Vol. 183, No. 2, 1998

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Algebraic curves and non rigid minimal surfaces in the Euclidean space

Gian Pietro Pirola

Vol. 183 (1998), No. 2, 333–357
Abstract

Using method from algebraic geometry we prove:

Theorem. Let X be a compact connected Riemann surface and Z be a non empty finite subset of X. Then there is a complete minimal immersion F : X Z 3 such that F(X Z) is non rigid and of finite total Gaussian curvature.

Milestones
Received: 10 April 1996
Revised: 9 April 1997
Published: 1 April 1998
Authors
Gian Pietro Pirola
Universitá di Pavia
Via Ferrata 1
27100 Pavia
Italy