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AN INFINITE FAMILY OF ELLIPTIC CURVES AND GALOIS
MODULE STRUCTURE

W. Bley and M. Klebel

Let E be an elliptic curve defined over a number field
F with everywhere good reduction. By dividing F -rational
torsion points with respect to the group law of E M. Tay-
lor defined certain Kummer orders and studied their Galois
module structure. His results led to the conjecture that these
Kummer orders are free over an explicitly given Hopf order.

In this paper we prove that the conjecture does not hold for
infinitely many elliptic curves which are defined over quadratic
imaginary number fields k and endowed with a k-rational 2-
torsion point.

1. Introduction.

In [Ta], M. Taylor introduced the notion of a Kummer order with respect to
the group law of an abelian variety. In this paper we shall study the Galois
module structure of these Kummer orders in the case when the variety is an
elliptic curve. In particular, we will give an infinite series of counter-examples
to (a variant of) a conjecture of M. Taylor stated in [Ta].

Let E be an elliptic curve defined over a number field F and suppose that
all endomorphisms of E are defined over F . Moreover we require that E/F
has everywhere good reduction.

For any number field L, we let OL denote its ring of algebraic integers, Lc

an algebraic closure of L and we set ΩL = Gal(Lc/L).
For a fixed rational prime p and i ≥ 0 we write Gi for the subgroup of [pi]-

torsion points of E(F c). We denote by Bi(F ) = Bi the OF -Hopf algebra
which represents the OF -group scheme of [pi]-torsion on E and we write
Ai(F ) = Ai for its Cartier dual. We recall from [Ta] that Bi is an OF -order
in Bi = Map(Gi, F

c)ΩF and Ai an OF -order in Ai = (F c[Gi])ΩF , where ΩF

acts on both Gi and F c.
For Q ∈ E(F ) we define an ΩF -stable Gi-set

GQ(i) = {Q′ ∈ E(F c) | [pi]Q′ = Q}
and a corresponding Kummer algebra

FQ(i) = Map(GQ(i), F c)ΩF .
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Note that [FQ(i) : F ] = |Gi| and that FQ(i) is an Ai-module, where the
Ai action is given byf

∑
g∈Gi

agg

 (Q′) =
∑
g∈Gi

agf(Q′ + g)(1)

for f ∈ FQ(i) and
∑
g∈Gi agg ∈ Ai.

At the integral level we define OQ(i) to be the integral closure of OF in
the commutative algebra FQ(i) and we set

ÕQ(i) = {x ∈ OQ(i) | xAi ⊆ OQ(i)}.(2)

This is the largest Ai-module contained in OQ(i).
We write cl(Ai) for the locally free classgroup of Ai and for any locally

free Ai-module M we denote by [M ] its class in cl(Ai).
In [Ta] it is shown that the map

ψi : E(F ) −→ cl(Ai),
Q 7−→ [ÕQ(i)]

(3)

is a group homomorphism (see also [Ag] for the case when E is not a CM
elliptic curve).

Originally this basic theory was set up only for curves admitting complex
multiplication by the ring of integers OK of a quadratic imaginary number
field K ⊆ F . In this situation it is possible to replace pi in the above
definitions by any α ∈ OK , or even by an integral ideal a of OK (see [ST]).
One also obtains a group homomorphism as in (3), which we simply denote
by ψ.

In [Ta], M. Taylor conjectured that

E(F )torsion ⊆ ker(ψ).

This conjecture was subsequently proved for any non-zero ideal a coprime
to the number of roots of unity of K ([ST, Theorem 1]).

In [Ag], A. Agboola proved that for p > 3 and any elliptic curve (not
necessarily CM) one has E(F )torsion ⊆ ker(ψi). See also the recent paper
[Pa] of G. Pappas.

The situation for p ≤ 3 has been studied by several authors (e.g. [CS] or
[Bo]), always giving an affirmative answer to the conjecture.

In this paper we will focus on the case p = 2. Based on a paper of B. Setzer
[Se] we describe an infinite family of elliptic curves defined over quadratic
imaginary number fields k with everywhere good reduction and a k-rational
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2-torsion point P such that P 6∈ ker(ψi) for p = 2 and i ≥ 1. We remark
that none of these curves admits complex multiplication.

Henceforth k = Q(
√−m) will be a quadratic imaginary number field with

a positive, square free integer m.

Theorem 1.1 (Setzer). There exists an elliptic curve E defined over k
with everywhere good reduction and a k-rational 2-torsion point if and only
if m = 65m1, where m1 is a square mod 5 and mod 13 and 65 is a square
modm1.

Let r denote the number of ramified primes in k/Q.

Remark 1.2. Suppose that m satisfies the congruence conditions of The-
orem 1.1. If m ≡ 2, 3(mod 4) (resp. m ≡ 1(mod 4)), then there are 2r−1

(resp. 2r) isomorphism classes of such curves.
In the case m ≡ 2, 3(mod 4) this number differs from Setzer’s result. The

remark will be proved in Section 2.

For each of the elliptic curves resulting from Theorem 1.1 we obtain a
Weierstrass model

E : y2 = x3 +Ax2 +Bx

with A,B ∈ Ok. Obviously P = (0, 0) is a k-rational 2-torsion point. In
Section 2 we will show that the coordinates of the other 2-torsion points
generate the field F = k(

√
65) over k. For our purposes it is now convenient

to consider E as an elliptic curve over F , since then A1(F ) = F [G1].

Theorem 1.3. Let p = 2. Let E/F be any elliptic curve resulting from
Theorem 1.1 and suppose that m1 > 1. Then P 6∈ ker(ψi) for all i ≥ 1.

Remarks 1.4.
1) By [Ag, Proposition 1.2] it suffices to prove the theorem for i = 1. Let

MF,Gi be the unique maximal OF -order in Ai(F ). Then extension of scalars
and composition with ψi induces a group homomorphism

ψ′i : E(F ) −→ cl(MF,Gi).

We will explicitly compute ψ′1(P ) and then show that it is non-trivial.
2) The case m1 = 1 has been studied numerically applying the methods

of [Bl]. We obtain 8 non-isomorphic classes of elliptic curves and for 4 of
them ψ′1(P ) is trivial. It can be shown that for these curves ÕP (1) is in fact
free over A1.

3) From [Ag, (1.15), (1.19)] it is clear that the result of Theorem 1.3
remains true, if we consider E as an elliptic curve over k.
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We conclude this introduction with a brief outline of the structure of the
paper. In Section 2 we recall all the necessary results from Setzer’s paper
[Se] and also give the proof of Remark 1.2. We then explicitly compute the
orders A1(F ) and ÕP (1) in Section 3. Finally, Section 4 contains the proof
of Theorem 1.3.

2. Elliptic curves.

In order to provide all the necessery details about the elliptic curves resulting
from Theorem 1.1 we give a short outline of Setzer’s proof (including a proof
of that part of Remark 1.2 which differs from his result). For more details
we refer the reader to Setzer’s original paper [Se].

Suppose that E/k is an elliptic curve with everywhere good reduction and
a k-rational 2-torsion point. Then we can find a Weierstrass model

E : y2 = x3 +Ax2 +Bx(4)

with A,B ∈ Ok and discriminant

∆ = −16B2(A2 − 4B) = 212D,(5)

where D ∈ Ok is prime to 2.
For fixed D the Equation (5) has only finitely many solutions A and B.

Moreover Setzer’s Theorem 1 implies that only finitely many D (one for each
ideal class) have to be tried for a fixed field k.

For a prime ideal p of Ok we denote by vp the valuation at p. The proof
of Theorem 1.1 will be accomplished by testing good reduction using the
following criteria.

Lemma 2.1 (Setzer). Let E be an elliptic curve with Weierstrass model
(4) and discriminant as in (5).
(a) Let p be a prime ideal of Ok, (p, 2) = 1. Then E has good reduction at

p if and only if

vp(∆) = 12e, vp(B) = 4e, vp(A) ≥ 2e

for some e ∈ Z, e ≥ 0.
(b) Let q be a ramified prime ideal of Ok dividing 2 and let p = (2). Let

m ≡ 1(mod 4). Then E has good reduction at q if and only if A and
B satisfy one of the following congruence conditions:

A ≡ 2α2(mod p3), B ≡ α4(mod p3),(6)

A ≡ α2(mod p2), B ≡ 0(mod p4),(7) {
A ≡ 0(mod q5), B ≡ π4 + 8π(mod q8),
π2A−B ≡ π4 + π6 or 5π4 + 4π5 + π6(mod q10).

(8)
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Here α ∈ Ok is relatively prime with p and π is a fixed uniformizer for
q.
Let m ≡ 2(mod 4). Then E has good reduction at q if and only if (7)
or (8) holds.

(c) Let p be an unramified prime ideal of Ok dividing 2. Then m ≡
3(mod 4) and E has good reduction at p if and only if (7) holds for
some α ∈ Ok, (α, p) = 1.

Note that Lemma 2.1 differs from Setzer’s Lemma in his Section 3 in
(b) and (c). We will give a proof of Lemma 2.1 at the end of this section.
Together with Setzer’s arguments on pp. 246/247 this will complete the
proof of Remark 1.2.

The conditions (6), (7) and (8) leave three possibilities for the 2-part of
B:

(I) B = 2eβ, e ∈ {0, 4}, (β, 2) = 1.

(II) B = 22β, (β, 2) = 1 and 2 ramifies.

(III) vp(B) = 0, vp′(B) = 4, where 2Ok = pp′, p 6= p′.
In [Se] it is shown that cases (II) and (III) do not lead to any curves. We
therefore may assume that (I) holds. In addition it is easy to verify that
this occurs if and only if either (6) or (7) is satisfied for p = (2). Lemma
2.1 (a) implies that (β) = b4 for some odd integral ideal b, ∆ = ±212β3 and
A2 = αβ for some α ∈ Ok. Substituting this into the discriminant formula
(5) one can show that either A2 = 65β and e = 4 or A2 = 260β and e = 0.
We set

A1 = A, if A2 = 65β,

A1 = A/2, if A2 = 260β

and may now assume that

A2
1 = 65β, (β) = b4, b integral and prime to 2.(9)

If A1 is a square mod 4 we will show that 1 or 4 non-isomorphic curves result
according to m ≡ 2, 3(mod 4) or m ≡ 1(mod 4). Conversely the congruence
conditions (6) and (7) imply that A1 is congruent to a square mod 4.

Consider first the case m ≡ 2, 3(mod 4). Here (7) implies that 24 divides
B. Consequently we have B = 24β and A = ±A1. But if A1 is a square mod
4, then −A1 does not satisfy (7), since −1 is not a square mod 4. Hence we
obtain one curve, namely

A = A1, B =
16A2

1

65
, A2

1 = 65β.
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Assume now that m ≡ 1(mod 4). Then −1 is a square mod 4 and either (6)
or (7) is satisfied. This leads to 4 non-isomorphic curves, namely

A = ±2A1, B =
A2

1

65
, A2

1 = 65β in case (6),

A = ±A1, B =
16A2

1

65
, A2

1 = 65β in case (7).

Suppose now that an ideal b as in (9) has 1 or 4 non-isomorphic classes of
curves attached. In [Se] it is shown that any other ideal b1 in the same ideal
class leads to an isomorphic set of curves. Hence it remains to answer the
question which ideal classes c of the ideal classgroup clk of k do lead to elliptic
curves. The precise condition is, firstly that p5p13b

2 = (A1) is principal,
where p5 and p13 denote the prime ideals of Ok above 5 and 13 respectively,
and secondly that ±A1 is congruent to a square mod 4. The first condition
means that p5p13 is an element of the principal genus ([BS, III, §8, Satz 7]),
which in turn is equivalent to the congruence conditions of Theorem 1.1.
The effects of the second condition are discussed on pp. 246/247 of Setzer’s
paper and lead to the corrected number of isomorphism classes of Remark
1.2.

We summarize the preceeding discussion in the following:

Proposition 2.2. Let E/k be any elliptic curve resulting from Theorem
1.1. Then E has a Weierstrass model (4) with discriminant as in (5). There
exists an integral odd ideal b such that p5p13b

2 = (A1) is principal and A1

is congruent to a square mod 4. If m ≡ 2, 3(mod 4), then the coefficients
A,B ∈ Ok are given by

A = A1, B =
16A2

1

65

and satisfy the congruence condition (7) of Lemma 2.1. If m ≡ 1(mod 4),
then the coefficients are of the form

A = ±2A1, B =
A2

1

65
in case (6),

A = ±A1, B =
16A2

1

65
in case (7).

Let now p = 2. In the following part of this section we compute the
subgroup G1 of 2-torsion points for the elliptic curves of Theorem 1.1, as
well as the G1-set GP (1) for the k-rational point P = (0, 0). Since i = 1 is
fixed we write G = G1 and GP = GP (1) in what follows. Finally we also
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determine the points of G that lie in the kernel of reduction modulo primes
above 2.

We fix an embedding k ↪→ C and let kc denote the algebraic closure of k
in C. For z ∈ C \R≤0 we always normalize

√
z such that Re(

√
z) > 0.

For an elliptic curve with model (4) the subgroup of E(kc) of 2-torsion
points is given by

G =
{
P0 = 0E, P = P1 = (0, 0), P2/3 =

(
1
2

(
−A±√A2 − 4B

)
, 0
)}

.

Using the explicit formulae for A and B given in Proposition 2.2 it is easy
to see that the x-coordinate of P2 or P3 generates the field F = k(

√
65) over

k.
The duplication formula of the group law of an elliptic curve (see e.g.

[Si, Ch. III, 2.3(d)]) implies that

GP =
{
Q1 =

(√
B,
√
B(A+ 2

√
B

)
, Q′1 =

(√
B,−

√
B(A+ 2

√
B

)
,

Q2 =
(
−
√
B,
√
B(A− 2

√
B

)
, Q′2 =

(
−
√
B,−

√
B(A− 2

√
B

)}
.

Since G ⊆ E(F ) acts transitively on GP , all of the y-coordinates of points

of GP generate the same field L = F

(√
B(A+ 2

√
B)
)

. The automorphism

σ which sends
√
B(A+ 2

√
B) to −

√
B(A+ 2

√
B) generates Gal(L/F ). We

also record the following relations:

Q1 + P1 = Q′1 = Qσ
1 ,

Q1 + P2 = Q2, (maybe after relabelling Q2 and Q′2),
Q1 + P3 = Qσ

2 ,
Q2 + P1 = Q′2 = Qσ

2 ,
Q2 + P2 = Q1,
Q2 + P3 = Qσ

1 .

(10)

As usual we denote by E1(FP) the kernel of reduction mod P for a prime
ideal P of OF . Next we compute the subgroup E1(FP)∩G for prime divisors
P of 2. Suppose first that (7) holds. Then the transformation

x = 22x′, y = 23y′ + 22αx′

gives a minimal Weierstrass model for any prime P dividing 2. Expressing
the points of G in the new coordinates x′, y′ we obtain

P ′1 = (0, 0), P ′2/3 =
(
x(P2/3)

4
,−αx(P2/3)

8

)
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with x(P2/3) = 1
2
(−A ±√A2 − 4B). Let p2 = Z2 + Z 1+

√
65

2
and p′2 = Z2 +

Z 1−√65
2

be the prime ideals of OQ(
√

65) above 2. We claim that for any prime
P of F dividing 2 either G ∩ E1(FP) = 〈P2〉 or 〈P3〉. Indeed,

2x(P2) = −A+
√
A2 − 4B ≡

{
−2A 1−√65

2
, if Re(A) > 0,

−2A1+
√

65
2

, if Re(A) < 0,

2x(P3) = −A−√A2 − 4B ≡
{
−2A 1+

√
65

2
, if Re(A) > 0,

−2A1−√65
2

, if Re(A) < 0,

where all congruences are mod 16.
Since (A, 2) = 1, 1+

√
65

2
OQ(

√
65) = p42 and 1−√65

2
OQ(

√
65) = p′42 , the claim

follows at once.
Now assume that (6) holds. Then there exists ε ∈ Ok such that ε2 ≡

−1(mod 4). We choose θ ∈ Ok such that θ ≡ A/2(mod 8) and perform the
transformation

x = 22x′ − θ, y = 23y′ + 22εαx′.(11)

The new Weierstrass model is integral and minimal with respect to any prime
P of F dividing 2 and we easily compute

P ′1 =
(
θ

4
,−εαθ

8

)
, P ′2/3 =

(
x(P2/3) + θ

4
,−εα(x(P2/3) + θ)

8

)
.

Since (εαθ, 2) = 1, P1 is obviously in the kernel of reduction for any P
dividing 2. On the other hand, neither P2 nor P3 is in E1(FP), since

x(P2/3) + θ ≡ ±1
2

√
A2 − 4B

(5)
= ±23

√
−D/B2 ≡ 0(mod 8).

Summing up we have proved the following:

Lemma 2.3. Let E/k be any elliptic curve resulting from Theorem 1.1.
Then G ⊆ E(F ) where F = k(

√
65). If (6) holds, then G ∩ E1(FP) = 〈P1〉

for any prime P of F dividing 2. Assume now that (7) holds. Then

G ∩ E1(FP) =


〈P2〉, if either P divides p2 and Re(A) > 0 or

P divides p′2 and Re(A) < 0,
〈P3〉, if either P divides p′2 and Re(A) > 0 or

P divides p2 and Re(A) < 0.

In all cases the P-valuation of the parameter z = −x′/y′ for the non-trivial
point of G ∩E1(FP) on the formal group afforded by the kernel of reduction
mod P is given by vP(2).
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In order to complete our discussion of the elliptic curves of Theorem 1.1
we give a brief proof of that part of Lemma 2.1 that differs from Setzer’s
Lemma in his Section 3.

Suppose that p is an unramified prime of Ok dividing 2. In [Se, pp. 243-
244] it is shown that any elliptic curve with model (4) and good reduction
at p necessarily satisfies one of the conditions (6) or (7). But, contrary to
Setzer’s claim, curves satisfying (6) do not have good reduction mod p. (The
exact location of Setzer’s error is [Se, p. 244, lines 16-20].) In order to prove
our statement we substitute

x = x′ − θ, y = y′ + αx′

into Equation (4), where θ ∈ Ok is chosen such that θ ≡ A/2(mod 8). The
coefficients of the new Weierstrass model are given by

a1 = 2α, a2 = A− 3θ − α2, a3 = 0,

a4 = B − 2θA+ 3θ2, a6 = −θB + θ2A− θ3.

We quickly verify the following congruences:

a2 ≡ 2α2(mod p2), a4 ≡ 0(mod 16), a6 ≡ 0(mod 64).(12)

Note that (6) implies A/2 ≡ α2 ≡ θ(mod p2). Therefore a2 = A−2θ−θ−α2 ≡
2α2(mod p2). The second congruence follows from

a4 = θ(2θ −A) + θ2 −Aθ +B

≡ θ2 −Aθ +B = (θ −A/2)2 −A2/4 +B

≡ −(A2 − 4B2)/4
(5)
= 26D/B2 ≡ 0(mod 16).

Finally we have

a6 = −θ(B − θA+ θ2) = −θ((θ −A/2)2 − (A2 − 4B/4)
)

≡ θ(A2 − 4B)/4
(5)
= 26θD/B2 ≡ 0(mod 64).

If E has good reduction at p, then [Si, Ch. VII, Prop. 1.3] together with
(12) and [Si, Ch. III, Table 1.2] implies that there exist r, s, t ∈ Ok,p such
that

(I) 2α2 − 2sα+ 3r − s2 ≡ 0 (mod p2),

(II) rα+ t ≡ 0 (mod p2),

(III) 2ra2 − 2α(t+ rs) + 3r2 − 2st ≡ 0 (mod p4),

(IV) ra4 + r2a2 + r3 − t2 − 2rtα ≡ 0 (mod p6).
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From the congruences (II)-(IV) we deduce that p2 divides r. Hence by (I)
we get (s + α)2 ≡ −α2(mod p2), which implies that −1 is a square mod p2.
This is certainly not true for m ≡ 3(mod 4). The same argumentation also
explains the differences between Lemma 2.1 and Setzer’s lemma for ramified
prime divisors of 2.

3. The orders AF (1) and ÕP (1).

Let E/k be an elliptic curve as in Theorem 1.1. From now on we always
view E as a curve defined over F = k(

√
65). In this section we shall com-

pute the orders AF (1) and ÕP (1) for P = P1 = (0, 0) and p = 2. We
first recall some necessary results concerning the orders Ai and Bi from
[Ta] and [Ag]. These orders are determined by their localizations at each
prime Q of OF . Let Gi,Q denote the OFQ-group scheme obtained by lo-
calizing the OF -group scheme afforded by Gi at Q. As in [Ag], we de-
note by G0

i,Q the component of the identity of Gi,Q and write G′i,Q for the
maximal étale quotient Gi,Q/G

0
i,Q. Then the group scheme G′i,Q is repre-

sented by the algebra B′i,Q := Map(G′i,Q(F c
Q),OF c

Q
)ΩFQ . We let F (X,Y ) ∈

OFQ [[X,Y ]] denote the formal group afforded by the kernel of reduction
mod Q on E(FQ). For each endomorphism b of E we write [b](X) for the
power series corresponding to the induced endomorphism of F (X,Y ). Then
B0
i,Q := OFQ [[X]]/[pi](X)OFQ [[X]] represents the group scheme G0

i,Q. Here
we view B0

i,Q as an order in B0
i,Q := Map(G0

i,Q(F c
Q), F c

Q)ΩFQ via the rule
[b](X)(g) = [b](z(g)) for g ∈ G0

i,Q(F c
Q), where z(g) denotes the parameter for

g on the formal group F (X,Y ).
We finally set Bi,Q = B′i,Q ⊗OFQ B0

i,Q, so that Bi,Q represents the group
scheme Gi,Q. We remark thatBi,Q = Map(Gi,Q(F c

Q),OF c
Q

)ΩFc
Q for any prime

Q such that (Q, 2) = 1.
The Cartier dual Ai of Bi is now described explicitly by

Ai =

 1
pi

∑
g∈Gi

f(g)g | f ∈ Bi

 .(13)

This completes our collection of facts from [Ta] and [Ag].

Since i = 1 and p = 2 will be fixed for the rest of the section we write
B = Bi(F ), A = A1(F ), G = G1, etc. Recall that 2OQ(

√
65) = p2p′2.

Proposition 3.1. Let E/k be an elliptic curve resulting from Theorem 1.1.
If (6) is satisfied, then

A = OFP0 ⊕OF P0 + P1

2
⊕OFP3 ⊕OF P2 + P3

2
.
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Suppose now that (7) holds. Then:

AP=


OFPP0 ⊕OFP P0+P2

2
⊕OFPP3 ⊕OFP P1+P3

2
, if G ∩ E1(FP) = 〈P2〉,

OFPP0 ⊕OFP P0+P3
2
⊕OFPP2 ⊕OFP P1+P2

2
, if G ∩ E1(FP) = 〈P3〉,

OFP [G], if (P, 2) = 1.

Proof. Suppose first that (6) holds. For any prime idealP ofOF dividing 2 we
have G∩E1(FP) = 〈P1〉 (see Lemma 2.3). This implies that G0

P(F c
P) = 〈P1〉

and G′P(F c
P) ' 〈P2〉. Since G ⊆ E(F ), the map

OFP ⊕OFP −→B′P = Map(G′P(F c
P),OFP),

(a, b) 7−→ (P0 7→ a, P2 7→ b),

is an isomorphism of OFP-algebras. We write zi = z(Pi), i = 0, 1, for the
parameter of Pi on the formal group. ViewingB0

P⊗OFPB′P as an OFP-order
in BP = Map(G,OFP), the equality (13) implies that

AP =
{

1
2

(f(z0)aP0 + f(z1)aP1 + f(z0)bP2 + f(z1)bP3) |a, b ∈ OFP ,

f(X) ∈ OFP [[X]]
}
.

Since z0 = 0 and vP(z1) = vP(2) (see Lemma 2.3) it is easily verified that

AP = OFPP0 ⊕OFP
P0 + P1

2
⊕OFPP3 ⊕OFP

P2 + P3

2
.

The assertion of Proposition 3.1 for the case (6) follows now immediately,
because AQ = OFQ [G] for any prime Q of OF prime to 2.

The second part of the proposition is proved in exactly the same way,
taking into account the results of Lemma 2.3 for the case (7).

We now turn to the computation of ÕP = ÕP (1), where P = P1 = (0, 0).

Recall from Section 2 that GP ⊆ E(L), where L = F

(√
B(A+ 2

√
B)
)

.

The map

τ : FP = Map(GP , F
c)ΩF −→ L⊕ L,
f 7−→ (f(Q1), f(Q2))

is an isomorphism of F -algebras. The natural action of A = F [G] induces
via τ the structure of an A-module on L ⊕ L. By (10) we get for α, β ∈ L
and 〈σ〉 = Gal(L/F ):

(α, β) · P0 = (α, β), (α, β) · P1 = (ασ, βσ),
(α, β) · P2 = (β, α), (α, β) · P3 = (βσ, ασ).

(14)
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In the following we always identify FP and L ⊕ L as A-modules via τ , the
action of A on L⊕ L induced by (14).

Proposition 3.2. If (6) is satisfied, then

ÕP = (OF + 2OL)⊕ (OF + 2OL).

Assume now that (7) holds. Then:

ÕP =


{(α, β) ∈ OL ⊕OL | α+ β ≡ 0(mod p2OL) and

α+ βσ ≡ 0(mod p′2OL)}, if Re(A) > 0,
{(α, β) ∈ OL ⊕OL | α+ β ≡ 0(mod p′2OL) and

α+ βσ ≡ 0(mod p2OL)}, if Re(A) < 0.

Proof. Suppose first that (6) holds. From Proposition 3.1, (2) and (14) we
conclude that

(α, β) ∈ ÕP⇐⇒α, β ∈ OL and TrL/F (α), T rL/F (β) ∈ 2OF .

We claim that

{γ ∈ OL | TrL/F (γ) ∈ 2OF} = OF + 2OL.(15)

Indeed, since E/k has everywhere good reduction, the extension L/k is un-
ramified. Hence OL is a cohomologically trivial Gal(L/F )-module. Let
γ ∈ OL. Then TrL/F (γ) ∈ 2OL⇐⇒γ − γσ ∈ 2OL. The triviality of the Tate
cohomology group Ĥ−1(Gal(L/F ), 2OL) implies that there exists δ ∈ 2OL
such that γ − γσ = δ − δσ. It follows that γ = (γ − δ) + δ ∈ OF + 2OL.
The converse is obvious, thus proving the claim and the first part of the
proposition.

The proof of the second part is achieved by considering the localizations of
ÕL at each prime ideal P of OF . Suppose that Re(A) > 0. From Proposition
3.1, Lemma 2.3, (2) and (14) we derive

(α, β) ∈ ÕP,P⇐⇒


α, β ∈ OL,P and α ≡ −β(mod p2OL), if P divides p2,
α, β ∈ OL,P and α ≡ −βσ(mod p′2OL), if P divides p′2,
α, β ∈ OL,P, if (P, 2) = 1.

Since ÕP is uniquely determined by its localizations, this proves the second
part of the proposition for Re(A) > 0. Of course, the case Re(A) < 0 is
completely analogous.
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4. Proof of Theorem 1.3.

As in the preceeding section we fix i = 1 and p = 2. Let E/k be an elliptic
curve resulting from Theorem 1.1. We omit any occurrence of i in our
notation, in particular we write

ψ : E(F ) −→ cl(A)

for the group homomorphism in (3). LetM be the unique maximal OF -order
in A = F [G]. Then extension of scalars and composition with ψ induces a
group homomorphism

ψ′ : E(F ) −→ cl(M),

P 7−→ [ÕP ⊗AM].

As usual we identify ÕP ⊗AM with the submodule ÕPM of A generated by
ÕP over M. Let

e1 =
1
4

(P0 + P1 + P2 + P3), e2 =
1
4

(P0 + P1 − P2 − P3),

e3 =
1
4

(P0 − P1 + P2 − P3), e4 =
1
4

(P0 − P1 − P2 + P3)

be the primitive idempotents of A. Then, for any M-module M , we have a
decomposition

M = Me1 ⊕Me2 ⊕Me3 ⊕Me4,

according to the splitting

M =Me1 ⊕Me2 ⊕Me3 ⊕Me4.

Since each of the direct summands of M is naturally isomorphic to OF , we
obtain a group isomorphism

cl(M) −→
4⊕
i=1

clF ,(16)

induced by [M ] 7→ (c(Mei))i=1,... ,4, where c(Mei) denotes the Steinitz class
of theOF -module Mei. The composition of ψ′ and (16) will again be denoted
by ψ′.

Recall from Proposition 2.2 that associated to E/k there is an odd integral
ideal b of Ok such that p5p13b

2 = (A1) is principal. Here p5 and p13 denote
the ramified primes of Ok above 5 and 13 respectively. We also recall the
decomposition 2OQ(

√
65) = p2p′2 with p2 = Z2 + Z1+

√
65

2
.

Proposition 4.1. ψ′(P ) = (1, 1, [bOF ], [bOF ]) for P = P1 = (0, 0).
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Proof. We have to compute the Steinitz invariants of ÕP ei for i = 1, . . . , 4.
If (6) holds, then ÕP = (OF + 2OL)⊕ (OF + 2OL). For i = 1, 2 it is easily
seen that ÕP ei ' 1

2
OF as OF -modules. For (α, β) ∈ ÕP we compute

(α, β)e3/4 =
1
4
(
(α± β)1−σ, (β ± α)1−σ) .(17)

Hence

ÕP e3/4 ' 1
4
{α1−σ | α ∈ 2OL} =

1
2
O1−σ
L =

1
2
{α ∈ OL | TrL/F (α) = 0},

(18)

where the last equality follows from the cohomological triviality of OL. Re-
call that L = F (θ) with θ =

√
B(A+ 2

√
B). From (18) we deduce

ÕP e3/4 ' 1
2

(Fθ ∩ OL).(19)

It therefore remains to determine the ideal factorization of θ. Using Propo-
sition 2.2 we get

θ = ±2
A1√
65

√
A1√
65
±1±√65

2
,

the signs depending on A = ±A1 and Re(A1) > 0 or Re(A1) < 0. This
implies that θOL = (2b3q2)OL with q ∈ {p2, p′2} and therefore Fθ ∩ OL =
(2b3q2OF )−1θ. We note that q2 =

(
(7±√65)/2

)
OF is principal. Hence we

obtain from (19) and [FT, Theorem 13] that c(ÕP e2/3) = [b−3OF ] = [bOF ].
This completes the proof for case (6).

Suppose now that (7) holds. Proposition 3.2 implies that ÕP ei ' 1
2
OF

for i = 1, 2. To conclude the proof we claim that for i = 3, 4 we also get
ÕP e3/4 ' 1

2
{α ∈ OL | TrL/F (α) = 0} as in case (6). Indeed, from (17) and

Proposition 3.1 we will deduce that ÕP e3/4 ' 1
2
O1−σ
L : The inclusion “⊇” is

obvious. The converse inclusion follows from

(α± β)1−σ ∈ (p2OL)1−σ ∩ (p′2OL)1−σ

(∗)
= {ν1 ∈ p2OL | TrL/F (ν1) = 0} ∩ {ν2 ∈ p′2OL | TrL/F (ν2) = 0}
= {ν ∈ 2OL | TrL/F (ν) = 0},

where (*) holds true since p2OL (resp. p′2OL) is a cohomologically trivial
Gal(L/F )-module (see [Ul, Corollary 1.4]). Finally the proof follows by com-
puting the ideal factorization of θ using Proposition 2.2 for case (7).

Proof of Theorem 1.3. It simply remains to show that bOF is not principal
if m1 > 1. Assume it were principal. Then NF/k(bOF ) = b2 is also principal.
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Since by the construction of E the ideal p5p13b
2 = (A1) is principal, too, it

follows that p5p13 is principal. This happens if and only if m1 = 1.

Note in proof. In the recent manuscript [CJ] Ph. Cassou-Noguès and
A. Jehanne describe counter-examples to Taylor’s conjecture for p = 2 and
elliptic curves with complex multiplication.
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elliptique, Thèse, Univ. Bordeaux I, 1996.

[CJ] Ph. Cassou-Noguès and A. Jehanne, Espaces homogènes principaux et points de
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Journal de Théorie des nombres de Bordeaux, 2 (1990) 349-363.
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