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EXTENSIONS BETWEEN IRREDUCIBLE
REPRESENTATIONS OF A P-ADIC GL(n)

MARIE-FRANCE VIGNERAS

To the memory of Olga Taussky-Todd

Let H be the group of points of a connected reductive group over a local
non archimedean field F. Let w be a character of the center of H. Let C :=
Mod,, H be the category of complex representations of H which are smooth
(the stabilizer of a vector is an open subgroup of H), with central character
w. It is known that C has enough injectives and projectives, and we can define
Ext’(V, V') for two representations V, V' € C, using a projective resolution
(P")i>o of V, or an injective resolution (I*);>¢ of V'. The cohomology of the
complex Home (P?, V') and of the complex Home(V, I') are the same, and
are equal to Exti(V, V') by definition.

Question. Let V.V’ € C irreducible, with V' essentially square integrable
(essentially because of the center), and V' essentially tempered. Is is true
that

Extl(V, V') = ExtL(V/, V) =0
for all integers ¢ > 0 7

This question is motivated by the orthogonal decomposition of the
Schwartz algebra of H given by the Plancherel formula ([Sil, Th.3, page 4679]
for example). I tried to prove without success that the answer was yes, some
years ago while writing [Vigl]. The answer (yes) is an exercise for GL(n, F')
for any integer n > 1.

It can be worth to publish it.

Let H = G := GL(n,F). Let V € C irreducible essentially square inte-
grable. We can describe all the irreducible V' € C such that Ext.(V', V) # 0
for at least one integer ¢ > 0. For such a V', there is a unique ¢ such that
Exti(V',V) ~ C, and is zero otherwise. If V' 2 V, then V' does not have a
Whittaker model. An irreducible essentially tempered representation has a
Whittaker model. For all irreducible tempered representation V' not isomor-
phic to V, we get Ext;(V’, V) = 0. Using duality, we get Ext;(V,V’) = 0.

The computation of Ext;(V’, V) for V irreducible essentially square inte-
grable and V' irreducible, is a corollary of the classification of square inte-
grable representations by Zelevinski, the theory of simple types by Bushnell
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and Kutzko, the Zelevinski involution by Aubert, Schneider and Stuhler, the
computation of Ext;(1, V") by Casselman.

We give a very short proof of Ext;(V,V’) =0 for V, V' € C, irreducible
tempered and not isomorphic, suggested by Waldspurger. The group G
has the particularity to have at most one irreducible tempered represen-
tation with a given infinitesimal character (i.e. cuspidal support), and
Extz(V, V') = 0 for two irreducible representations V,V’ of G having dif-
ferent infinitesimal characters. This second fact is very general, and uses the
interpretation by Yoneda of Ext;(V,V’) by n-extensions, as in the real case.

The author was supported by a grant of the von Humboldt foundation,
and this work was done in the wonderful atmosphere of the Max Planck
Institute in Bonn in the fall of 1996.

1. We set G := GL(n,F) and C = ModG (we do not fix the central
character). From Bernstein [Z, 9.3], any V' € C irreducible essentially square
integrable is a Steinberg representation St (p) where p is an irreducible
cuspidal representation of GL(r, F') for some integer r > 0, and rk = n. The
Steinberg representation St (p) is the unique irreducible subquotient with a
Whittaker model in the natural representation of GG in the space of locally
constant functions f : G — ®%p such that f(mug) = ®@*p(m)f(g) for any
g € G and any element mu (m € M, u € U), in a parabolic subgroup of
G with Levi component M isomorphic to GL(r, F)*, and unipotent radical
U. When r = 1 and p = 1 is the trivial character of F*, St, (1) = St is the
usual Steinberg representation.

A block in the abelian category C is an indecomposable abelian subcat-
egory which is a direct factor. There are no non trivial homomorphisms
between two different blocks. The blocks are classified by the semi-simple
types of Bushnell-Kutzko [BK2, BK3|, and also by the irreducible cuspi-
dal representations of Levi subgroups modulo G-conjugation, and twist by
unramified characters [BD].

The semi-simple type of a block is a distinguished irreducible represen-
tation o of a distinguished open compact subgroup K of G, such that the
functor

F, :V — Homg(indg 0, V)

is an equivalence of categories between the block and the category of right
Endg indg x o-modules.

Let I be an Iwahori subgroup (unique modulo G-conjugation). A repre-
sentation V' € C generated by the I-invariant vectors V7, is called unipotent.
The unipotent representations form a block, of semisimple type the trivial
representation of I. Set F; = Homg(indg ; 1, —).
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Let (e, f,d), efd = r, be the invariants of p [Vigl, II1.5]. Let ¢ be the
order of the residual field of F. Let F’ be any local non archimedean field,
with residual field of order ¢’ = ¢/¢. We set G’ = GL(k, F’) and C' = Mod G'.
Denote I’ an Iwahori subgroup of G'.

Bushnell and Kutzko [BK1, 7.6.18] have shown that there is a natural
algebra isomorphism [BK1, 7.6.18, 7.6.21]

i : Ende inde ;1 — Endg indg x 0.

We get a functor ® which is an equivalence of categories, from the unipotent
block in C’ to the block in C containing St,(p) such that

i* o F, 0 ® = Homg (indgr 1 1, —).

For any Levi subgroup M’ of G’, there is a similar functor ®' which is an
equivalence from the unipotent block of M’ to a block in a Levi subgroup
M of G. This is compatible with the normalized parabolic induction ig: s
and i¢ ar, or restriction 7y ¢ and ry ¢ , along Q' = M'Q) and Q = MQ,,
where @ and @, are suitable Borel subgroups of G’ and G:

(I)OiG’,M’ :iG’MOQ/, ®/OTM/,G’ :T'M7GO¢).
This is a consequence of [BK1, 7.6.21].

Proposition. The functor ® sends an essentially square integrable (resp.
unitary, having a Whittaker model, essentially tempered) irreducible unipo-
tent representation of G' to an essentially square integrable (resp. unitary,
having a Whittaker model, essentially tempered) irreducible representation

of G.

For essentially square integrable see [BK1, 7.7]. For unitary see [BK1,
7.6.25]. The irreducible representations of G with a Whittaker model are
induced from essentially square integrable representations of Levi subgroups
[Z, 9.11]. The assertion for the Whittaker model follows from this and
the compatibility of &', ® with the induction. The tempered irreducible
representations of G are induced from square integrable representations
[Sil, 4.5.11]. Hence the assertion for essentially tempered representations.

2. We want to prove a vanishing result for Ext', between characters of
affine Hecke algebras, directly and in an elementary way. In fact, the best
method to compute Ext® between modules for affine Hecke algebras, is to
use the dictionnary with representations. This paragraph could be skipped.
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The Hecke algebra Endgindg ;1 is naturally isomorphic to the affine
Hecke algebra Hc(n,q) of type A,,_1 and parameter ¢ [BK1, 5.6.6].

The Hecke C-algebra H&(n,x) of type A, _; with parameter z € C*, x #
0,1, is the C-algebra generated by (si,...,s,_1) with the relations

(si+1)(si—2)=0(1<i<n-1),

sis; =558 (1<i,j<n—1, |j—i #1)

$iSit18i = Sip18:Si41 (1 <i<n—2).

The affine Hecke C-algebra Hc(n, z) of type A,,_; with parameter x is gen-
erated by H&(n,z) and ¢t with

ttt=t"1t =1, ts; = s; 1t (1 <i<mn), t’s; = s, 1t°.

Note that this description [BK, 5.4, page 177] is not the Bernstein de-
scription.

The finite algebra H&(n,x) is isomorphic to the group algebra CI[S,] of
the symmetric group S,, and has two characters. For the character sign, the
image of all the s; is —1. For the trivial character, the image of all the s;
is . The two characters extend to characters of Hg(n, ), the image of ¢
beeing an arbitrary non zero complex element. The Hc(k, ¢)-module F(St)
is a sign character of Hg(n, q).

The center of G is naturally identified with F* diagonally enbedded in G.
The center of Hc(n,z) contains ¢". The central character of St is trivial.
The category of unipotent representations of G with trivial central character
is isomorphic by the functor F; defined in (1) to the category Mod Hg(n, q);
of right modules of the quotient Hc(n, q); of Hc(n, q) by the two-sided ideal
generated by t" — 1 [Vig2, 1.3.14].

Lemma 2.1. Let x,x € C := Mod Hc(n,q); be two characters. Then
Exts(x, x') = 0.

Indeed the algebras H&(n,q) and CJt],t" = 1, are semisimple (but the
quotient Hg(n,q); is not semisimple). If V' € C is an extension of x by
X, then hv = x(h)v for all h € H&(n,q), v € V, and ¢ acting semisimply,
V~x®yx.

There is another proof when n = 2 in [DPrasad, p. 175, proof of the
Lemma 7]. Note that if we were not fixing the center, we could have exten-
sions. I do not know how to compute directly Ext’ when i > 1.

When V is an extension of two different characters x’ # x in Mod Hg(n, q);
or in Mod Hc(n, q), one sees that V' ~ y @y’ by restriction to the commuting
algebras H&(n,q) and CJt].

2.2. From (2.1), Ext'(St,St) = 0 in Mod; G. Any irreducible square in-
tegrable unipotent representation V of G is the twist St ®x, of St by an
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unramified character of G

Xa(g) = 2™, g € G,

*

for some x € C*, where val : (F)* — Z is the valuation of F, sending an
uniformizing parameter to 1. The central character of St ®x,, is the character
Xre Of F*. It is trivial if and only if St ®y, ~ St.

The twist by a character x of G does not change the value of Ext*. If
V,V' € C:=Mod, G, then V& x,V'® x € C, := Mod,w(y) G where w(x) is
the restriction of y to the center of G. We have:

Exte(V, V') =~ Exte (V@ x,V' ®Xx).
Using the functor F; of (1), we get:

Proposition. Let V, V' irreducible and essentially square integrable in the
category C := Mod, G. Then

Exts(V, V') = 0.

There is another proof due to Silberger of this result, valid for a general
reductive group [Sil2]. To compute some Ext;(V,V’) when i > 1, we use
the results of Casselman [Cas].

3. Let H as in the introduction. Let C := Mod; H be the category of
representations of H with trivial character. Denote by Sty € C the Steinberg
representation defined by a parabolic subgroup @ of H [BW, 4.6, page 308|.
If 7o is the natural representation of H on the complex space of locally
constant left @-invariant functions H — C, then Sty is the quotient of 7
by the subrepresentation generated by the natural images of 7¢ in 7g, for
all parabolic subgroups @’ of H which contain (). We have Sty = 1. When
@ = @, is minimal, then Sty = St is the usual Steinberg representation.
The representations St are irreducible and not isomorphic.

The parabolic rank of () is the rank of a maximal split torus in the center
of a Levi component of (). We denote

mg = parabolic rank of () — parabolic rank of H.
This an integer > 0.

Theorem ([BW, 5.1, Th.4.12, page 313]). Let V € C := Mod, H irre-
ducible such that Ext™(1,V) # 0. Then there exists a parabolic subgroup Q
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of H such that V ~ Stg. Moreover Ext' (1, Stg) ~ C if m = mg, and is
zero otherwise.

Remark. Suppose H = G := GL(n, F), and C := Mod, G.

We have Ext;(1,1) ~ C and Ext;'(1,1) = 0 for any integer m > 1.

The representation 7, € C has a unique irreducible subquotient with a
Whittaker model, this unique subquotient is isomorphic to St [Z, 9.7]. In
particular, when @ # @, the representation St; does not have a Whittaker
model. Hence Ext;(1,V) = 0 for any irreducible representation V' # St with
a Whittaker model.

4. Zelevinski involution. Let G as in (1). The Zelevinski involution 7
in Mod G has the following properties :

a) T respects the property of beeing irreducible [A, 2.3, 2.9)].

b) 7 exchanges the trivial and the usual Steinberg representation [Z, 9.2].

¢) 7(— ® x) = 7(—) ® x commutes with the twist by a character x of G
[Z, 9.1].

d) 7 respects the cuspidal support [Z, 9.1].

e) 7 is an exact contravariant functor and respects the cuspidal support
[SS, 3.1], hence respects the representations with a given central character.

Set C := Mod G or C := Mod,, G, where w is a character of the center of
G. By e) we have for any V, V' € C

Ext’(V, V') ~ Exti(r(V'), 7(V)).

With the notations of (3), the representation 7(Stq) is not isomorphic to St
when @ # G by b), and is a subquotient of 75, by d). Hence 7(Stg) does
not have a Whittaker model when () # G, in particular is not essentially
tempered. We deduce from (3):

Theorem. Let V.V’ € C := Mod,, G, irreducible, such that V ~ St ® x
is unipotent and essentially square integrable as in 2), and Extz(V', V) # 0.
Then there exists a parabolic subgroup Q of G" such that V' ~ 7(St,) ® x.
For V! = 7(Stg) ® x, we have Ext;'(V',V) ~ C* if m = mg as in 3), and
zero otherwise.

In particular, if V' is a unipotent Steinberg representation, and if V' 2V
is essentially tempered, then

Exta(V, V)~ C, Ext,(V,V)=Ext.(V',V)=0
for all integers ¢ > 0. We will prove also

(4.1) ExtL(V, V') =0
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using duality as follows.

5. Duality. Let (H,w) as in the introduction. The contragredient V' —
V* is a contravariant exact functor in Mod H, which sends a projective
representation to an injective representation [Vig2, 1.4.18]. A representation
V is called admissible when V** ~ V. When V is admissible, and (P;) — V is
a projective resolution of V', then V* — (P}) is an injective resolution of V*,
and Hom(P;, W) ~ Hom(W*, P}) canonically [Vig2, 14.13]. If V € Mod,, H,
then V* € Mod,-1 H. Set C := C* := ModH or C := Mod, H, C* :=
MOdw—l H.

Proposition. Let V,W € C admissible of contragredient V*, W* € C*, one
has Ext;(V, W) ~ Extg. (W*, V*).

The contragredient respects the property of being essentially square in-
tegrable and of being essentially tempered. We deduce (4.1). Hence the
answer to the question in the introduction is yes, for G = GL(n, F'). There
is another proof, suggested by Waldspurger, using that the essentially tem-
pered irreducible representations of G have different cuspidal support. This
comes from the classification of Zelevinki [Z], which shows that tempered
irreducible representations are not degenerate (1), and that not degenerate
irreducible representations have different cuspidal support.

6. Let (H,w),C as in (5). There is a natural equivalence between the two
bifunctors on C,
Exti(A,B) and Yext;(A,B)

given by the Yoneda n-extensions of A by B modulo an equivalence relation
=. The proofs are the same than in the category of (left) modules for a ring
[M, IIL6.4, I11.8.2].

An n-extension X of A by B is an exact sequence starting at B and ending
at A,
X:0-B—-X,—-...—- X, —-A—0.

A morphism v : X — Y between two m-extensions starting with 3 and
ending with « is a commutative diagram

X:0—-B—-X,—...2X,— A =0

e NN I la
Y:0—-D—>Y,—... Y, - C —0

The equivalence relation = in the set of n-extensions of A by B, is generated
by the relation: There exists a morphism v : X — Y starting and ending
with the identity.
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An n-extension X ending at A can be spliced with an m-extension Y
starting at A, to give an n + m-extension X oY starting like X, ending
like V. If « : A’ — A, one defines by pull-back an extension X« starting
like X, ending at A’. If Z is an m-extension starting by A’, one defines by
push-out an m-extension aZ starting at A, ending like Z. By definition of
the equivalence relation, one has

XaoZ =Xoal.

A morphism v : X — Y starting with § and ending with « gives an
equivalence [M, IIL.5.1]
X =Y.

An element z of the center of C defines an endomorphism of X. If z acts
on A and on B by multiplication by two different scalars z, # zp € R, we
deduce that the image of X in Yext"(A, B) ~ Ext"(A, B) is 0.

For A, B € C irreducible of different cuspidal support, there is an element
z in the center of C which acts by the identity on A and is zero on B’. This
comes from the description of the center by Bernstein [BD]. We get the
following theorem.

Theorem 6.1. Let V.V’ € C irreducible of different cuspidal support. Then
Extz(V, V') = 0.

Corollary 6.2. Suppose that H = GL(n,F). Let V,V' € C irreducible not
degenerate, and V # V'. Then Ext;(V,V’) = 0.
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