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NORMAL SURFACE Q-THEORY

Jeffrey L. Tollefson

We describe an approach to normal surface theory for tri-
angulated 3-manifolds which uses only the quadrilateral disk
types (Q-disks) to represent a nontrivial normal surface. Just
as with regular normal surface theory, interesting surfaces are
among those associated with the vertices of the projective so-
lution space of this new Q-theory.

1. Introduction.

A normal surface F in a triangulated compact 3-manifold M intersects each
tetrahedron in elementary disks which are either triangles or quadrilaterals.
In this paper we show that only the quadrilaterals are significant in the sense
that a normal surface without trivial components is completely determined
by its quadrilateral disks alone. From this observation we develop a normal
surface Q-theory analogous to Haken’s normal surface theory [1], [2]. The

normal Q-coordinates
→
FQ of a normal surface F is the vector of nonnegative

integers given by the multiplicity of each quadrilateral disk type in F . The
vector

→
FQ is characterized by the fact that it is an admissible solution to a

system of linear Q-matching equations in which there is just one equation
for each interior 1-simplex of the triangulation. A significant feature of this
approach is that fewer variables and equations are involved than in regular
normal surface theory thus simplifying computations.

The projectivized solution space PQ of the Q-matching equations is a com-
pact, convex, linear cell. Interesting normal surfaces occur among those asso-
ciated with the vertices of PQ and a number of algorithms can be rephrased
from this new point of view. For example, if there exists a two-sided, incom-
pressible, ∂-incompressible surface in a triangulated, compact, irreducible,
∂-irreducible 3-manifold then there exists one corresponding to a vertex of
PQ.

2. Quadrilateral Disks in Normal Surfaces.

Throughout, M will denote a compact 3-manifold with a fixed triangulation
T . We will discuss only what we need from normal surface theory in order

359

http://nyjm.albany.edu:8000/PacJ/
http://nyjm.albany.edu:8000/PacJ/1998/v183no2.html
http://nyjm.albany.edu:8000/PacJ/1998/


360 JEFFREY TOLLEFSON

to explain normal surface Q-theory. See [5] or [6] for additional background
on normal surfaces.

A normal surface F intersects the 2-skeleton transversely and intersects
each tetrahedron ∆ in a pairwise disjoint collection of triangular and quadri-
lateral disks, called elementary disks, which are properly embedded in ∆.
Each edge of an elementary disk is a straight line in a 2-simplex of ∆ and
spans distinct 1-simplexes.

A normal isotopy is an isotopy which is invariant on each simplex of T .
The normal isotopy class of an elementary disk in a tetrahedron ∆ is called a
disk type and the normal isotopy class of a spanning arc in a 2-simplex of ∆
is called an arc type. In each tetrahedron ∆ there are seven disk types, four
of which consist of triangles (T-disks) and three consisting of quadrilaterals
(Q-disks). We label T-disk types and arc-types by the vertex which they cut
off. For example, if a is a vertex of the tetrahedron ∆ then a T-disk cutting
off the vertex a will be referred to as an a-disk and an edge of such a T-disk
will be called an a-arc.

Consider a pair of elementary disks E1, E2 in a tetrahedron ∆ which in-
tersect transversely, that is, each component of E1 ∩ E2 is an arc properly
embedded in ∆ that spans the interiors of distinct 2-simplex faces of ∆. A
component α of E1 ∩E2 is a regular arc of intersection if there exists a pair
of disjoint elementary disks having the same disk types as E1 and E2, or
equivalently, if the union of the vertices of E1 and E2 span a disjoint pair
of elementary disks. This is always the case except when E1 and E2 are
quadrilateral disks of different disk types. Two normal surfaces F and G
are said to intersect transversely if each pair of elementary disks from F and
G, respectively, intersect transversely. If each intersection curve of F ∩G is
regular, in the sense that it is a union of regular arcs, then there is a unique
normal surface F + G constructed using standard cut-and-past operations
along the regular curves of intersection. F + G is a uniquely determined
normal surface made up of exactly the same collection of elementary disks,
up to normal isotopy of the disks, as in F ∪G.

The cell decomposition which a normal surface F inherits from the tri-
angulation T consists of triangular and quadrilateral disks and is used in
normal surface theory to algebraically represent the surface F as a solution
of a linear system of matching equations in which variables correspond to
elementary disk types of T . Fix an ordering dQ1 , . . . , d

Q
3t, d

T
1 , . . . , d

T
4t of the

disk types in T , where the Q-disk types dQi are listed first, followed by the
T-disk types dTj . A 7t-tuple

→
F = (x1, . . . , x3t, y1, . . . , y4t), called the normal

coordinates of F , is assigned to a normal surface F by letting xi denote the
number of elementary Q-disks in F of type dQi and yj denote the number of
elementary T-disks in F of type dTj . A normal surface F is uniquely deter-
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mined, up to normal isotopy, by the vector
→
F . The normal Q-coordinates of

F are
→
FQ = (x1, . . . , x3t) and we will show that the remaining 4t variables

(y1, . . . , y4t) are redundant when F has no trivial components. A connected
normal surface containing only elementary T-disks is a 2-sphere or disk fron-
tier of a regular neighborhood of a vertex of T and will be referred to as a
trivial surface.

The 3t-tuples of non-negative integers ~x = (x1, . . . , x3t) corresponding to
normal surfaces are characterized in normal surface Q-theory by two con-
straints. The first is that for each tetrahedron, at most one xi associated
with that tetrahedron can be nonzero since Q-disks of different types cannot
be disjointly embedded in a tetrahedron. The second constraint concerns the
matching of edges of elementary disks around the interior 1-simplexes of T .
To describe this second constraint we consider the cell decomposition of a
normal surface F given by its elementary disks. Choose an oriented interior
1-simplex ek of T and let v be a point of ek ∩ F . A 2-cell neighborhood U
of v in F is made up of the union of the elementary disks in F containing
v. Let E1 be a Q-disk in the tetrahedron ∆ with a corner at v and suppose
the edges of E1 containing v consist of an a-arc and a b-arc, where a, b are
vertices of ∆. If we rotate around v in a fixed direction starting in E1 and
moving from the b-arc to the a-arc of E1, notice that after leaving E1 we
meet only a-disks until we reach another Q-disk, which we traverse going
from an a-arc to a b-arc. The remainder of the circuit around v is through
b-disks unless we encounter additional pairs of Q-disks taking us from b-arcs
to a-arcs and then back again to b-arcs. This is illustrated in Figure 1.

The first step in forming the Q-matching equations is to assign to each
interior 1-simplex of T an orientation and a positive direction of rotation
about it. In a tetrahedron ∆, only two of the three types of Q-disks meet a
given 1-simplex. When we rotate in the positive direction about a 1-simplex
with vertices a and b, observe that on one of the Q-disk types we traverse
from the a-arc to the b-arc and on the other Q-disk type we traverse from
the b-arc to the a-arc.

Consider a tetrahedron ∆ of T with vertices {a, b, c, d} and take a 1-
simplex ek = [ab], where the positive orientation is from a to b. Assume
the positive rotation around [ab] induces an orientation of the 1-simplex [cd]
from c to d as shown in Figure 2. Let dQi and dQj denote the two Q-disk
types in ∆ represented by elementary Q-disks meeting the edge [ab]. Each
elementary disk of type dQi and dQj has an a-arc in one 2-simplex face of ∆
containing [ab] and a b-arc in the other 2-simplex face containing [ab]. If the
Q-disk type dQi is represented by a 4-sided disk σ in ∆ disjoint from [b, c]
then we define the sense of σ (relative to the oriented 1-simplex ek) to be
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εk,i = +1. That is, εk,i = +1 if a positive rotation about ek carries the face of
∆ containing the a-arc of σ through ∆ to the face of ∆ containing the b-arc
of σ. For the other Q-disk type dQj , represented by a 4-sided disk disjoint
from [a, c]-disk, we set εk,j = −1. For all Q-disk types dQl not meeting ek we
set εk,l = 0.

Consider the collection of elementary Q-disks in a normal surface F which
have a corner at v and observe that the number having a positive sense
must be equal to the number with a negative sense. This is the constraint
that characterizes vectors corresponding to normal surfaces. Thus, if F is a
normal surface then

→
FQ = (x1, . . . , x3t) satisfies the following linear system

of equations, one equation for each interior 1-simplex ek of T .

Q-matching equations{
3t∑
i=1

εk,ixi = 0

}
k

0 ≤ xi, 1 ≤ i ≤ 3t.

3. Quadrilateral Disks are Sufficient.

A non-negative integral solution (x1, . . . , x3t) of the Q-matching equations
is admissible if it has the property that for each tetrahedron ∆ of T at most
one of the three variables xi corresponding to Q-disk types in ∆ is nonzero.
The frontiers of regular neighborhoods of the vertices of T are referred to
as trivial surfaces. We show that an admissible solution to the system of
Q-matching equations uniquely determines a normal surface without trivial
components. Recall that there is one Q-matching equation associated to
each interior 1-simplex of the triangulation.

Theorem 1. Let M be a compact 3-manifold with a fixed triangulation. If
F is a normal surface in M then the Q-coordinates

−→
FQ give an admissible

solution to the Q-matching equations. Moreover, if ~z is a nonzero admissi-
ble solution to the Q-matching equations then there exists a unique normal
surface F in M with no trivial components such that

→
FQ = ~z.

Proof. It follows from the previous section that the Q-coordinates of a nor-
mal surface F satisfy the matching Q-equations. So suppose that ~z is an
admissible solution to the Q-matching equations. We will construct a normal
surface F with

→
FQ = ~z.

Case 1. M is a closed 3-manifold.
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We first glue together a collection of Q-disks corresponding to ~z and then
fill in the holes with T-disks. To picture the construction, consider a normal
surface G intersecting ek. The union of the set of tetrahedra containing ek
as an edge is a 3-ball B. Observe that the types of the elementary disks
meeting ek can be characterized by how they intersect the triangulated 2-
sphere boundary of B. A component D of G ∩ B is a disk which can be
viewed as the join v ? ∂D where v = D ∩ ek. The disk D is the union of
elementary disks meeting ek at the point v. The disk types in D can be
recognized by the arc types comprising D ∩ ∂B.

We begin by choosing a collection E of elementary Q-disks corresponding
to the given solution ~z. Take a 1-simplex ek = [ab] and choose an orientation,
say from a to b. Let Ek denote the set of pairs {(E, v)} such that E ∈ E and
v is a corner of a Q-disk E meeting ek. The first step is to describe how to
glue together the corners v of the pairs (E, v) of Ek along ek. View the 2-
sphere ∂B as the union (a? lk([ab]))∪ (b? lk([ab])) as shown in Figure 3. Let
{αi}pi=1 denote the arcs in ∂B coming from the Q-disks for which εk,i = +1
and let {βj}qj=1 denote those having εk,j = −1. According to the Q-matching
equation associated with the 1-simplex ek, the number of Q-disks from a to
b is equal to the number from b to a.

There is a unique set of a-type arcs in a ? lk([ab]) and a unique set of
b-type arcs in b ? lk([ab]) whose union with the set

⋃{{αi} ∪ {βj}} produces
a normal system of pairwise disjoint simple closed curves in ∂B (after sliding
the ends of the αi and βj together where required). To construct this set,
begin in a ? lk([ab]) by locating and joining an outermost pair of arcs {αi ∩
(a?lk([ab])), βj∩(a?lk([ab]))}. By outermost we mean that αi∩(a?lk([ab]))
can be joined to βj ∩ (a ? lk([ab])), by either a-type arcs or by sliding ends
together, to form a properly embedded arc η in a ? lk([ab]) that splits off
an outermost disk. After joining a pair of outermost arcs, locate and join
another outermost pair from among the remaining collection of arcs that
have not yet been joined, and so on. Similarly, there is a unique way to
add b-type arcs in b ? lk([ab]) to obtain a collection of properly embedded
arcs in b ? lk([ab]). The union of these two sets of arcs gives us the desired
family {Aλ} of disjoint simple closed curves in ∂B. Each curve Aλ winds
around ek exactly once and intersects the circle lk([ab]) along corners of
elementary Q-disks in Ek. Divide the Q-disks of Ek into equivalence classes Vλ
corresponding to the simple closed curves Aλ. The corners {σ ∩ ek | σ ∈ Vλ}
are glued together to form a common corner vλ ∈ ek. If two Q-disks in Vλ
each have an edge containing vλ in the same 2-simplex then glue the two
edges together also. This identification of corners and edges of Q-disks will
be referred to as the Q-corner gluing rule.
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After making all the identifications called for by the Q-corner gluing rule
for the disks in Ek, the surface is completed around ek by adding elementary
T-disks. For each index λ there exists a unique collection of elementary
T-disks in B of types a and b that meet ek and which complete the disk
{vλ} ? Aλ when added to the Q-disks in Vλ. Let E ′k denote the collection of
all T-disks in B added at this time and observe that Ek ∪ E ′k is a pairwise
disjoint collection of 2-cells of the form {vλ} ? Aλ.

This local Q-corner gluing rule is well-defined globally. Suppose we have
two distinct applications of the Q-corner gluing rule that apply to a pair
of Q-disks E and E′. Then E and E′ lie in adjacent tetrahedra ∆,∆′,
respectively, and intersect the 2-simplex σ = ∆ ∩ ∆′ in normal isotopic
arcs as shown in Figure 4. Suppose σ has vertices {a, b, c} and let ek = [ab].
Assume that the Q-corner gluing rule corresponding to the edge ek stipulates
that a corner from each of E and E′ are identified with vλ on ek. Under
the Q-corner gluing rule for ek, the edges E ∩ σ and E′ ∩ σ are also glued
together to form a common edge with endpoints {uλ, vλ}. Let el denote the
1-simplex [ac] containing uλ. The gluing rule for el also applies to E and
E′. Let Ek,l denote the subset of Ek consisting of those disks meeting

◦
σ. The

collection Ek,l contains only Q-disks of the two disk types represented by E or
E′. Because of the parallelity of the Q-disks, the identification instructions
associated with the 1-simplex el applied to the pairs of Q-disks in Ek,l agrees
with that for ek.

Let F1 denote the union of the Q-disks ∪Ek with the corners identified via
the Q-corner gluing rule. We need more notation in order to describe how
to fill in F1 with T-disks to form F . Fix a vertex a and let ek be a 1-simplex
with endpoints a, b. We have the 3-ball Ca obtained by taking the union of
the tetrahedra containing a and another 3-ball Bk ⊂ Ca obtained by taking
the union of the tetrahedra containing ek. There is a simplicial projection
p : Ca − a −→ Sa onto the 2-sphere Sa = ∂Ca.

Each type of elementary disk in Ca projects into Sa in a distinct way.
Consider an elementary disk τ in Ca with a corner on ek. If τ is an a-type
T-disk then p(τ) is a 2-simplex in Sa. If τ is a b-type T-disk then p(τ) is a
triangle cut out of a 2-simplex in Sa by a normal arc. If τ is a Q-disk then
p(τ) is a quadrilateral cut out of a 2-simplex in Sa by a normal arc. These
projections are illustrated in Figure 5.

Let F̂1 denote the union of F1 ∩ Ca with all the T-disks in ∪E ′k which
are contained in Ca and are not of the a-type. Fix a component W of F̂1.
The following properties of the projection p(W ) ⊂ Sa can be established by
considering the restriction of p to a typical 3-ball Bk in Ca. A component α
of W ∩Sa is a simple closed curve. Let Γα denote the union of all the Q-disks
and (non-a-type) T-disks in W which have an edge in α. Then p(Γα) ⊂ Sa
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can be viewed as an annulus with identifications in one boundary component
along pairs of vertices and pairs of 1-simplices. Thus one boundary curve is
α and the second boundary is, after the identifications, a graph α′ contained
in the 1-skeleton of Sa. Hence p(Γα)− α′ is an half-open annulus.

Now consider a second component β of F̂1∩Sa. The two possible ways that
p(Γα) can intersect p(Γβ) are illustrated in Figures 6 and 7. Suppose p(Γα)
and p(Γβ) intersect along α′ and β′ such that the corresponding half-open
annuli lie on opposite sides as illustrated in Figure 6. Then all intersections
between p(Γα) and p(Γβ) are also of this same type. This follows from the
fact that the simple closed curve α bounds a disk in the 2-sphere Sa and
thus β lies on only one side of α. In this case p(W ) is a disk-with-holes
which may have isolated pairs of vertices in its boundary identified. On the
other hand, suppose that p(Γα) and p(Γβ) intersect along α and β such that
the corresponding half-open annuli lie on the same side, as illustrated in
Figure 7. Then again all intersections between p(Γα) and p(Γβ) are of this
same type. It follows that there are no Q-disk corner identifications between
Γα and Γβ and hence Γβ belongs to a component of F1 ∩ Ca distinct from
W .

There are two kinds of boundary components of p(W ): (i) Components
of W ∩ Sa made up of normal arcs and (ii) graphs in the 1-skeleton of Sa.

Consider a component X of Sa−p(W ) that has its boundary ∂X contained
in the 1-skeleton of Sa. X is an open disk whose closure is the union of 2-
simplices of Sa. Each of these 2-simplices is the image of an a-type triangular
disk under the projection p. We add to W a disk DX which is a union of a-
type triangles such that ∂DX matches up to the appropriate boundary arcs
of W and p(DX) = X. Do this for each such component X of Sa − p(W )
for which ∂X is contained in the 1-skeleton. Let Wa denote the resulting
collection of disks composed of a-type triangles which fill in the boundary
curves of W made up of a-type arcs.

Repeat this construction for each component W of F̂1 ∩ Ca and for each
vertex a in the triangulation. At the end the added disks Wa may intersect
each other nontrivially. We may assume that they intersect transversely
and in simple closed curves. Since these intersection curves involve only
triangular disks, they can removed by making regular exchanges. Discard
any trivial 2-sphere components resulting from these regular exchanges to
obtain the normal surface F with

→
FQ = ~z.

The uniqueness of F follows from the construction. Alternatively, suppose
that F and G are normal surfaces without trivial components such that
→
FQ =

→
GQ. Then there exist trivial surfaces Σ1,Σ2 such that

→
F+

→
Σ1 =

→
G+

→
Σ2.

Hence F+Σ1 = G+Σ2. Since the trivial surfaces Σ1,Σ2 can be taken disjoint
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from F and G it follows that F = G.

Case 2. M has nonempty boundary.
Let ~z be a nonzero admissible solution to the Q-matching equations for

M . Consider 2M , the double of M , obtained by gluing a mirror image M ′ of
M to ∂M , and the corresponding double of ~z, namely ~w = (~z, ~z). It is clear
that ~w satisfies each Q-matching equation associated to an interior 1-simplex
in M or in M ′. The Q-matching equations for 2M associated to boundary
1-simplices of M are also satisfied by ~w. The mirror image of a Q-disk in
M with a corner on a boundary 1-simplex e is a Q-disk in M ′ having the
opposite sense relative to e. Thus, by Case 1, there exists a unique normal
surface G in 2M without trivial components such that

→
GQ = ~w. F = G∩M

is the desired normal surface.

4. Q-vertex Surfaces.

The normal (Q-normal) coordinates of a normal surface F are solutions to
the linear system of matching (Q-matching) equations associated with the
triangulation. The projection ρ of the solution space onto the unit sphere∑
|xi| = 1 is a compact, convex, linear cell called the projective solution

space P (Q-projective solution space PQ). Normal surfaces correspond, up
to multiples, to the admissible rational solutions in P. The connected, two-
sided, normal surfaces corresponding to the vertices of P are called vertex
surfaces and such nontrivial normal surfaces corresponding to the vertices of
PQ are called Q-vertex surfaces. It is an elementary exercise in linear algebra
to construct the list of vertex (Q-vertex) surfaces. These surfaces can be
characterized geometrically in the following manner. Let F be a connected,
two-sided normal surface. F is a vertex surface if and only if multiples of
F are the only two-sided normal surfaces X,Y such that nF = X + Y for
some integer n. Similarly, F is a Q-vertex surface if and only if whenever
X,Y are two-sided normal surfaces such that nF + Σ = X + Y , for some
integer n and family of trivial surfaces Σ, then each component of X and Y
is normal isotopic to either F or a component of Σ.

We say that a sum F = X + Y is in reduced form if the number of
intersection curves in X ∩Y is minimal relative to all normal surfaces X ′, Y ′

isotopic to X,Y , respectively, such that F = X ′+Y ′. The weight of a normal
surface F (or disk D embedded in F ) is the number of intersection points of
F (of D) with the 1-skeleton of the triangulation.

Theorem 2. Let M be a triangulated, compact, irreducible, ∂-irreducible
3-manifold. If there exists a two-sided, incompressible, ∂-incompressible sur-
face in M then there exists one that is a Q-vertex surface.
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Lemma 3. Let F be a connected, two-sided, incompressible, ∂-incompress-
ible vertex surface in M . Assume that F is a vertex surface and is also least
weight in its isotopy class. If X,Y are two-sided normal surfaces such that
n
→
FQ =

→
XQ+

→
YQ, for some positive integer n, then some components of X and

Y are isotopic to F and the remaining components are disks and 2-spheres.

Proof. By Theorem 1, nF + Σ = X + Y where Σ is a collection of disjoint
trivial normal 2-spheres and disks. There is no loss of generality in con-
sidering a normal sum nF + Σ = X ′ + Y ′ in reduced form where X ′, Y ′

are isotopic to X,Y , respectively. In particular, since M is irreducible and
∂-irreducible we may assume that there does not exist an adjacent pair of
disk patches (see [7] for example).

First suppose that each pair of trace curves belongs to either nF or Σ. In
this case we can write X ′ and Y ′ each as the disjoint union of X ′1, X

′
2 and

Y ′1 , Y
′

2 , respectively, such that nF = X ′1 +Y ′1 and Σ = X ′2 +Y ′2 . Since F and
each component of Σ are vertex surfaces it follows that each component of
X ′1 and Y ′1 is normal isotopic to a multiple of F and each component of X ′2
and Y ′2 is normal isotopic to a component of Σ.

It remains to consider a sum nF + Σ = X ′+Y ′ in reduced form for which
there exists a pair of trace curves (β′, β′′) where β′ ⊂ nF and β′′ ⊂ Σ. There
exists an associated 0-weight annulus with frontier β′∪β′′ that spans nF and
Σ. Our conclusion will follow if we show that this leads to a contradiction.
Since the given trace curves are inessential, β′ is the frontier of a disk in nF
and we can find a pair of trace curves {α′, α′′} such that α′ is the frontier of
a disk patch D in nF . The second trace curve α′′ is the frontier of a disk E
which may lie in either in either nF or Σ.

Case 1. For every pair of trace curves {α′, α′′} for which α′ is the frontier of
a disk patch in nF , the second trace curve α′′ is also subset of nF .

Let {α′1, α′′1} be pair of trace curves such that α′1 is the frontier of a least
weight disk patch D1 in nF and α′′1 ⊂ nF . Then α′′1 is the frontier of a
disk E1 in nF which, because of the irreducibility and ∂-irreducibility of
M , must be adjacent to D1 in the sense that a regular exchange along the
corresponding intersection curve α1 interchanges pieces of D1 and E1 near
α1. For otherwise once could construct a 2-sphere separating nF by joining
together disks parallel to D1 and E1. Observe that wt(E1) = wt(D1) since
replacing E1 by a copy of D1 produces a normal surface isotopic to F and
F is already of least weight. The disk E1 cannot contain two distinct disk
patches because this would violate the minimal weight of D1 among disk
patches. Hence the set of disks in E1 bounded by trace curves must be
nested and all with the same weight as that of D1.
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E1 itself cannot be a disk patch (adjacent to D1) since the sum X ′ + Y ′

is in reduced form. Thus E1 must contain a disk patch D2 which in turn is
adjacent to a disk E2, also in nF . Repeating this process, one eventually
encounters a sequence without repetitions of the form (after relabeling if
necessary) Dn+1 = D1 ⊂ En, D2 ⊂ E1, . . . , Dn+1 ⊂ En (this is similar to the
construction in Lemma 2.1 of [4]). Perform regular exchanges along all the
intersection curves in X ′∩Y ′ except those corresponding to the trace curves
fr(Di) and discard any components of Σ appearing after summing. What
is left is a compressible normal torus or Klein bottle T , consisting of the
annuli Ei−

◦
Di+1 glued together, and a normal surface G isotopic to nF by

an isotopy pushing each Ei to Di. This gives the normal sum nF = T +G,
which contradicts that F is a vertex surface.

Case 2. There exists a pair {α′, α′′} of trace curves such that α′ is the frontier
of a disk patch D in nF and α′′ ⊂ Σ.
α′′ is the frontier of a disk E ⊂ Σ which can be chosen to be adjacent

to D. Let A denote the 0-weight annulus associated with the pair of trace
curves. The 2-sphere D ∪E ∪A bounds a 3-cell B whose interior is disjoint
from nF but may contain components of Σ. Since the sum is in reduced
form, E cannot be a disk patch and there exists an innermost trace curve
α′1 which is the frontier of a disk patch D1 in the E. The matching trace
curve α′′1 must lie in a component of Σ which is contained either in B or in
the 3-cell C bounded by the component of Σ containing E.

Suppose that α′′1 ⊂ C. Note that Σ∩C is a nested family S1, S2, . . . , Sk+1

of trivial surfaces normal isotopic to fr(C), where Si+1 is inside the 3-cell
bounded by Si. Now D1 ⊂ S1 and α′′1 is the frontier of a disk E1 ⊂ S2 such
that E1 is adjacent to D1. Again E1 cannot be a disk patch and so there
exists an innermost trace curve α′2 ⊂ E1 which is the frontier of a disk patch
D2 ⊂ E1 ⊂ S2. Since we cannot have a pair of trace curves inside C which
are the frontier of adjacent disk patches, this sequence must continue with
disk patches Di ⊂ Si with adjacent disks Ei ⊂ Si+1. Eventually we reach the
innermost component of Σ and find a pair of adjacent disk patches Dk, Ek.
But this is impossible since the sum is in reduced form.

Hence α′′1 ⊂ B. We find ourselves in the same situation as before. There
exists a sequence of disk patches lying on a nested sequence of trivial normal
surfaces which must eventually end with a pair of adjacent disk patches
inside B. This again gives a contradiction to the sum being in reduced form
and the proof is complete.

Proof of Theorem. Choose any least weight, incompressible, ∂-incompressible
surface and let C denote the face of P carrying it in its interior. Let F be
any two-sided normal surface F corresponding to a vertex of C. It follows
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from [4] and [6] that F is incompressible and ∂-incompressible. Furthermore,
F is also least weight in its isotopy class [8]. We show that there exists a
Q-vertex surface isotopic to F .

If F is not a Q-vertex surface then let CQ denote the Q-face carrying
→
FQ in

its interior. Given a vertex of CQ we can choose rational points
→
XQ and

→
YQ

such that the projection ρ(
→
XQ) is a the given vertex and n

→
FQ =

→
XQ+

→
YQ for

some positive integer n. Hence, by Theorem 1 there exist normal surfaces X
and Y such that nF + Σ = X + Y where Σ is a collection of disjoint trivial
normal 2-spheres and disks. We may assume that X and Y are both two-
sided surfaces and that all intersection curves are also two-sided by replacing,
if necessary, nF by 2nF .

By Lemma 3, each component of X and Y is either a disk, a 2-sphere, or
isotopic to F . If the Q-vertex surface X can be chosen such that it is isotopic
to F we are done. Otherwise, we have the situation in which all the Q-vertex
surfaces associated to the vertices of CQ are either disks or 2-spheres. We
will show that this is impossible.

We can write nF+Σ = S1+S2+. . .+Sk where the Sj are Q-vertex surfaces
associated with the face CQ. Assume that all the Sj are disks or 2-spheres.
We can apply Lemma 3 to the sum nF+Σ = (S1+. . .+Si)+(Si+1+. . .+Sk).
Let i be the largest integer such that all components of X = S1 + . . .+ Si−1

are disks and 2-spheres. Then 1 < i ≤ k and Si is a disk or 2-sphere such
that X + Si has a component G isotopic to F . Thus G can be viewed as
being built by gluing together components of (X ∪ Si) − (X ∩ Si), which
are all disks or disks-with-holes. Stated differently, G is decomposed by
trace curves, which are all inessential, into planar pieces coming from the
components of (X ∪ Si) − (X ∩ Si). But such trace curves can only split
off disks from G and such a decomposition is clearly impossible. Therefore
some Q-vertex Sj must be isotopic to F .
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Figure 1. Elementary disk patterns in a normal surface.
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εki = +1 εkj = −1 εkl = 0

Figure 2. Types of Q-disks relative to the oriented 1-simplex ek = [ab].
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aa

bb

Figure 3. Arcs in the 2-sphere B before and after gluing.
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Figure 4. Quadrilaterals subject to two gluing rules.
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aa
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τ

τ ′

p(τ)
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Figure 5. Projections of elementary disks onto Sa

Figure 6. The annulli p(Γα)− α′ and p(Γβ)− β′ lie on opposite sides of
the intersecting boundaries.
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Figure 7. The annulli p(Γα)− α′ and p(Γβ)− β′ lie on the same side of
the intersecting boundaries.
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