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EXTENSIONS BETWEEN IRREDUCIBLE
REPRESENTATIONS OF A P-ADIC GL(n)

Marie-France Vignéras

To the memory of Olga Taussky-Todd

Let H be the group of points of a connected reductive group over a local
non archimedean field F . Let ω be a character of the center of H. Let C :=
ModωH be the category of complex representations of H which are smooth
(the stabilizer of a vector is an open subgroup of H), with central character
ω. It is known that C has enough injectives and projectives, and we can define
ExtiC(V, V

′) for two representations V, V ′ ∈ C, using a projective resolution
(P i)i≥0 of V , or an injective resolution (I i)i≥0 of V ′. The cohomology of the
complex HomC(P i, V ′) and of the complex HomC(V, Ii) are the same, and
are equal to ExtiC(V, V

′) by definition.
Question. Let V, V ′ ∈ C irreducible, with V essentially square integrable
(essentially because of the center), and V ′ essentially tempered. Is is true
that

ExtiC(V, V
′) = ExtiC(V

′, V ) = 0

for all integers i > 0 ?

This question is motivated by the orthogonal decomposition of the
Schwartz algebra ofH given by the Plancherel formula ([Sil, Th.3, page 4679]
for example). I tried to prove without success that the answer was yes, some
years ago while writing [Vig1]. The answer (yes) is an exercise for GL(n, F )
for any integer n > 1.

It can be worth to publish it.
Let H = G := GL(n, F ). Let V ∈ C irreducible essentially square inte-

grable. We can describe all the irreducible V ′ ∈ C such that ExtiC(V
′, V ) 6= 0

for at least one integer i ≥ 0. For such a V ′, there is a unique i such that
ExtiC(V

′, V ) ' C, and is zero otherwise. If V ′ 6' V , then V ′ does not have a
Whittaker model. An irreducible essentially tempered representation has a
Whittaker model. For all irreducible tempered representation V ′ not isomor-
phic to V , we get Ext∗C(V

′, V ) = 0. Using duality, we get Ext∗C(V, V
′) = 0.

The computation of Ext∗C(V
′, V ) for V irreducible essentially square inte-

grable and V ′ irreducible, is a corollary of the classification of square inte-
grable representations by Zelevinski, the theory of simple types by Bushnell
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and Kutzko, the Zelevinski involution by Aubert, Schneider and Stuhler, the
computation of Ext∗C(1, V

′) by Casselman.
We give a very short proof of Ext∗C(V, V

′) = 0 for V, V ′ ∈ C, irreducible
tempered and not isomorphic, suggested by Waldspurger. The group G
has the particularity to have at most one irreducible tempered represen-
tation with a given infinitesimal character (i.e. cuspidal support), and
Ext∗C(V, V

′) = 0 for two irreducible representations V, V ′ of G having dif-
ferent infinitesimal characters. This second fact is very general, and uses the
interpretation by Yoneda of ExtnC(V, V

′) by n-extensions, as in the real case.
The author was supported by a grant of the von Humboldt foundation,

and this work was done in the wonderful atmosphere of the Max Planck
Institute in Bonn in the fall of 1996.

1. We set G := GL(n, F ) and C = ModG (we do not fix the central
character). From Bernstein [Z, 9.3], any V ∈ C irreducible essentially square
integrable is a Steinberg representation Stk(ρ) where ρ is an irreducible
cuspidal representation of GL(r, F ) for some integer r > 0, and rk = n. The
Steinberg representation Stk(ρ) is the unique irreducible subquotient with a
Whittaker model in the natural representation of G in the space of locally
constant functions f : G → ⊗kρ such that f(mug) = ⊗kρ(m)f(g) for any
g ∈ G and any element mu (m ∈ M, u ∈ U), in a parabolic subgroup of
G with Levi component M isomorphic to GL(r, F )k, and unipotent radical
U . When r = 1 and ρ = 1 is the trivial character of F ∗, Stn(1) = St is the
usual Steinberg representation.

A block in the abelian category C is an indecomposable abelian subcat-
egory which is a direct factor. There are no non trivial homomorphisms
between two different blocks. The blocks are classified by the semi-simple
types of Bushnell-Kutzko [BK2, BK3], and also by the irreducible cuspi-
dal representations of Levi subgroups modulo G-conjugation, and twist by
unramified characters [BD].

The semi-simple type of a block is a distinguished irreducible represen-
tation σ of a distinguished open compact subgroup K of G, such that the
functor

Fσ : V → HomG(indG,K σ, V )

is an equivalence of categories between the block and the category of right
EndG indG,K σ-modules.

Let I be an Iwahori subgroup (unique modulo G-conjugation). A repre-
sentation V ∈ C generated by the I-invariant vectors V I , is called unipotent.
The unipotent representations form a block, of semisimple type the trivial
representation of I. Set FI = HomG(indG,I 1,−).
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Let (e, f, d), efd = r, be the invariants of ρ [Vig1, III.5]. Let q be the
order of the residual field of F . Let F ′ be any local non archimedean field,
with residual field of order q′ = qfd. We set G′ = GL(k, F ′) and C′ = ModG′.
Denote I ′ an Iwahori subgroup of G′.

Bushnell and Kutzko [BK1, 7.6.18] have shown that there is a natural
algebra isomorphism [BK1, 7.6.18, 7.6.21]

i : EndG′ indG′,I′ 1→ EndG indG,K σ.

We get a functor Φ which is an equivalence of categories, from the unipotent
block in C′ to the block in C containing Stk(ρ) such that

i∗ ◦ Fσ ◦ Φ′ = HomG′(indG′,I′ 1,−).

For any Levi subgroup M ′ of G′, there is a similar functor Φ′ which is an
equivalence from the unipotent block of M ′ to a block in a Levi subgroup
M of G. This is compatible with the normalized parabolic induction iG′,M ′

and iG,M , or restriction rM ′,G′ and rM,G , along Q′ = M ′Q′o and Q = MQo,
where Q′o and Qo are suitable Borel subgroups of G′ and G:

Φ ◦ iG′,M ′ = iG,M ◦ Φ′, Φ′ ◦ rM ′,G′ = rM,G ◦ Φ.

This is a consequence of [BK1, 7.6.21].

Proposition. The functor Φ sends an essentially square integrable (resp.
unitary, having a Whittaker model, essentially tempered) irreducible unipo-
tent representation of G′ to an essentially square integrable (resp. unitary,
having a Whittaker model, essentially tempered) irreducible representation
of G.

For essentially square integrable see [BK1, 7.7]. For unitary see [BK1,
7.6.25]. The irreducible representations of G with a Whittaker model are
induced from essentially square integrable representations of Levi subgroups
[Z, 9.11]. The assertion for the Whittaker model follows from this and
the compatibility of Φ′,Φ with the induction. The tempered irreducible
representations of G are induced from square integrable representations
[Sil, 4.5.11]. Hence the assertion for essentially tempered representations.

2. We want to prove a vanishing result for Ext1, between characters of
affine Hecke algebras, directly and in an elementary way. In fact, the best
method to compute Ext∗ between modules for affine Hecke algebras, is to
use the dictionnary with representations. This paragraph could be skipped.
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The Hecke algebra EndG indG,I 1 is naturally isomorphic to the affine
Hecke algebra HC(n, q) of type An−1 and parameter q [BK1, 5.6.6].

The Hecke C-algebra Ho
C(n, x) of type An−1 with parameter x ∈ C∗, x 6=

0, 1, is the C-algebra generated by (s1, . . . , sn−1) with the relations
(si + 1)(si − x) = 0 (1 ≤ i ≤ n− 1),
sisj = sjsi (1 ≤ i, j ≤ n− 1, |j − i| 6= 1)
sisi+1si = si+1sisi+1 (1 ≤ i ≤ n− 2).

The affine Hecke C-algebra HC(n, x) of type An−1 with parameter x is gen-
erated by Ho

C(n, x) and t with
tt−1 = t−1t = 1, tsi = si−1t (1 < i < n), t2s1 = sn−1t

2.
Note that this description [BK, 5.4, page 177] is not the Bernstein de-

scription.

The finite algebra Ho
C(n, x) is isomorphic to the group algebra C[Sn] of

the symmetric group Sn and has two characters. For the character sign, the
image of all the si is −1. For the trivial character, the image of all the si
is x. The two characters extend to characters of HC(n, x), the image of t
beeing an arbitrary non zero complex element. The HC(k, q)-module F (St)
is a sign character of HC(n, q).

The center of G is naturally identified with F ∗ diagonally enbedded in G.
The center of HC(n, x) contains tn. The central character of St is trivial.
The category of unipotent representations of G with trivial central character
is isomorphic by the functor FI defined in (1) to the category ModHC(n, q)1

of right modules of the quotient HC(n, q)1 of HC(n, q) by the two-sided ideal
generated by tn − 1 [Vig2, I.3.14].

Lemma 2.1. Let χ, χ′ ∈ C := ModHC(n, q)1 be two characters. Then
Ext1

C(χ, χ
′) = 0.

Indeed the algebras Ho
C(n, q) and C[t], tn = 1, are semisimple (but the

quotient HC(n, q)1 is not semisimple). If V ∈ C is an extension of χ by
χ, then hv = χ(h)v for all h ∈ Ho

C(n, q), v ∈ V, and t acting semisimply,
V ' χ⊕ χ.

There is another proof when n = 2 in [DPrasad, p. 175, proof of the
Lemma 7]. Note that if we were not fixing the center, we could have exten-
sions. I do not know how to compute directly Exti when i > 1.

When V is an extension of two different characters χ′ 6= χ in ModHC(n, q)1

or in ModHC(n, q), one sees that V ' χ⊕χ′ by restriction to the commuting
algebras Ho

C(n, q) and C[t].

2.2. From (2.1), Ext1(St, St) = 0 in Mod1G. Any irreducible square in-
tegrable unipotent representation V of G is the twist St⊗χx of St by an
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unramified character of G

χx(g) = xval det g, g ∈ G,

for some x ∈ C∗, where val : (F )∗ → Z is the valuation of F , sending an
uniformizing parameter to 1. The central character of St⊗χx is the character
χkx of F ∗. It is trivial if and only if St⊗χx ' St .

The twist by a character χ of G does not change the value of Ext∗. If
V, V ′ ∈ C := ModωG, then V ⊗ χ, V ′ ⊗ χ ∈ Cχ := Modωω(χ)G where ω(χ) is
the restriction of χ to the center of G. We have:

Ext∗C(V, V
′) ' Ext∗Cχ(V ⊗ χ, V ′ ⊗ χ).

Using the functor FI of (1), we get:

Proposition. Let V, V ′ irreducible and essentially square integrable in the
category C := ModωG. Then

Ext1
C(V, V

′) = 0.

There is another proof due to Silberger of this result, valid for a general
reductive group [Sil2]. To compute some ExtiC(V, V

′) when i > 1, we use
the results of Casselman [Cas].

3. Let H as in the introduction. Let C := Mod1H be the category of
representations of H with trivial character. Denote by StQ ∈ C the Steinberg
representation defined by a parabolic subgroup Q of H [BW, 4.6, page 308].
If τQ is the natural representation of H on the complex space of locally
constant left Q-invariant functions H → C, then StQ is the quotient of τQ
by the subrepresentation generated by the natural images of τQ′ in τQ, for
all parabolic subgroups Q′ of H which contain Q. We have StH = 1. When
Q = Qo is minimal, then StQo = St is the usual Steinberg representation.
The representations StQ are irreducible and not isomorphic.

The parabolic rank of Q is the rank of a maximal split torus in the center
of a Levi component of Q. We denote

mQ = parabolic rank of Q− parabolic rank of H.

This an integer ≥ 0.

Theorem ([BW, 5.1, Th.4.12, page 313]). Let V ∈ C := Mod1H irre-
ducible such that Ext∗(1, V ) 6= 0. Then there exists a parabolic subgroup Q
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of H such that V ' StQ. Moreover ExtmC (1, StQ) ' C if m = mQ, and is
zero otherwise.

Remark. Suppose H = G := GL(n, F ), and C := Mod1G.
We have ExtoC(1, 1) ' C and ExtmC (1, 1) = 0 for any integer m ≥ 1.
The representation τQ ∈ C has a unique irreducible subquotient with a

Whittaker model, this unique subquotient is isomorphic to St [Z, 9.7]. In
particular, when Q 6= Qo the representation StQ does not have a Whittaker
model. Hence Ext∗C(1, V ) = 0 for any irreducible representation V 6= St with
a Whittaker model.

4. Zelevinski involution. Let G as in (1). The Zelevinski involution τ
in ModG has the following properties :

a) τ respects the property of beeing irreducible [A, 2.3, 2.9].
b) τ exchanges the trivial and the usual Steinberg representation [Z, 9.2].
c) τ(− ⊗ χ) = τ(−) ⊗ χ commutes with the twist by a character χ of G

[Z, 9.1].
d) τ respects the cuspidal support [Z, 9.1].
e) τ is an exact contravariant functor and respects the cuspidal support

[SS, 3.1], hence respects the representations with a given central character.

Set C := ModG or C := ModωG, where ω is a character of the center of
G. By e) we have for any V, V ′ ∈ C

Ext∗C(V, V
′) ' Ext∗C(τ(V ′), τ(V )).

With the notations of (3), the representation τ(StQ) is not isomorphic to St
when Q 6= G by b), and is a subquotient of τQo by d). Hence τ(StQ) does
not have a Whittaker model when Q 6= G, in particular is not essentially
tempered. We deduce from (3):

Theorem. Let V, V ′ ∈ C := ModwG, irreducible, such that V ' St ⊗ χ
is unipotent and essentially square integrable as in 2), and Ext∗C(V

′, V ) 6= 0.
Then there exists a parabolic subgroup Q of G′ such that V ′ ' τ(St′Q) ⊗ χ.
For V ′ = τ(StQ) ⊗ χ, we have ExtmC (V ′, V ) ' C∗ if m = mQ as in 3), and
zero otherwise.

In particular, if V is a unipotent Steinberg representation, and if V ′ 6' V
is essentially tempered, then

ExtoC(V, V ) ' C, ExtiC(V, V ) = ExtiC(V
′, V ) = 0

for all integers i > 0. We will prove also

(4.1) ExtiC(V, V
′) = 0
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using duality as follows.

5. Duality. Let (H,ω) as in the introduction. The contragredient V →
V ∗ is a contravariant exact functor in ModH, which sends a projective
representation to an injective representation [Vig2, I.4.18]. A representation
V is called admissible when V ∗∗ ' V . When V is admissible, and (Pi)→ V is
a projective resolution of V , then V ∗ → (P ∗i ) is an injective resolution of V ∗,
and Hom(Pi,W ) ' Hom(W ∗, P ∗i ) canonically [Vig2, I4.13]. If V ∈ ModωH,
then V ∗ ∈ Modω−1 H. Set C := C∗ := ModH or C := ModωH, C∗ :=
Modω−1 H.

Proposition. Let V,W ∈ C admissible of contragredient V ∗,W ∗ ∈ C∗, one
has Ext∗C(V,W ) ' Ext∗C∗(W

∗, V ∗).

The contragredient respects the property of being essentially square in-
tegrable and of being essentially tempered. We deduce (4.1). Hence the
answer to the question in the introduction is yes, for G = GL(n, F ). There
is another proof, suggested by Waldspurger, using that the essentially tem-
pered irreducible representations of G have different cuspidal support. This
comes from the classification of Zelevinki [Z], which shows that tempered
irreducible representations are not degenerate (1), and that not degenerate
irreducible representations have different cuspidal support.

6. Let (H,w), C as in (5). There is a natural equivalence between the two
bifunctors on C,

ExtnC(A,B) and YextnC(A,B)

given by the Yoneda n-extensions of A by B modulo an equivalence relation
≡. The proofs are the same than in the category of (left) modules for a ring
[M, III.6.4, III.8.2].

An n-extension X of A by B is an exact sequence starting at B and ending
at A,

X : 0→ B → Xn → . . .→ X1 → A→ 0.

A morphism γ : X → Y between two n-extensions starting with β and
ending with α is a commutative diagram

X : 0→ B → Xn → . . . → X1 → A → 0
↓ γ ↓ β ↓ ↓ ↓ α
Y : 0→ D → Yn → . . . → Y1 → C → 0

.

The equivalence relation ≡ in the set of n-extensions of A by B, is generated
by the relation: There exists a morphism γ : X → Y starting and ending
with the identity.
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An n-extension X ending at A can be spliced with an m-extension Y
starting at A, to give an n + m-extension X ◦ Y starting like X, ending
like Y . If α : A′ → A, one defines by pull-back an extension Xα starting
like X, ending at A′. If Z is an m-extension starting by A′, one defines by
push-out an m-extension αZ starting at A, ending like Z. By definition of
the equivalence relation, one has

Xα ◦ Z ≡ X ◦ αZ.

A morphism γ : X → Y starting with β and ending with α gives an
equivalence [M, III.5.1]

βX ≡ Y α.
An element z of the center of C defines an endomorphism of X. If z acts
on A and on B by multiplication by two different scalars za 6= zB ∈ R, we
deduce that the image of X in Yextn(A,B) ' Extn(A,B) is 0.

For A,B ∈ C irreducible of different cuspidal support, there is an element
z in the center of C which acts by the identity on A and is zero on B′. This
comes from the description of the center by Bernstein [BD]. We get the
following theorem.

Theorem 6.1. Let V, V ′ ∈ C irreducible of different cuspidal support. Then
Ext∗C(V, V

′) = 0.

Corollary 6.2. Suppose that H = GL(n, F ). Let V, V ′ ∈ C irreducible not
degenerate, and V 6= V ′. Then Ext∗C(V, V

′) = 0.
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