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NONCOMMUTATIVE JOINT DILATIONS AND FREE
PRODUCT OPERATOR ALGEBRAS

GELU POPEScU

Let A, (n = 2,3,..., or n = o©0) be the noncommutative
disc algebra, and O,, (resp. 7,,) be the Cuntz (resp. Toeplitz)
algebra on n generators. Minimal joint isometric dilations
for families of contractive sequences of operators on a Hilbert
space are obtained and used to extend the von Neumann in-
equality and the commutant lifting theorem to our noncom-
mutative setting.

‘We show that the universal algebra generated by k contrac-
tive sequences of operators and the identity is the amalga-
mated free product operator algebra %c.A4,,, for some positive
integers ni,m2,...,n; > 1, and characterize the completely
bounded representations of %c.A,,. It is also shown that
*cA,, is completely isometrically imbedded in the “biggest”
free product C*-algebra #*c7,, (resp. *cO,,), and that all
these algebras are completely isometrically isomorphic to
some universal free operator algebras, providing in this way
some factorization theorems.

We show that the free product disc algebra #*c.A,,; is not
amenable and the set of all its characters is homeomorphic to
(C’nl)l X oo X (an’)b

An extension of the Naimark dilation theorem to free semi-
groups is considered. This is used to construct a large class
of positive definite operator-valued kernels on the unital free
semigroup on n generators and to study the class C, (p > 0)
of p-contractive sequences of operators.

The dilation theorems are also used to extend the oper-
atorial trigonometric moment problem to the free product
C*-algebras %¢7,, and %cO,,.

1. Introduction and preliminaries.

Let H be a complex Hilbert space and B(H) the set of bounded linear

operators on H. We identify M,,(B(H)), the set of m x m matrices with

entries from B(H), with B(H @ --- @ H). Thus we have a natural C*-norm
—_————

m-times

on M,,(B(H)). If X is an operator space, i.e., a linear subspace of B(H), we
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consider M,,(X) as a subspace of M,,(B(H)) with the induced norm. The
appropriate morphisms between operator spaces are the completely bounded
maps [Ar], [P2], [Pi]. Let X,Y be operator spaces and u : X — Y be a
linear map. Define wuy, : My (X) — M, (Y) by

um([2i5]) = [u(zij)] -
We say that u is completely bounded (cb in short) if

[l = sup [lum | < oo.
m>1
If [|ullep <1 (resp. uy, is an isometry for any m > 1) then u is completely
contractive (resp. isometric), and if wu,, is positive for all m, then u is called
completely positive.
Let n=2,3,..., and vy, v9,...,v, be isometries satisfying

(1.1) viv; = 0451

We proved in [Po4] that Alg(1,v;,...,v,), the closed non-selfadjoint al-
gebra generated by 1,v1,...,v,, is completely isometrically isomorphic to
the noncommutative disc algebra A, [Po2]. Let us recall [Cu] that the
Cuntz algebra O,, (resp. Toeplitz algebra 7,,) is uniquely defined as the C*-
algebra generated by n isometries satisfying (1.1) and > ; v;vf =1 (resp.
Yo vivf < 1). If n = oo, only the condition (1.1) is required to define
Ao, Oco, and 7. If n =1, we set Ay := A(D), the classical disc algebra,
O; := C(T), and 7; := C*(5), the C*-algebra generated by the unilateral
shift S acting on the Hardy space H2(T) (see [C]). Since A, is completely
isometrically imbedded in O,, (resp. 7,,) one can view the noncommutative
disc algebra as a “non-selfadjoint Cuntz algebra” as well as an “analytic
Toeplitz algebra”. Let us mention that A, is the universal algebra gener-
ated by a row contraction and the identity [Po6], and if n # m then A4, is
not Banach isomorphic to A, [Po4]. For a concrete realization of A,, and
7, see [Po2], [Po4].

In Section 2 we obtain a minimal joint isometric dilation for any sequence
of contractive sequences of operators on a Hilbert space, extending in this
way the Schaffer’s construction [Sc], [SzF2] and also some results from [F],
[Bu], [Pol], [DSz|. Other dilation theorems are obtained using some results
from [Ar], [Bo], [S], [Pol], [Po2], [Po3], and [Po4]. Some consequences of
these joint isometric dilations are considered in this paper.

The free product of C*-algebras has been studied by many authors ([Av],
[Bo], [BP], [V], etc.) but still remains misterious. We consider here the
so-called “biggest” free product of operator algebras [BP].

Inequalities of von Neumann type are considered in Section 2 and Section
3, extending some results from [vIN], [A], [Boz], [Po2], [Po3], [Po4], [PoT].
Let £ > 1 and ny,...,n, > 1 be fixed positive integers, and {z;;} =120k

J=1

2,..., n;
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{yij} i=1,2...x be noncommuting indeterminates satisfying the relation
j=1,2 ;

,,,,, n;

(1.2) YiaTig = 0opl, foranyi=1,2,...,k, and o, 5 =1,2,...,n,.

Let P be the set of all reduced polynomials in these indeterminates, i.e.,
each monomial is in reduced form according to the relation (1.2). Let
(Ti1y ..., Tin,), @ = 1,2,...,k, be contractive sequences of operators on a
Hilbert space H, i.e.,

TaTh + -+ Tin, T, < Iy, 1=1,2,...,k.

N =ang

For each polynomial p = p(1,{xi;},{yi;}) € P let us define the operator
p(I1,{Ti;},{T};}) acting on the Hilbert space H. We prove in Section 3 the
following extension of the von Neumann inequality

(1.3) lp(+, {T3 3 AT DI < NPllser,

where p € P is viewed as an element in the free product C*-algebra *c7,,
(see Section 3). On the other hand, for any polynomial ¢(1,{z;;}) in non-
commuting indeterminates {z;;} i=1,2,...1 , we prove that

7j=1,2 ng

,,,,, i

(1.4) la(re: AT DI < llallscon, = ldllsetn, < ldlscor,)

where T, = T, the circle group, 7 = 1,2, ..., n14+ns+- - -+ny, and ¢(1, {z;;})
is seen as an element of *cO,,, *c7y,, and *cC(T,), respectively. If a

sequence of operators {Tj;} i=1,2,.... C B(H) satisfies the relation
j=1,2,....n

T’le_‘;i_'_—i_nniT* :IH7 ZA:1727"'7k7

in;

then the inequality (1.4) is extended to
(1.5) la(Uw, AT} AT DN < Nldllscon, < llallseT,

for any polynomial p(1,{z;},{yi;}) € P.

Let A, (i=1,2,...,k) be the noncommutative disc algebra and *c.A,,
be the amalgamated (over the identity) free product operator algebra. We
prove in Section 3 that the universal algebra generated by k contractive se-
quences of operators and the identity is the free product disc algebra xcA,,,
for some integers n1,...,n; > 1. Moreover, using Paulsen’s result [P1], we
give a complete characterization of the completely bounded (resp. contrac-
tive) representations of ¥c.A,,. We shall prove that *c.A,, is completely
isometrically imbedded in %c7,, (resp. *cOp,;). On the other hand, it is
proved that all these algebras are completely isometrically isomorphic to
some free operator algebras of type OA(A,R), considered by Blecher [B].
This identification together with the internal characterization of the matrix
norm on a universal algebra [B], [BP] lead to factorization theorems of type
considered in [B], [BP], [Po6].

In Section 4 we shall show that the set of all characters (multiplicative
functionals) on A, *c - - - *cAp, is homeomorphic to (C™); X --- x (C™);
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and that the first cohomology group of A, %c - - - ¥cAp, with coeflicients in
C is isomorphic to the additive group C™ ™ *7  In particular, this shows
that the free product disc algebra is not amenable.

In Section 5 we consider an extension of the Naimark dilation theorem [IN]
to free semigroups and construct a large class of positive definite operator-
valued kernels on the unital free semigroup on n generators. As an applica-
tion, we define the class C, (p > 0) of p-contractive sequences of operators
and prove, using the results from the preceeding sections, that any sequence
of class C, is simultaneously similar to a sequence of class Cq, extending in
this way the classical result of Sz.-Nagy and Foiag [SzF1] (see also [Po5]).

In Section 6, using some joint dilation theorems from Section 1, we ex-
tend the operatorial trigonometric moment problem [Ak], [Po5] to the free
product C*-algebras *c7,, and *cO,,.

Let us remark that in the particular case when ny =ng =--- =ng =n
one can obtain joint dilations and universal algebras associated to k x n
operator matrices [T;;] with contractive rows. On the other hand, let us
mention that if k,ni,...,n; are infinite all the results of this paper hold
true in a slightly adapted version.

2. Joint minimal isometric dilations.

Let £ > 1 and nq,...,np > 1 be fixed positive integers. For each i =
1,2,...,k, let (Ti1,...,Tin,) be a contractive sequence of operators on a
Hilbert space H, i.e.,

TaTh + -+ Tin, Tiy, < In.

In what follows we extend the noncommutative dilation theorem [Po1] to our
setting. The following result also subsumes the isometric dilation theorems
from [SzF2], [F], [Bu], and [DSz].

Theorem 2.1. Let (T;1,...,Tim,), i = 1,2,...,k, be contractive sequences
of operators on a Hilbert space H. Then there exists a Hilbert space KK O 'H
and contractive sequences (Vi1,...,Vin,), 1 =1,2,...,k, of isometries on K

with the following properties:

(1) V;j|H:TZ’; (i=1,2,...,k, ,].%1’2’,”",”1‘); .
(i) PeonViiyK L PeonViyp,K if iv # i2, 1 = 1,2,...,n4, and jo =
1727"'7n’i2;

(i) K =H\ Vi, -+
Moreover, the joint isometric dilation satisfying these properties is uniquely

determined up to an isomorphism.

H  (any finite product in Vij is considered).

tpJp

Proof. For each i = 1,2,...,k, let us consider the operator matrix 7T; :=
[Ti1...Tin,] and let Dy, be the defect operator defined on EB;L;{H by Dr, =
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(I —T;T)'2. Let
D=D1®D2® - @ Dy,
where D; = m Let n =nq +ng + -+ + ng and consider the full
Fock space [E]
F2(H,) = C1® @1 HO™,
where H,, is an n-dimensional complex Hilbert space with orthonormal basis

{eij} i=12,...k . For each ¢ = 1,2,...,k and j = 1,2,...,n;, let S;; €
Jj=1,2

7Ll

B(F?(H, )) be the left creation operator with e;;, i.e.,
S =eij ®E, &€ F2(Hy).
Consider the operator D;; : H — F?(H,) ® D defined by
D;jh

=12 |0®---®08D7,(0,...,0,h, 0,...,0 )B0®--- 0| B040
— SN—— SN—— _—
7 — 1 times j — 1 times n; — j times k — 1 times
for any h € H. Consider the Hilbert space
(2.1) K=Ha& (F*(H,) ®D).
For each i =1,2,...,kand j = 1,2,...,n;, we define the operator V;; on K
by
Vij(h® (€ ®d)) =Tijh @& (Dijh + (Si; @ Ip)({ @ d)),
for any h € H, & € F%(H,), and d € D. One can see that
T;; 0
(2.2) Vij =
Dij SZ‘]‘ ® Ip
with respect to the decomposition (2.1). It follows that
15T + Di;Dij - Dy;(Si; ® Ip)

ViiVis =
(5% ® Ip) Dij 5555 @ Ip

Using the definition of D;;, an easy computation shows that 17Ty +D;; Dij =
I and (SZ*] ® Ip)D;j = 0. Since S} 5Si; =1, it follows that V Vii = Ik
According to the relation (2.2), it is clear that Vii[p =155 Ifi=1,2,....k
is fixed and o, 3 = 1,2,...,n;, a # (3, then one can similarily prove that
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Vi Vig = 0. This shows that (Vj1,...,Vj,,) is a contractive sequence of
isometries. On the other hand, we have

0 0
1y IICCeHVij =
D;; Sij®Ip
According to the definition of the operators D;;, and since {Sj;} are isome-
tries with orthogonal ranges, one can infer that

PIC@HVZ'Ui,C 1 P’CGHVizsz

ifil#iz, j1:1,2,...,n¢1, j2:1,2,...,n,-2.

Let us verify that {Vj;} i=12...x is the minimal isometric dilation of
j=1,2,..., n;

{T;;} =12k Consider Hy :=H\/ <\/ i=1,2,. 0k VZ-]-H> and

i=1,2,...,n; §=1,2,...,n;

Ho=Hea V| \V ViHea |, ifg>2

It is easy to see that H; = H & (C1® D) and
Hy=Ho (Clool  HY") 2D, ifq>2,

Clearly we have Hy; C Hg41 and

(7 H,=He (F*(H,) ® D).

q=1

Hence, and according to (2.1), we infer that

K=H\ Vij, = Vi, H.
Let us show that the minimal isometric dilation {Vj;} of {T};} is unique up
to a unitary operator. Following the classical case, it is enough to show that

the inner product

L= <V;1j1 T Vipjph’ |2 Vaqﬁqh/>’

(h,h' € H), depends only on the operators Tj; (i =1,2,...,k; j=1,2,...,
n;). We can assume that (i1, j1) # (a1,01). If i1 = a1 and j; # (1 then
V;151V;1j1 =0, hence L = 0. If i1 # oy then PKQHVimlC 1L PK;@HValﬁlIC.
Therefore,

L = ((PH + P}C@H)Vi1j1 T %pjpha (PH + P/C@H)Valﬁl T Vaqﬂth>
= <PHV;1]'1 T Viljphv PHValﬁl e Vaqﬂqh/>

= (Tiljl“'T h, Toq,@l"'Tocqﬁqh/)-

pJp
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Let {V; } i=1,2,..x be another minimal isometric dilation of {T};} i=12,....k

—12 ,,,,, n; j=1,2,..., n;

on a Hilbert space K’ D H. Setting

(E Vidjr - ngphiljl,...,z‘pjp> E: i Vi i Pivgneindn

finite finite

with R j, 4,5, € H, we define an isometric operator. Since the isometric
dilations are minimal, the operator U can be extended by continuity to a
unitary from K to K'. The proof is complete. O

Let {:L'U} =12,k and {yi;} i=12...c be noncommuting indeterminates
.2

,,,,, n; j=1,2,...,n;

satisfying the relatlon
YiaTig = 0apl, foranyi=1,2,....k and o, =1,2,...,n

Let P be the set of all reduced polynomials in these indeterminates, i.e., each
monomial is in reduced form according to the above mentioned relation.
The following version of von Neumann’s inequality [vIN] holds.

Corollary 2.2. For every polynomial p(1,{x;;}.{vi;}) € P and {Ti;} i=1.2..
Jj= 2 ..... ni
C B(H) such that
Tlsz*1+ + T T < Iy, 1=1,2... Kk,

Mg~ 1n;

we have

(2.3) Ip(3, {Tig 1 AT DI < sup lp(L {Vi 3, {ViG DI

where the supremum s taken over all contractive sequences of isometries
(Vit, ..y Vin,) (i=1,2,...,k) on a Hilbert space.

Proof. Let {Vz]} =12,k C B(K) be the minimal joint isometric dilation

,,,,, n;

of {TZ]} =12k in the sense of Theorem 2.1. Using the properties of this

..... n;

dllatlon one can prove that

PrViyjy -+ Vi Vi Ve |H:Ti1j1' i Trigy - T,

ipdp V11 TmQqm ipiptriqa TmQqm’

and

PuVi Ve Ve Vvl =TT Ty - T,

1171 ipJp 1171 ipJp Tm4m
if 7, # r1. Now, using these relations, one can see that, for any polynomial
p(L {zii} {wii}) € P,
Prp(Iie, {Vis b AVii DI = p(Ir {Ti5 1, {T353).-
Hence, we deduce (2.3). This completes the proof. O

We can apply [Ar, Theorem 1.3.1] to our setting in order to get the
following commutant lifting theorem for C*({T};})".
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Theorem 2.3. Let {Tj;} i=12... C B(H) be such that (Ti1,...,Tin,;) is
j=1,2

contractive for each i = 1,2,’;‘;,.1,1@, and let {Vij} i=12,...c C B(K) be its
§=1,2

,,,,, n;

minimal isometric dilation. If X € C*({T;;}) then there is a unique X €
C*({Vi;}) N {Px} such that PyX|y = X, where Py is the orthogonal
projection from IC onto H. Moreover, the map X — X 1is a x-isomorphism.

A particular case which can be proved directly is the following. The proof
is similar to [BrJ, Lemma 6.2], so we omit it.

Corollary 2.4. IfU € C*({T;;})" is a unitary then it has a unitary exten-
sion U € C*({Vi;})'. Moreover this extension is unique.

Let A, B be unital C*-algebras and let A xc B be their algebraic free
product amalgamated over the identity, which is a x-algebra. For x € AxcB
define

2]l = sup{||m ()]},
where the supremum is taken over all x-representations of A xc B. Let us
mentioned that all x-representations of A *xc B are in one-to-one correspon-
dence with pairs of *-representations of A and B, which act on the same
Hilbert space. The “biggest” free product of A and B is the completion of
A *c B in this norm, and is denoted by A*cB (see [Av]).

Theorem 2.5. For each i = 1,2,...,k, let (T;1,...,Tin,) be a contractive
sequence of operators on a Hilbert space H. Then there exists a Hilbert
space KK O H and contractive sequences (Vi1,...,Vin,) (i = 1,2,...,k) of
isometries on K such that

VaVi+-+ Vi, Vi =Ic (i=1,2,...,k)

and
P, {Ti5}) = Prp(Irc, {Vis ) In

for any polynomial p in noncommuting indeterminates {x;j} i=1,2,...k .
j=1,2,...,n

Proof. Consider the case k > 2. For each ¢ = 1,2,...,k, let gi1,...,00n,
be a system of generators for the Cuntz algebra O,,,. We proved in [Po4]
that the Banach algebras Alg(1, 041, ...,0in,) and the noncommutative disc
algebra A,,, are completely isometrically isomorphic. According to the non-

commutative von Neumann inequality [Po2], [Po4], we infer that the map
(I)i : Alg(l,o‘il, e 7Uini) — B(H)
defined by
q)(p(lv Oily--- ,o-ini)) — p(IHa 1—‘1'1, s 71—;77,1)
is a completely contractive homomorphism.

Using the extension theorem of Arveson [Ar] we infer that there is a com-
pletely positive linear map ¥; : Op, — B(H) such that ;| 419(1,0:,...00m.) =
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®,. Now using Boca’s result [Bo], there is a common completely positive
extension

Uy kg - xc Uk 2 Opykc -+ *c Oy, — B(H)
with

(U1 - *c Vi) (p(L{oy})) = (I, {T3}),
where p(1,{0i;}) € Op,%c---*cOy, is any polynomial in 1,041, ...,0,
(1=1,2,...,k; j=1,2,...,n;). According to Stinespring’s theorem [S],

(W1 xc - *c Vi) (p(1,{0i;})) = Pum(p(1,{oi;}))|n
for any p(1,{0sj}) € Opn,*c---*cOpy,, where 7 is a *representation of
On,*c - - *cOp, on a Hilbert space K D H, and Py is the orthogonal pro-
jection of I onto H. In particular, we have
P, {Ti;}) = Prp(Ix, {7 (i)}l
Notice that (7(o1),...,7(0in,)) is a sequence of isometries such that
m(on)m(oin)* + - 4+ 7(oim,)7(oin,)" = I, i =1,2,... k.

Denote Vi; = w(oy;), @ = 1,2,...,k; j = 1,2,...,n,. This completes
the proof when k£ > 2. The case k = 1 can be treated similarly (see also
[Bo)). O

Let P, be the set of all polynomials in noncommuting indeterminates x;;
(i=1,2,...,k; 7=1,2,...,n;). Notice that P, C P.

Corollary 2.6. For every polynomial p(1,{xi;}) € Py and {Tj;} i=12,..x C
=1,

2,..., n;
B(H) such that (Ti1,...,Ti,;) is contractive for any i =1,2,...,k,
(2.4) [p(Lr, {755 )| < sup [[p(Ixc, {Vij D
where the supremum is taken over all sequences of isometries (Vii, ..., Vin,)

(i=1,2,...,k) on a Hilbert space K such that
VaVi+ -+ Vi, Vi =1, i=1,2,....k.

Let us remark that in the particular case when ny = no = --- =ng =1
one obtains Bozejko’s version [Boz] of von Neumann’s inequality [vIN]. On

the other hand, in the particular case when k£ = 1, nqy = n we find a version
of the noncommutative von Neumann inequality obtained in [Po2].

Theorem 2.7. Let (T;1,...,Tim,), i = 1,2,...,k, be contractive sequences
of operators on a Hilbert space H such that
(2.5) TaTH+ -+ T, T, = I, i=1,2,... k.

Then there exists a Hilbert space KK O H and contractive sequences (Vi1,. . .,
Vin,), 1 =1,2,...,k, of isometries on KC with the following properties:
1) VaVi+-+ Vi, Vi, =Ic (i=1,2,....k);

() Vil =T (i=12...k j=12...,1)
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(iii) For any polynomial p(1,{xi;},{vi;}) € P,
Prp(Lic, {Vis}, AV D w = p(In, {T35 4T3 )
() K = H\ ViV

Moreover, the joint isometric dilation satisfying these properties is uniquely
determined up to an isomorphism.

H (any finite product in Vi; is considered).

;Djp

Proof. Let k> 2 and i € {1,2,...,k} be fixed. Since (2.5) holds, according
to [Pol, Proposition 2.5], there is a Hilbert space K; D H and a contractive
sequence (Wi, ..., Wiy, ) of isometries on K; having the following properties:
(1) WaWi + -+ Wi, Wi = Ik,
(i) Wiln =15 (G =1,2,...,n).
Therefore, for any polynomial p(1,{z;;},{vyij}) € P, we have
(2.6) Prp(Ix;, {Wii 1, AW D n = p(Ir {Tig 1, {T53)-

For each i = 1,2,...,k, let 041,...,0i, be a system of generators of the
Cuntz algebra O,,. Since the Cuntz algebra does not depend on the gener-
ators [Cu], and using (2.6), we infer that the map ¢; : O,, — B(H) defined
by

¢i(p(1,{0ij},{oi;})) = p(I, { T3}, {T75})
is completely contractive, hence completely positive. Using Boca’s result
[Bo], there is a common completely positive extension

WUy xg - %o Py Onlic e '%Conk - B(H)
with
(U1 -+ *c Wi)(p(L {0y}, {0i;}) = p(In, {135}, {T3;}),
for any p(1,{xi;},{vij}) € P. According to Stinespring’s theorem [S],

(W1 xc -+ xc Wi) (p(1, {035}, {07;})) = Prp(Ixc, {7 (0ij) b, {7 (7)) I,

where 7 is a *-representation of O, *c - - - ¥cOp, on a Hilbert space K D 'H,
and Py is the orthogonal projection of K onto H. Denote Vi; = 7(0y;)
(t=1,2,...,k; j=1,2,...,n;). Now, it is easy to see that {V;;} satisfies all
the properties stated in the theorem. Let us just mention that the property
(ii) follows from the relation

PrViViiln = (PruVijln) (PrViin),

using an argument from [A].
The uniqueness is a consequence of Stinespring’s theorem. Notice that
the case k = 1 can be treated similarly. This completes the proof. O

Let us remark that, in the setting of Theorem 2.7, one can obtain a
commutant lifting theorem similar to Theorem 2.3.
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Corollary 2.8. If {Tw} =12,k C B(H) satisfies the relation (2.5), then

,,,,,

for any polynomial p(1, {xm} {ym}) eP,

(2.7) [P, T35} AT DI < sup [[p(ic, {Vig 1AV
where the supremum is taken over all sequences of isometries (Vii, ..., Vin;)
(i=1,2,...,k) on a Hilbert space K such that

ViV, +Vini Vi, = I, 1=1,2,...,k.

Let us mention here a particular case. A hereditary polynomial in 2n
noncommuting indeterminates {x;}, {y;} (¢ =1,2,...,n) has the form

p(L i} {wi}) = a0+ D aiyojymiy -+ i, Yy - Yo
where ag, a;,...;, € C.
Corollary 2.9. If{T;}?, C B(H) such that
(2.8) DT + - T, T = I,
then for any hereditary polynomial p(1,{x;},{yi})

(2.9) Ip(3, ATi} AT DI < Mlp(Ls{oi}, {7} llo,.

where {0} is a system of generators for the Cuntz algebra O,,.

Let us remark that, under the condition (2.8), the inequality (2.9) is
sharper than the one obtained in [Po3].

3. Free product operator algebras and their representations.

We need a few definitions from [B]. Let I' be a set, and let n : I' — N be
a function with n(y) = n,. Let A be a set of variables (or formal symbols)
m;fj, one variable for each v € I" and each 7,5, 1 < 4,5 < n,. We call these
matrix entry variables, or quantum variables. Let F be the free associative
algebra on A. Let R be a set of polynomial identities P = 0 in the variables
in A. Regard R as subset of F. Take a quotient of F by the ideal generated
by R.
We define a semi-norm on M, (F) by

(3.1) il a = sup{||[w(uiz)1l}

where the supremum is taken over all algebra representations m of F/r
on a separable Hilbert space satisfying the condition H[ﬂ(:ﬂ])]ﬂ < 1 for all
~. This later matrix is indexed on rows by ¢ and on columns by j, for all
1<i,j <n,.

Now, quotient by nullspace of this semi-norm to obtain an operator alge-
bra. The completion of this space is denoted by OA(A,R). This is called
the free operator algebra on A with relations R (see [B]).
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Let A, have the identity e and also contain the ordinary variables
{xsj} i=12...x and {yi;} i=1.2,.. , and let Ry, be the relations
j=1, j=1,2

2,..., n,  j=12,. n;

YiaZig = Oqpe, foranyi=1,2,...,kand o,3=1,2,...,n;.
Form the universal algebra OA(Azy, Ray).
Theorem 3.1. The universal algebra OA(Agy, Ryy) is completely isomet-

rically isomorphic to the amalgamated (over the identity) free product C*-
algebra xcT,,.

Proof. According to (3.1), for any polynomials prs(e, {zi;}, {vi;}), 1 <
r, s < m, we have

(3.2) Ilprs(e; {zij} {vis Dl aey, = suplllp(Ix, {Aiz}, {Big DI

where the supremum is taken for all contractions A;;, B;j € B(H) (i =
1,2,...,k; 7 =1,2,...,n;) satisfying the relations

BinAig = doply, foranyi=1,2,...k; a,8=1,2,...,n;.
Under the above conditions, one can prove that Aj; = B;g (see [Po6]) and

consequently (A;1, ..., Ain,) is a contractive sequence of isometries for each
i=1,2,..., k. Therefore, the relation (3.2) becomes

(3-3) prs(e: {zi b {vis Dlllag, = sup{lllp(L, {Vi; }, {Vis DI

where the supremum is taken for all contractive sequences of isometries
(Vit, -, Vin,) (i=1,2,..., k) acting on a Hilbert space.
On the other hand, the *-representations 7 of xc7,, are in one-to-one

corespondence with k-tuples q,..., 7, of *-representations of 7,,,,...,7y,,
respectively, on the same Hilbert space, i.e.,
(3.4) mlr,, =m, i=12,... k.

According to [Po3], the x-representations m; : 7,,, — B(K) are in one-to-one
corespondence with the contractive sequences of isometries (Vi1,..., Vin,)
such that m;(S;;) = Vi; and 7;(1) = Ix, where Sii,...,Si, is a system of
generators of the Toeplitz C*-algebra 7;,,. Therefore,

lprs(e: {zi b {vis Dlllas, = sup [|[prs (1, {mi(Sig) }, {mi(Sig) DI
= sup |[[w(prs (1, {Si; }, {SH I,
where the supremum is taken over all x-representations m of *c7,, such

that (3.4) holds. This shows that OA(A,y, Ryy) is completely isometrically
isomorphic to *c¢7,,, and the proof is complete. U

The internal characterization of the matrix norm on a universal algebra
OA(A,R) (see [B], [BP]) leads to the following factorization theorem.
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Theorem 3.2. If P = [prs|mxm s a matriz of polynomials in e, {x;; },{yi;}
then, || P||a,, <1 if and only if there is a positive integer t such that

(3.5) P =AyD1A1Dy--- Di Ay,

where Ay (0 = 0,1, ...,t) are scalar matrices (with a finite number of nonzero
entries), each ||A¢| < 1, and each Dy is diagonal matriz with e, x;;,yi;
(1€{1,2,...,k} and j € {1,2,...,n;}) as the diagonal entries.

Blecher and Paulsen defined in [BP] the free product with amalgamation
over C in the category consisting of unital operator algebras as objects
and completely contractive homomorphisms as morphisms. For each i =
1,2,...,k, let A,, be the noncommutative disc algebra on n;-generators
[Pod4], and let Ay, *c ---%cAy,, be the amalgamated free product operator
algebra. This is the unique unital algebra which has the following universal
property: there are unital completely isometric imbeddings

XZ‘:.Am—>.An1>T<C‘-->T<(3Ank (iIl,Q,...,k)

such that the images of A,, (i = 1,2,...,k) under x; (i = 1,2,...,k)
generate A, *c---¥cApy,, and if for each ¢ = 1,2,...,k, m; is a unital
completely contractive homomorphism from A,,, into an operator algebra C,
then there is a unique unital completely contractive homomorphism

ke k g s Apy o ke Ay, — C

with (my % - *xm)ox;=m (1=1,2,...,k).
Let us denote by OA{ (Azy, Ray) the closed subalgebra generated by the
variables e, {x;;} i=1,2..k In OA(Agy, Ray)-
j=1,2,...,n;
Theorem 3.3. The amalgamated free product operator algebra Ay, *c---

kcAp, 1is completely isometrically isomorphic to the operator algebra
OAL(Agy, Ray).

Proof. It is enough to prove that the algebra OA, (Azy, R4y) has the above-
mentioned universal property. Let {S;1,...,Sin, } be a system of generators
of A,, (i = 1,2,...,k). According to the von Neumann inequality (see
[Po2], [Po4]), one can easily see that the homomorphism

Xi - -AnZ - OA+(Amy> Racy)

defined by x;(Si;) = ;3 (j =1,2,...,n;) is a unital completely isometric
imbedding, and x;(Ayn,) (i =1,2,...,k) generate OA, (Azy, Rey). More-
over, if C is an operator algebra and

mi A, = C (i=1,2,...,k)
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are unital completely contractive homomorphism, then according to [Po4],
there exists {Tm} =12,k C C such that (Tj1,...,T,) is a contractive se-

..... n;

quence of operators for eachi=1,2,...,k, and m;(S;;) = Tj;. Define

(m1 % - xm)(ple, {zij}) = p(1,{T3;})

for any polynomial in e, {x”} =12,k . Taking into account the definition of

12 "1

OAL(Azy, Ray), Theorem 3. 1 and the von Neumann inequality (2.3), we
infer that 7y - - - %7y, is contractive and can be uniquely extended to a unital
contractive homomorphism

kw7t OAL(Agy, Ray) — C
such that (m * - % m)(xi(Si;)) = Ti;. The proof is complete. O
Using Theorem 3.1 one can deduce the following.

Corollary 3.4. The operator algebra Ay *c---*cAp, is completely iso-
metrically embedded in the C*-algebra *c7p,.

Remark 3.5. The result from Theorem 3.3 can be also obtained using the
results from [Bo], [BP], and [Po4].

Let P, be the set of all polynomials in the noncommuting indeterminates
{xij} =12, k- Notice that P, C P (P was introduced in Section 1), and

—12

any p € P can be viewed as an element in OA(Azy, Ray)-
Theorem 3.6. Let {AU} =12,k be in B(H). Then (Ai1,...,Ain,) is a

..... ”1

contractive sequence of opemtors for each i = 1,2,... k, if and only if the
map

®: Py C OA(Apy, Ray) — B(H)
defined by ®(p(e,{zi;})) = p(In, {Ai;}) is a completely contractive homo-
morphism.

Proof. Assume that (A;1,...,A;,,) is contractive for each i = 1,2,... k.
According to Theorem 2.1, there is a Hilbert space X O H and contractive
sequences (Vi1,..., Vi,,) of isometries on K such that

(3.6) Vil = AL, i=1,2,. 0k j=1,2,...,n
The map ¥ : OA(Agy, Ray) — C*({Vij}) defined by

U(p(e, {zij}: {yi 1) = pUic, {Vij }, {Vi3}),
where p(e,{z;}, {vij}) € P, is completely contractive (see Theorem 3.1).
Therefore, ||¥]|s < 1. According to (3.6), we have

®(p(e, {zi;})) = p(i; {Ai}) = Prp(Iic, {Vi })In
= P (p(e, {zij}))In;
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for any p(e, {zi;j}) € OA;(Azy, Ray). Therefore, || P < || V]| < 1.
Conversely, suppose {AU} =12,k C B(H) such that map

o:P, C OAJF(Axy,ny) — B(H)
defined by ®(p(e, {zi;})) = p(Ix, {Ai;}) is completely contractive. In par-

ticular, for each i = 1,2,..., k, we have
An A - A Tyl Tig ccc Tin,
0 0O --- 0 O 0 --- 0
: . . < . . . <L
0 0 0 0 0 0 A,
Hence, ijAL | < 1for each i = 1,2,..., k. This completes the proof.

0

The above theorem and Theorem 3.3 show also that the universal alge-
bra generated by a finite number of contractive sequences of operators on a
Hilbert space and the identity is completely isometrically isomorphic to the
amalgamated free product operator algebra A, *c - -- *cAy, for some inte-
gers nq,...,ng > 1, in the following sense. Given any contractive sequences
(Ti1, ..., Tin;) (i =1,2,...,k) of operators on a Hilbert space H, there is
a completely contractive homomorphism

®: A, kg kcAp, — B(H)

such that ®(1) = 1 and ®(zy;) = T3 for any ¢ = 1,2,...,k and j =
1,2,...,n;. Moreover, this property characterizes A,*c---*cAy,, up to
unital complete isometric isomorphism.

Similarly to the proof of Theorem 3.6, one can prove the following result.

Theorem 3.7. Let {A”} =12,k C B(H). Then (Ail,...,Amz.) is a con-

,,,,,

tractive sequence of opemtors for each 1=1,2,...,k, if and only if the map
U:P COA(Azy, Rey) — B(H)
defined by
U(p({zii} {yii}) = p({Aij}, {45})
1s completely positive.

Now, using Theorem 3.1 and Theorem 3.7, we infer the following extension
of the von Neumann inequality [vIN], [Po2], [Po3].

Corollary 3.8. If {Tj;} i=12,..., » C B(H) such that
j=1,2

,,,,,

TilTil"i" + T, Tr < Iy, i=1,2,...,k,

Mg —n;
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then for any p € P C OA(Azy, Ray),
(I AT 3 ATEDN < Il

where p is viewed as an element of free product C*-algebra ¥c7Ty,.

Using Theorem 3.6 and a well-known result of Paulsen ([P1], [Po2]), one
can easily infer the following.

Theorem 3.9. Let {A;j} i=12... C B(H). The following statements are

Jj=1,2,...,n;

equivalent.
(i) The map ®: OA{(Agy,Ray) — B(H) defined by

®(p(e, {zij})) = p(I,{Ai;})

1s completely bounded.
(ii) There is a sequence {TZ]} =12,k C B(H) such that (Ti1, ..., Tin,)

=1,2,. "z

(i=1,2,...,k) is contmctwe and an invertible operator S satisfying
Aij = S_lTijS, forany i=1,2,...0k; 7=1,2,...,n

Let Ax ry have the identity e and also contain the ordinary variables
{azm} b and {yi;} =12,k , and let Ry, be the relations

..... j=12, . n;
yiamw =0qpe forany:=1,2,...,kand o, =1,2,...,n;,
and
xélygl —|—+x;mygn =e, 1=12,...,k.
Form the universal algebra OA(Agr,/, Ryry). One can prove that
OA(Ayry, Ryry) = %O, .

The proof is similar to that of Theorem 3.1, so we will omit it. Let us denote
by OA4(Agry, Ryry) the closed subalgebra generated by e, {z};} i=12,.5 in

J=12,...,n;

OA(Ayy, Ryryr). Using Theorem 2.5, we can deduce the following.

Corollary 3.10. If {TZ]} =12,k C B(H) such that (T51, ..., Tin,) is con-
2 ,,,,,

tractive for each i =1,2,... then the map

D . OA+(Am/y/,R$/y/) e B(H)
defined by ®(p(e,{z};})) = p(Ix,{Ti;}) is a completely contractive homo-
morphism.

Due to the universal property of A, *c---*cAy,, one can deduce the
following.

Theorem 3.11. The amalgamated free product operator algebra A, *c - - -
kc Ay, is completely isometrically isomorphic to OAL(Ayry, Raryr)-
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Now, the inequality (1.4) announced in Section 1, follows from Corollary
3.8 and Theorem 3.11.

j=1,2,...,n

Corollary 3.12. If {T};} i=1,2.... € B(H) such that
i=1,2,...,m;

TaTh+ -+ T, Ts, < Iy, i=1,2,...k,

N +ang

then for any polynomial q(1,{z;;}) € P,

(3.7) lg(lr ATy DI < llallscon, = lldllscz, < lalicecr,),
where T, = T (r = 1,2,...,n1 + ---ng), and q(1,{x;;}) is seen as an
element of *cOy,, *c7y,, and *cC(T,), respectively.

The inequality
(3.8) la(r AT DI < Nlallzcecr,)

was proved by Bozejko in [Boz| (see also [Bo]) and follows also from Corol-
lary 2.6. Notice that, in our setting, the inequality (3.7) is sharper than
(3.8).

Corollary 3.13. The operator algebra Ay, *c - - - *cAy, is completely iso-
metrically imbedded in the C*-algebra *cOp,.

Using Theorem 2.7 and Corollary 3.8 one can infer the following version
of the von Neumann inequality.

Corollary 3.14. If{T;;} iz12... € B(H) such that
J=1,2,..,m;
Elﬂﬁ++ﬂT* = Iy, i:1a27"'7ka

N =ang

then for any polynomial q(1,{z;},{yi;}) € P,
la(n AT 1 ATEDN < Nldllscon, < llallse,

where q(1,{xi;,{yi;}}) is seen as an element of *cO,, and ¥cT,,, respec-
tively.

Let A, have the entries in the row matrices [z;1, ..., Zin,] (1 =1,2,...,k)
(so there are some relations forcing the other entries to be zero) and also an
identity e (i.e., xjje = ex;; for i =1,2,...,kand j =1,2,...,n;). Consider

the universal algebra OA(Az, Ry).

Theorem 3.15. The universal algebra OA(Ay, Ry) is completely isometri-
cally isomorphic to OA; (Azy, Ray)-

Proof. According to (3.1), for any polynomials p,s(e, {zi}),1 < r,s < m,
we have

Ilprs (e, {zig Dl A = sup{llprs (I, {Ti DI
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where the sumpremum is taken for all {Tj;} i=12..., C B(H) such that
J=1,2,.my

(Ti1, ..., Tin;) (1 =1,2,...,k) is contractive. According to Theorem 2.1, we
infer that

Iprs(e; {ziDllla, = sup{l[[prs(1, {Vig DI},

where the supremum is taken for all contractive sequences of isometries
(Vit, .., Vin,) (1=1,2,...,k) acting on a Hilbert space. Using the relation
(3.3) we deduce that

Ilprs (e, {zigDlllan = [lprs(e {zij Il Ay,

which completes the proof. O

Since *c Ay, and ¥cO,,, are universal algebras of type OA(A, R), one can
obtain factorizations of type (3.5) in a similar manner.

On the other hand, let us remark that all the von Neumann inequalities
presented in this section can be easily extended to matrices.

4. Characters on free product disc algebras and cohomology.

Let A = {\i;} i=12,..c be a sequence of complex numbers such that
i=1, ;

2., n;

Nt + -4 A, |* <1 foreachi=1,2,...,k,
and define the “evaluation” functional
Dy : P — C; @a(ple {xi})) = p(L, {Nij}),
where P, is the set of all polynomials p(e,{z;;}) € OA;(Azy, Ray). Ac-
cording to Theorem 3.7, we have
Ip(L A DI < llp(e, {ziPlloar (awyRay)-

Hence, ®), has a unique extension to OA;(Ay, Razy) Therefore @) is a
character on OA 4 (Agy, Ray). Let Moa, (a,, R.,) Pe the set of all characters
of OAL(Azy, Ray) and let

v - (Cn1>1 X (Cn2)1 X -0 X (an)l — MOA+(Azy7Rzy)
be defined by ¥(\) = @), where A = {\;;} i=12,..% .
ji=1,2

j=1,2,...,n;

Theorem 4.1. The map ¥ is a homeomorphism of (C™); x --- x (C"),
onto MOA+(Axy,'ny)'

Proof. Let us show that ¥ is one-to-one. If A = {\;j} i=12..x and p =
J=1,2,...,m;
{pij} i=12,0 are in Ey, 5, = (C"1); x -+ x (C™),, then W(\) = V()
J=1,2,...,m;

implies
Aij = Pa(zij) = Pulwiy) = pij
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forany i =1,2,....k, j =1,2,...,n;. Therefore A = . Now, assume that
O : OAL(Ayy, Ray) — C is a character. Setting ®(x;;) = \ijj € C we have

(p({zij})) = p({Xij}),

for any p({z;;}) € OA;(Azy, Ray). Since @ is a character it follows that
it is completely contractive. Applying Theorem 3.7 when A;; = X\ijIc, i =
1,2,...,k, j=1,2,...,n;, we infer that {\;;} € Ep, _ n,.

On the other hand, the identity

(p({zij})) = p(Aij) = PA(p({zi;}))

proves that ® = &, on the subset P, which is dense in OA, (Ayy, Ray)-
Hence ® = ®,. Since both E,,, . ,, and MOA+(Azy’7€zy) are compact Haus-
dorff spaces and ¥ is one-to-one and onto, to complete the proof it suffices
to show that ® is continuous.

Suppose that A* = {A{:}(a € J) isanet in By, _n, such that limaes A* =
A = {\j;}. Since sup,c;||Pra|| <1 and P, is dense in OA; (Azy, Ray) and
since

Eg} Qre(p({zis})) = gg}p({)\ij}) = Cx(p({zi5}))

for every p({zi;}) € P, it follows that ¥ is continuous. The proof is com-
plete. U

Let us remark that in the particular case when k£ = 1, n; = n we get
My, = (C™); (A, is the noncommutative disc algebra [Po2]), result that
was obtained in [Po4].

Let A be a complex Banach algebra with unit, X be a Banach A-bimodule,
and X’ be the dual Banach A-bimodule (see [BD]). We need to recall from
[BD] a few definitions.

A bounded X-derivation is a bounded linear mapping D of A into X such
that

D(ab) = (Da)b+ a(Db), for any a,be A.

The set of all bounded X-derivations is denoted by Z'(A, X). For each
x € X let us define §, : A — X by d,(a) = ax — za. We call §, an inner X-
derivation, and denote by B'(A, X) the set of all inner X-derivations. The
quotient space Z'(A, X)/B'(A, X) is called the first cohomology group of
A with coefficients in X, and it is denoted by H'(A, X). A Banach algebra
A is said to be amenable if H'(A, X') = {0} for every Banach A-bimodule
X.

It is clear that C, the set of all complex numbers, is a Banach
OAL(Azy, Ryy)-bimodule under the module multiplication

A f{mig}) = F({zi}) - A = Af({0})
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for each f({zi;}) € OA4(Azy, Ray). According to the von Neumann in-
equality (3.5), we infer that |\ - f({zi;})| < |M||f({zs})]], for any A € C
and f({xw}) S OA—%—(A:vyaRwy)'

Since the proof of the following theorem is a straightforward extension of
[Po4, Theorem 4.1], we will omit it.

Theorem 4.2. The first cohomology group of OAL(Asy, Ray) with complex
coefficients is isomorphic to the additive group C™ T2+ +nk,

Since C is a dual bimodule we infer the following.

Corollary 4.3. The free product operator algebra OAi(Agy, Rey) is not
amenable.

5. Positive definite operator-valued kernels on free semigroups.

Let F;} be the unital semigroup on n generators. A positive definite kernel
on F;'" is a map
K :F! xF! — B(H)
with the property that K(o,w) = K(w,0)*, (o,w € F;') and
k
> (K(0i,05)hj,hi) >0
ij=1
for any k € N, for any hy,...,hy € H, and o1,...,0, € F,'. A kernel K on
F; is called Toeplitz if K(e,e) = Iy and
K(ao,aw) = K(o,w) for any a,0,w € F
(see [Po5] for a particular case). We say that K has a Naimark dilation if
there is a Hilbert space K D H and {Vg}aeFi a semigroup of isometries on
K, ie., VoV, =V, (o,w € F,), V. = Ix, such that

K(o,w) = Py V. V|3 for any o,w € F},

where Py is the orthogonal projection of K onto H. The Naimark dilation
is called minimal if K = \/aeFi VoH.

The following result is an extension of the Naimark dilation [N], [SzF2]
to free semigroups. The proof is similar to that of Theorem 2.1 from [Po5],
so we will omit it. However, let us point out that in [Po5] we considered
just a particular Toeplitz kernel. Here, we have a more general setting.

Theorem 5.1. A Toeplitz kernel on ¥, is positive definite if and only if
it admits a minimal Naimark dilation. Moreover, the minimal Naimark
dilation is unique up to an isomorphism.

Let Ff (i = 1,2,...,k) be the unital free semigroup on n; generators:
Sil, 8i2; -+ Sin;» and let e be the neutral element. Then F}} := F} *-- *F;LLk is
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the unital free semigroup on n = ni+---+nx generators. If {Tz]} i=1,2,.k C
Jj= ,2 ,,,,, n;

B(H), then for each 0 = s;,j, - - - 55,5, € Ff denote T, := T}, j, - - - T;,5,, and
T, =Iyifc=e.

For any o,w € F;, let us denote by gld(o,w) the greatest left common
divisor of them. Therefore,

(5.1) o = gld(o,w)a and w = gld(o,w)s for some «,3 € F;,

and gld(a, ) = e. Notice that to each pair (o,w) € F;}' x F; corresponds a
unique pair (o, 3) € F;/ x F;/ with the above mentioned properties.

Let us define the kernel K. : F;} x F} — B(H) by K.(o,w) = 0 if
a # e, # e, and both words «, § start with some generators of the same

semigroup F,}, for some i = 1,2,...,k, and K.(o,w) = T;Tp otherwise. It
is clear that K, is a Toeplitz kernel. Notice also that if j; # jo, then
(5.2) K(sij,0, 8ij,w) =0

for any o,w € F; .
Theorem 5.2. Let {Tj;} i=12...., k C B(H). Then (Ti,...,Tin,) is a con-

j=1,2,.
tractive sequence of opemtors for each i = 1,2,...,k if and only if the

Toeplitz kernel K. is positive definite.

Proof. Suppose that for each ¢ = 1,2,...,k the sequence (Tj1,...,Tip,) is
contractive. According to Theorem 2.1, there exists a Hilbert space K O 'H
and contractive sequences (Vj1,...,Vip,) (i = 1,2,...,k) of isometries on
K such that Vii[s = T35 (i = 1,....k j = 1,...,n;) and PeenVi; K L
P;C@HVMQIC if ’il 75 iQ, jl = 1, 2, ey Ny, and j2 = 1, 2, ey Mgy Accord-
ing to the definition of the Toeplitz kernel K., for any finitely supported
sequence {hy} cp+ C H we have

*

Z <KC(an)hW7h0>: Z <T;Tghw,ha>

a,wEFfi U,UJGFi

*

= > (PVshe, PuVahe)

a,wEFi

*

= > (P + Peon)Vsh, (Pr + Peon)Vahe)

a,wEFi
= Y (Vaho,Vaho) = Y (ViVihe, ho)
tf,weF;lF UWEF+

= > (Vi Vihw, ho) ZVh > 0,

oweFT ocEF;
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*
where Y is taken over all o,w € F}" such that K.(o,w) = T#Tp (see the
definition of K.). This proves that the Toeplitz kernel K, is positive definite.

Conversely, assume that K. is positive definite. According to Theorem
5.1, there exists a Hilbert space K D H and {VU}GGF: a semigroup of isome-
tries on K such that

Kc(o,w) = PyVV,|y for any o,w € F!.

Since the relation (5.2) holds, we infer that for each i = 1, ..., k, the sequence
of isometries (Vji, ..., Vin,) is contractive (see [Pob]). Since

Tsij - Kc(ev Sl]) - PHVSZ] |H
for each i = 1,...,k, we have

DTGRP < Y VIR < |IAl? for any h € H.
j=1 j=1

This shows that (751, ..., Tin,) is a contractive sequence of operators for each
i =1,2,...,k. The proof is complete. U

Let us remark that in the particular case when £k = 1 and ny = n we
find again Corollary 2.2 from [Po5]. In the particular case when ny = --- =
ni = 1 we obtain the following.

Corollary 5.3. Let {T},...,Tx} C B(H). Then {T1,...,T}} is a sequence
of contractions if and only if the Toeplitz kernel

K :F} xF} — B(H)
defined by K(o,w) = K(a,p) = T;Tp, where 0 = gld(o,w)a and w =
gld(o,w)p, is positive definite.

Let C, (p > 0) denote the set of all sequences {A;;} i=1,2...x of opera-

Jj=1,2,...,n;
tors on a Hilbert space H for which there exists a sequence of isometries

{Vij} =12,k O Hilbert space K D H such that
=1,

2,..., n

ng
> ViVis < Ing
=1

foreach i =1,2,...,k, and
Airjy = Ainjo = PPHVisgy - Vi 15

for any i, € {1,2,...,k}, jo € {1,2,...,n4,}, ¢ € {1,2,...,m} and m > 1.
Let K, : F;f x F,' — B(H) be the Toeplitz kernel defined by K,(e,e) = Iy
and

1
K,(o,w) = —K.(o,w)
p
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if o € F\{e} or w € F;'\{e}, where K, is the Toeplitz kernel associated to
{Aw} =12k (see the definition following Theorem 5.1).

,,,,,

Applylng T heorem 5.2, we infer the following.
Theorem 5.4. {4;;} iz12,.., 5 € C, if and only if the Toeplitz kernel IC, is
Jj=1 2

,,,,,

positive definite.

One can prove that the class C, (0 < p < o0) increases with p, i.e.,
Cp CCy and C, # C;, for 0 < p < p' < 00 (see [Po5] for a particular case).

The von Neumann inequality (3.7) can be extended, in an apropriate
form, to the class C,,.

Theorem 5.5. If {A”} i= 122 & € Cp (p > 0), then for any polynomial
ple.{2ij}) € OAL (Agy Ry,

(5.3) e, {Ag DI < (1 = p)p(e, {0}) + pple {ziPlloas (s, Ray)-

Corollary 5.6. Let p({zi;}) € OAL(Aszy, Ray) be such that p({0}) = 0 and

Ip({zi oAy (ApyRay) <1
If {Aij} = b 6 C, (p > 0) then p({Ai;}) € C, (in the classical sense).

Jj=

A sequence of operators {A;;} i=12,..., k is called simultaneously similar
Jj=1, 2

to a sequence {T; } =12k if there is an 1nvert1ble operator X such that
=1 2

Ajj :XTin’1 for anyz = 1,2,...,k,j =1,2,...,n
In what follows we consider an extension of the result of Sz.-Nagy and
Foiag [SzF1] and also [Po5].

Theorem 5.7. Any sequence {A;j} i=12..k € C, (p > 0) is simultaneously
j , T

similar to a sequence {TZJ} =12,k €Cy.
=1, 2

..... "i

Proof. The inequality (5.3) can be extended to matrices. One can easily
prove that, for any polynomials prs(e, {zi;}), 1 <7, s <m,

1[prs (1, {Ai DI < (11 = pl + p)ll[prs(e, {zi Pl asy -
This shows that the map ® : P, — B(H) defined by
O(p(e, {zi5})) = p(L,{Ai;})
can be extended to a completely bounded homomorphism of the free product

disc algebra OAy(Azy, Ray). Now, according to Theorem 3.9, the result
follows. O

In the particular case when k = 1, n; = 1 we find again the classical
result of Sz.-Nagy and Foiag [SzF1].
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6. Trigonometric moment problem for some free product
C*-algebras.

As in the previous section, let F;; (1 =1,2,...,k) be the unital free semi-
group on n; generators: g1, 92, -, Gin;, and let e be the neutral element.
Then A :=F,} *---xF, is the unital free semigroup on n = ny 4 --- 4 ny
generators.

For each i = 1,2,....k, let {.’L'ij}ji:ll,; ,,,,, x and {yij}jizll,; ..... » be ordinary

,,,,, n; PN )

variables satisfying the relation

(6.1) YiaZig = Oa,3€

foranyi=1,2,...,k and o,8 = 1,2,...,n;. Foreach o = g5, -+ gi,j, € A
let ¢ := gipjp s -giljl, Ty = xi1j1 . '.Q?Z'pjp, and Yo = yiljl . -yipjp. Ifo=c¢
(the neutral element in A) then we set z, = y. := e (the neutral element in
Ay (see Section 3)).

If 7 is a representation of the universal algebra OA(Agy, Ryy) on B(K)
then, according to Theorem 3.1, it is determined by contractive sequences
of isometries (Si1,...,Sm,;) (i =1,2,...,k) on the same Hilbert space K
such that m(z;;) = Sij, m(yij) = Sj; and 7w(e) = Ic. Notice that for each
o € A we have 7(z,) = So, m(y5) = Si = 7(ys)*. According to the relation
(6.1), ysxo, (o,w € A\{e}) is a reduced word if and only if there exist
i1,i2 € {1,2,...,k},i1 # ia, such that w (resp. o) starts, in its unique
representation, with a generator of F;{il (resp. Frfu)

Define the following subsets of A x A:

'y ={(e,0) : 0 € A};

Iy ={(w,e) :w e A};

I's ={(w,0) :w,0 € A\{e} and ysz,, is a reduced word};
=T, UTlyUTs.

Notice that if (w,0) € I" then (o,w) € I'. On the other hand, if k¥ = 1, then
['=T1UTy. Let {A(w)}ow)er be a sequence of operators in B(H) such
that A ) = Af, , for any (o,w) €T, and A(ee) = Ing-

For any o,w € A let us denote by gld(o,w) the greatest left common
divisor of them. Therefore,

o=gld(o,w)a and w = gld(o,w)s

for some o, € A with gld(a,3) = e. We associate to the sequence of
operators { A, ) }(ow)er the kernel K4 : A x A — B(H) defined by

o,w

L A(a,ﬂ) if (Oé ﬁ) el
Kalo,w) = {o if (o, 3) ¢ T.
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It is easy to see that K4(e,e) = Iy and Ky(ao,aw) = Ka(o,w) for any
a,0,w € A ie., K4 isaToeplitz kernel. Notice thatifi=1,2,...,k; j1,j2 €
{1, 2, ey nl} with jl 7'5 j2 then

(6.2) K (95,0, gijow) =0
for any o,w € A. Define the operator matrix

where |o| stands for the length of o € F,'. Denote
Ipoi={(a,B) €T : |a] <m,|B]| <m}, m=1,2,....

In what follows we extend the operatorial trigonometric moment problem
[AK] (see also [Po5]) to the free product C*-algebra *c7,,.

Theorem 6.1. Let {A(g)}(a8)er,, be a sequence of operators in B(H)
such that A.cy = Iy and A gy = Azkﬁ ) for any (o, B) € Ty, If
p: OA(Azy, Rey) — B(H)

s a completely positive linear map such that

1(Yars) = Aa,p)

for any (a, B) € Ty, then M, is positive.

Conversely, if M, is positive then there is a completely positive linear
map i : OA(Agy, Rey) — B(H) such that p(yars) = Aa,p) for any (o, 3) €
J

Proof. Assume that p : OA(Agy, Rey) — B(H) is a completely positive
linear map such that
(6.4) wmyarg) = Aw,p for any (a,B) € Iy,

According to Stinespring’s theorem [S], there is a Hilbert space K D H and
a representation 7 : OA(Agy, Ray) — B(H) such that

(65) N(f) = PHW(f)|H7 /€ OA(Aa:yv Rzy)

Let K : Ax A — B(H) be the kernel defined by K (o,w) = Py (ysxw)|n for
any o,w € A. It is easy to see that K(e,e) = Iy, K(w,0) = K(o,w)* and
K(ao,aw) = K(o,w) for any a,0,w € A. Since for any finitely supported
sequence {hy toen C H,

D (K(o,w)h, he) = > (Prm(ysti)hu, ho)

o,weEN o,weEN
= Z (m(2w)hews T(Yo ) ho) = Z ||7T($w)hw||2 >0,
o,wEN wEA

we infer that K is a positive definite Toeplitz kernel.
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In particular, the matrix [K(0,w)]|o|<m,|w|<m 13 Positive. According to
(6.4) and (6.5), it is a routine to show that K(o,w) = Ka(o,w) for any
o,w € I with |o| < m, |w| < m. Therefore, the matrix M, is positive.

Conversely, assume that the matrix M,, is positive. Let KU, be the Hilbert
space of all sequences of the form {hg}‘ali/x (he € H) with the bilinear

form (-,-) on K9, defined by
<{hW}|w|§m’{h;}\a|§m> = Z <KA(U7w)hw>h:7>H'

w,0EA
|w|,[o]<m

Since M,, is positive (-,-) is positive semi-definite. Consider
N = {k € KO : (k, k) =0}
and K9, /Ny,. Let K, be the Hilbert space obtained by completing K2, /A,

with the induced inner product.
Let X9 be the subspace of K2, defined by

X% = {{ho} €KY, : hy =0 for |o| = m}
and let X = X%/5;, C K,,. For each generator g;; (i = 1,2,...,k;j =
1,2,...,n;) of Alet Vj; : ¥ — K, be defined by
(6.6) Vij ({he}) = {0g;50 () ho Yt <m-
Define also T;; : X — X by T, = Viilx. Embed H in KCp, by setting

j
h = {6c(t)h}|sj<m- This identification is allowed since it preserves the linear

and metric structure of H.
For any (o,w) € I';;,—1 and h,h’ € H we have
(PyTET h, b Yy = (T,h, Tyh )i,
= (Px ({0 ()} 1<m)s P ({5 ()0 }s|<m) )i
= ({0u(O)h}jtj<m> 196 (8)D" 5| <m) o

= > (Ka(s,t)8u(t)h, 66 (s)h )2
. 1 <m

= (Ka(o,w)h, h')x.

Therefore, K 4(o,w) = PyT}T,|# for any (o,w) € I';,—1. Let us remark that
this relation holds, in fact, for any (o,w) € I'y, such that either |o| <m —1
or |w| <m—1.

Let us show that for each ¢t =1,2,...,k,

(6.7) TaTi+ o+ Tin, Ty, < I
n; g

Since ) TUT;; =Py > VijVi}k-hg, it is enough to prove that (Vii,..., Vin,)
i=1 i=1

is a sequence of isometries with orthogonal ranges. According to (6.6) and
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(62), for J1 75]'2; 1,72 € {1,2, R ,ni}, we have
<Vij1{hw}v ‘/;:j2{h:7}>’cm
= Z <KA(gij207 gijlw)hW7 h;> =0.

lo],|w|<m—1
Since K 4 is a Toeplitz kernel one can similarly prove that Vj;(j = 1,2,...,n;)
are isometries. Therefore Z VUV < Ix,,. Hence, and using the definition
7=1
of T;; we infer the relation (6.7).
Let {WZ]} =12,k be the minimal isometric dilation of {Tw} 1,2,k ON

a Hilbert space IC D X (see Theorem 2.1). Since
PrexWij) K L PeoxWiyj,

if il 75 ig, jl = 1,2,...,77,1‘1 and jg = 1,2,... y Mgy and WijllC 1 Wz‘jQIC for
any t = 1,2,...,k and ji, jo € {1,2,...,n;} such that j; # jo, a simple com-
putation shows that T)T,, = PxyW;iW,|x, for any (o,w) € T';,. Therefore,
for any (o,w) € I'y,—1 we have

(68) KA(O’,Q_)) = P’HT;Tw|'H =5 PHW:Ww’H'
Define p : OA(Azy, Ryy) — B(H) by
(6.9) u(f) = Prm(f)ln

where 7 : OA(Ayy, Ray) — B(K) is a representation determined by 7(e) =
I, m(xi5) = Wij and m(y;;) = W}, Thus, p is a completely positive linear
map. On the other hand, using the relations (6.8) and (6.9), we infer that

(6.10) 1(ars) = PuWaWpln = Ka(a, B) = A(a,p)
for any («, ) € I';,—1, which completes the proof. O

Notice that if & = 1 then the relation (6.10) is true for any («, ) € T'
Let us remark that in the particular case when k = 1 and ny = n we have
'3 =0, T =T7UTly and A = F;, and we find again Theorem 3.1 from
[Po5].

Corollary 6.2. Let {A (5} (ow)er be a sequence of operators in B(H) such
that Ay = A?w.cr) for any (o,w) €T and Aoy = Ing.

Then, there is a completely positive linear map p : OA(Azy, Ray) — B(H)
such that p(yarg) = Aea,p) for any (o, ) € T if and only if the Toeplitz
kernel K 4 is positive definite.

Let us recall that OA(A,ry, Ry ) is completely isometrically isomorphic
to the free product C*-algebra *cO,,.

Using Theorem 2.5 and Arverson’s extension theorem [Ar], one can easily
adapt the last part of the proof of Theorem 6.1 to obtain the following
results.
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Corollary 6.3. If the operator matrix My, is positive definite, then there is
a completely positive map

’Lﬂ : OA(Awly/,Rm/y/> — B(H)
such that Y(z,) = A(e,q) for any o € A, |o| < m.

Notice that in the particular case when k = 1 the converse of the above
corollary also holds. Therefore, in the particular case when k = 1,n1 = n
we have A = F;} and we infer the following trigonometric moment problem
for the Cuntz algebra O,,.

Let v1,v9,...,v, be a system of generators of the Cuntz algebra O,,. Let
F; be the unital free semigroup on n generators: g¢i,9ga,...,gs. For each

o= Giy iy EF;‘; denote vy = v;; -+ v;, and ve = 1.

Corollary 6.4. Let {B(y)},cp+ be a sequence of operators in B(H) with
By = Iy. Then, there is a completely positive linear map p : Op —
B(H) such that u(vs) = B(sy,0 € F.\r, if and only if the Toeplitz kernel

n’
K :F} x Fl — B(H) defined by K (e,e) = Iy and
B, if 0 = wt for some T € F;}
K(o,w) = Br if w= ot for some T € F;
0 otherwise
1s positive definite.
In the particular case when n = 1 we find again the classical operatorial

trigonometric moment problem [AKk].

Corollary 6.5. Given the operators Ay, € B(H),k=0,1,...,m '(AO =1),
there exists a positive linear map pu : C(T) — B(H) such that p(e™') = Ay,
k=0,1,...,m, if and only if the block matrix

In A - A
AY Iy o A
Ax AR Iy

built up on the given operators {Ay}pr is positive.
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