Vol. 183, No. 2, 1998

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Asymptotic expansions for the heat content

S. Desjardins

Vol. 183 (1998), No. 2, 279–290
Abstract

Let M be a compact Riemannian manifold with smooth boundary ∂M. We study the asymptotic expansions associated with the generalized heat operator QetP with suitable boundary conditions. A new invariant defined on the boundary of M is introduced, and a method is given that relates the heat content asymptotics for the generalized heat operator and the standard heat operator  etP with the new boundary asymptotics. As an application, we compute the boundary asymptotics associated with an operator of Laplace type, and the asymptotics for a generalized operator constructed from an operator of Dirac type.

Milestones
Received: 20 September 1996
Published: 1 April 1998
Authors
S. Desjardins
University of Ottawa
Ottawa, Ontario K1N 6N5
Canada