N)→→ e(Tk(Nl1+r)⊗ Zl)
which takes T (n) to T (n) for all n and which is an isomorphism after ten-
soring with Ql if k ≥ 2. (See [15]. We remark that there are various normal-
isations one can use here. In our normalisation if p is a prime ≡ 1 mod Nl
and if p = (1 + l)s in Zl then pSp = (1 + X)s in T0(N).) If l ≥ 5 then
it is known that T0(N) is free over Λ and that for k ≥ 2 the above maps
are isomorphisms before tensoring with Ql (see [14]). If k = 1 then it is
known that in general the above surjection is not an isomorphism even after
tensoring with Ql (see [19]).

The quotient Y1(N)an = Γ1(N)\H can be algebraised to a smooth irre-
ducible curve Y1(N)/C with smooth compactification X1(N). We let cusps
denote the reduced divisor X1(N) − Y1(N). If N ≥ 5 then Y1(N) is the
(fine) moduli space for elliptic curves with a point of exact order N . In this
case the pull back along the zero section of of the relative differentials of the
universal elliptic curve over Y1(N) gives a line bundle ω/Y1(N). This line
bundle has a natural extension to X1(N) which we shall also denote ω. Then
Sk(N) = H0(X1(N), ω⊗k(−cusps)). All these objects have natural models
over Z, except that the extension of ω to X1(N) may only be defined over
Z[1/N ] (see [17]).

Suppose that l 6 |N and let SS ⊂ Y1(N)⊗Fl denote the finite set of points
which parametrise supersingular elliptic curves. For each x ∈ SS choose
Tx ∈ OY1(N)⊗W (Fl),x such that O∧

Y1(N)⊗W (Fl),x
∼= W (Fl)[[Tx]]. If r ∈ lQ∩[1, 1/l)

we let SS<r denote the union over x ∈ SS of the lifts x of x with |Tx(x)|l < r.
If r ∈ lQ ∩ (1, 1/l] we let X1(N)>r denote the Ql points x of X1(N) which
either do not reduce to a point of SS or reduce to x ∈ SS but |Tx(x)|l > r.
Both SS>r and X1(N)<r are admissible open subspaces of the rigid space
attached to X1(N) ⊗K for a suitable finite extension K/Ql (depending on
r). If r1 < r2 then X1(N) = X1(N)>r1 ∪SS<r2 is an admissible cover. These
definitions do not depend on the choice of the parameters Tx.

In this paragraph suppose again that N ≥ 5 and that l 6 |N . Also suppose
that r ∈ lQ ∩ (1, l−l/(1+l)]. If l 6 |n then there is a natural Hecke operator T (n)
on H0(X1(N)>r, ω⊗k) with the usual effect on q-expansions. The theory
of the canonical subgroup (see [16]) allows us to define an action of Ul on
H0(X1(N)>r, ω⊗k) and hence of the Hecke operators T (n) for all n. It also
gives a map

Sk(Nl,K)(Z/lZ)× ↪→ H0(X1(N)>r, ω⊗k)

which is equivariant for all the Hecke operators T (n). (Here (Z/lZ)× acts
via (Z/lZ)× ↪→ (Z/MlZ)×.) At least if l ≥ 5 then e is naturally defined on
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H0(X1(N)>r, ω⊗k) and

eH0(X1(N)>r, ω⊗k) ∼= Hom Λ(T0(N),K)(Z/lZ)× .

Here Λ acts on K by letting X act by multiplication by (1 + l)k−1 − 1 and
d ∈ (Z/lZ)× sends f to p2−kf ◦Sp where p is a prime with p ≡ 1 mod N and
where p ≡ d mod l. (See [11]. These results remain true for k = 1, as seems
to be well known to experts, but see [4] for a proof.)

We now turn our attention to Galois representations. Let m be a max-
imal ideal of Tk(N) (resp. T0(N)) with residue field k(m) of characteris-
tic l. There is a unique continuous semi-simple representation ρm : GQ →
GL2(k(m)) which is unramified at all primes p6 |Nl and satisfies tr ρm(Frobp) =
Tp and det ρm(Frobp) = pSp at these primes. If ρm is absolutely reducible
we call m Eisenstein. If m is not Eisenstein then there is a unique con-
tinuous representation ρm : GQ → GL2(Tk(N)m) (resp. GL2(T0(N)m))
which is unramified at all primes p6 |Nl and satisfies tr ρm(Frobp) = Tp and
det ρm(Frobp) = pSp at these primes (see [5]). If θ : Tk(N)m → R (resp.
θ : Tk(N)m → R) is a local map to a noetherian complete local ring R
then we will let ρθ : GQ → GL2(R) denote θ ◦ ρm. If θ : Tk(N) → Ql is
a ring homomorphism then there is a unique continuous irreducible repre-
sentation ρθ : GQ → GL2(Ql) which is unramified at all primes p6 |Nl and
satisfies tr ρθ(Frobp) = Tp and det ρθ(Frobp) = pSp at these primes. All the
representations described in this paragraph are called modular.

Let us make some remarks on these Galois representations. Firstly if
ρ : GQ → GL2(C) is a continuous representation then the strong Artin
conjecture holds for ρ if and only if for some isomorphism i : C ∼→ Ql the
composite i ◦ ρ is modular.

Secondly we remark that Serre (see [21]) has conjectured that any odd
irreducible representation of GQ over a finite field is modular.

Thirdly we remark that if ρ : GQ → GL2(k) is absolutely irreducible and
modular (k a finite field) then ρ = ρm for m a maximal ideal of T2(Nl2)
where l 6 |N . If moreover ρIl is not trivial we may take m to be a maximal
ideal of T2(Nl) such that Ul mod m is an eigenvalue of ρIl(Frobl) (see [9]).
At the possible cost of increasing N we may also assume that Up ∈ m for all
p|N (elementary to verify).

Fourthly we remark that we have the following criterion for modularity
which is rather easy to prove. Suppose A/Q is an abelian variety of dimen-
sion d and that there exists an embedding i : OK ↪→ End (A/Q), where K is
a number field of degree d. Suppose that for one prime λ the representation
of GQ on the Tate module TλA is modular. Then for all primes λ′ of K the
representations of GQ on both Tλ′A and on A[λ′] are both modular.
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We finish this section by recalling some recent lifting theorems of Wiles
[25], Taylor-Wiles [23] and Diamond [8]. Suppose that l 6 |N and l 6= 2. Let
m be a maximal ideal of T2(N) (resp. T2(Nl), resp. T0(N)) which contains
Up for all p|N . Suppose that ρm|Q(

√
(−1)(l−1)/2l)

is absolutely irreducible and

that ρm|Gl does not act by scalars. Let R be a complete noetherian local
W (k(m))-algebra with finite residue field and let ρ : GQ → GL2(R) be a
continuous representation lifting ρ and unramified outside Nl. Suppose also
that:
• det ρ|Il is the cyclotomic character and for each open ideal a of R there

is a finite flat group scheme G/Zl such that ρ mod a is equivalent to
the action of Gl on G(Ql).

• resp. ρ|Gl ∼
(
χ1ε ∗
0 χ2

)
with χ1 tamely ramified and χ2 unramified.

• resp. ρ|Gl ∼
(
∗ ∗
0 χ2

)
with χ2 unramified.

Then there exists a unique homomorphism θ : T2(N)m → R, resp. T2(Nl)→
R, resp. T0(N) → R such that ρ ∼ ρθ, θ(Up) = 0 if p|N and in the second
and third cases θ(Ul) = χ2(Frobl).

2. The basic strategy.

Let ρ : GQ → GL2(C) be an odd, icosahedral representation. Because ρ has
finite image we may suppose (possibly after conjugation), that the image
of ρ is contained in GL2(E) for some number field E. Let λ be a prime
of E with residue characteristic l. Then we may suppose (possibly after
another conjugation) that ρ : GQ → GL2(OE,(λ)) (where OE,(λ) denotes the
localisation of the ring of integers of E at λ). Let ρ denote the reduction of
ρ modulo λ. In [4] Kevin Buzzard and I prove the following theorem.

Theorem 1. Suppose that l ≥ 5, that ρ is unramified at l and that the
order of ρ(Gl) is divisible by a prime other than l. Suppose also that ρ is
modular. Then the strong Artin conjecture holds for ρ.

It may be useful to discuss the various assumptions in this theorem. The
assumptions that ρ be unramified at l can be weakened (see forthcoming
work of Buzzard). Whether it is reasonable to hope it can be removed
entirely is not clear to me. Perhaps it can be avoided by using base change.
The assumption that the order of ρ(Gl) is divisible by a prime other than l
seems to be of a technical nature. The assumption that l ≥ 5 also seems to
be of a technical nature. This restriction comes not from the paper [4], but
from the papers cited therein. My expectation is that this restriction is only
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serious if l = 2 and then it is only serious in two of the references. Firstly the
reference to [23], which is currently being investigated by Mark Dickinson
for his Harvard PhD. Secondly the reference to [20], which is currently being
investigated by Ribet and his student David Jones. In the latter case it
seems likely that the difficulty can be avoided by imposing an additional
local assumption that 2 divides the order of ρ(Ip) for some p 6= 2. Let me
formulate as a conjecture a generalisation of this theorem which I am hopeful
will be proven in the near future.

Conjecture 1. Suppose that ρ is unramified at l, that the order of ρ(Gl)
is divisible by a prime other than l and that if l = 2 then 2 divides the order
of ρ(Ip) for some p 6= l. Suppose also that ρ is modular. Then the strong
Artin conjecture holds for ρ.

The final assumption in the theorem and conjecture, that ρ is modular, is
a special case of a conjecture Serre’s conjecture [21]. In general it is probably
very deep. However in the special case l = 2, Shepherd-Barron and I have
the following partial result ([22]).

Theorem 2. Suppose l = 2 and ρ is unramified at 3 and 5, then ρ is
modular.

Corollary 1. Suppose that ρ is unramified at 2, 3 and 5. Suppose moreover
that proj(ρ)(G2) has odd order and that proj(ρ)(Ip) has even order for some
p 6= 2. If Conjecture 1 is true then the strong Artin conjecture is true for ρ.

It may be helpful to comment on the ramification assumptions in Theorem
2. They result from restrictions in the available lifting results for modular
Galois representations (see [25], [23], [8]). One can expect them to be weak-
ened in the near future, but it is less clear how soon it will be possible to
remove them entirely. In fact using the results of [7] one may already reduce
the assumption at 3 from being unramified to being tamely ramified.

In the rest of this paper we will comment briefly on the proofs of theorems
1 and 2. Both rely in an essential way on the work of Wiles [25] as completed
by Wiles and the author [23].

3. Mod 2 icosahedral representations.

We have isomorphisms F×2 ×SL2(F2) ∼→ GL2(F2) and SL2(F2) ∼→ PSL2(F2).
The only subgroups of GL2(F2) isomorphic to A5 are those conjugate to
SL2(F4). (For instance by examining the mod 2 modular characters of A5.)
Thus to prove Theorem 2 we must show that any continuous representation
ρ : GQ → SL2(F4) which is unramified at 3 and 5 is modular.
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The key construction in [22] is the proof of the existence of a principally
polarised abelian surface (A,ψ)/Q, together with an embedding i : Z[(1 +√

5)/2] ↪→ End ((A,ψ)/Q) such that the representation of GQ on A[2] is
equivalent to ρ. In fact we can ensure that the representation of GQ on
A[
√

5] has image the whole of GL2(F5) and (by twisting) that A has semi-
stable reduction at 3 and 5. To do this one examines the appropriate twisted
coarse moduli space, Y say. This space is a cubic surface in P3 which it is
in fact unirational: If X denotes the restriction of scalars from Q(

√
5) to

Q of Y then we show that X is rational and because Y is a cubic surface
collinearity gives a dominant rational map θ from X to Y . As Y is not
a fine moduli space, rational points on Y do not necessarily correspond to
rationally defined abelian surfaces. However by a rather explicit calculation
we show that this is the case for the rational points θ(X(Q)). We obtain the
assertion about the action on A[

√
5] by combining the above argument with

a Hilbert irreducibility argument (as Wiles does in [25]).
Once we have constructed the desired triple (A, λ, i) we show that T√5A

is modular and deduce that A[
√

2] is also. By the results of Wiles [25],
Taylor-Wiles [23] and Diamond [8], to show that T√5A is modular it suffices
to show that A[

√
5] is modular.

In fact one can show that if ρ′ : GQ → GL2(F5) is any representation
with determinant the cyclotomic character and which is tamely ramified at
3 then ρ′ is modular. The argument is similar. One finds an elliptic curve
E/Q which realises ρ′ on its 5 division points. (This seems to be implicit in
work going back to Hermite, but we could not find it explicitly in the lit-
erature.) Using Hilbert irreducibility we may ensure (following Wiles) that
the representation of GQ on E[3] has image GL2(F3). Then, by [8], T3E is
modular and so E[5] is also. (In 1992 I explained to Wiles how this argument
could be used to show that the Shimura-Taniyama conjecture implied Serre’s
conjecture for representations GQ → GL2(F5) with determinant the cyclo-
tomic character. He later combined the argument with Hilbert irreducibility
as part of his attack on the Shimura-Taniyama conjecture.)

4. l-adic representations unramified at l.

We will now briefly discuss the proof of theorem 1. In fact it is no more
difficult to prove a stronger theorem. We will put ourselves in the following
situation. Let O denote the ring of integers of a finite extension of Ql, λ its
maximal ideal and k its residue field. Let ρ : GQ → GL2(O) be a continuous
representation which is ramified only at a finite set of primes. Let ρ denote
the reduction of ρ modulo λ. In [4] the following theorem which is stronger
than theorem 1 is proven.
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Theorem 3. Suppose that l ≥ 5 and that
1. ρ is unramified at l;
2. ρ is modular;
3. ρ|G

Q(

√
(−1)(l−1)/2)

is absolutely irreducible;

4. ρ(Frobl) has two distinct eigenvalues.
Then ρ has a finite image and the strong Artin conjecture is true for ρ.

This theorem also provides some evidence for a conjecture of Fontaine and
Mazur (see [10]) that any continuous l-adic representation of GQ which is
ramified at only finitely many primes and is finitely ramified at l (i.e. the
image of Il is a finite group) has finite image. As far as we are aware the
only previous evidence for this conjecture was in the case of one dimensional
representations. It also gives a hint about how to prove Theorem 1: One
should try to only exploit the finiteness of ρ(Il) not the finiteness of ρ(GQ).

Let α and β be the two eigenvalues of ρ(Frobl). We may suppose that α
and β lie in O. Because ρ is modular we can find, perhaps after interchanging
α and β, a homomorphism fα : T2(Nl)→ k such that

1. N is not divisible by l;
2. fα(Tp) = tr ρ(Frobp) for p6 |Nl;
3. pfα(Sp) = det ρ(Frobp) for p6 |Nl;
4. fα(Ul) = α;
5. fα(Up) = 0 for p|N .

We can then produce a second homomorphism fβ : T2(Nl) → k with
the same properties except that fβ(Ul) = β. The construction of fβ is a
deep theorem. To stress how surprising the existence of fβ is, it may be
worth remarking that any lifts fα and fβ of fα and fβ to homomorphisms
T2(Nl)→ Ql will differ on most Hecke operators Tp. Gross [12] gives a con-
struction for all l, but dependent on some unproven functorialities in some
rigid cohomology. Coleman and Volloch [6] then gave an unconditional con-
struction but one which excludes the prime l = 2.

We can now apply recent lifting results of Wiles, Taylor-Wiles and Dia-
mond (see [8]) to produce homomorphisms Fα and Fβ : T0(N) → O such
that

1. Fα(Tp) = tr ρ(Frobp) for p6 |Nl;
2. pFα(Sp) = det ρ(Frobp) for p6 |Nl;
3. Fα(Ul) = α;
4. Fα(Up) = 0 for p|N ,

and similarly for Fβ. Here again we are using l 6= 2. This assumption is
being used in an important way in at least two places. The lifting theorems
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are proved by first reducing the level to a certain minimal case (following
Ribet [20] and others), lifting in the minimal case (using the method of
Taylor-Wiles [23]) and then extending to the more general case again (using
the method of Wiles [25]). Both the first two steps use l 6= 2 in a significant
way. The first uses an auxiliary prime p 6≡ 1 or 0 mod l. The second requires
a numerical coincidence in Galois cohomology for the method to work, which
becomes delicate if l = 2.

Because det ρ is unramified at l we see that Fα and Fβ factor through
T0(N)/XT0(N). Thus, at least if l ≥ 5, they define sections of ω over the
rigid space X1(N)>l−l/(1+l) . We introduce F = (αFα − βFβ)/(α − β) and
F ′ = (Fα−Fβ)/(α−β). Then F =

∑∞
n=1 anq

n is formally a weight one level
N normalised eigenform, while F ′ =

∑∞
n=1 anq

ln. We have that
1. ap = tr ρ(Frobp) for p6 |N (including p = l);
2. ap = 0 for p|N .

In [4] we fabricate from F ′ a rigid section of ω over SS<l−1/(1+l) which we
show matches F on SS<l−1/(1+l) ∩X1(N)>l−l/(1+l) . Gluing and applying rigid
GAGA we see that F extends to a classical weight one modular form such
that ρf ∼ ρ. Thus ρ has finite image and the strong Artin conjecture holds
for ρ.
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