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SELF-AFFINE MULTIFRACTAL
SIERPINSKI SPONGES IN R¢

L. OLSEN

We study self-affine multifractals in R? using the formalism
introduced in [Olsen, A multifractal formalism, Advances in Math-
ematics, 116 (1996), 82-196]. We prove that new multifractal
phenomena, not exhibited by self-similar multifractals in R?,
appear in the self-affine case.

1. Introduction.

We analyze the multifractal structure of self-affine invariant measures in R?
supported by a particular type of self-affine sets usually called Sierpinski
Sponges. Our analysis is based on the multifractal formalism introduced
by Olsen in [Ol1]. For a metric space X we denote the family of Borel
probability measures on X by P(X). For u € P(X) and z € X we define
the upper and lower local dimension of u at x by

1 B
(1.1) a, () — lim sup 2BHB@:7)
N logr
resp.
log uB
(1.2) a,(z) = liminf log uB(w,r)
™0 log r

where B(x,r) denotes the closed ball with centre z and radius r. If @,(x)
and a,(r) agree we refer to the common value as the local dimension of
at « and denote it by a,(x). For each a > 0 define A, () by

(13) Au(@) = {z € supp st | @, (@) = a}

where supp i denotes the topological support of p. The main problem in
multifractal analysis is to estimate the size of the sets A,(a); this is done
by introducing the functions f,, ), : Ry — R, defined by

ful@) = dim A, (a)

(1.5) F,(a) =DimA ()
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where dim and Dim denote Hausdorff dimension and packing dimension
respectively. These and similar functions are generically known as “the mul-
tifractal spectrum of p”, “the singularity spectrum of p”, “the spectrum of
scaling indices” or simply “the f(«)-spectrum”. The function f(a) = f,(«)
was first explicitly defined by the physicists Halsey et al. in 1986 in their
seminal paper [HJKPS]. The reader is referred to Cawley & Mauldin [CM]
or Olsen [OIl1] for a more detailed historical account of multifractality, and
an extensive list of references.

Many recent papers have studied the multifractal structure of self-similar
measures. Cawley & Mauldin [CM] analyzed the multifractal structure of
(non-random) self-similar measures, and Edgar & Mauldin [EM] and Olsen
[O11] investigated the multifractal structure of (non-random) graph directed
self-similar measures. Riedi [Re2] has studied self-similar multifractals gen-
erated by a countable infinite number of similarities. A recent research
monograph by Olsen [O12] presents a detailed multifractal analysis of ran-
dom graph directed self-similar measures based on the formalism introduced
in [O11]. Independently Falconer [Fa4] and later Arbeiter & Patzschke [PA]
have studied random self-similar multifractals.

Pap2 b2
Dap3
Pap1
P3p2 p3
D3Pp3
D3p1
V2V p1
pip3
Pipy

Figure 1.1. The first two stages in the construction of a self-affine
measure. In this example d = 2, n; = 2, ny, = 5, B consists of 3 boxes and

P = (p1>p27p3)-
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We note that all the papers [AP, CM, EM, Fa4, Ol1, Ol12, Re2] ana-
lyze the multifractal structure of self-similar (or graph directed self-similar)
measures. In this paper we focus on the multifractal structure of self-affine
measures . in R? supported by a particular type of self-affine sets usually
called Sierpinski Sponges — thus we will call the measures p that we study
for self-affine multifractal Sierpinski Sponges. Let 1 <n; < ng < --- < ny
be integers. By considering n; —1 (d — 1)-dimensional hyperplanes parallel to
the hyperplane spanned by ((5i1)i:1,...,da B (51,1—1)1‘:1,...,(1, <6i,l+1)i:1,...,d7 ceey
(0ia)i=1,....a) (here &;; denotes the Kronecker delta) for each | = 1,...,d, we
partition the unit cube [0, 1]¢ into n, - - - ng congruent boxes with sidelengths

L ..., . Let B be a subcollection of these boxes and let p = (pg)pen be a
probablhty vector indexed by B. Erase all the boxes not contalned in B, and
divide a unit mass between the remaining boxes in the ratio determined by
the probability vector p. Next partition each of the remaining boxes B into
ny - - - ng congruent subboxes of B with sidelengths %, ey n%, again keeping
only those which corresponds to B, and divide the mass of B between the
remaining subboxes of B in the ratio determined by the probability vector
p. Continuing this process infinitely, a compact set K and a probability
measure p supported on K are obtained, see Figure 1.1. The set K is called
a self-affine Sierpinski Sponge, and the measure p is called a self-affine multi-
fractal Sierpinski Sponge. In this paper we study the multifractal structure
of the measure p. Our analysis will be based on the multifractal formal-
ism introduced by Olsen [O11]. In particular we find, assuming separation
condition (II) (introduced in Section 4),

1) the Hausdorff spectrum f, of y;

\)

the multifractal box dimensions of y;

w

the generalized Renyi dimensions of u;

B

the multifractal dimension functions b,,, B,, and A, introduced in [OI1];

)
)
)
)

t

a sufficient condition guaranteeing that the multifractal Hausdorff and
multifractal packing measures, HZ”’“(q) (supp ) and PZ’B“(q)(supp )
introduced in [Ol1], are positive and finite.
In the 2-dimensional case, separation condition (II) states that if a column
of rectangles contains a box from B, then the two immediately adjacent
columns of rectangles do not contain any boxes from B, c.f. Figure 1.1.
This separation condition is unfortunately very strong and it would be very
desirable if it could be weakened or omitted.
We prove that self-affine multifractal Sierpinski Sponges possess some well-

known multifractal characteristica; in particular we prove the following:

1) There exist two numbers 0 < a < @ such that A, («) = @ for a ¢ [a, ],
and f,(a) > 0 for a €]a,al.
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2) the multifractal spectrum function f, equals the Legendre transform
B* of a certain auxiliary function 3 defined explicitely in terms of the
numbers n4,...,n, and the probability vector p. In particular, f, is
concave on its support.

However, we also prove that new multifractal phenomena, not exhibited by
self-similar multifractals in R?, appear in the self-affine case; in particular
we prove the following:

1) The Hausdorff multifractal dimension function b, and the packing mul-
tifractal dimension function B, do not necessarily coincide; in fact, for
a fixed ¢ € R, b,(q) and B,(q) coincide if and only if condition (I,)
introduced in Section 4 is satisfied. This phenomenon is in sharp con-
trast to the self-similar case in which b, = B,, by [Ol1, Theorem 5.1].

2)  We conjecture that the multifractal Hausdorff measure HZ’b“(Q)(Supp )
and the multifractal packing measure PZ*B“(‘]) (supp p) are not neces-
sarily positive and finite. For a fixed ¢ € R, condition (I,) implies
that 0 < HZ’b“(’J)(supp p) < oo and 0 < Pg*B“(q)(supp ) < oo, and
we conjecture that if (I,) is not satisfied, then HZ®«(@)(suppp) =
Pg’B“(q)(suppu) = oo; cf. Conjecture 4.1.10 and Conjecture 4.1.11.
This phenomenon is in sharp contrast to the self-similar case in which
HZ’b“(Q) (supp i) and PZ’B“(‘I) (supp ) are positive and finite for all ¢ €
R by [O11, Theorem 5.1].

3) The Legendre transform B; of B, does not necessarily attain the con-

stant value —oo outside the set [a,@]. There exist self-affine measures

p such that 0 < Bj(a) for all a € [A,a] U [a, A] where at least one

of the intervals [A,a] or [a, A] is non-degenerate. This phenomenon

is in sharp contrast to the self-similar case in which B;(a) = —oc for

all @ ¢ [a,a] by [Ol1, Theorem 5.1]. (We remark that a very simi-

lar situation arises in multifractal analysis of random (graph directed)

self-similar measures: generically there exist (cf. [O12]) numbers 0 <

a < Gpin < Apax < @ such that for each fixed o €]a, Amin[U]amax, @,

almost all self-similar measures v satisfy —oo < b} (a) = Bji(a) < 0 =

fula) = F(a).)

We note that our results, due to the use of the generalized multifractal Haus-

dorff and packing measures introduced in [Ol1], appear as natural multifrac-

tal generalizations of some of the main results on self-affine sets by Bedford

[Be], McMullen [McM], Kenyon & Peres [KP] and Peres [Pel, Pe2], in par-

ticular Kenyon & Peres [KP, Theorem 1.2 and Proposition 1.3] and Peres
[Pe2, Theorem 1.1.(ii)].

King [Ki] have determined the Hausdorff spectrum f,, for self-affine multi-

fractal Sierpinski Sponges in R2. In this paper we extend King’s results to R?
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(it should be noted that the extension from R? to R? is not merely a technical
extension, c.f. also Kenyon & Peres [KP, remark just above Theorem 1.2])
and, in addition, investigate the multifractal box dimensions of u, the gener-
alized multifractal Hausdorff and packing measures, 'HZ’t and Pg’t, and the
generalized multifractal dimension functions b, and B,, introduced in [OI1].
Schmeling & Siegmund-Schultze [SS] have studied certain self-affine multi-
fractals. However, Schmeling & Siegmund-Schultze’s approach is different
from our approach. Schmeling & Siegmund-Schultze consider a probability
vector (p;)i=1,..n and a family of affine maps (x — A;x + a;);—1,. y Where
A; are linear contractions of R? with [|4;| < % and a; € R%. They study,
for Lebesgue almost all translation vectors (a;)i=1.. v € (R?)", a part of
the Hausdorff spectrum function f, of the self-affine measure p generated
by the maps (r — A;x + a;);—1,.. n and the probabilities (p;);—1,. ~ (i-e.
i is the unique probability measure on R? satisfying the self-affine equa-
tion u = 3, piuo S; ' where S;(x) = A;(z) + a;). Schmeling & Siegmund-
Schultze’s approach can be viewed as an attempt to generalize some of Fal-
coner’s [Fal, Fa3] results on self-affine sets to the multifractal case. Falconer
also considers a family of affine maps (z — A;x + a;);=1,.. n where A; are
linear contractions of R? with [|4;|| < i and a; € R?. Falconer then shows
that, for Lebesgue almost all translation vectors (a;)i=i..n € (R?)Y, the
self-affine set K generated by the maps (z — A;x + a;);—1,. n (i.e. K is the
unique non-empty compact subset of R¢ satisfying the self-affine equation
K = U;S;(K) where S;(x) = A;(z) + a;) has equal Hausdorff dimension and
box dimension and presents an asymptotic formula for this dimension. Fi-
nally we note that Riedi [Ril] has computed the multifractal box dimensions
of a class of self-affine multifractal.

We will now give a brief description of the organization of the paper.
In Section 2 we recall the multifractal formalism introduced in [Ol1], and
define the notion of a self-affine set and a self-affine measure. In Section 3
we introduce two auxiliary functions, 8 and v, and study their properties.
Section 4 contains the statements of our main results formulated in terms of
the auxiliary functions § and ~y. Section 5 contains an example. In Section
6 we present the proofs of our main results.

2. The Setting.

2.1. The multifractal measures H%' and P7".

This section gives a brief summary of the main results in [Ol1]. We
first recall the definition of the Hausdorff measure, the centered Hausdorff
measure and the packing measure. Let X be a metric space, £ C X and
d > 0. A countable family B = (B(x;,r;)); of closed balls in X is called a
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centered J-covering of F if E C U; B(x;,r;), v; € E and 0 < r; < ¢ for all i.
The family B is called a centered §-packing of F if z; € E, 0 < r; < § and
B(zi,r;)) N B(z;,r;) = @ foralli # j. Let E C X,t>0and 6 > 0. Now
put

HL(E) = inf{z diam(E;)' | E C U E;, diam E; < 5}.

=1

The t-dimensional Hausdorff measure H'(E) of E is defined by

H'(E) = supH4(E) .

6>0

The reader is referred to [Fa2] for more information on H'. We will now
define the packing measure. Write

f;(E) = sup {Z(2ri)t | (B(zi,7i)): is a centered d-packing of E} .

i=1

The t-dimensional prepacking measure ft(E) of E is defined by

P'(E) = inf Py(E).

>0

The set function 7 is not necessarily countable subaddtitive, and hence not
necessarily an outer measure, c.f. [TT] or [Fa2]. But P give rise to a Borel
measure, namely the ¢-dimensional packing measure P'(E) of E, as follows
t s o 5t ‘
R S

The packing measure was introduced by Taylor and Tricot in [TT] using
centered d-packings of open balls, and by Raymond and Tricot in [RT] using
centered §-packings of closed balls.

Also recall that the Hausdorff dimension dim(F), the packing dimension
Dim(E) and the logarithmic index A(E) of E is defined by

dim(E) = sup{t > 0| H'(E) = oo}
Dim(E) = sup{t > 0| P*(E) = <}
A(E) = sup{t > 0| P (E) = oo}

We refer the reader to [Tr| and [RT] for more information on the centered
Hausdorff measure, the packing measure and the packing dimension.
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Olsen [Ol11] suggested that some multifractal generealizations of the (cen-
tered) Hausdorff measure and the packing measure might be useful in mul-
tifractal analysis. For ¢ € R define ¢, : [0,00] — Ry = [0, 00] by

() 00 forx =0 ¢ <0
T) = or
a z? for0<x 1
polr)= 1 forq=0
0 forx =0
T) = for 0 < gq.
#a() {a:q for0 <z 1

For p € P(X), EC X, ¢q,t € R and 6 > 0 write

Hys(E) = lnf{Z% B(i,r:)))(2r:)" | (B(xi, 7))

is a centered §-covering of E}, E+2

H(2) = 0

H'(B) = supH.5(E)
>0

HZ’t(E): supH ( ).
FCFE

We also make the dual definitions

ﬁzg = sup { Z@q B(xi,1:)))(2r:)" | (B(wi,7))i

is a centered J-packing of E}, E#o

PUi@)= 0
PU(E) = inf fq’gw)

a.t _ e t
Pr(E) = . éBfE Z P,
It is proven in [O11] that H%* and PZ* are measures on the family of Borel
subsets of X. The measure H{* is of course a multifractal generalisation of
the (centered) Hausdorff measure, whereas P is a multifractal generalisa-
tion of the packing measure. In fact, it is easily seen that the follwing holds
for t > 0,

Iy

(21) 27tH2,t S Ht S Hg,t’ Pt — P27t7 f — PI_L .
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The next result shows that the measures Hg’t, Pl‘f’t and the pre-measure

fi’t in the usual way assign a dimension to each subset FE of X.

Proposition 2.1.1. There exist unique extended real valued numbers
AhZ(E) € [~o0,00], Dim}(E) € [~o0,00] and dim](FE) € [~o00,00] such
that

00 fort < AI(E)
0 for Al(E) <t

00 for t < Dim{ (E)

PIYE) =
i (E) {0 for Dim}(E) <t

smé
HI4 () = 00 for t < dimj (E)
: 0 for dim,(E) < t.

Proof. See [O11, Proposition 1.1]. [l

The number dim/ (E) is an obvious multifractal analogue of the Hausdorff
dimension dim(F) of £/ whereas Dim{,(E£) and Af(E) are obvious multifrac-
tal analogues of the packing dimension Dim(F) and the logarithmic index
A(E) of E respectively. In fact, it follows immediately from the definitions
that

(22)  dim(E) = dim,(E), Dim(F) = Dim,(E), A(E)= A)(E).

Next we define multifractal dimension functions b, B,,, A, : R — [—00, 0]
by

bu(q) = dim] (supp 1), B,(q) = Dim},(supp i), A,(q) = Al (supp p).

We will now give a brief list of some of the most important properties of
the measures 'Hf;t and Pg’t, and the corresponding dimension functions. The
reader is referred to Olsen [O11] for a detailed study of the measure H{* and

P, and the dimension functions b,, B, and A,. For € P(X) and a > 1

7
write 1o, (1) = limsup,. (sumesupp " ‘féé“:;) and define the family Pr(X)

of Federer probability measures on X by Pp(X) = {u € P(X) | Tu(p) <
oo for some a > 1}. It follows from [Ol1] that the definition of Pr(X) is
independent of the number a > 1, i.e. T,(u) < oo for all @ > 1 if and only if
T.(p) < oo for some a > 1.

Proposition 2.1.2. Let p € P(RY) and q,t € R. Then:
i) HI' <P for p € Pr(RY), and P < PL for p € P(RY).



SELF-AFFINE MULTIFRACTAL SIERPINSKI SPONGES IN R? 151

ii) dimj, < Dim} < A?, in particular b, < B, < A,,.

iii) b, is decreasing, and B, and A, are convex and decreasing.

Proof. See [Ol1]. u
Write
— bli(q) = b/L(q)
(2.3) a, = %25)—7, a, = (111}%—7.

For a real valued function f : R — R we define the Legendre transform
f* iR — [—00,00] of f by

fr(x) = inf(zy + f(y))-

Theorem 2.1.3. Let u € P(RY). Then:
i) Aula) =@ foracRi\|a,,a,]
i) fula) <bi(a) for a €la,, ..

iii) F.(a) < Bj(a) for a €la,,a,[.

Proof. See [OI1]. |

Theorem 2.1.4. Let p € P(R?), and o > 0, 6 > 0 and ¢,t € R with
0<ag+t. Then

) HE(Au(a)) < 2HH (AL ().

i) Pl(Au(a)) < 270MHPAHT(A ().

Proof. See [OI1]. U

2.2. Multifractal box dimensions.

We begin by recalling the definition of the upper and lower box-dimension.
Let E C R? be a bounded set and N;(E) denote the largest number of
disjoint balls of radius ¢ with centres in E. Then the lower and upper box-
dimension of F are defined as

. JlogNs(E) o o
C(E)= hrén\lglng&, C(FE) = hr?\sypTg(s.

If C(E) = C(FE) we refer to the common value as the box-dimension and de-
note it by C(E). The reader is referred to [Fa2] for more information about
box-dimensions. We will now define multifractal box-dimensions. Multifrac-
tal box dimensions were introduced for example by Falconer [Fa2, p. 225],
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Olsen [OI1, OI2], Riedi [Ril] and Strichartz [St]. Here we follow the ap-
proach in Olsen [Ol1]. Let u € P(R?) and ¢ € R. For F C R% and 6 > 0

write
Sps(E) = sup{z pu(B(xiy60))? | (B(x4,0))ien is a centered packing of E}

The upper respectively lower multifractal ¢-box dimension 6Z(E ) and C'(E)
of E (with respect to the measure p) is defined by

— 1 (B loe S? (E
C!(E) = limsupoglé’é()7 CU(E) = ]jminfw.
g N0 —logd " 50 —logé

If éz (E) = C(FE) we refer to the common value as the g-box dimension of
E (with respect to the measure ;1) and denote it by C{(FE). Also observe

that C%(E) = C(E) and C,(E) = C(E). Now write

C,(q) =C%suppp), Cu(q)=C,(suppp), C.lq) = CI(supp p).

The next theorem is proven in Olsen [Ol1], Proposition 2.19-Proposition
2.23.
Theorem 2.2.1. b, <C, <C, =A, for u € Pp(X).

Ty =

2.3. Generalized Rényi dimensions.

Generalised Rényi dimensions were introduced for example by the physi-
cists Hentschel & Procaccia [HP] and Grassberger & Procaccia [GP] in
1983, and later by mathematicians, e.g. Cutler [Cul], Olsen [Ol1, OIl2],
Pesin [Pesl, Pes2] and Strichartz [St]. For p € P(X) and ¢ € R we define
the upper and lower generalized Rényi ¢-dimensions of u by

_ 108 ( Loy (B, 7)) dpa(i))

q .
= fi
D, llIIl\S(l)lp Jlogr or q #0
. , log u(B(x,r)) du(x
DZ = lim sup iy g/,tl( (7)) du() forq=0
0 ogr
108 ( Loy o (B, 7)) dp(x) )

P supp p

Q#—llIrl’l\lglf qlogr for ¢ #0
log n(B(x,r)) du(z

Qﬁ = lim inf Joupp 108 1B (@, 7)) dp(@) for ¢ = 0.

™0 log r
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If EZ and DY, coincide, we write D for the common value. Finally define
D,.D, : R — [—00,0] by

J— —q—1 —
Du(g)=(1~-q¢)D, . D,=(1-qDi"
Observe that D,(¢) < D,(q) for ¢ < 1, but D,(q) > D,(q) for 1 < q. If
D, (q) = D,(q), we write D,(q) for the common value. The next result was
proved in [Ol1, Theorem 2.24].

Theorem 2.3.1. A, =D,V D, for uec Pp(R%).

2.4. Self-affine Sierpinski sponges.
Let de Nand 1 < n; <ny <--- < ny be integers. Let I C 1‘[?:1{0,...,
n; — 1}. For i = (iy,...,i4) € I define affine maps by S; : [0,1]¢ — [0, 1] by

1 i 1 i
Si(xl,...,:cd) = <$1+1,...,I’d+d> .
n1 ny Ng Nq
It follows from Hutchinson [Hu] (c.f. also [Fa2]) that there exists a unique
non-empty compact set K satisfying

K =JSi(K).

icl

The set K is called the invariant self-affine set associated with (.Sj);e;. Fol-
lowing Kenyon & Peres [KP] we call K a Sierpinski Sponge (for d = 2 we
call K a Sierpinski Carpet rather than a Sierpinski Sponge).

The set K can also be constructed in the following way. Let ¥ = IV
" =" forn € N and ¥® = U, ™. For a = (iy,...,i,) € ) we
write [o] = {w = (J1,J2,---) € X | i1 =Jj1,.-yin = Ju}, Sa = S;, 0---05;,
and K, = S,(K). For each w = (ij,iz,...) € ¥ and n € N we write
wln = (i1, ..., i,). For each w € %, (S, ([0,1]%)), _, is a decreasing sequence
of non-empty compact sets whose diameters tend to 0, hence N,,S,,,([0, 1]9)
is a singleton. Now define 7 : ¥ — [0,1]* by {m(w)} = N, Sun([0,1]%). It
follows from Hutchinson [Hu] that K = 7(X).

Finally, let T : ¥ — ¥ denote the shift map, i.e. T'(iy,ia,...) = (ia,13,...).

2.5. Self-affine measures.
Let (p;)ier be a probability vector, i.e. p; €]0,1] and >°;p; = 1. Let

o= T (5

N iel
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(here §; denotes the Dirac measure concentrated at i). Define p € P(K) by
w=jion .

The measure p is called the self-affine measure associated with
((Si)iers (pi)ier). It is easily seen that supppu = K. The purpose of this
paper is to study the multifractal structure of p using the formalism intro-
duced in [O11].

Remark. The interesting case is, of course, the case where at least one
of the inequalities ny < ny < --- < ny is strict. If ny = ny = -+ = ng then
all the maps S; are similarities, and the multifractal structure of u follows
immediately from the (substantially more general) theorems in Cawley &
Mauldin [CM], Edgar & Mauldin [EM] and Olsen [O11] (provided that a
certain disjointness condition is satisfied).

3. Two Auxiliary Functions.

In this section we introduce and study two fundamental auxiliary functions
B and 7. All the main results in Section 4 will be formulated in terms of
these functions; in particular, we have

b,=08, B,=A,=~ and f,=0"

where pu denotes the self-affine Sierpinski Sponge measure in Section 2.5, c.f.
Theorem 4.1.3 and Theorem 4.1.4. The proofs in Sections 3.2, 3.3 and 3.4
are rather lengthy and tedious generalizations of somewhat similar results in
[CM, p. 201-206] and will therefore only be briefly sketched or completely
omitted.

3.1. Definition of the auxiliary functions 7 and ~.
Fix1 =0,...,d and define m; : R? — R! (we put R’ = {0}) by m/(z1, ..., %4)
= (xy,...,x) for 1 =1,...,d, and mo(xy,...,24) =0 for [ = 0. Let

L =m(I).

For i = (iy,...,1q4) € Hld:l{O, ...,n; — 1} we define conditional probabilities
p1(i1),p2(i2 [ 91), .., palia | i1, .. i4-1) by

> P;
- J=Unsenda)el
J1=1,5--01—1=U—1,J1=2 : . -
. . . if (Zl Zl) GIZ
(i | iy, iim) = 2 P Y

i=0da)El
J1=15 0 J1—1=—1

0 i (i1, i) ¢ Iy
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and for [ =1,...,d and (iy,...,4;) € I; we write

ql(ilw-wil) :pl(il)pQ(iQ ’ i1) - 'pl(il ‘ Uiy ,iz—l)-

For notational convenience write ¢y = 1. Define auxiliary functions 3, i,,
Biriigovs -+ -3 Birias Biys B+ R — R inductively as follows:
0) For g € R and (iy,...,iq) € I4 define §;, ,,(q) by

/Bibwid (q) = 0.
1) For g€ R and (iy,...,i4-1) € I4_1 define 5, ., ,(q) by
Z palia | i1, ... 7id71)qn5ilmid(q)iﬁiluidil(q) =1
(’h,mf;ld)efd

2) For g € R and (iy,...,94-2) € I; 5 define 3;, ;, .(q) by

. . . Biy.ig 1 (D =Biy...ig_5(q)
Z Pa—1(igoy | i1y .. yigog)tmy, et a2 g

Td—1
(i15estd—1)ELa—1

d) For g € R define 3(q) by
Z pl(il)qnfil (¢)—B(a) - 1.
ilelll

For notational convenience write By := §. The function 3 is clearly differ-
entiable (even real analytic). Now write

a=-03.
Finally define the auxilairy function v : R — R by

d . .
@) =3 i tog (e @l WY
=1 log ny Z(il,m’il—l)eh—l ql—l(zlv e 7Zl—1)q

C=-7.
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3.2. Properties of the auxiliary function S.
This section investigates the properties of the auxiliary function 3. For
(il, e ,id) € Id write

= Qjy.ig = &y iy = Cirig = 0,

.,4;) € I, we proceed inductively as follows

Qi) ig

and for [ =1,...,d—1 and (i, ..

Tig iy

717111 = IZ_l'lll'l pl-i—l(ll-i-l | 1. )Zl)nlJrl )
141
(41,0st141) €4
+ . . . . T i
Vit = max  pra(ieen | dn e 00y ;

G141
(il,..‘,il+1)ell+1
Agy = Lo | G eeiien) €D, P (i i i)n 5 = 00,

—a. .
+ _ . . . . . . ipeedpgpy +
A =i | Gy i) €D pra (g |, - i)ny g =Y ik
+ —
B logv;\ i _ i logv;, i,
Qi gy = 1 sy Wi — T 1 )
Og Ny+1 0gNy+1
e. ) €. .
i i1
log (Zime/\;mil LA ) _ log (Zilﬂe/\;lmil LA )
Qil'uil - 1 9 eil...il — 1 .
0g Njy41 0gNyt1
Finally write
_ . . —a; + . —-aq;
v~ =minp(i)ny ", T =maxpi(i)n, 7,
1€l 1€l

A" ={i1 i e, pl@l)nl_ail ="},

AT =iy [ € I, ]31<Z'1)n1_%1 =7}
log~y™ _ log~y~

- i =-—

a= ’ - ’
- log ny log ny
o — log(zileA+ nil) 5 — log(ZileA— nil)
= log n4 ’ logny ’
and
(31) Sil...id == /Bil...id (0)7 ceey 84 = ﬁil (0)7 s = /3(0>
For notational convenience define s = s. We now consider the following
two cases:
For all i = (41,...,1q4) € I,
(p1(i1)ap2(i2 [ i1)s -y palia | i1, - ,id71))
Case 1/ — (nibl 787 n;ilbfsil’ L ’nZil...id_Sil...idil)
which, by the definition of s;, ;,, is equivalent to
= nzil'“idisil'“id—l L n;iliQ_sil niqzl —s
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There exists i = (i1,...,1q) € I such that
(p1(i1),palia | i1), .- palia | i1y, ia-1))

/ Sip—S Sijig —Siy Siq.ig TSiq.ig_q
Case 2 # (ny" " ngy yeey Ty )
which, by the definition of s;, ;,, is equivalent to
S —Siq .0 Si1io —Si Si, —S
p17£n11 “ig 1 Ldl...n212 1n11

The results below describe the properties of 5.

Proposition 3.2.1.
i) [ is convex and strictly decreasing with 5(1) = 0.

ii) a,a,e,e >0 anda <a.

iii) B(q)—(—ag+e) — 0 as ¢ — —o0, and the function ¢ — ((q)—(—aq+e)
is increasing.

iv) [B(q)—(—ag+e) — 0 as ¢ — oo, and the function ¢ — [(q) — (—aq+e)
is decreasing.

v) lim,._ a(q) =a and lim, .. a(q) = a.

Proof. The proof will only be sketched. For each I =1,...,d — 1, a suitable
generalization of the arguments in [CM, p. 201-206] show that, if 3;, .,
and i, i, = =B, satisfy statements i) through v) with a,a,e and @
replaced by a;, ;. @iy i1 €. 4, a0d €, ., then B; 4 and i, 4 =
— 3, satisfy statements i) through v) with a,@, e and € replaced by a;, _,,,

Qi ..i;» €, 5, and €, ;. The result now follows by induction. O

Theorem 3.2.2.
1) If Case 1’ is satisfied, then the following statements hold.

i) (s affine, in fact B(q) = s(1 — q) for all q.
i) al(q ):—B’( ) =s for all q.
i) a=s=
. . s fora=s
v) A (a)_{—oo fora € R\ {s}’

0 is strictly conver.

)
i) a(q) =—0"(q) >0 for all q, and « is strictly decreasing.
i) a<a.
iv) a'(¢) <0 for all q.
. >0 for a € [a,q]
V) B = {—oo fora € R\ [a,a]
)

B* is strictly concave on |a,al.
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vii) B*(a(1)) = «(l) and the straight line with slope 1 and pass-
ing through the origin is tangent to the graph of B* at the point
(e(1), 5 (a(1))) = (a(1), a(1)).

viii) f*(a) =e, §*(a) =e.

ix) sup, /*(a) = B(0) and sup, 8*(«) is attained only for o = «(0).

Proof. This result follows from Proposition 3.2.1 using standard results from
convex analysis. Again, the reader is referred to [CM, p. 201-206] for proofs

of similar results in a simpler setting. [l
alq)

a= lim afg)
g=—co

a= lim a(g)
q—00

q

Figure 3.2.1. The typical shape of the graph of a = —§’.

B(a) 5*(a)
B(a(1)) = (1) {rermmmmemmmenees : !
—agte e __ /. [P, b
€ 1 E ; E
q : | }
x S A
—Eq+€\\ .E g .E .:
a afl) a0) @
Figures 3.2.2. The typical Figure 3.2.3. The typical
shape of the graph of S. shape of the graph of 3*.

3.3. Properties of the auxiliary function ~.
This section investigates the properties of the auxiliary function . For

l=1,...,d write

q = min q¢,...,%), ¢ = max qt1,...,7%
! (i1,0-s0) €D ( ’ ’ )7 ! (41,---,%1) €L ( ’ ’ )
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Jl7 {(Zlv"'vil)EIl|ql(i17"'ai):qf}7

T = A, i) € Il (i, - oi) = ¢}
A= Xd: ( : ) log g’
— \logn log N1
_ ¢ 1
A= ; (log n,  log nl+1) logay,
Ezzd:(l ! )logcardjf,
= \logn, log N1
_ 1
E= Z (log m o an) log card J; .

=1

We now consider the following two cases:

For all (i1,...,iq4) € I,

Case 1” (pl(i1)7p2(i2 li1), .y palia | i1, .. 7id—1))
— (cardlo card I; Cardld_l)
cardIy ? cardI2? """ ? card Iy .

There exists (i1,...,14) € I such that

Case 2" (pl(i1)7p2(i2 ’ il), e ,pd(id ’ iy aid—l))
7& (cardlo card I Cardld_l)
cardIy? cardI2? """ ? card Iy .

The results below decribe the properties of 4. The proofs (which use
Holder’s inequality, implicit differentiation and standard results from con-
vex analysis) are elementary albeit rather lengthy generalizations of the ar-
guments in [CM, p. 201-206] and will therefore be omitted.

Proposition 3.3.1.

i)
ii)
iii)

iv)

v)

v is convex and strictly decreasing with (1) = 0.

AAE,E>0and A<A.

v(q) — (Aqg+ E) — 0 as ¢ — —oo, and the function ¢ — v(q) —
(—Aq + F) is increasing.

v(q)—(—Ag+E) — 0 as ¢ — oo, and the function ¢ — v(q)—(—Agq+E)
is decreasing.

lim, . o ¢(q) = A and lim, .. ((q) = A.

Theorem 3.3.2.
1) If Case 1" is satisfied, then the following statements hold.

i)

v is affine, in fact v(q) = v(0)(1 — q) for all q.



160 L. OLSEN

i) ((q) =—'(q) = —~(0) for all q.

iii) A=~(0)=4.

. . (0 for a =~(0

i) () =" oo

—00 fora e R\ {~(0)}

2) If Case 2" is satisfied, then the following statements hold.
i) v is strictly conver.
i) C((q) = —7'(q) > 0 for all q, and ¢ is strictly decreasing.
i) A<A
¢'(q) <0 for all q.
- >0 for a € [A, A]

s fora e R\ [A, 4]

is strictly concave on [A, A].

111

1v

)
)
)
)

v) (@

vi)

vii) 4*(¢(1)) = ¢(1) and the straight line with slope 1 and passing through
the origin is tangent to the graph of v* at the point (¢(1),7*(¢(1))) =
(€(1),¢(1)).

viii) 7*(4) = E, v*(4) = E.

ix

~—

sup, v* () = v(0) and sup, v*(«) is attained only for o = (0).

Figure 3.3.1. The typical shape of the graph of ( = —7’.
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) ()
R Y(C(1)) = (1) fommmmm e .
B ER) ) C(E) S S —
BN\ | | :
. 7 H ! i
‘ B fre e b .
Y IR
A4 (1) o) A4
Figure 3.3.2. The typical Figure 3.3.3. The typical
shape of the graph of ~. shape of the graph of v*.

3.4. The relationship between the functions § and ~.
In this section we investigate the relationship between the functions 3 and

v.
Theorem 3.4.1. Let g € R.

i) A<a<a<A

i) A<

iii) The following two statements are equivalent.

(1) B(q) =~(q)-
(2) For eachl=1,...,d—1, ny =mn41 or Bi,. 4,(q) = Bj,..;.(q) for all

(i1, -501), (J1r-- 5 01) € L.
iv) If B(q) = v(q) then a(q) = ((q) and 5*(a(q)) = v*(¢(q)). In particular

v) B*(alq)) = qalq) + B(q) and v*(¢(q)) = ¢¢(q) +v(a)-

Proof. i) —iii) Fix g € R, 1 =1,...,d — 1 and write oy = 222" Tt follows

log g1
from Jensen’s inequality that,

(3.2)

. . Biy...iy_1 (@)
E Ql—1(11,-~,1171)qnl
(415eesti—1)EL 1

= Z Gro1(i1y . nyiq)? Z oy | d1y. .oy 021)0n

(i1,0s81—1)E 1 Cu
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[CZT )€l
11—y ay
. . . Bi
- ( 2 )) ( > i, i)y ’(q)>
(il ..... 7,1)6]1 (7;1 ----- Z'l)ell
and that,
(3.3) equality holds in (3.2) if and only if n; = n;4 or

62'1--.% (Q) = /gjln-jl (q) for all (ilv s 7il)7 (jla ce ajl) € Il'

It follows from repeated application of (3.2) that,

1
Blq) < <1Ogn1 1Ogn2> log (Z ¢ (i) )

1€l
ﬁi (9)
3.4 1 '
B0 g St
2 1
SZ( )log S iy, i)
= \logn, IOgnH‘l (i1,eoit)EDL
ﬁ (29)
+ > qalin,in)'ng e
10g n3 ((71 12)6]2 )
d-1
1 1
< ( - )log Z @(iv, ..., i)
= \logn;  logn ((il ..... el
- log ( > Qd(ilv'-wid)q)
log nq (i1,.yi0)ED4
=7(q).

Moreover, (3.3) implies that,

equality holds in (3.4) if and only if for each [ =1,...,d — 1,
=41 or By i (q) = By, (q) for all (iq,...,7), (]1, o) €1

This completes the proof of ii) and iii).

i) It follows from Proposition 3.2.1 and Proposition 3.3.1 that —a =
lim, o @ and —A = lim, . (T’ and the inequality 0 < + therefore
implies that A < a. Similarly @ < A.
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iv) Follows from the fact that the functions $ and v are convex with 5 <~

and 5(q) = 7(q)-
v) Follows immediately from [RV, p. 34, Theorem D] since a = —f’ and

(=" O

Remark. The inequalities A < a and @ < A can be strict; in fact, it
may even happen that A < a =@ < A, i.e. 3 is affine whereas v is strictly
convex. Indeed, let d = 2, n; = 3, ny = 5, I = {(0,0),(0,2),(2,1)} and
(Poos Doz P21) = (3 1?;;@ , %1::;@’ ) With a = iggg An easy calculation now
shows that A <a=a < A.

4. Statement of Results.

Notational Remark. From now on, u will always denote the self-affine
measure defined in Section 2.5.

We begin by introducing regularity condition (I,), for ¢ € R, and separa-
tion condition (II). Condition (I,) plays an important role in Theorem 4.1.8
regarding the positivity and finiteness of the multifractal Hausdorff measure
and the multifractal packing measure, and we will (unfortunately) have to
assume the rather strong separation condition (II) in order to compute b,
B, and f, — however, we can compute the cylindre spectrum f¢ (defined in
Equation (4.5) below) without assuming condition (II).

For each [ =1,...,d — 1, either n; = n;y4, or
> (g [, @) = > P (i [ 007
il+1 jl+1

(il ..... i1+1)€ll+1 (]1 vvvvv jl+1)ell+1

for all (iy,...,4), (J1,.-.,51) € L.

The above condition is easily seen to be equivalent to the following:
For each [ =1,...,d — 1, either n; = n;y4, or

Bir..ir(@) = Bjy..5.(a)

for all (iy,...,4), (J1,.-.,51) € L.

l=1,....dand (ir,. .. i2), Gy .- ja) € 1
(I) with iy = j1,...,%-1 = ji_1,4 # ji then
i — il > 1.

For each r > 0 and w = (i, dy,...) € ([T-,{0,...,n — 1N with i; =
(4j1,---,1;4) we define the approximate cube (or cylinder) Q(w,r) with ap-
proximate diameter r determined by w as follows: choose (unique) integers
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ky(r),...,kq(r) such that

(4.1)

forl=1,...,d and put

d . . . .
11, Uy (r),l 1,0 FAGR 1

4.2 Qu. )y =]]|=++52 —+-+ >+

( ) ( > ) ny n;cl(f)’ n n;ﬂ(ﬂ n;%(T)

For w € ¥ we define the upper and lower local approximate cylinder
dimension of p at w € ¥ by

(4.3) @ (w) = limsup log pQ(w,r) o (w) = lim inf M.

a N logr = H ™0 log r

If @, (w) and af (w) agree we refer to the common value as the local approx-
imate cylinder dimension of ; at w and denote it by af (w). For a > 0 write

(4.4) AZ(a) =1{we X | a;(w) = a}).
Finally define cylinder multifractal spectra functions f7 and F by
(4.5) fila) =dim Af(a), Fj(a) =DimAj(a).

We will now state our main results. The proofs will be given in Section 6.
We first compute the cylinder Hausdorff spectrum f;; of p without assuming
condition (IT).

Theorem 4.1.1.
1) If Case 1" is satisfied then the following statement holds.

1 (s) =pB"(s) =s.
2) If Case 2' is satisfied then the following statement holds.
file) = B*(a) for a €la,al.

Corollary 4.1.2.
i) dim K = 3(0) = s.
ii) C(K)=~(0).

Next we compute f,, b,, B, and A, assuming separation condition (II).

Theorem 4.1.3. Assume that condition (I11) holds. Then
i) b, =p0.
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i) B,=A,=7.
iii) Cd(suppp) = (1 - ¢)Di" =~(q) for ¢ € R.

Theorem 4.1.4. Assume that condition (II) holds.

1) If Case 1" is satisfied then the following statement holds.
1) fuls)=p"(s) =s.
i) Au(a) =@ fora e Ry \ {s}.

2) If Case 2' is satisfied then the following statement holds.
i) fula) =p0*(a) for a €]a,qal.
i) A.(a) =@ foraeR,\[a,al.

Remarks.

(1) Condition (II) is stronger than asserting that dist (S;([0, 1]%), S;([0, 1]%))
>0 foralli,j € I withi#j. Ifeg. d=2and (i,iy) € I then (II) asserts
that (i; £1,72) ¢ I for any ja, i.e. the two immediately adjacent columns to
(i1,12) do not contain any points of K. In particular we see that (II) implies
that the support supp 4 = K of u is totally disconnected. Finally, we note
that for d = 2 condition (II) is identical to the “Disjointness Condition” in
King [Ki].

(2) Separation condition (II) is unfortunately very strong and it would
be very desirable if condition (II) could be omitted. Recently Arbeiter &
Patzschke [AP] have succeeded in replacing the strong separation condition
with the open set condition in their study of random self-similar multifrac-
tals, but it it still not known whether condition (II) can be replaced by the
open set condition in the self-affine case. However, we believe that condition
(IT) can be omitted and we therefore make the following conjecture.

Conjecture 4.1.5. The results in Theorem 4.1.4 remain true even if sep-
aration condition (I1) is omitted.

(3) The results in Theorem 4.1.4.1).i) and Theorem 4.1.4.2).i) are higher di-
mensional generalizations of the main result in King [Ki| where it is assumed
that d = 2.

(4) The results in Corollary 4.1.2 were first obtained independently by Bed-
ford [Be] and McMullen [McM] for d = 2, and later by Kenyon & Peres
[KP, Theorem 1.2 and Proposition 1.3] for arbitrary d.

(5) If ny = ng = -+ = nyg = n, then all the maps S; are similarities with
Lipschitz constant equal to %, and an easy calculation shows that
(4.6) prn_ﬁ@ =1, Zp?n_”(‘n =1.

iel iel
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Hence, if ny = ny = .-+ = ng, then Theorem 4.1.3 is a special case of
Olsen [Ol1, Theorem 5.1], and Theorem 4.1.4 is a special case of Cawley &
Mauldin [CM, Theorem 2.1] and Olsen [O11, Theorem 5.1]

(6) It is possible to construct examples such that the intervals ]A,a[ and
la, A| are non-empty, c.f. the remark following Theorem 3.4.1. Furthermore,
Theorem 3.3.2 and Theorem 4.1.4 imply that F,(a) = 0 < B} («a) for a €
JA, a[U]a, A[. The mathematical significance of B;(«) for a €]A, a[U]a, A[ is
therefore not (in any obvious way) related to the packing spectrum F), ()
at a. This phenomenon raises the following question.

Question 4.1.6. What is the significance of Bj () for o €]A, a[U]a, A[?
(7) We have not been able to determine the packing spectrum F), of p.
However, we believe that F), equals v* and make the following conjecture.

Conjecture 4.1.7.
1) If Case 1" is satisfied then

Fu.(s)=7"(s) =s.
2) If Case 2" is satisfied then

Fu(a)=7"(a) foracla,al

After having determined the multifractal dimensions b,(q), B,(¢) and
A,,(¢) we turn our attention to the multifractal Hausdorff and packing mea-
sures, HZ?I’“(") and PZ’B”(‘I), at the critical dimensions. We begin by intro-
ducing some notation. If (A, A,v) is a measure space and £ € A, vL F
denotes the restriction of v to E, i.e. (vL E)F =v(ENF) for all F € A.
Let X be a metric space and v € P(X). The Hausdorff dimension dim v of
v is the lower bound of Hausdorff dimensions of sets which contribute to v,
ie.

dimy = inf dimFE.
v(E)>0
The number dimv is a natural measure of the degree of singularity of v.
Similarly we define the packing dimension Dim v of v by

Dimv = inf DimFE.

v(E)>0

Theorem 4.1.8. Let g € R and assume that conditions (1,) and (I1I) hold.
Then iy
)0 < HED (supp 1) < PP (supp pr) < Py (supp pr) < oc.

i) Au(a(q)) has full HZP@ L supp p measure.
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—e
—-
—

~— — ~— ~—

A, (alq)) has full P&P9 L supp p measure.

bu(q) = Bu(q) = Au(q) = B(q) = 7(q)-

dim ’Hﬁ’ﬁ(‘” Lsupp i = B*(a(q)) = Dim Hﬁ’ﬁ(‘” L supp /.
dim 733’5(‘1) Lsupp i = f*(a(q)) = Dim pzﬁ(Q) L supp /.

=

v

vi

Theorem 4.1.9.

i) dimp = Dimp = — ¥, Toamn 2o(inninen (i, i) logpi(iy | iy, ..oy

1) = (1) = ¢(1).

ii) If condition (II) holds then lim,~ o % =a(l) for p-a.a. v € K.
Remarks.
(1) It follows from Theorem 4.1.8 that condition (I,) implies that the multi-
fractal Hausdorff measure and the multifractal packing measure are positive
and finite. We conjecture that condition (I,) is also necessary.

Conjecture 4.1.10. Let g € R and assume that condition (11) holds. Then
the following statements are equivalent.
i) (I,) holds.

) bu(q) = Bu(g).

) 0< Hz’b“(‘?)(K) <00 and 0 < Pg’B“(q)(K) < 00.
iv) 0<HZHD(K) < oo

) 0<PrB(K) < o0
Theorem 4.1.8 shows that i) = iii), and since b, = § and B, = v, The-
orem 3.4.1 shows that, i) < ii). Of course, trivially iii) = iv) and iii)
= v). Recalling that 27"H)" < H" < H)' and P)* = P’ for t > 0, we
see that Conjecture 4.1.10 for ¢ = 0 is contained in [KP, Proposition 1.3],
[Pel, Theorem 1] and [Pe2, Theorem 1.1 and Corollary 2.3.(i)] (except for
the assumption that condition (II) holds). We also make the following con-
jecture.

Conjecture 4.1.11. Let ¢ € R and assume that condition (1,) does not
hold, but that condition (I1) holds. Then

i) HI(K) = oo.

i) PrB@(K) = oco.

As before, recalling that 27'H)" < H' < H)' and P)* = P' for t >
0, we see that Conjecture 4.1.11 for ¢ = 0 and d = 2 is identical to
[Pel, Theorem 1] and [Pe2, Theorem 1.1] (except for the assumption that
condition (II) holds). We mention without proof that we can prove a rather
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weak version of Conjecture 4.1.11, viz. if condition (II) is satisfied, then
PLED(K) > 0.

(2) For d =2 and n; < ng, condition (I,) states that,

(4.7)

—4q —4q

Z Dik Z p‘ik = Z Djk Z p‘ik for all 4,5 € I.
k

k k k
(i,k)el (i,k)el (J,k)el (4,k)el
For ¢ = 0, condition (4.7) reduces to
(4.8) card{k | (i,k) € I} = card{k | (j, k) € I} for all 4,5 € I;.

Recalling that 247_[2,:5 < HE L Hz’t, Pg’t = P! and fi’t — P fort > 0, we
see that Theorem 4.1.8 for d = 2 and ¢ = 0 states that if (4.8) is satisfied,
then 0 < H*(K) < P*(K) < P’ (K) < oco. This result, for the Hausdorff
measure H*(K), was first shown by McMullen [McM] without assuming
condition (IT). The corresponding result for the packing measure, P*(K),
was first obtained by Peres [Pe2, Theorem 1.1.(ii)] also without assuming
condition (II). Theorem 4.1.8 can thus be viewed as a natural multifractal
generalization of McMullen’s and Peres’ results on self-affine carpets.

(3) For ¢ =0 and n; < ngy < --- < ny, condition (I,)=(Iy) says that,

(4.9)
Forall 1 =0,...,d—1and (iy,...,4), (j1,...,0) € I,

Card{il+1 ’ (i17 e 7il+1) S Il+1} = Card{jl+1 ‘ (,jh e ,jl+1) S Il+1}-

Recalling that 2_tHﬁ’t < HE < H%t, Pﬂ’t = P! and fi’t — P fort > 0,
we see that Theorem 4.1.8 for ¢ = 0 states that if (4.9) is satisfied, then
0 < H*(K) < P*(K) < P°(K) < co. This result was first obtained by
Kenyon & Peres [KP] without assuming condition (II). Theorem 4.1.8 can
thus be viewed as a natural multifractal generalization of Kenyon & Peres’
results on self-affine sponges.

(4) Let ¢ € R and assume that b,(q) = B,(q). Are the measures H%% (@ L
supp ¢ and PZ’B”(‘]) L supp ¢ proportional, i.e. does there exists a constant
cq > 0 such that

(4.10) PE’B“(“’) L supp i = Cq'HZ’b"(q) Lsupp pu?

Even though it seems rather unlikely that the multifractal Hausdorff measure
and the multifractal packing measure are proportional in general, the ratio
of the measures HZ”’“(Q) Lsupp p and 73373“((;) Lsupp p might still be bounded.
We therefore ask the following question.
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Question 4.1.12. Does there exists a number 0 < ¢, < oo such that

(4.11) H bl | supp pu < PqB ) Lsupp p < cgHY bl | supp p ?

If ny = --- = ng, then all the maps S; are similarities, and it follows from
[O11, Theorem 5.1] that Equation (4.10) holds.

(5) If ny = -+ = ng = n, then all the maps S; are similarities with

Lipschitz constant equal to -

more «a(l) = ((1) = 2l lzgpl, and Theorem 4.1.9 therefore states that

and g is a self-similar measure. Further-

> i pilog
dim g = Dim p = % and (if in addition condition (II) holds) a,(z) =
>, pilogp; l

S oo T for p-a.a. x. This result is a special case of Geronimo & Hardin
[GH, Theorem 2 and Corollary 1].

5. An Example.
Let d =3, n, =3, n, =5 and n3 = 6. Put

I =1{(0,0,0),(0,4,0),(2,1,0),(2,3,0),(0,2,1),(0,0,2),
(0,2,3),(0,4,4),(2,3,4),(2,1,5)},

and

(p0007 Po40, P2105 P230, Po21; Poo2, Po23; Poad, P234, p215)

Boo(a) = i log ()" + (5)7)
Bo2(a) = 5108 ((3)" + (5)") s Boala) = %(1 —q)
B21(0) = g log (35" + (§)) 5 Bas(a) = g log ((3)" + (2)7)
ola) = sz log ()" 57 + ()7 570 + ()" 5%@)
Ba(a) = 15 log ((B)" 570 + (1) 570
Bla) = iz log ((35)" 3% + (33)"3)
a="80) | leCe) | 1) 1 13846,
a— el | ls(E) | lss 9 00119, ¢ = = 0.

log 3 log 5 log 6
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Also

1(g) = (1023 - logB) log ((35)" + (32)")
(s~ 1ors) Los (5" + ()" + (35) + ()" + (1))
+ 1owg 108 (3 (35)" + (%) ( )" +2(5)" + (55)")
A:a A= log(13)+

log 3

E = 1222 ~(.386853, F = 1°g3 ~ 0.613147.

- log

log 5

Observe that A = a and @ < A. An easy calculation shows that condition
(I,) holds if and only if ¢ = 1. Below we sketch graphs of 3 =b,, 5*, v = B,
and ~*.

B(a) B*(ax)
2“1 L.E'J
J.4i
‘j &
10 1o q
oo
Figure 5.1.1. The graph of Figure 5.1.2. The graph of
p. B*.
Y(9) 7 ()
204 1.6[
d ]v2“£
10 o 5 0 ¢ h
=
Figure 5.1.3. The graph of Figure 5.1.4. The graph of

*

5. v*.
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v(g) — Blg) v(q) — B{¢g)
j 0.0047
E
.
@.003]
]
1.5 9.002
11
0.001]
0.5
-40 20 o 20 40 60 80 g © 0.5 1 1.5

Figure 5.1.5. The graph of v — (.

6. Proofs.

6.1. Preliminary results.
For ¢ e R and i = (iy,...,14) € I put

R(q) _ p;]ngil---id(q)iﬁil'-'id—l (q)ngili--id—l(q)iﬁil---id—2(q) o nfn(‘l)‘ﬁ(‘l),

and define conditional probabilities P;(q;i1), P2(q;42 | 41), ..., Pa(q;iq | 1, ...,
iq—1) by

Pi(q)
- J=Unsenda)el
J1=11,-- J1—1=—1,J1=2 s - .
if (iy,...,4) €I,
L. . . o P ) )
]Dl((LZl |Zlu"'7lll—1)_ . Z 3(@)

=0, da)el

J1=15 0 J1—1=U—1
0 i (i, o) & 0

Forl=1,...,d, (i,...,ia) € [1{_,{0,...,n;—1} and w = (i1,dp,...) € &
with i] = (ij,17'~7ij7d) write

pl(w) = Pl(iu | Ti1y--- 71'1,171),
Pl(q;w) = Pd(Q; il,l | Z'1,17 . 72'1,171) s
Qu(g;in, ..., 4) = Pi(g;in)Pa(qia | 41) - - Pi(qy i | 4,0y G—n).

Put o = 101;%7:# forl =1,...,d — 1. For notational convenience define

ao = 1. For 7 = (iy,is,...,i,) € 3™ and i = (i1,...,14) € I write

ui(g;l) = nf”"'”(q), ur (g 1) = us, (¢;0) - -y, (g3 1) forl=1,...,d
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vi(g;l) = nlﬂfl'””(@, v (q; 1) =5, (g3 1) - vy, (g5 1) for!=0,...,d—1.

Observe that v;(¢;1) = ui(g; l)f%z and v, (¢;1) = u,(g; l)f%z fori=1,...,d—1.

Also write
ooy L

an(Q§ w, l) = uw\n(Q; l)

for w € ¥ and n € N. Let a(q) = min;_
A(q) = max;_y g1 maxier u;(¢; 1) -1, and note that

(6.1) 0<a(q) <an(gsw,l) < A(g) < o0
foralweX,neNandl=1,...,d—1.

The proofs of Lemma 6.1.1 and Lemma 6.1.2 follow easily from the defi-
nitions.

Lemma 6.1.1. Letq€R,1=0,...,d—1 and (iy,...,4) € I;. Then

L4150
(’il ,,,,, id)EI
Biq...i —Biy...i Biy...i —Biy...i Biq...i —Biy...i
i nd 1 d(‘]) 1 d_l(q)nd_ll d—l(q) 1 ,1_2(‘1) . nl+11 L+1(‘1) 1 l(‘l) — 1

Lemma 6.1.2. LetqeR,1=1,...,d and (i1,...,%4) € I,. Then

QZ(Q; Tiy... 77:l)  Biyi (@B, () Biy (@)—B(q)
- L = nl e nl .
@i, .. 0)1

Let ¢ € R. It follows from Lemma 6.1.1 that Y, ; Pi(¢) = 1, and we can
thus define a probability measure ji? on ¥ by

=TT (X Rws).

N \ier
Next define p? € P(K) by

pi=qton .

Clearly, since n; < ny < --- < ng (recall that T : ¥ — ¥ denotes the shift
map),

ki(r)—1

(6.2) wQw,r) =11 p(T'w)

=1 ;=0
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ki

(6.3) 1 (Qw,r) =1]

=1

(r)
H (qg; T w).

For ¢ € R, w € ¥ and r» > 0 define the approximate r-order ¢-density
D, (q;w) of u at w by

1
k1 (r)

p(Qw,r))
u( Q) (n )"

D,(q;w) =

We will prove that D,.(q;w) typically is close to 1 for r close to 0; specifically,
we will prove that limsup,. o D,(q;w) > 1 for all ¢ € R and for all w € ¥
(c.f. Proposition 6.1.6), and that lim,~ o D,(q;w) =1 for i%a.a. w € ¥ (c.f.
Lemma 6.3.4).

Proposition 6.1.3. Letge R, we X andr > 0. Then

1 ki (r)

Ay (r q7w’l ar ey k()
D, (g;w) = H(H)( : ))>

! ak1,+1(’r‘)(Q7w7l

Ocl;él
. = 1 ky(r)
11 Figa(r ap-ap_q ki(r)
H (akl+1(r)(q7wa l) S
l
inl

Proof. Let w = (iy,1a,...) with i; = (4;1,...,7;,4). It follows from (6.2) and
(6.3) that

D, (g;w)""
_ p(Qw,r))
w(Q(w,r))e (n_’“(”)ﬁ(q)
1 Hl 1 H ‘Pl(Qa Tjw)
(nfkl )5((1) H HkL(T) 1 p(Tiw)a

LT Rt )
( _h(r))ﬁ(q) =1 Hfl(f pl( (28} | ZJ Lyees ’ij’l_l)q

1 H” Qd(%ijla---aij,d)
(n;kl(r))ﬁm Hfd(lr) qd(l] - ’Z'j’d)q
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d

ki(r . .
! (Hjl(kl)ﬂ(r)ﬂ Ql(q; iy Zj,l))

() ;
i I oy @i, - 450)

1

d ) de l Ug |k () (255)
B 1 M o (@) 5[ =@
- e () B(@ d i Velky (r) (65 —1)
(nl 1( )) szl Uw\kd(r)(Q)] 1) =1 _] 1 v“"klil(”(qj 1)
d—
_ 1 oo (@ ) F Ul (r) (¢ 1) 1
(n;kl(r))ﬁ(q) AT 121 Volki () (€51) ) Volky () (45 0)

d—1

I Uy () (43 1)

1

=1 (uw|k1+1(r)(q; l))q
1 ky(r) \ F1(r)

d—1 . )\ @1 aj;_q kyi(r)
( akz(r)(‘]aw,l) 1—1]”“()) e

(a0, 1) S
akHl(T)(Q;wal) AR

=1
The result follows from the above formula since k;(r) = kjy1(r) for all [ with
o = 1. |:|

Lemma 6.1.4. ([KP, Lemma 4.1]). Let N € Nand fi,...,fn :N—=R
satisfy

maxsup | f;(n + 1) — fi(n)| < oo.
Y neN

Let oy, ..., an,Ly,..., Ly €]0,00[. Then

a3 (o ([]) -5 ([ ])) 2o

Proof. See [KP, Lemma 4.1]. u

Lemma 6.1.5. Let g € R andw € X. Then

lim sup Hﬁl () (@5 w, 1)

™0 Hl:l akz+1(T)(q;w’l) B

Proof. Write w = (iy,1a,...). Forl = 1,...,d — 1 define f; : N — R by
fi(n) = %gl"l log(an(q;w,1)). Since max; sup,,cy | fi(n+1) — fi(n)| < oo and

'S ot [ta]) 4 (o))
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= log ( Hld;ll akl(e_t)(q; w, l)hl(t) )
Hl;ll akl+1(6_t)(Q§ w, [)hilet)

with hy(t) = [ﬁ], Lemma 6.1.4 shows that

logng

d—1
(6.4) lim su [li=y aryen (g, [)h(®)
. N p d—1 B . l hi(ait) —
t—oo HZZI akl+1(e t)(q7w’ )

Let ¢ > 0. Choose to > 0 such that 1 —e < h(t), y(ayt) < 1+ ¢ for
l=1,...,d—1and t > ty. Equations (6.1) and (6.4) now imply that

. hy(t . hy(t
H ay, oty (@, DM [T ae—nl@wnm®
) akl(eff,)(q;l)<1 akl(efm(q:l)zl
1 < limsup
tg<t,t—oo
. hy(agt) . hy(agt)
I Gy g (ot (@0, DM 11 Gy g (ot (s DM

l

7t)(q;l)<1 (g51)>1

[
“Riga(e “Ripy(e™t)

11 A, o=ty (@w,1)°

l
akl(g—t)((ﬁl)zl

(I an e (gsw.1) =

l
akl<e,t)(q;l)<1

akl(e,t)(q;w,l)s

< limsup
to<t,t—oo II Ay (o=t (G 1)°

de Qp (et
(Hl:11 Ak (e ) (Qa w, l)) —

11
—ty(g;h) =1

2ed d—1 .
< <A(Q)> limsup Hl:l akz(e_")(q7w7l)

d—1
t—o00 =1 a,kHl(e—t) (q7 w, l)

akl+1(c—t)(q;wal)s

for all € > 0. Letting € \, 0 yields the desired result. [l
Proposition 6.1.6. Let g€ R and w € X. Then

limsup D, (q;w) > 1.
N0

Proof. Write w = (i,1ia,...). Since

1 1
lim Fa(r) =1 and lim(1-— —le(T)) =0,
™SO0 Qoo k() N a; ki(r)
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TN
inequality (6.1) implies that ap (g w, 1) 2 RO — 1
q Yy p : 11 (m\4; W,
Oél;él
as r \, 0. We therefore infer from Lemma 6.1.3 that
ki (r)

1 mim)
) .

(6.5) limsup D,.(¢;w) = limsup (
H ak‘l+1(7‘) (q; w? l

™0 .0
a;#1

Let € > 0. There exists 7y > 0 such that 1 — ¢ < L k) <14 ¢ for

a1 Q1 k] (7)

l=1,...,d—1and r <ry. Hence, using (6.5) and Lemma 6.1.5,

1+e
. . 3 (r)(q;wvl)
limsup D,(g;w) > limsup —
0 ro>r, 7\,0 H Ay (r) (qa W, l)
“kl(T)(q“"'l)
akl+l(7,)(q;w‘l)

ag, (v (q;w, 1) o
11 ( >>

1 akH_l(r)((];W, l
gy () (@5@51) -1
Uy g (r) (@G D) =

Ay (r) (4951

<d1 ak,(r)(q;wal) ) W“
soeno@a0) L ()

l
akl(r)((ﬁw-,l) -1
akl+1(r>(q;w,l) =

. (a<Q))2€dlimsupﬁ vy (@5 w, 1) o (a(Q)>2€d
~ \A(g) O G (Gw, 1) T \A(g)

> limsup
ro>1, 1 \0

for all € > 0. Letting € \, 0 now yields the desired result. L1

The last two lemmas in this section give explicit expressions for a(q) =

—3'(q) and ga(q) + B(q).

Lemma 6.1.7. Forq € R,

Z Ql(Q;ih'”ail)logpl(il ‘i17"‘7il—1)

(i1,0-501)ED
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(recall that « = —f3').
Proof. The definitions of 3, B;,, Biyiys - - -5 Biy...i, iMPply that

(6.6)
- Bz{l.“z’l_l(Q)
1

L. . Biy...i;(@)—Biy...i;_1 (@) L. .
= “logm Z pi(iy | tny ey tpog) ! logpy (4 | 41...5-1)

i
(21,..5%1) €L

. . . Biy...iy(@)—Biy...i;_, (@)
- Z pz(ll ’ le--all—l)qnz S B ﬁ;l...il(q)
(i1;~~27[7;l)611

for { =1,...,d. It follows from repeated application of (6.6), Lemma 6.1.2
and the fact that 5;, ,,(q) = 0 for all ¢ that

-3 (q)
01

lognlz Z Z @i, ... 0)?

l 71 19 i
i1€11 (i1,i2)El2 (1,eyi1)ELL

Biy..i —Biy...i s —B; ; — . . .
L 1@ =By Z’I(Q)--‘ngm(q) 51(@”/131(‘1) ﬁ(q)logpd(ll E T

d
1 . . o .
= - 1 Z Qu(g;in, -y ir) log pa(iy | 1y - .- i1-1).
=1 08T e,
[l
Lemma 6.1.8. For q € R,
(6.7)
1
qa(q) + B(q) = —Zl > Qulgis, .. i) log Pi(gsir |y, .. ii1)
= logm

(i1,..s0)ED
(recall that « = —f3').
Proof. For each I = 1,...,d we get by applying Lemma 6.1.2,
(6.8)
log Py(qs iy | dvy ..o sti1)

=1 Ql(Q;ila"'ail)
= log - -
Ql((L 115... ,Zlfl)

_ log < ql'(il, e ,Zl) )q nlﬁqlu (@)=Biy...i;_1 (@)
@iy yiio1)
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=qlogp(iy | i1, .. 0—1) + (Biy.i (@) = Biy.ir 1 (@) log ny.

Let ®(q) denote the righthand side of Equation (6.7). It follows from (6.8)
and the previous lemma that

m@:wz(l 3 @@@mmmw@u“whﬁ

----- Q)€

—Z( ! > QZ(Q;ila---ail)(ﬁil...il(Q)_ﬁil...il1(Q))10gnl>

lOg T (i1,--501) €L

=qa(q) — Z ( Z Qu(g; i, -+ i) (B, (@) — ﬂil.“ill(q))>

(i1,001) €D

= qa(q) + Z Q1(g3i1)8(q) — ) ( Z Qi(g; 2'13--.71'1)@1..11(61))
i (i1

,,,,, Q)€

©
o
m
~
iy
~
Il
=

d—

n < S Qu@in e i)Bi a0 (a)

=1 \ (d1,....,51) €L,

i

> Pualgivn | ih---ail))

i41
(i15estip1) €D

which completes the proof. 1

6.2. Separation results.

In this section we deduce some of the consequences of separartion condi-
tion (II).

Proposition 6.2.1. Letw € ¥ and n € N.
i) If condition (I1) is satisfied then B (W(w), i) NKCQ (w, %)
i) Q(w, ) C B (), (m+ - +ma) k).
Proof. 1) Write w = (iy,1s,...) € ¥ with i, = (dm1,.--,%ma). Let m(0) €
B (ﬂ'(w), 2711?) N K with 0 = (j1,j2,...) € ¥ and jomu = (Jmas-- - Jm.d)-
We must now prove that 7(o) € Q (w, n%) Since k; (ﬁ) = [M} =

log n;

[y ay_in], 7(0) € Q (w, nin) if and only if

(69) 1:111 = jl,l, e )i[a1-~~al_1n],l = j[al'”al—ln]’l fOI’ all l = ]., e ,d.
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Assume now, in order to get a contradiction, that (6.9) is not satisfied. We

can then choose Iy € {1,...,d} and mg € {1,...,[aq---y,—1n] — 1} such
that
(6.10) tm,1 = Jm,1 form=1,...,n
im2 = jma form=1,.... o]
Z'm,lo—l :jm,lo—l for m = 1)"'7[041"'0%)—2”}
Z’l,lo - jl,lg) ce ey imO,lg - jmg,loyimo—‘rl,lo # jmo—‘rl,lo'

For [ = 1,...,d define projections II; : R — R by IIj(z,...,x4) = 2. Tt
follows from (II) and (6.10) that imyy+1, = Jme+1s for I =1,...,lo — 1 and
‘imo-‘rl,lo - jnLo-‘rl,lg‘ > 17 Whence

1
(611) dist (Hlosim0+1([07 1]d)7 Hlosj7n0+1 ([0’ 1]d)) > H

Since 7(w) € S, 0085, ., ([0,1]%), w(0) € Sj, 0--- 0 S;
imiy = Jmy, for m=1,...,mg, (6.11) implies that

([0,1]¢) and

mo+1

(6.12)
1,7 (w) — (o)
> dist (HlOSil o---05;
1 1

mo+l —  fay-ayy—1n]”
nlo I

([Oa 1]d)v HloS.h ©::0 Sjm0+1 ([0, 1]d))

mo+1

>

However, we clearly have |II,,7(w) — I,7(0)| < |r(w) — 7w(0)] < & <
m which together with (6.12) yield the desired contradiction.

ii) This inclusion follows immediately from the definition of @ (w, n%) and

the fact that k (i) =la; - o_in] and 57 < e u
i

Theorem 6.2.2. Assume that condition (I11) holds. Then

Aula) = Aj(a).

Proof. Proposition 6.2.1 clearly implies that

i 8@, r) o L leguB(n(w), )
"0 logr ™0 log r

=«
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for all w € ¥ and « > 0 which yields the desired result. |
Lemma 6.2.3. Let c> 1. Then
pQ(w, cr)

‘= supsup ——= < 0.
Xe LR 1Q(w, )

Proof. Let puin = miny_y __gming, _.yen pi(4 | 1,...,%-1) €]0,1[. Now fix
r>0and w € X. Since 0 < k(1) — ki(er) < 1L°g: + 1 (6.2) implies that

pQ(w,cr) T, 1 pu(Tw) <ﬁklﬁ lp
MQ(wvr) Hl 1Hkl (-1 Tjw) =1 j=k;(cr) e

d log ¢
_ —(ki(r)—ki(er)) (s +1)
- H Prin H Prin
=1 =1

which completes the proof. L1

6.3. Auxiliary density results.
We first collect some well-known density results.

Theorem 6.3.1. Let v be a reqular Borel measure in R, E C R, ¢t >0
and 0 < A < 0. If

B
lim sup w > A forx e E,
~o o (2r)f
then 1
HY(E) < XI/(E).
Proof. See [Mat, Theorem 6.9]. |

Theorem 6.3.2. Foreachx € Rletz =Y .2, %@) denote the unique non-
1

terminating n;-adic expansion of x. For x = (x1,...,24) € R? write g;(x) =

(ia(@)),_, , and put w(x) = (e1(),e2(x),...) € (TTL,{0, ...,y — 1D,

,,,,,

Ifve PRY), a >0 and
logvQ(w(x), )

lim —————"~> —« or V-a.a. T
™0 logr 4 ’
then
dimv = Dimv = «.
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Proof. These results are proved in e.g. [Cu2|, [Ha, Proposition 1|, [Mat,
Theorem 6.9 and Theorem 6.11] or [Yo] using balls in place of approxi-
mate cubes, but the proofs transfer since the ratio of the sidelengths of an
approximate cube is at most ng and we can thus in the definitions of the
Hausdorff and packing measures restrict our attention to covers by approx-
imate cubes. t

Next we prove some small technical density lemmas.

Lemma 6.3.3. Let g € R. Then
: . log n(Q(w,r d
i) lim, o 70%1(06;(7, £ —2im 10g1m >
i1—1) for fi-a.a. w € X.

i) lim,o W = a(q) for i9-a.a. w € 3.

i) lim, o 282 CQWr) — g0(q) + B(q) for fi%-a.a. w € 3.

logr

il)EIl QZ(i17"‘7il)logpl(il ‘ il)

.....

Proof. i) Tt follows from (6.2) that

kl(’l')—l
log 11(Q(w d 1 -
(6.13) — log py(T"w)
logr ; g 1 ki (r) J;O
for w € ¥ and r > 0. The ergodic theorem implies that
1 k-1
*Zlog}?l Tjw) Z pilogpi(iy | i1,. .., 01-1)
j=0 i=(i1,...,iq)ET
= Z Z pi | logpi(ir [ 1y oo ydi1)
(il"'wil)ell Jj= (]1, Jd)EI
J1=i1,eJ1=0
= Z @(ivs -y i)logpi(iy | da, .. di1)
(i1,...,51) €T
(6.14) as k — oo for fi-a.a. w € X.

Since 19 — =L— as 7 \, 0, (6.13) and (6.14) imply that

logn;

. lo w,T S . . . .
hmM:—Z Z Gy, ... i) logp(iy | iy, ... i—1)

™0 log r hen
(6.15) for f-a.a. w € X.

ii) It follows from (6.3) and an argument similar to the proof of (6.15) that
iy 108 H(Q(w, 7))

™0 log r
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S Qulgsis,. .. i) logpi(iy | i1, i)

d
1
=1 Oy W)E

p logn, ir

for i?-a.a. w € X,

and Lemma 6.1.7 therefore shows that lim, g W = a(q) for p9-a.a.
w e M.

iii) It follows from (6.3) and an argument similar to the proof of (6.15) that

q
iy 108 1! (Q(w, 7))
™0 log r

> Qulain,- .. i) log Plq;iy | iy, .. ii-y)
for i?-a.a. w € 3,

and Lemma 6.1.8 therefore shows that lim, o 2224 Q@D) — ¢0(q) + f(q) for

logr

f-a.a. w € Y. L1
Lemma 6.3.4. Let g € R. Then

D, (q;w) — 1 asr\, 0 for j%-a.a. w € X.

Proof. Lemma 6.3.3 together with the fact that lim,~ ;‘1’%:) = —logny imply
that

_ logr log p?(Q(w,r))  logr log u(Q(w,r))
~ E(r) logr qkl(r) log

— —logni(qa(q) + B(q)) — a(—logni)a(q) + B(q) log ny
=0 as r \, 0 for p-a.a. we .

log D, (¢;w) + B(q) log my

O

6.4. The multifractal Hausdorff dimension function b,, and the
Hausdorff spectrum.

Theorem 6.4.1.

1) If Case 1" is satisfied then the following statement hold.
i) fi(s)=pB"(s) =s.

2) If Case 2' is satisfied then the following statement hold.
i) fule) = () for o €]a,al.

Proof. Case 1’
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The proof of the statement in Case 1’ is very similar to the proof in Case 2’
and is therefore omitted.

Case 2"

Proof of: fi(a) < 8*(a). We must prove that f5(a) < ga + B(q) for all
q € R. Now fix ¢ € R. Since, by Proposition 6.1.6,

P
kq(r)

lim sup
\,0

=limsup D, (q;w) > 1 for all w € ¥,
\,0

we deduce that
. og p(Q(w, ) . (log u(Qw,r))
it 2E e < aly (PRI 4 500
< qoy(w) + B(q)
=qa+ [(q) for w e 771 (A% (a)).

Hence

, p(Qw,r)) “1(pc
hnra\syp i = for all w € 77" (Af(a)) and € > 0.

It thus follows from Theorem 6.3.1 that H*+#(@+(A¢(a)) < 1 for all e > 0,
whence f5(a) = dim AS () < ga + B(q).

Proof of fg(a) > B*(a). Let a €la,al. By Proposition 3.2.1 and The-
orem 3.2.2 there exists a (unique) ¢ € R such that o = «a(g). It follows
from Theorem 3.4.1.v), Lemma 6.3.3 and Theorem 6.3.2 that dimu? =
qa(q) + B(q) = B7(alg)) = B7(a) and p'(Aj(a)) = pi(A(alg)) = 1.
Hence fg(a) = dim Af(a) > dim p? = §*(a). u

Theorem 6.4.2. Assume that condition (II) holds. Let ¢ € R and e > 0
Then there erists a constant cq. > 0 such that

Cqept? < HZ’B(q)*E L K.

Proof. 1t follows from Proposition 6.2.1 and Lemma 6.2.3 that there exists
a constant ¢ > 0 such that

B(r(w),r) . ]\ @
(6.16) A UL ALY IS ¢, (2r)PDE > —
(/LQ w, n?)) <n1 )

1
forwe¥, meNand 5 <r < —.
2n7" 2y
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Let ¢, = 2.
Fix a Borel subset B of K. For n € N write

Y, ={w|wen(B), D,-n(g;w) <ni form=>n}, F,=mn(%,)CB.

Now fix n € N. Let (B(z;,7;))ien be a centered 2 311 C(n+l )—covering of F,,. For
each i € N choose w; € ¥ such that w(w;) = z;, and let m; be the unique
integer satisfying

o2n it ST < 2nyh
Next observe that s L <rn< %%H for all <. Hence, m; > n for all 1,
1 1

whence w; € 3, C Em,-, and so
(6.17) D, (¢;w;) < nf for all 1.
It follows from (6.16) and (6.17) that

Z p(B(z;, 7)) (2r;)P D¢

B(g)—e

_ i), i) e, (Wi, #)q (2r;) , L
z’i: (uQ (w,,n?l )) 11 (Q( ml)) H (Q (w“nl"“»
2 F e (@)

s e (0o )

> Cq et (UB(‘riari)> > cqept?(Fy).

Hence

HLOD—=(B) > HIPO~=(F,) > H\ 50 (F) = cpen(F),

Hy51ng

whence, since F,, U, F},,

Hzﬁ(q)—s(B) > ¢t (U Fn> )

n

Finally, since lim,~ o D, (¢;w) = 1 for fif-a.a. w € ¥, p4(U, F,) = p?(B), and
S0

Hzﬂ(q)—e( > cqept <UF > = c,p(B). u
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Theorem 6.4.3. Assume that condition (II) holds. Then

b, = f.

Proof of. b, < . It follows from Proposition 6.2.1 and Lemma 6.2.3 that
there exists a constant ¢ > 0 such that

(6.18)

q
uB (ﬂ(w), (ng+---+ nd)ﬁ)
" ! <c for all w € ¥ and m € N.
hQ (. )

Let g e R. Let FF C K and € > 0. For r > 0 write

Q ={Qw,r) |wen ' (F), Di(q;w) >ni“}.

Since limsup,~ o D,(q;w) > 1 for all w € X,

(6.19) rcly| U @ for all n € N.
m>n

Q€Q m
1

For each m € N choose (W, ;)ien C ¥ such that Qn;m = {Q(wm.i,n1™) |
i € N}. It follows from (6.19) and Proposition 6.2.1 that

(6.20) FcU(

m>n

1
UB( (W), (N1 + - +nd)nm)> for all n € N.
1

ieN

Write §,, = (ny +- +nd) - for m € N. It follows from (6.18) and (6.20)
that for each n € N,

4,6(q)+2e

s (F)

< D0 D (BT (Wini), 0,0)) " (20,) 702

m>n 1€N

< (2(ng + -+ +ny))@OTE

H
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< (2(ng + -+ +ny)) DT
1 1 1\*
Ty (@ emei)) ()
; ki ==
m>n i€N Dn;m (q7 wmi) ("1 ) 1 1
< (2(ny + -+ -+ ny))@OFEC

s oy

ni

mzn (i) €] ]I {05 —13
1 m
= (2(77,1 + -+ nd))ﬁ(‘”“scnl cNg Z <5> .
m>n ni
Letting n — oo thus yields H* B(Q)Ha( F)=0forall F C K = supp u. Hence

. 772:8(a)+2¢
HZ (supp M) = SUPpCsupp u HM

for all € > 0.

Proof of b, > B. Let ¢ € R and ¢ > 0. Theorem 6.4.2 implies that
Hﬁﬁ(q)_s(supp p) = cqepd(supp pt) = cq. > 0, whence b,(q) = dim] (supp p)
> [(q) — € for all € > 0. |

(F) =0, and so b,(q) < B(q) + 2¢

Proof of Theorem 4.1.1.1) and Theorem 4.1.1.2). Follows from Theorem
6.4.1. U

Proof of Corollary 4.1.2.i). Clearly dim K > dim A%,(«(0)) = f£(a(0))
8*(a(0)) = (0), where we have used Theorem 6.4.1 and Theorem 3.4.1.
Since, by Proposition 6.1.6,

v).
1
kq(r)

0
lim sup % = limsup D, (0;w) > 1 for all w € X,
N0 1 ) N0

k()

we deduce that liminfr\ow < pB(0) for all w € 3. Hence

logr
lim sup,. g "fﬁé;‘::) = oo for all w € ¥ and ¢ > 0. It therefore follows

from Theorem 6.3.1 that H#@+¢(K) < 1 for all ¢ > 0, and so dim K <
53(0). O

Proof of Theorem 4.1.3.i).  Follows from Theorem 6.4.3. |

Proof of Theorem 4.1.4.
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Case 1"

The proofs of the statements in Case 1’ are very similar to the proofs in Case
2" and are therefore omitted.

Case 2':

i) It follows from Theorem 6.2.2 that f,(a) = dimA,(a) = dim Af(a) =
[ () and from Theorem 6.4.1 that fg(a) = 5*(a) for a €]a,al.

ii) It follows from Theorem 6.4.3 that b, = 3, and Proposition 3.2.1 therefore
implies that

b b
B 0 R 1 S 7 S ()
0<q q 0<gq q q<0 q q<0 q
Theorem 2.1.3 now shows that A,(a) = @ for a € R, \ [a,a]. U

6.5. The multifractal packing dimension function B,,.
In this section we compute the multifractal packing dimension function
B,,. We begin with some small lemmas.

Lemma 6.5.1. Let v € Pp(R?) and q,t € R. Then
i) There exists a number ¢ > 0 such that fﬁ’t(E) < fﬁ’t(E) < cf?,’t(E)
for all E C suppv.
ii) AY(E)=AYE) for all E C suppv.

Proof. i) Since v € Pr(R?) there exists an ry > 0 and a number ¢, > 0 such
that

( vB(z,r) \'

< ¢ for 0 < r < ry and x,y € suppv with y € B(z, 3r).
vB(y, é?“)) ?

Let E C suppv, 0 < 0 < 19 and (B(x;,7;))ien be a centered d-packing of
E. Choose y; € B(z;,ir;) N E for each i. Since B(y;, ir;) C B(wy, 1),
(B(yi, 27:))i is a centered $d-packing of E. Hence,

S U(Blas, 1)) !(2r)! < 2ee Y v(Blys, b)) (24r)" < 2Pl (),

and so f%(ﬁ) < 2%05325(E). Letting 6 \, 0 now yields ﬁ‘f’t(E) <
2SCofz’t(E).

ii) Follows from 1i). u
Lemma 6.5.2. Let v € P(R?), ¢ € R and E CR%. Then

(B = 9(F.
Dim!(F) = Ecgg sup AI(E;).

=i=1"1
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Proof. “<” Let EE C U2, E;. The monotonicity and countable stability of
Dim? (c.f. [O11]) and Proposition 2.1.2 imply that Dim?(E) < sup, Dim?(E;)
< sup, AY(E;) for all coverings (F;); of E, whence Dim!(FE) <
infpcus g, sup; AL(E;).

“>” Let s > Dim!(E). Then 0 = P?*(E) = supECUoo i S PL(E), so
that £ C U, F, for a countable family of sets F; with 7., (F;) < oo. Hence
Al(F;) < s for all i, whence infgcy= g, sup;, A%(E;) < sup; AL(F;) < s for
all s > Dim!(FE). u

Lemma 6.5.3. Let v € Pp(R?), ¢ € R and E C R? be compact. If
AYENU) = ALE) for all open sets U with ENU # &,

then
Dim!(E) = AL(E).

Proof. “<” Follows from Proposition 2.1.2.

“>" Let E C UX,E;. Since E C UX,E;, Baire’s category theorem implies

that there exists a j € N and an open set V such that @ # ENV C E;.

Hence sup,; AY(E;) > A4(E;) > AL(ENV) = A%(E). Since the covering

(E;); of E was arbitrary, the two previous lemmas now imply that
Dim!(E) = Einf sup A¢(E;) = inf sup AY(E;) > AYE).

CU;E; ECU; E;

We will now use Lemma 6.5.3 to prove that B, = A, and thereby establish
the first equality in Theorem 4.1.3.ii).

Lemma 6.5.4. Letv, A € P(RY) and let T : R — R? be a bi-Lipschitz map,
i.e. there exist numbers c,C €]0, 00| such that clx—y| < |Tx—Ty| < Clz—y|
for all x,y € RY. Assume that T(suppv) C supp A. For q € R write

AB(T a
J?\(T) = liminf _inf ((fm“))

r\0 wzesuppr \  vB(z,T)
— e )\B(Tac,Cr))q
T =tmge s (M)
Let g,t € R andEgs ppl/ Then
) JL(D)PY(B) < PA (TE) < T, \(T)CP, ' (E).
ii) lZ,A( )P (E )S V(TE) < JV,A(T)CtP‘”(E)
i) JI\(T)HEH(E) < HE(TE) < J, \(T)C'HL(E).
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iv) If0 < JU\(T) < J,,(T) < oo then AY(E) = AY(TE), Dim!(E) =
Dim§(TE) and dim?(F) = dim§(TE).

Proof. Follows easily from the definitions. See also [O11, Lemma 4.3] where
the assertions are proved in the special case where ¢ = C. L1

Lemma 6.5.5. Assume that S;([0,1]%) N S;([0,1]%) = @ fori#j (this is in
particular satisfied if condition (II) holds). Leti € I, z € K and 0 <r < 5.
Then

p(Si(U (2, 1)) = pipn(U (2, 7))

where U(x,r) denotes the open ball with center x and radius r.

Proof. The proof of Lemma 6.5.5 is identical to the proof of [Ol1, Lemma 5.6]
and is therefore omitted. |

Lemma 6.5.6. Assume that condition (II) holds. Let ¢ € R, n € N and
i,...,i, € I. Then

1) JZ,N(SHO'”OSM) > 0.

i) J, (S0 08 < .
(Here J} (Si, 0---05;,) and jfw(sil o---08; ) are defined in Lemma 6.5.4.)

Proof. 1t follows from Proposition 6.2.1 and Lemma 6.2.3 that there exists
a constant ¢ > 0 such that
uB (:1:, 22—%7“)

6.21) ¢! < i
(6.21) ¢ < pB(z,r)

<ec, c
for il =1,d,r >0 and = € supp u.

As before, U(x,r) denotes the open ball with center x and radius r. Write
p = min; p; and p = max; p;. We clearly have S;(U(x,n,r)) C U(Si(x),r) C
Si(U(z,ngr)) for i € I, r > 0 and = € supp p, and (6.21) and the previous
lemma therefore imply that

(e ) (500050 )

n_—1 < l
B =2 By ~ jB(w,r)
uB (w, 2%27‘)
< =N 1 < =N
=P s P
fori=1,d,0<r< ;nl% and x € supp p. This proves the lemma. l
d

Proof of the equality B, = A, in Theorem 4.1.3.i1). Let ¢ € R. We must
now prove that B,(q) = A,(g). Since B,(q) = Dim}(K) and A,(q) =
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A%(K), it suffices, by Lemma 6.5.3, to prove that A%(K NU) = Af(K)
for all open sets U with K N U # @. Now let U be an open set with
x=m(w) € KNU where w = (iy,is,...) € X. Since S, 0---05; (K) \, {z}
there exists an integer n such that Sj o---0.5; (K) € KNU. Finally,
Lemma 6.5.4 and Lemma 6.5.6 show that A%(S;, o---05; (K)) = A%(K),
whence AL(KNU) > A4(S;, 0---08; (K)) = A%K) > A% K NU) and so
ALK NU) =AYK). |

6.6. Multifractal box dimensions and generalized Rényi dimen-
sions for multifractal Sierpinski sponges.

In this section we compute the multifractal box dimensions and the gen-
eralized Rényi dimensions of p assuming condition (II). For r > 0 we denote
the family of approximate cubes with approximate diameter r by Q(r), i.e.

(6.22) (r) :={Q(w,r) |w e T}

For i = (iy,...,i,) € [[1-,{0,...,n; — 1} write

d . . . .
i1, Uy ()l b1y Ly (r),1 1
er = Qwr: — 4+ .4 L — 4 ...+ +
( ) ( ) ) 11;[1 n; n;cl(r)’ n nfl(” nfz(r)
w:(il,ig,...)ez,
i] = (ij,17 e 7ij,d) fOI' all j,
ik'l(r),l — 'il, . o 7ikd(r),d - Zd}

Observe that (Qi(r)), is a partition of Q(r), and that
Q'NQ" = for all Q',Q" € Q;(r) with Q" # Q".

Lemma 6.6.1. Let g € R. Then

log (ZQEQ(T) M(Q)q)
—logr

—(q)  asr\,0

(recall that v(q) is defined in Section 3.1).
Proof. 1t follows from (6.2) that
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ki (r)

d
= log Z H P i1, 50-1)"

(1,01<d>r gy (r),)1<d €1d =1 j=1
(hog(ry+1,001<d—155 (kg4 (), 0)1<d—1€Ta—1

(ikz(v~)+1,l)l§11“.‘7(ik1(r'),l>l§1611

kq(r)
= 1og Z H Qd(ij,ly e ,’L‘j’d)q
j=1

(1,01<dr (kg (r),)1<da€1d

kqg—1(r)
> T daiGiassisa)?
(g (ry+1,01<d—15+ (kg4 (m),0)1<d—1€la—1 j=kq(r)+1
k1(r)
> I «6G
(kg (r)+1,001<150 (kg (), 1)1<1 €11 j=ka(r)+1
(6.23)
For convenience write kq4.1(r) = 0. Since
ki (r)

Z H @i, st50)7

(iky g (+1m)m<tse ok () m)m<i €0 j=kipa(r)+1
ky(r)—kiy1(r)

= Z ql(’il,...,il)q 5

(i1,eesit) €L
we deduce from Equation (6.23) that

d ki(r)—kit1(r)

log Z w(@) | =log H Z qiey ..., 0)!

QeQ(r) =1 \(¢1,...,51)€L;

(6.24) =

d
(ki(r) — ki41(r)) log > aqlin, i)
=1 (41,-..,%1) €Dy
ki(r) 1

The desired result now follows from (6.24) since heer e A TN\,
0. [l

Theorem 6.6.2. Let ¢ € R and assume that condition (II) holds. Then
C.(q9) = Cula) = Cula) = ¥(a)-
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Proof. 1t follows from Proposition 6.2.1 and Lemma 6.3.2 that there exists
a constant ¢ > 0 such that

q q

pQ(w,r) <e uB(w(w)l, r) .
uB (w(w)s e hQ () =)
(6.25)
1 r 1
forwe ¥, meNand —— < < =
ny ny+---+ng ny’

Also observe that for i € [T, {0,...,n, — 1},

1
nllcl (T)Jrl N

1
(6.26) VQ', Q" € Qi(r) : dist(Q', Q") > mlin ey
y

For i € [T,{0,...,n — 1} let Qi(r) = {Q(wir;,7) | 7 € N}. Now fix
r > 0. It follows from (6.26) that (B (Tr(wi,r’j),nh},‘m>) is a centered

J

r-packing of supp u, whence (by (6.25))

(6.27)

<c Z Z,u (B (W(wi7k7,j)7 11161(1,,)“))

e[ {0,.om—1} 7 1
<c Z St (supp pt) = eny - ngS) | (supp ) for r > 0.

Next, let (B(x;,7)); be a centered r-packing of supp p. Choose w; € 3
such that x; = m(w;). Also choose m € N such that nml+1 Sormmn < n%
It follows from Proposition 6.2.1 that

Q(wW;H>§B<ﬂ%%WH~~+w)iﬂ>§BMW&H7

ny

and so Q(w;, - ) # Q(w;, =) for i # j. Hence

Sl < T (s gm) <o T war

QeQ(ny ™)
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and so,
(6.28)
S4 (supppu) <c Z u(Q)? for L < r < i
wr - o ntt T4 ng o onf
QeQ(ny™)
The result now follows from (6.27), (6.28) and Lemma 6.6.1. [l

Theorem 6.6.3. Let ¢ € R and assume that condition (II) holds. Then

D,(9) =D.(q) = Dulq) = (q)-

Proof. Proposition 6.2.1 and Lemma 6.3.2 imply that there exists a number
¢ > 1 such that

< (uB(fW“)))q <e < (MB(%T))Q <e

uB(y,2r (@)
(6.29)

1
for r > 0, QEQ( )> re@QNK andy e B(zx,r)N K.
ny'

We now divide the proof into two cases.
Case 1: v(¢+1) =D,(¢+ 1) for ¢ # 0. Let r > 0 and (B(z;,7)); be a
centered packing of K. Then

Sy =3 [ (SR (20 duto

<e / u(B(w,2r))" du(x)
supp g
whence
(6.30) Sttt (supp p) < c/ w(B(x,2r))? du(x) for r > 0.
supp 4

Inequality (6.27) shows that there exists a constant ¢y > 0 with
Yocom MQ)TH < S (supp p) for r > 0, and (6.29) therefore implies
that

/supp,u'u(B(xﬂﬂ))q du(w) = Z /QM(B(Z"T))Q dﬂ(l’)

oro( )

(6.31) <c Z N(Q)TH < ¢ CSq wl(w)(Sllpp 1)

oco( )
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The result now follows from (6.30), (6.31) and Theorem 6.6.2.
Case 2: (1) = D,(1). Since v(1) =0, D,(q) = (1 - q)fo1 and D,(q) =
(1-— q)ﬁZ_l with 0 < Qz < 52, it suffices to prove that ﬁi < 00. We have,
using (6.29),

[ toguBa i@ = Y [ loga(Bn) du()

supp p Qeg(n;kl(r)) Q

> Y [ o (@) du(a)

QEQ(n;kl(r)) Q

=—loge DORN(%)

i€, (0o -1} QEQi(ny 1)

+ > (@) log u(Q)

QeQ(n;kl(r))

> —ny -+ -nglog ¢ — log card Q(n; ¥ ")

since ZQEQi(n;klm) w(Q) = #(UQEQi(n;klm)Q) < 1, whence

—0 .
D, <limsup
r\.0

<C(K)<d< .

logc log card Q(ny )
—Nq Ny Sy _ )
og(n, ) log(n, )

O

Proof of Corollary 4.1.2.i1).  An inspection of the proof of Theorem 6.6.2
shows that the only place where condition (II) was used, was in order to es-
tablish Equations (6.25). However, for ¢ = 0 Equations (6.25) are obviously
satisfied. Hence Theorem 6.6.2 holds for ¢ = 0 without assuming condition
(I), i.e. we have v(0) = C,(0) = C(suppp) = C(K) without assuming
condition (II). This proves Corollary 4.1.2.i). u

Proof of the equality A, =~y in Theorem 4.1.3.i1). It follows from Theorem
6.6.2 that v = C, = C,,, and it follows from Theorem 2.2.1 and Lemma 6.2.3
that C,, = A,,. O

Proof of Theorem 4.1.3.iii). Follows from Theorem 6.6.2 and Theorem
6.6.3. 0
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6.7. A sufficient condition for the multifractal measures Hz’ﬁ(q) and
775*5(‘1) to be positive and finite.

This section investigates the multifractal Hausdorff and packing measure
at the critical dimensions.

Proposition 6.7.1. Let g € R and assume that condition (1,) holds. Then
1) Q(Q) = infweg infr>0 Dr(q, w)kl(r) > 0.

ii) D(q) = sup,cx Sup,-o D, (q;w)" " < oo.

Proof. Let » > 0 and w = (i, i2,...) € X. It follows from condition (I,)
that there exist strictly positive numbers ug,...,uy such that wu;(g;l)
nf””'”(q) =y for all I € {k | ap # 1} and (iy,...,7%) € I;. We thus de-
duce that a,(g;w,1) = g (q;1)* 1% = uf* " for all 1 € {k | oy # 1}
and n € N. It now follows from Proposition 6.1.3 that

ki (r *ikl 1(r
(6.32) D, (q;w)F1 ™) = H u (r)=apkin ()
all7é1
Finally, since —1 < ki(r) — a%klﬂ(r) < 0%7 (6.32) implies that

1 1
H min <ull, ul“‘l,) S Dr(qa w)/ﬂ(?’) S H max <ul1? ulal) .
l

l
ay#l ar#l

O

Theorem 6.7.2. Let g € R and assume that conditions (I,) and (II) hold.
Then
i) There exist constants 0 < ¢ <€ < oo such that

cp? < 'Hﬁ’ﬂ(q) Lsupp p < pzﬁ(q) L supp p < eul.

ii) fi’ﬁ(q) (supp p) < o0.

Proof. Let D(q) and D(q) be defined as in Proposition 6.7.1, and note that
Proposition 6.7.1 implies that 0 < D(q) < D(q) < oco.

Proof of There exists a constant ¢ > 0 such that
cpu? < HYPD L supp p.

It follows Proposition 6.2.1 and Lemma 6.2.3 that there exists a constant
¢, > 0 such that
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(6.33) (M) > e, (2r)P@ > ¢ ( 1m>5((1)

7 (w L
o) T

1
foerE,meNandW§r<
ny

—.
2nf

Let ¢ = c¢2D(q)~*

Let B be a Borel subset of supp u. Now fix § > 0 and let (B(z;,7;))ien
be a centered d-covering of B. For each i € N choose w; € 3 such that
m(w;) = x;, and let m; be the unique integer satisfying

(6.34)

— <1 < -,
ittt = 2n

It follows from (6.33) and (6.34) that

S B 2r>ﬁ@>62¥ (@)

k‘l( 7
D, oo (gwi) \"

(o)

> cp (uiB(mi,n)) > cp’(B).

Hence H%#@(B) > ﬁzﬁ<q)( B) > H" ﬁ(q)< B)

Vv

cp?(B).

Proof of: HZ’ﬁ @Lsupp p < Pg’ﬁ (@Lsupp . Follows immediately from Lemma
6.2.3 and Proposition 2.1.2.

Proof of. There exists a constant ¢ < oo such that

PLA@ Lsupp p < el
—9.8(a) _
P, " (suppp) <

It follows Proposition 6.2.1 and Lemma 6.2.3 that there exists a constant
¢y > 0 such that

q

B 1 B(q)
(6.35) M < ey, (Qr)ﬂ(q) < ¢y <m+1)
nQ (w, nm%) n

1
forwe X, meNand —
n
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Let ¢ = c2D(q)~*

Let G be an open subset of R? and let C be a compact subset of G. Clearly
dc,c = +dist(C,R?\G) > 0. Now let (B(z;,r;)); be a centered dg c-packing
of C'Nsupp p. For each i choose w; € ¥ such that m(w;) = x;, and let m; be
the unique integer satisfying

1 r; 1

mi+1

(6.36) < < —.
nl n1+...+nd n11

It follows from (6.35), (6.36) and the inclusion U;B(x;,r;) C G that

Z,u (x5,7:))4(2r; )5(")

1 1
3 k[ —L1— 1
D, —omen (i) ™
1

< g 2 (Q (7))

(2

1! (Ui B(zi, 1)) < ep'(G).

IA
ol

We thus deduce that P? B(Q)(C N supp p) < PZ ﬁfl(c Nsupp p) < cu?(G).
Hence

(PP Lsupp ) (C) < fiﬁ(@(c Nsupp ) < ep’(G)

(6.37)
for all open sets G and all compact sets C' with C' C G.

By letting G = R? and C' = supp p in (6.37) we obtain P (supp ) <

p!(R?) =c.

Since P Bl (supp p) < 73 (supp p) <€ < oo, P Ba)|_supp p is a finite
Borel measure and thus regular Equation (6.37) together with regularity of
Pg’ﬁ(q) L supp g and p¢ now imply that PZ’B(q) Lsupp pu < cul. L

Proof of Theorem 4.1.8.  Follows immediately from Theorem 6.7.2, Theo-
rem 6.3.2 and Lemma 6.3.3. Ul

Proof of Theorem 4.1.9. i) The assertion in i) follows from Theorem 6.3.2
and Lemma 6.3.3 by noticing that

a(l) Z

=1

Z @(iv, ... i) logpi(iy [ 41y .00 i-1).

lOgnl 1,..,01)EL



198 L. OLSEN

ii) Follows from Lemma 6.3.3 since condition (II) together with Proposition

6.2.1 show that lim,.\o % = « if and Only if hmr\O W = «

for w e ¥ and o > 0. Ul
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