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DEFINING METRIC SPACES VIA OPERATORS
FROM UNITAL C∗-ALGEBRAS

Branka Pavlović

For a unital C∗-algebra A and an operator T with DomT ⊆
A, RangeT in a normed space, and ker T = Cmathrm1, we
consider the metric dT on S(A), the state space of A, given
by dT (φ, ψ) = sup{|φ(a) − ψ(a)| : a ∈ A & ‖Ta‖ ≤ 1}, for
φ, ψ ∈ S(A). This is a generalization of the definition given
by A. Connes for defining a metric on S(A) via unbounded
Fredholm modules over A.

The main problem of our investigation, posed by M. Rieffel,
is the relationship between thus defined metric topology TdT ,
and the weak-* topology Tw∗ on S(A). We give two different
complete characterizations of those operators for which TdT

=
Tw∗ . First, we establish the relevance to this relationship of
the induced one-to-one operator T̂ : DomT/C1 → RangeT ,
and B1 = {a ∈ DomT : ‖Ta‖ ≤ 1}/C1, which is the inverse
image under T̂ of the unit ball of RangeT . We show that:
(1) dT is bounded if and only if B1 is bounded, if and only if
T̂−1 is bounded; (2) TdT

= Tw∗ if and only if B1 is compact,
if and only if T̂−1 is compact. Furthermore, we consider the
de Leeuw derivation DdT associated to T , which is defined by
(f(y) − f(x))/dT (x, y), x, y ∈ S(A), and is an operator from
C(S(A)) into Cb(Y ), Y = {(x, y) ∈ S(A) × S(A) : x 6= y},
whose domain is the Lipschitz algebra Lip(S(A), dT ). We show
that TdT

= Tw∗ if and only if DdT
is unbounded on every in-

finite dimensional subspace of its domain. In particular, we
use all these results to characterize those unbounded Fred-
holm modules over A whose metric topology coincides with
the weak-* topology on S(A).

1. Introduction.

It is well established to think of C∗-algebras as “noncommutative” topo-
logical spaces. The idea to define a “noncommutative metric space” using
C∗-algebraic tools was initiated by A. Connes [2] and [3]. He suggests that
the right notion of a noncommutative metric is that of an unbounded Fred-
holm module, and proposes the following definition.
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Definition 1.1. Let A be a unital C∗-algebra. An unbounded Fredholm
module (H, D) over A is:

(C1): a Hilbert space H which is a left A-module, that is, a Hilbert
space H and a ∗-representation of A on H;

(C2): an unbounded, self-adjoint operator D on H such that {a ∈ A :
[D, a] is densely defined and extends to a bounded operator on H} is
norm dense in A;

(C3): (1 +D2)−1 is a compact operator (i.e. D has compact resolvent).

Connes shows ([2], Proposition 4) that if A is any unital C∗-algebra and
(H, D) an unbounded Fredholm module over A such that

(C4): {a ∈ A : ‖[D, a]‖ ≤ 1}/C1 is bounded,
then d, defined for φ, ψ ∈ S(A), the state space of A, by the formula

d(φ, ψ) = sup{|φ(a)− ψ(a)| : a ∈ A, ‖[D, a]‖ ≤ 1},(1)

defines a metric on S(A). Condition (C3) is not needed for this.
Connes also shows ([2], Proposition 1) that if M is a compact, spin,

Riemannian manifold, A = C(M),H = L2(M,S), andD the Dirac operator,
then the geodesic distance d(P,Q), for P,Q ∈M is given by

d(P,Q) = sup{|a(P )− a(Q)| : a ∈ A, ‖[D, a]‖ ≤ 1},(2)

so that the two notions of metric coincide.
M. Rieffel [11] poses the following question: For which compact metric

space (X, d) there exists an unbounded Fredholm module over C(X) such
that d is defined by (2). He shows that it is true for every compact metric
space if the condition (C3) is dropped from the definition of the unbounded
Fredholm module, but he notes that in that case we need some additional
non-degeneracy conditions.

We follow a similar path here, but in the opposite direction, which was as
a problem also posed by M. Rieffel. Namely, suppose that the metric defined
by an unbounded Fredholm module is given. The problem we address here
is the relationship of the metric and the weak-* topology on the state space.
To cope with the problem, we have to consider a more general situation, as
follows.

When we have a triple (A,H, D), where (H, D) is an unbounded Fredholm
module over a unital C∗-algebra A, then B(H) is a Banach A-module, and
the map T : A → B(H) defined by Ta = [D, a], where D is as in (C2), is a
densely defined derivation from A into B(H), and the metric given by the
formula (1) is

dT (φ, ψ) = sup{|φ(a)− ψ(a)| : a ∈ A & ‖Ta‖ ≤ 1},(3)

for any φ, ψ ∈ S(A), the state space of A. As a generalization, we let T be
any operator with Dom(T ) ⊆ A and Range(T ) ⊆ B, where B is any normed
space, and we let dT be defined by (3).
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Here is a brief description of the results presented in this paper. We start
by considering the commutative case first (Sections 2, 3, 4, and 5), when
A = C(X), X a compact Hausdorff space, so that X is homeomorphic to the
pure state space of A. Even more generally, sometimes we want to consider
A = Cb(X), the algebra of all bounded continuous functions on X, where X
is any topological space. As we are really interested in producing a metric
on X so that the metric topology on X coincides with the original topology
on X, we are really interested only in metrizable spaces. However, some of
our results are valid even when we consider X to be a general topological
space.

We first search for conditions which T should satisfy so that dT is really
a metric on X (Section 2). In particular, we characterize those operators
from A = Cb(X) which define a bounded metric on X (Theorem 2.2).

Next, we explore the relationship of the metric topology TdT
and the

original topology T on X (Section 3). We show that under reasonable
assumptions, the topologies are comparable, and in fact, the metric topology
is finer. This is always so when X is compact Hausdorff, and the metric also
turns out to be always complete, so that TdT

= T if and only if (X, dT ) is
compact (Proposition 3.1). However, even when X is compact Hausdorff,
TdT

need not be locally compact, which we show by example (Remark 3.2).
In Section 4, we turn our attention to Lipschitz algebras and de Leeuw

derivations. We show how for every operator which defines a metric on
X, we obtain the de Leeuw derivation associated to that operator, the one
which defines the same metric on X (Proposition 4.5). By using the results
of J. Johnson [5], we show that (X, d) is precompact if and only if Dd, the de
Leeuw derivation defined by d, is unbounded on every infinite dimensional
subspace of its domain (Theorem 4.6). We also show, following M. Rieffel
[11], how the de Leeuw derivations are connected to unbounded Fredholm
modules (Remark 4.8).

We conclude the commutative case with necessary and sufficient condi-
tions for the metric topology TdT

, and the original topology T on X to
coincide (Section 5). We present two different sets of conditions: (1) TdT

= T if and only if {f ∈ Dom(T ) : ‖Tf‖ ≤ 1}/C1 is compact (Corollary 5.2);
(2) in terms of associated de Leeuw derivation DdT

we have that TdT
= T if

and only if DdT
is unbounded on every infinite dimensional subspace of its

domain (Theorem 5.3). It follows that for TdT
= T , it is necessary that T is

unbounded on every infinite dimensional subspace of its domain. However,
we show that this is not a sufficient condition (Example 5.7), by using some
results about spaces c0 and l1 from [7].

Finally, we extend all these results to the noncommutative situation (Sec-
tion 6), by using the canonical (or Kadison’s) function representation Φ of a
unital C∗-algebra A into C(S(A)), where S(A) is the state space of A. For



288 BRANKA PAVLOVIĆ

each commutative theorem we obtain its noncommutative analog (Propo-
sition 6.2, Theorem 6.3, and Theorem 6.4). Furthermore, we show that if
an operator separates points of S(A), and we know that it defines an ap-
propriate metric (bounded, or TdT

= Tw∗) on P(A), the pure state space of
A, then it defines such a metric on all of S(A) (Theorem 6.5). In particu-
lar, that is always so when Dom(T ) = A. In commutative case, that says
that the metric extends from X to the metric on P(X), the space of all the
probability measures on X, which has the same properties (Corollary 6.6).
Finally, we use all these results to characterize those unbounded Fredholm
modules over A which define a bounded metric on S(A), or a metric whose
topology coincides with Tw∗ on S(A) (Theorem 6.8).

At the end, it is interesting to note that the conditions for TdT
= Tw∗ are

not algebraic, as we expected when we started working on the problem, and
thus worked with derivations. Instead, one should consider any operator T ,
and the conditions involve the topology on Dom(T ) given by the norm of the
algebra A ⊇ Dom(T ). It is precisely due to this fact – that conditions for TdT

= Tw∗ do not use the algebraic structure – that we can extend all the results
from the commutative to the noncommutative case (Section 6), by using the
canonical function representation, which is a bicontinuous operator, but not
a homomorphism of the algebra.

As a conclusion, we note that although Theorem 6.8 characterizes those
unbounded Fredholm modules over a unital C∗-algebra A for which the met-
ric and the weak-* topology coincide, the condition (C3) (that (1+D2)−1 is
compact) is not used. In [10] we will explore the influence of that condition,
as well as the p-summability of D (see [2]), on the metric topology. We
also point out that Lipschitz algebras appeared once again naturally when
discussing metric spaces. This relationship, and the importance of the de
Leeuw derivation is further explored in [9]. In particular, it is shown that
the category in which the objects are compact metric spaces and the mor-
phisms are Lipschitz maps is (contravariantly) equivalent to the category in
which the objects are Lipschitz algebras and the morphisms are homomor-
phisms. This category is also characterized in terms of de Leeuw derivations.
This is analogous to the equivalence of the category in which the objects are
compact Hausdorff spaces and the morphisms are homeomorphisms and the
category in which the objects are unital commutative C∗-algebras and the
morphisms are *-homomorphisms.

2. Defining a metric by an operator.

We begin with a general discussion of the conditions which an operator
from C(X) (where X is any metrizable space) should satisfy in order to
define a metric on X. For completeness and for easy reference we recall the
“classical” definition of a metric.
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Definition 2.1. A metric on a set X is a function d : X ×X → R+ which
satisfies the following conditions. For x, y, z ∈ X:

(M1): d(x, y) = 0 ⇔ x = y (definiteness);
(M2): d(x, y) = d(y, x) (symmetry);
(M3): d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

Let (X, T ) be a topological space and let B be a normed space. Let
T : Dom(T ) → B be an operator with Dom(T ) ⊆ Cb(X). Let a function
dT : X ×X → R+ ∪ {∞} be defined by

dT (x, y) = sup{|f(x)− f(y)| : f ∈ Dom(T ) & ‖Tf‖ ≤ 1}(4)
= sup{|f(x)− f(y)|/‖Tf‖ : f ∈ Dom(T )},

for x, y ∈ X. We say that dT is the metric defined by operator T .
Obviously dT (x, y) = dT (y, x) for all x, y ∈ X, i.e. condition (M2) holds.

Also, dT ≥ 0, and dT (x, x) = 0 for all x ∈ X. Furthermore, dT satisfies
the triangle inequality (M3). To see that, let x, y, z ∈ X. If d(x, y) = ∞ or
d(y, z) = ∞ then (M3) is clearly satisfied. Otherwise

dT (x, y) + dT (y, z)
= sup{|f(x)− f(y)| : ‖Tf‖ ≤ 1}+ sup{|g(y)− g(z)| : ‖Tg‖ ≤ 1}
= sup{|f(x)− f(y)|+ |g(y)− g(z)| : ‖Tf‖ ≤ 1, ‖Tg‖ ≤ 1}
≥ sup{|f(x)− f(y)|+ |f(y)− f(z)| : ‖Tf‖ ≤ 1}
≥ sup{|f(x)− f(z)| : ‖Tf‖ ≤ 1} = dT (x, z).

To have the other inclusion of (M1) satisfied, notice that dT (x, y) = 0 implies
x = y if and only if

(O1): Dom(T ) ⊆ Cb(X) separates points of X.
For dT (x, y) = 0 if and only if |f(y)− f(x)| = 0 for all f ∈ Dom(T ) with
‖Tf‖ ≤ 1, so in fact for all f ∈ Dom(T ).

The only other requirement which needs to be satisfied is that d(x, y) <∞
∀x, y ∈ X. Let 1 denote the constant function 1(x) = 1 ∀x ∈ X. For
d(x, y) < ∞ it is necessary that ker(T ) ⊆ C1. We now show that we may
assume that kerT ⊇ C1 and so kerT = C1. Suppose that 1 ∈ Dom(T ) and
T1 = b1 6= 0. Then B1 = B/Cb1 is a normed space with the norm ‖[b]‖ =
inf{‖b+ b1c‖ : c ∈ C}, for b ∈ B. Let S : B → B1 be the quotient map Sb =
[b], b ∈ B. Define operator T1 : Dom(T1) → B1 with Dom(T1) = Dom(T ) by
T1f = STf = [Tf ], f ∈ Dom(T ). We now show that dT1(x, y) = dT (x, y)
for all x, y ∈ X. Since ‖T1f‖ = inf{‖Tf + b1c‖ = ‖T (f + c)‖ : c ∈ C}
≤ ‖Tf‖ we have that ‖Tf‖ ≤ 1 implies ‖T1f‖ ≤ 1, i.e. {f : ‖Tf‖ ≤ 1} ⊆
{f : ‖T1f‖ ≤ 1}. Thus dT1(x, y) ≥ dT (x, y) for any x, y ∈ X. To show the
opposite inequality, let ε > 0. For each f ∈ Dom(T1) with ‖T1f‖ ≤ 1 there
exists c ∈ C such that ‖T (f + c)‖ < ‖T1f‖ + ε, and if g = (f + c)/(1 + ε),
we have ‖Tg‖ ≤ 1 and |g(x)− g(y)| = |f(x)− f(y)|/(1+ε). Thus by taking
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supremum over all such f , we have dT (x, y) ≥ dT1(x, y)/(1 + ε), and thus
dT (x, y) ≥ dT1(x, y). This shows that we may and will from now on always
assume that

(O2): kerT = C1.

Note that we have only the necessary condition for dT (x, y) <∞. In the
case when dT is supposed to be a bounded metric on X, we have conditions
which are both necessary and sufficient.

Theorem 2.2. Let (X, T ) be a topological space, and let B be a normed
space. Let T be a linear operator with Dom(T ) ⊆ Cb(X), and Range(T ) ⊆
B, which satisfies: (O1) Dom(T ) separates points of X; and (O2) kerT =
C1. Let d be defined by (4); let dX = sup{d(x, y) : x, y ∈ X}; let for z ∈ X,
M(z) = {f : f(z) = 0}; let Q denote the quotient operator Q : Dom(T ) →
Dom(T )/C1; and let T̂ be the induced one-to-one operator Dom(T )/C1 →
B. The following are equivalent:

(M4) d is a bounded metric on X.
(O31) {f ∈ Dom(T ) : ‖Tf‖ ≤ 1}/C1 is bounded. Equivalently, T̂−1 is

bounded.
(O32) For any fixed z ∈ X, {f ∈ Dom(T ) : f ∈ M(z) & ‖Tf‖ ≤ 1} is

bounded. Equivalently, (T |M(z))−1 is bounded.
Furthermore: (1) if dX < ∞, then ‖T̂−1‖ ≤ dX and ‖(T |M(z))−1‖ ≤ dX ;

(2) if ‖T̂−1‖ < ∞, then ‖(T |M(z))−1‖ ≤ 2‖T̂−1‖ and dX ≤ 2‖T̂−1‖; (3) if
‖(T |M(z))−1‖ <∞, then ‖T̂−1‖ ≤ ‖(T |M(z))−1‖ and dX ≤ 2‖(T |M(z))−1‖.

Proof. As usual, the norm on Dom(T )/C1 is ‖Qf‖ = inf{‖f + c‖ : c ∈ C} ≤
‖f‖.

(O31) ⇒ (M4) We show that dX ≤ 2‖T̂−1‖. Let x, y ∈ X. For any
f ∈ Dom(T ) with ‖Tf‖ ≤ 1, and any c ∈ C, |f(x)− f(y)| = |(f(x) + c)−
(f(y) + c)| ≤ |f(x) + c| + |f(y) + c| ≤ 2‖f + c‖. So |f(x)− f(y)| ≤
2 inf{‖f + c‖ : c ∈ C} = 2‖Qf‖ ≤ 2‖T̂−1‖, and d(x, y) = sup{|f(x)− f(y)| :
f ∈ Dom(T ) & ‖Tf‖ ≤ 1} ≤ 2‖T̂−1‖. In particular, dX ≤ 2‖T̂−1‖.

(M4) ⇒ (O31) Conversely, suppose that dX < ∞. Consider any f ∈
Dom(T ) with ‖Tf‖ ≤ 1. Since |f(x)− f(y)| ≤ d(x, y) ≤ dX for any x, y ∈
X, we see that with c = f(x) for some fixed x ∈ X, and g = f − c, we have
‖g‖∞ ≤ dX , and hence ‖Qf‖ ≤ dX (in C(X)/C1). So ‖T̂−1‖ ≤ dX .

(O31) ⇐⇒ (O32) It is clear that Q|M(z) is one-to-one onto, and that
‖f‖ ≥ ‖Qf‖. In fact, Q|M(z) is bicontinuous. Let f ∈ Dom(T ) ∩M(z), let
c ∈ C, and let g = f + c. Then g(z) = c, so ‖g‖ ≥ |c|. On the other hand,
‖g‖ ≥ |‖f‖ − |c||, so ‖g‖ ≥ max{|c|, |‖f‖ − |c||} ≥ ‖f‖/2. This shows that
‖Qf‖ ≥ ‖f‖/2, which is the same as ‖(Q|M(z))−1‖ ≤ 2. The equivalence of
(O31) and (O32) is immediate.
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Showing that dX ≤ 2‖(T |M(z))−1‖ and that ‖(T |M(z))−1‖ ≤ dX is as
in (O31) ⇔ (M4). Also, ‖T̂−1‖ = ‖Q (T |M(z))−1‖ ≤ ‖Q‖‖(T |M(z))−1‖ ≤
‖(T |M(z))−1‖, and ‖(T |M(z))−1‖ = ‖(Q|M(z))−1 T̂−1‖ ≤ ‖(Q|M(z))−1‖‖T̂−1‖
≤ 2‖T̂−1‖. �

The condition (O31) is derived from the condition (C4) of Connes. In fact, it
implies also that kerT ⊆ C1. In particular, if (X, T ) is compact Hausdorff,
and the metric topology is expected to coincide with T , then dT should be
bounded, and so T should satisfy condition (O31).

Remark 2.3. We conclude this section by showing that if the operator T is
closable, then dT = dT , where T is the closure of T . Let (X, T ) be a metriz-
able space, and let B be a normed space. Let T be a closable linear operator
with Dom(T ) ⊆ Cb(X), and Range(T ) ⊆ B. Let dT and dT be defined by
(4). Since {f ∈ Dom(T ) : ‖Tf‖ ≤ 1} ⊆ {f ∈ Dom(T ) : ‖Tf‖ ≤ 1}, it is
clear that dT ≥ dT . To show the reverse inequality, let x, y ∈ X. For any
f ∈ Dom(T ) with ‖Tf‖ ≤ 1, and for any ε > 0, there exists g ∈ Dom(T )
such that ‖Tg‖ ≤ 1, ‖g − f‖ < ε/2, and ‖Tg − Tf‖ < ε/2. So |f(x)− f(y)|
≤ |f(x)− g(x)| + |g(x)− g(y)| + |g(y)− f(y)| < |g(x)− g(y)| + ε. In par-
ticular, since this is true for any ε, |f(x)− f(y)| ≤ sup{|g(x)− g(y)| : g ∈
Dom(T ) & ‖Tg‖ ≤ 1} = dT (x, y). So dT (x, y) ≤ dT (x, y), which is what we
wanted to show.

3. Metric and weak-* topologies.

We further explore the relationship between TdT
, the topology on X induced

by the metric dT defined by an operator T , and T , the original topology on
X. We are also interested in some general properties of the metric dT .

Let (X, T ) be a topological space, and let B be a normed space. Let T
be a linear operator with Dom(T ) ⊆ Cb(X) which separates points of X,
Range(T ) ⊆ B, and kerT = C1, so that T defines a possibly infinite metric
dT on the set X. Let TCb(X) be the weak topology on X induced by Cb(X),
let TDom(T ) be the weak topology on X induced by Dom(T ), and let TdT

be
the topology on X induced by dT . The following relationship holds among
these topologies: T ⊇ TCb(X) ⊇ TDom(T ) and TdT

⊇ TDom(T ).
We show the last inclusion, TdT

⊇ TDom(T ). Let f ∈ Dom(T ) with ‖Tf‖ =
1, and let V be an open subset of C. Let U = {x ∈ X : f(x) ∈ V }, so
that U is in the subbase of the topology TDom(T ). For any x ∈ U there
exists r > 0 such that D(f(x), r) = {z ∈ C : |f(x)− z| < r} ⊆ V . Then
BdT

(x, r) = {y ∈ X : dT (x, y) < r} ⊆ U . For if y ∈ BdT
(x, r), then

|g(x)− g(y)| < r for all g ∈ Dom(T ) with ‖Tg‖ ≤ 1, and in particular
|f(x)− f(y)| < r, so that f(y) ∈ D(f(x), r) ⊆ V , and y ∈ U .
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It is easy to see that if Dom(T ) = Cb(X), which is most often the case,
then TCb(X) = TDom(T ). So under reasonable assumptions we have T =
TCb(X) = TDom(T ), and in that case TdT

⊇ T , that is, TdT
is finer then T ,

and in particular, it means that these topologies are comparable.
In the special case of our interest, (X, T ) is compact Hausdorff, and we

have the following direct result.

Proposition 3.1. Let (X, T ) be a compact Hausdorff space, and let B be
a normed space. Let T be a linear operator with Dom(T ) ⊆ C(X) which
separates points of X, Range(T ) ⊆ B, and kerT = C1, so that T defines a
possibly infinite metric d on the set X. Then:

(a) Td is finer than T , that is T ⊆ Td;
(b) the metric space (X, d) is complete;
(c) Td = T if and only if (X, d) is compact.

Proof. (a) Let U be any open set in T . It is enough to show that ∀x ∈
U ∃r > 0 such that B(x, r) = {y ∈ X : d(x, y) < r} ⊆ U . Fix any
x ∈ U . The set Y = X \U is compact in T . Since Dom(T ) separates points
of X, for any y ∈ Y there exists fy ∈ Dom(T ) such that fy(x) = 0 and
|fy(y)| > 1. The set Uy = {z ∈ X : |fy(z)| > 1} is open in T . The family
of open sets {Uy}y∈Y covers Y , so there is a finite subcover Uy1 , . . . , Uyn .
Let r = min{1/‖Tfyk

‖ : 1 ≤ k ≤ n}. For any z ∈ Y , z ∈ Uyk
for some

k ≤ n, and d(x, z) ≥ |fyk
(x)− fyk

(z)|/‖Tfyk
‖ > 1/‖Tfyk

‖ ≥ r. Therefore
B(x, r) ⊆ U as desired.

(b) Let (xn)∞n=1 be any Cauchy sequence in (X, d). Since (X, T ) is com-
pact, this sequence has a convergent subsequence in T , say (xnk

)∞k=1, such
that xnk

→ x0 in T as k →∞. We want to show that limn→∞ d(xn, x0) = 0.
Note that since (xn)∞n=1 is Cauchy, if the limit of positive numbers d(xn, x0)
is 0 for any subsequence, it is 0 for the whole sequence. Thus, if this limit
does not exist, it means that it has no subsequence which converges to 0,
and so there exists r > 0 such that d(xn, x0) > r for all n ∈ N.

We are now going to show that d(xnk
, x0) → 0 as k →∞. Take any ε > 0

such that ε < r, and let K ∈ N be such that k, l ≥ K implies d(xnk
, xnl

) < ε.
Fix any k ≥ K. Since d(xnk

, x0) > r, there exists a function f ∈ Dom(T )
such that ‖Tf‖ = 1, f(x0) = 0, and |f(xnk

)| > r. Let δ > 0 be such that
δ < r − ε. Since xnl

→ x0 in T , and f is continuous in T , there exists
M ≥ K such that l ≥M implies |f(xnl

)| < δ. But then for l ≥M

|f(xnk
)− f(xnl

)| > ||f(xnk
)| − |f(xnl

)|| > r − δ > ε,

which contradicts our assumption that (xnk
)∞k=1 is Cauchy. Thus

d(xnk
, x0) → 0 as k →∞.

Now, since (xn)∞n=1 is Cauchy, and it has a subsequence (xnk
)∞k=1 for which

d(xnk
, x0) → 0 as k → ∞, we have that d(xn, x0) → 0 as n → ∞ as well.

We conclude that (X, d) is complete.
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(c) This is immediate from (a) and (b). �

Remark 3.2. However, Td need not be locally compact, even if (X, T ) is
compact Hausdorff, as the following example shows. Let X = {x = (xk)∞k=1 :
|xk| ≤ 1}, let ρ(x, y) = (

∑∞
k=1(1/k

2)|xk − yk|2)1/2, and let d(x, y) =
min{2, (

∑∞
k=1 |xk − yk|2)1/2}, for x, y ∈ X. Let (X, T ) = (X, ρ), which

is compact Hausdorff. However, (X, d) is not locally compact, since for
example 0 does not have a compact neighborhood (l2(N) is not locally
compact, and X contains a unit ball of l2(N)). We have Tρ ⊆ Td. Let
X̂ρ = {(x, y) ∈ X ×X : x 6= y} with product topology from (X, ρ). Let Dd

be the operator with Dom(Dd) ⊆ C(X, ρ), Range(Dd) ⊆ Cb(X̂ρ), defined
by (Ddf)(x, y) = (f(y)− f(x))/d(x, y). It is easy to see that dDd

= d.
The other way around, if we let (X, T ) = (X, d), then Cb(X) ⊇ C(X, ρ).

Let Dρ be the operator with Dom(Dρ) ⊆ C(X, ρ) ⊆ Cb(X, d), Range(Dρ) =
Cb(X̂ρ), defined by (Dρf)(x, y) = (f(y) − f(x))/ρ(x, y). It is easy to see
that dDρ = ρ. So, we have an example where (X, T ) is not locally compact,
but the metric ρ defined by an operator makes it into a compact space, and
in particular Tρ is strictly contained in T . Compared to the discussion prior
to Proposition 3.1, in this case Dom(Dρ) 6= Cb(X).

Remark 3.3. Suppose that (X, T ) is compact Hausdorff, and that (X, d)
is a metric space such that Td is finer then T . It is not always true that
there exists an operator T such that d = dT . Let (X, T ) = [0, 1] with the
usual topology, and let (X, ρ) = {−1} ∪ (0, 1] with the topology inherited
from R, and the identification φ : (X, ρ) → (X, T ) given by φ(−1) = 0 and
φ(x) = x if x ∈ (0, 1]. Since (X, ρ) is not complete, there is no T for which
ρ = dT .

However, (X, Tρ) is homeomorphic to (X, d) = {0} ∪ [1,∞) with the
identification given by ψ : (X, ρ) → (X, d) defined by ψ(−1) = 0 and ψ(x) =
1/x for x ∈ (0, 1]. We have F = ψ ◦ φ : (X, T ) → (X, d) given by F (0) = 0
and F (x) = 1/x for x ∈ (0, 1]. Let X̂ = X × X \ {(x, x) : x ∈ X} with
inherited product topology from (X, T ). Let Dd : C(X, T ) → Cb(X̂) be
defined by (Ddf)(x, y) = (f(y)− f(x))/d(F (x), F (y)). It easy to check that
Dd defines the metric d.

Proposition 3.4. Let (X, T ) be a compact Hausdorff space, and d a possi-
bly infinite metric on the set X, defined by an operator. The following are
equivalent:

(1) Td = T , i.e. d induces the same topology on X as T .
(2) If a sequence is convergent in T then it is convergent in Td.
(3) d : X ×X → R+ ∪ {∞} is continuous.

Proof. (1) ⇔ (2) This holds with the assumption that Td ⊇ T , which is true
by Proposition 3.1(a).
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(1) ⇒ (3) This is standard for any metric, even without the assumption
of compactness.

(3) ⇒ (1) We will show that if Td 6= T , then d is not continuous. Since by
Proposition 3.1(a) Td ⊇ T , the only way Td can fail to be the same as T is
not to be compact. But, by the Borel-Lebesgue Theorem, (X, Td) is compact
if and only if it is sequentially compact, i.e. if and only if every sequence
has a convergent subsequence. Hence, if (X, Td) is not compact, there is
a sequence {xn} in X which does not have a Td convergent subsequence.
However, there is a subsequence {xni} of {xn} such that xni → x in T . So
we have a sequence (xni , x) → (x, x) in X ×X such that d(xni , x) does not
tend to d(x, x) = 0. Hence d can not be continuous. �

We note that compactness of (X, T ) is crucial in (3) ⇒ (1) above. For,
let (X, ρ) and (X, d) be as in Remark 3.2. If (X, T ) = (X, d), then ρ is
continuous. However, Tρ 6= T , and in fact Tρ is strictly contained in T .

The following observation is basic, but important for what follows.

Proposition 3.5. Let (X, T ) be a topological space, and let B be a normed
space. Let T be a linear operator with Dom(T ) ⊆ Cb(X), Range(T ) ⊆ B,
and kerT = C1, which defines (possibly infinite) metric dT on the set X.
Suppose that Dom(T ) is dense in Cb(X). If T is bounded, then for all
different x, y ∈ X, dT (x, y) ≥ 2/‖T‖. Consequently, if (X, T ) is compact
Hausdorff and X is infinite, then TdT

6= T .

Proof. Note that {f ∈ Dom(T ) : ‖Tf‖ ≤ 1} ⊇ {f ∈ Dom(T ) : ‖f‖ ≤
1/‖T‖}, since ‖f‖ ≤ 1/‖T‖ implies that ‖Tf‖ ≤ ‖T‖‖f‖ ≤ 1. Therefore

dT (x, y) = sup{|f(x)− f(y)| : f ∈ Dom(T ) & ‖Tf‖ ≤ 1}
≥ sup{|f(x)− f(y)| : f ∈ Dom(T ) & ‖f‖ ≤ 1/‖T‖}.

But there exists a continuous function g of norm 1/‖T‖ such that g(x) =
1/‖T‖ and g(y) = −1/‖T‖. Since Dom(T ) is dense in C(X), for every
ε > 0 there exists a function f ∈ Dom(T ) such that ‖f‖ ≤ 1/‖T‖ and
|f(x)− f(y)| ≥ (2/‖T‖)− ε. Thus dT (x, y) ≥ 2/‖T‖, and TdT

is discrete.
If X is infinite, and TdT

is discrete, it clearly fails to be compact. Thus,
if (X, T ) is compact Hausdorff with X infinite, and T is bounded, then
TdT

6= T . �

This suggests that T should not be bounded on any “large” subspace of
Dom(T ). We will explore that further.

4. Lipschitz algebras and de Leeuw derivations.

The relationship between compact metric spaces and Lipschitz algebras is
deep, in the same way that the relationship between compact Hausdorff
spaces and unital commutative C∗-algebras is. For example, their respec-
tive categories are (contravariantly) equivalent ([9]). Moreover, since any



DEFINING METRIC SPACES VIA OPERATORS 295

Lipschitz algebra is a domain of a specific operator – the de Leeuw deriva-
tion (see what follows), it is not surprising that any operator which defines
a metric on a space is closely related to some de Leeuw derivation, the de
Leeuw derivation associated to it. We now provide certain results about
Lipschitz algebras and de Leeuw derivations (Theorem 4.7). These will be
used to derive some necessary and sufficient conditions which T should sat-
isfy so that TdT

= T (Theorem 5.3). Basic facts about Lipschitz spaces and
algebras can be found in [1], [4], [5], [12], and [8]. We give definitions first.

Definition 4.1. A map F : X → Y from a metric space (X, dX) to a metric
space (Y, dY ) is said to be a Lipschitz map if there exists a constant M
such that for all x, y in X

dY (F (x), F (y)) ≤M dX(x, y).

The smallest such constant is called the Lipschitz constant of F . We
denote it by p(F ).

We can write p(F ) explicitly as

p(F ) = inf{M ∈ R+ : dY (F (x), F (y)) ≤M dX(x, y) ∀x, y ∈ X}
= sup{dY (F (x), F (y))/dX(x, y) : x, y ∈ X & x 6= y}.

When Y is a normed space p(F ) is also called the Lipschitz norm of F (it
is in fact a semi-norm). Thus, F is Lipschitz if p(F ) <∞.

Let (X, dX) be a metric space. Lip(X, dX) will denote the set of all
bounded complex valued continuous functions on (X, dX) which are Lip-
schitz with respect to dX and the standard metric on C. Let ‖f‖∞ =
sup{|f(x)| : x ∈ X}. Define a norm on Lip(X, dX) by ‖f‖ = ‖f‖∞ + p(f).
With respect to pointwise operations Lip(X, dX) is a self-adjoint Banach
∗-algebra over X (‖a∗‖ = ‖a‖, a ∈ the algebra).

Definition 4.2. A commutative Banach ∗-algebra A is called Lipschitz if
there exists a metric space (X, dX) so that A = Lip(X, dX).

If (X, dX) is compact, then Lip(X, dX) = {f ∈ C(X) : p(f) < ∞}, and
it is a unital, natural, regular, self-adjoint Banach function algebra over X
(see [12]).

So far we have been concerned with obtaining metrics from operators. We
now show that given any metric space (X, d), there exists an operator, in fact
a derivation D with Dom(D) ⊆ C(X) which defines d. This derivation has
been known for a long time and used by a number of authors. It appeared
for the first time in [4], which is the reason why we will call it the de Leeuw
derivation. It is used in [1] and also disguised in [11] (see Remark 4.8).
It turns out that this derivation is important in our considerations. We
will show that it is in a sense maximal among the operators which define
the same metric d. We will also show that when (X, d) is compact, D is
unbounded on every infinite dimensional subspace of its domain.
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Proposition 4.3. Let (X, d) be any metric space. Let Y = {(x, y) ∈ X ×
X : x 6= y}, and let B = Cb(Y ). For f ∈ Cb(X) and b ∈ B let f.b and b.f be
defined by (f.b)(x, y) = f(x)b(x, y) and (b.f)(x, y) = f(y)b(x, y), (x, y) ∈ Y .
Let D : Cb(X) → B be defined by

(Df)(x, y) =
f(y)− f(x)
d(x, y)

,

for (x, y) ∈ Y . Then B is a Banach Cb(X)-bimodule, D is a derivation
with Dom(D) = Lip(X, d) = {f ∈ Cb(X) : ‖Df‖ < ∞}, and D is a closed
operator.

Furthermore, if dD denotes the metric defined by D, then dD = d.

Proof. Since ‖Df‖ = p(f), it is clear that Dom(D) = Lip(X, d). It is
obvious that D is linear and that D(1X) = 0. Let f, g ∈ Dom(D). Then

(D(fg))(x, y) =
f(y)g(y)− f(x)g(x)

d(x, y)

=
f(y)g(y)− f(x)g(y) + f(x)g(y)− f(x)g(x)

d(x, y)
= (Df.g)(x, y) + (f.Dg)(x, y) = (Df.g + f.Dg)(x, y).

Thus, D is a derivation.
It is true for any operator D : A→ B (A, B Banach spaces), that Dom(T )

is a Banach space under the norm ‖f‖ + ‖Df‖ if and only if D is closed.
Since we know that Lip(X, d) is a Banach space, D is closed. It is not
difficult to check that directly.

To show that dD = d, let x, y ∈ X. By definition,

dD(x, y) = sup{|f(x)− f(y)| : f ∈ Dom(D) & ‖Df‖ ≤ 1}
= sup{|f(x)− f(y)| : f ∈ Lip(X, d) & p(f) ≤ 1}.

So for any ε > 0 there exists f ∈ Lip(X, d) with p(f) ≤ 1 and |f(x)− f(y)| >
dD(x, y) − ε. But |f(x)− f(y)| ≤ p(f)d(x, y) ≤ d(x, y). Thus, for any
ε > 0, d(x, y) > dD(x, y) − ε, and consequently d(x, y) ≥ dD(x, y). On
the other hand, for x, y ∈ X, the function f defined by f(s) = d(s, y) if
d(s, y) ≤ d(x, y) and f(s) = d(x, y) if d(s, y) ≥ d(x, y), for s ∈ X, is bounded
and Lipschitz with p(f) = 1. So dD(x, y) ≥ |f(x)− f(y)| = d(x, y). Hence
dD(x, y) = d(x, y) for any x, y ∈ X. �

We say that such a derivation D is the de Leeuw derivation defined by
metric d.

We now prove a partial converse to Proposition 3.5.

Proposition 4.4. Let (X, d) be a metric space. If there exists a constant
r > 0 such that x 6= y implies that d(x, y) ≥ r (i.e. (X, d) is uniformly
discrete), then Dd is bounded, and ‖Dd‖ ≤ 2/r.
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Proof. Let f ∈ Dom(Dd). Let ε > 0, and x, y ∈ X be such that ‖Ddf‖ =
p(f) < (|f(x)− f(y)|/d(x, y)) + ε‖f‖. Since |f(x)− f(y)| ≤ 2‖f‖ we have
‖Ddf‖ < (2‖f‖/ d(x, y)) + ε‖f‖, i.e. ‖Ddf‖/‖f‖ < (2/d(x, y)) + ε ≤
(2/r) + ε. Since this holds for any ε > 0, we have ‖Ddf‖/‖f‖ ≤ 2/r. Hence
Dd is bounded, and ‖Dd‖ ≤ 2/r. �

The following proposition shows how the de Leeuw derivation is related
to other operators which define the same metric d.

Proposition 4.5. Let (X, T ) be a topological space, and let B be a normed
space. Let T be a linear operator with Dom(T ) ⊆ Cb(X), kerT = C1, and
Range(T ) ⊆ B, which defines the metric d on the set X. Let D̂ be the
derivation defined by d, as in Proposition 4.3, mapping into the module B̂.
Then Dom(T ) is a subspace of Lip(X, d) = Dom(D̂), and for g ∈ Dom(T ),
‖Tg‖ ≥ ‖D̂g‖. There exists a linear one-to-one contraction ı : Range(T ) →
Range(D̂). Furthermore, if D = D̂|Dom(T ), then D defines the same metric
d as T does.

Proof. Let g ∈ Dom(T ). Since d(x, y) = sup{|f(x)− f(y)| : ‖Tf‖ ≤ 1},
|g(x)− g(y)| ≤ d(x, y)‖Tg‖ for any x, y ∈ X. So g ∈ Dom(D̂) and ‖D̂g‖ =
p(g) = sup{ |g(x)− g(y)|/ d(x, y) : x, y ∈ X & x 6= y} ≤ ‖Tg‖. This proves
the first assertion, that if g ∈ Dom(T ), then g ∈ Dom(D̂) = Lip(X, d), and
‖Tg‖ ≥ ‖D̂g‖. The existence of a linear one-to-one contraction ı : Range(T )
→ Range(D̂) follows directly from the previous assertion, and the fact that
kerT = ker D̂ = C1.

To prove the last assertion, that dD = d, fix any x, y ∈ X, and let ε > 0.
There exists f ∈ Dom(T ) such that |f(x)− f(y)|/‖Tf‖ > d(x, y) − ε. So,
since ‖Df‖ = ‖D̂f‖,

d(x, y) ≥ |f(x)− f(y)|
‖Df‖

=
|f(x)− f(y)|

‖Tf‖
‖Tf‖
‖Df‖

≥ |f(x)− f(y)|
‖Tf‖

> d(x, y)− ε.

Since this is true for any ε, we obtain that

dD(x, y) = sup{|f(x)− f(y)|/‖Df‖ : f ∈ Dom(T )} = d(x, y),

as desired. �

The derivation D̂ = DdT
in the previous proposition we will call the de

Leeuw derivation associated to the operator T . Note that Lip(X, d) =
Dom(D̂) is not necessarily contained in Cb(X), since it might be that Td 6= T .
Thus D̂ is not an operator from Cb(X). However, D is.

Proposition 4.5 suggests that there is a partial order relation on D(X, d),
the family of all operators on Cb(X) which define metric d. Consider a partial
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order relation on D(X, d), ≺, defined by D1 ≺ D2 if Dom(D1) ⊆ Dom(D2)
and ∀x ∈ Dom(D1), ‖D1x‖ ≥ ‖D2x‖. It induces an equivalence relation
on D(X, d), ≈, by D1 ≈ D2 if Dom(D1) = Dom(D2) and ∀x ∈ Dom(D1),
‖D1x‖ = ‖D2x‖. By Proposition 4.5, there exists a unique (up to the above
equivalence) maximal element in D(X, d), namely the derivation defined by
d, as in Proposition 4.3.

We quote a theorem from [5], which will be used to show that if D is a de
Leeuw derivation defined by a metric, then it is unbounded on every infinite
dimensional subspace of its domain.

Theorem 4.6. (J. Johnson, [5], Theorem 3.5.) Let (X, d) be any metric
space. Then the following are equivalent:

(a) (X, d) is precompact.
(b) The unit ball of Lip(X, dα), 0 < α ≤ 1, is compact for the sup-norm

topology.
(c) The unit ball of Lip(X, dβ) is compact in lip(X, dα) for 0 < α < β ≤ 1.

Here lip(X, dα) = {f ∈ Lip(X, dα) : |f(x)− f(y)|/d(x, y)α → 0 as
d(x, y) → 0}. Recall that a metric space is precompact if its completion is
compact. Note that the norm on Lip(X, d) used here is max{‖f‖∞,p(f)},
but it is equivalent to the one we use. The main argument in one di-
rection of the proof of the above theorem is the Arzela-Ascoli theorem.
We will do a generalization of this theorem later (Theorem 5.1), but now
we add some more equivalent statements to it. We follow the common
practice in Lipschitz algebras in using the following notation: pα(f) =
sup{|f(x)− f(y)|/d(x, y)α : x 6= y}, for 0 < α ≤ 1.

Theorem 4.7. Let (X, d) be any metric space, and let Dd be the de Leeuw
derivation defined by d. The following are equivalent:

(a) The space (X, d) is precompact.
(d) For 0 < α ≤ 1, the derivation Ddα is unbounded on every infi-

nite dimensional subspace of its domain. Equivalently, the function F :
Lip(X, dα) \ {0} → R+ defined by F (f) = pα(f)/‖f‖∞, is unbounded on
every infinite dimensional subspace of Lip(X, dα).

(e) For 0 < α < β ≤ 1, Ddβ viewed as a derivation from Lip(X, dα), is
unbounded on every infinite dimensional subspace of its domain Lip(X, dβ).
Equivalently, the function G : Lip(X, dβ) \ C1 → R+ defined by G(f) =
pβ(f)/(‖f‖∞ + pα(f)) is unbounded on every infinite dimensional subspace
of its domain.

Proof. Recall that for 0 < α < β ≤ 1, Cb(X) ⊇ Lip(X, dα) ⊇ Lip(X, dβ).
Then B̂ = Cb(X̂), where X̂ = {(x, y) ∈ X × X : x 6= y}, is a Banach
Lip(X, dα)-module, as well as a Banach Cb(X)-module. The module oper-
ations are the same as for Cb(X): For f ∈ A = Lip(X, dα) (or Cb(X)) and
b ∈ B̂, (f.b)(x, y) = f(x)b(x, y) and (b.f)(x, y) = f(y)b(x, y). Thus the de
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Leeuw derivation Ddβ (Ddβ (x, y) = (f(y)− f(x))/dβ(x, y)) whose domain is
Lip(X, dβ) can be thought of as an unbounded derivation either from Cb(X)
(as we did so far), or it can be thought of as an unbounded derivation from
Lip(X, dα) (0 < α < β ≤ 1), which is done here in part (e).

For (a) ⇔ (d), it is enough to consider α = 1, since dα is topologically
equivalent to d, and they share the same Cauchy sequences.

(a) ⇒ (d). Suppose that to the contrary, there exists an infinite dimen-
sional subspace V of Lip(X, d) on which F is bounded, say sup{F (f) : f ∈
V } = P (V ). First, we show that F is a continuous function on Lip(X, d) \
{0}. Let f ∈ Lip(X, d) \ {0}, ε > 0, δ = ‖f‖∞min{(1/4), ε/4(1 + F (f))},
and let g ∈ Lip(X, d)\{0} be such that ‖g − f‖ = ‖g − f‖∞+p(g − f) < δ.
Then ‖g‖∞ ≥ ‖f‖∞ − ‖g − f‖∞ > ‖f‖∞ − δ > ‖f‖∞ − ‖f‖∞/2 = ‖f‖∞/2,
i.e. ‖f‖∞/‖g‖∞ < 2. We have

|F (g)− F (f)| =
∣∣∣∣ p(g)
‖g‖∞

− p(f)
‖f‖∞

∣∣∣∣
≤ |p(g)− p(f)|

‖g‖∞
+

p(f)
‖f‖∞

|‖f‖∞ − ‖g‖∞|
‖g‖∞

≤ p(g − f)
‖g‖∞

+ F (f)
‖f − g‖∞
‖g‖∞

<
δ

‖g‖∞
+ F (f)

δ

‖g‖∞

= δ
(1 + F (f))
‖g‖∞

≤ ε‖f‖∞
4(1 + F (f))

(1 + F (f))
‖g‖∞

=
ε‖f‖∞
4‖g‖∞

< ε,

by the choice of δ. Thus, F is continuous on Lip(X, d)\{0}. Since on V it is
also bounded, it is bounded on V as well (the closure is taken in Lip(X, d)),
and with the same bound, P (V ). On V we have that

‖f‖∞ ≤ ‖f‖∞ + p(f) ≤ (1 + P (V ))‖f‖∞,

i.e. the Lipschitz and the supremum norms are equivalent. That means that
V is closed also as a subspace of C(X).

Let B = {f ∈ V : ‖f‖∞ < 1/(1 + P (V ))}, and B = {f ∈ V : ‖f‖∞ ≤
1/(1 + P (V ))}. Then B is a neighborhood of the origin in V , and B is a
closed subset (in supremum norm) of the unit ball B1 of Lip(X, d). But,
by the quoted Theorem 4.6, B1 is compact in supremum norm, and so is
B. That means that V is locally compact (in supremum norm). But then,
it is finite dimensional, since every locally compact topological vector space
is finite dimensional. So, V and thus V are finite dimensional, which is a
contradiction to our assumption. Hence Dd has to be unbounded on V .

(d) ⇒ (a). Suppose that (X, d) is not precompact. Then it is not to-
tally bounded, and so there is a sequence (xn)∞n=1, and r > 0 such that
d(xm, xn) > 2r for all m,n ∈ N. Let (fj)∞j=1 be a sequence of functions
defined by fj(x) = max{0, r − d(x, xj)}. Then ‖Ddfj‖ = 1, ‖fj‖∞ = r,
and the functions fj have pairwise nonintersecting supports. Let V =
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span(fj : j ∈ N). We show that Dd is bounded on V . If f ∈ V , then
f =

∑l
i=1 aifi. Clearly, ‖f‖∞ = rmax{|ai|}. Suppose that ‖f‖∞ = r, and

compute ‖Ddf‖ = sup{|f(x)− f(y)|/d(x, y) : x 6= y}. We have that

f(x)− f(y) = amfm(x)− anfn(y) = am(r − d(x, xm))− an(r − d(y, xn))

for some m,n ≤ l. For any fixed R = d(x, y), the largest possible
sup{|f(x)− f(y)|/d(x, y) : x 6= y, d(x, y) = R} is achieved when |am| = 1
and an = −am, and for these

|f(x)− f(y)|
d(x, y)

=
r − d(x, xm) + r − d(y, xn)

d(x, y)

≤ d(xm, xn)− d(x, xm)− d(y, xn)
d(x, y)

≤ 1.

Thus sup{‖Ddf‖/‖f‖∞ : f ∈ V = span(fn)} = 1/r < ∞. Boundedness of
Dd on the infinite dimensional subspace V contradicts our assumption, and
therefore (X, d) must be precompact.

(a) ⇒ (e). Suppose that to the contrary, there exists an infinite dimen-
sional subspace V of Lip(X, dβ) on which G is bounded, say sup{G(f) :
f ∈ V } = Q(V ). First, we show that the function H : Lip(X, dβ)\
{f : f(x) = c} defined by H(f) = pβ(f)/pα(f) is a continuous func-
tion on its domain. Since X is precompact, d is bounded on X. Let
Diam(X, d) = sup{d(x, y) : x, y ∈ X}, and let dX = max{1,Diam(X, d)}.
For any f ∈ Lip(X, dβ),

pα(f) = sup
{
|f(x)− f(y)|
d(x, y)α

: x, y ∈ X & x 6= y

}
= sup

{
|f(x)− f(y)|
d(x, y)β

d(x, y)β−α : x, y ∈ X & x 6= y

}
≤ sup

{
|f(x)− f(y)|
d(x, y)β

: x, y ∈ X & x 6= y

}
dβ−α

X = pβ(f)dβ−α
X ,

that is, pα(f)/pβ(f) ≤ dβ−α
X . Let f ∈ Lip(X, dβ), ε > 0,

δ = pα(f) min{(1/4), εdβ−α
X /4(1 + dβ−α

X H(f))}, and let g ∈ Lip(X, dβ) be
such that ‖g − f‖β = ‖g − f‖∞ + pβ(g − f) < δ. Then pα(g) ≥ pα(f) −
pα(g − f) > pα(f)−δ > pα(f)−(pα(f)/4) > (pα(f)/2), so that (1/pα(g)) <
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(2/pα(f)). We have

|H(g)−H(f)|

=
∣∣∣∣pβ(g)
pα(g)

−
pβ(f)
pα(f)

∣∣∣∣ =
∣∣∣∣pβ(g)
pα(g)

−
pβ(f)
pα(g)

+
pβ(f)
pα(g)

−
pβ(f)
pα(f)

∣∣∣∣
≤

|pβ(g)− pβ(f)|
pα(g)

+ pβ(f)
∣∣∣∣ 1
pα(g)

− 1
pα(f)

∣∣∣∣
=

|pβ(g)− pβ(f)|
pα(g)

+
pβ(f)
pα(f)

|pα(f)− pα(g)|
pα(g)

≤
pβ(g − f)

pα(g)
+H(f)

pα(g − f)
pα(g)

≤
pβ(g − f)

pα(g)
+H(f)

dβ−α
X pβ(g − f)

pα(g)

=
pβ(g − f)

pα(g)
(1 + dβ−α

X H(f)) < δ
2

pα(f)
(1 + dβ−α

X H(f))

≤ εpα(f)

4(1 + dβ−α
X H(f))

2(1 + dβ−α
X H(f))

pα(f)
< ε,

by the choice of δ. Thus, H is continuous on Lip(X, dβ) \{f : f(x) = c}.
From (a) ⇒ (d) we know that F (f) = pβ(f)/‖f‖∞ is also continuous on
Lip(X, dβ) \{0}. Hence G(f) = pβ(f)/(‖f‖∞ + pα(f)) = 1/((1/F (f)) +
(1/G(f))) is continuous on Lip(X, dβ) \{f : f(x) = c}. Since on V it is also
bounded, it is bounded on V as well (the closure is taken in Lip(X, dβ)),
and with the same bound, Q(V ). On V we have that

‖f‖α = ‖f‖∞ + pα(f) ≤ ‖f‖∞ + dβ−α
X pβ(f) ≤ dβ−α

X (‖f‖∞ + pβ(f))

= dβ−α
X ‖f‖β ≤ dβ−α

X (‖f‖∞ +Q(V )(‖f‖∞ + pα(f)))

≤ dβ−α
X (1 +Q(V ))(‖f‖∞ + pα(f)) = dβ−α

X (1 +Q(V ))‖f‖α,

i.e. the two norms are equivalent. That means that V is closed also as a
subspace of Lip(X, dα).

Let B = {f ∈ V : ‖f‖α < 1/(1 + Q(V ))}, and B = {f ∈ V : ‖f‖α ≤
1/(1 + Q(V ))}. Then B is a neighborhood of the origin in V , and B is a
closed subset (in Lip(X, dα) norm) of the unit ball B1 of Lip(X, dα). But,
by the quoted Theorem 4.6, B1 is compact in the Lip(X, dα) norm, and so is
B. That means that V is locally compact (in Lip(X, dα) norm). But then,
it is finite dimensional. So, V and thus V are finite dimensional, which is a
contradiction to our assumption. Hence Ddβ has to be unbounded on V .

(e) ⇒ (a). Suppose that (X, d) is not precompact. Then it is not to-
tally bounded, and so there is a sequence (xn)∞n=1, and r > 0 such that
d(xm, xn) > 2(1/β)r for all m,n ∈ N. Let (fj)∞j=1 be a sequence of functions
defined by fj(x) = max{0, rβ − dβ(x, xj)}. Then ‖Ddβfj‖ = 1, ‖fj‖∞ = rβ,
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and the functions fj have pairwise nonintersecting supports. Let V =
span(fj : j ∈ N). We show that Ddβ is bounded on V . If f ∈ V , then
f =

∑l
i=1 aifi. Clearly, ‖f‖∞ = rβ max{|ai|}. Suppose that ‖f‖α = rβ,

and compute ‖Ddβf‖ = sup{|f(x)− f(y)|/dβ(x, y) : x 6= y}. We have that

f(x)− f(y) = amfm(x)− anfn(y)

= am(rβ − dβ(x, xm))− an(rβ − dβ(y, xn))

for some m,n ≤ l. For any fixed R = d(x, y), the largest possible
sup{|f(x)− f(y)| /dβ(x, y) : x 6= y, d(x, y) = R} is achieved when |am| = 1
and an = −am, and for these

|f(x)− f(y)|
dβ(x, y)

=
rβ − dβ(x, xm) + rβ − dβ(y, xn)

dβ(x, y)

≤ dβ(xm, xn)− dβ(x, xm)− dβ(y, xn)
dβ(x, y)

≤ 1.

Thus sup{‖Ddβf‖/‖f‖α : f ∈ V = span(fn)} = (1/rβ) < ∞. Boundedness
of Dβ

d on the infinite dimensional subspace V contradicts our assumption,
and therefore (X, d) must be precompact. �

Remark 4.8. Finally, we remark that the de Leeuw derivation is not so
far removed from the unbounded Fredholm module of Connes’s definition as
it might seem without careful inspection. Let (X, d) be any metric space,
and let A = Cb(X). We present M. Rieffel’s construction [11] of (H, D),
and a ∗-representation r of A on H such that T : A → B(H) defined by
Tf = [D, r(f)] is equal to M(Dd(f))F , where Dd is the de Leeuw derivation,
M is the multiplication operator, and F is the flip (see what follows for the
details). Denote by X̂ the set {(x, y) ∈ X × X : x 6= y}, and by ∆ the
set {(x, x) : x ∈ X}. Let µ be any measure on X̂ such that M : Cb(X̂) →
B(H), where H = L2(X̂, µ), defined by (M(f)ξ)(x, y) = f(x, y)ξ(x, y), for
f ∈ Cb(X̂), ξ ∈ H, and (x, y) ∈ X̂ (multiplication operator by f), is an
isometry. Let L : Cb(X) → Cb(X̂) be defined by (Lf)(x, y) = f(x), for
(x, y) ∈ X̂. Clearly, L is an isometry. Let the representation r of A = Cb(X)
on H be r = ML, that is (r(f)ξ)(x, y) = f(x)ξ(x, y), for f ∈ A, ξ ∈ H, and
(x, y) ∈ X̂. Since L and M are isometries, so is r. If D : H → H is defined
by (Dξ)(x, y) = ξ(y, x)/ d(x, y), then D is an unbounded operator on H.
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Furthermore, for f ∈ A, ξ ∈ H, and (x, y) ∈ X̂,

([D, r(f)]ξ)(x, y) = ((Dr(f)− r(f)D)ξ)(x, y)
= (D(r(f)ξ))(x, y)− (r(f)(Dξ))(x, y)

=
(r(f)ξ)(y, x)
d(x, y)

− f(x)(Dξ)(x, y)

=
f(y)ξ(y, x)
d(x, y)

− f(x)
ξ(y, x)
d(x, y)

=
f(y)− f(x)
d(x, y)

ξ(y, x).

With Dd denoting the de Leeuw derivation Dd : Cb(X) → Cb(X̂), and
F : H → H the flip operator, (Fξ)(x, y) = ξ(y, x), for ξ ∈ H and (x, y) ∈ X̂,
we see that Tf = [D, r(f)] = M(Dd(f))F , for f ∈ A. Clearly, ‖[D, r(f)]‖ =
‖M(Dd(f))‖ = ‖Dd(f)‖ = p(f), the Lipschitz norm of f . Thus, {f :
[D, r(f)] extends to a bounded operator} is precisely the algebra of Lips-
chitz functions, and Lip(X, d) = Cbu(X), the uniformly continuous functions
on X. Thus, we have the triple (A,H, D) as in Connes’s definition satisfying
(C1) and (C2). However, (C3) – which is (1 +D2)−1 is a compact operator
– will not usually be satisfied. Note that there is flexibility in choosing µ in
the above construction. For example, it can be taken to be a discrete mea-
sure on X̂, so that L2(X̂, µ) = l2(X̂). Or we can take any full non-atomic
measure ν on X (so that ν × ν(∆) = 0), and set µ = ν × ν.

5. Necessary and sufficient conditions for TdT
= T .

We present first necessary and sufficient conditions for TdT
= T (Theorem

5.1) which are similar to Theorem 2.2 and which are a generalization of
Theorem 4.6. Then, we present other necessary and sufficient conditions
for TdT

= T which are connected to the de Leeuw derivation defined by dT

(Theorem 5.3), by using the results of the previous section.

Theorem 5.1. Let (X, T ) be a topological space, and let B be a normed
space. Let T be a linear operator with Dom(T ) ⊆ Cb(X), and Range(T ) ⊆
B, which satisfies: (O1) Dom(T ) separates points of X; and (O2) kerT =
C1. Let dT be defined by dT (x, y) = sup{|f(x)− f(y)| : f ∈ Dom(T ) & ‖Tf‖
≤ 1} for x, y ∈ X. Let for z ∈ X, M(z) = {f : f(z) = 0}; let Q denote
the quotient operator Q : Dom(T ) → Dom(T )/C1; and let T̂ be the induced
one-to-one operator Dom(T )/C1 → B. The following are equivalent:

(1) dT is a metric on X, and (X, dT ) is precompact.
(2) {f ∈ Dom(T ) : ‖Tf‖ ≤ 1}/C1 is compact. Equivalently, T̂−1 is com-

pact.
(3) For any fixed z ∈ X, the closure of B1 = {f ∈ Dom(T ) : f ∈

M(z) & ‖Tf‖ ≤ 1} is compact (in the norm topology). Equivalently,
(T |M(z))−1 is compact.
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Furthermore, if a sequence (fn)∞n=1 ⊆ B1 converges uniformly to f , then
f ∈ Lip(X, dT ), and p(f) ≤ 1.

Proof. Recall that an operator is compact if the image of the unit ball under
that operator is precompact.

(3) ⇒ (1) Suppose that B1 = {f ∈ Dom(T ) : f ∈ M(z) & ‖Tf‖ ≤ 1} is
precompact, that is, B1 is compact. Since it is bounded, by Theorem 2.2,
dT is a bounded metric on X. In particular, dT is a metric. Let (xn)∞n=1 be
any sequence in X. We will show that it has a Cauchy subsequence, and so
(X, dT ) is precompact.

Fix ε > 0. Since B1 is compact, there exist N and f1,..., fN ∈ B1 such
that for all f ∈ B1, ‖f − fk‖ < ε/8, for some k ≤ N . For any x, y ∈ X,
there is f ∈ B1 such that dT (x, y) < |f(x)− f(y)|+ ε/8. Let k be such that
‖f − fk‖ < ε/8. Then |f(x)− f(y)| ≤ |f(x)− fk(x)| + |fk(x)− fk(y)| +
|fk(y)− f(y)| < |fk(x)− fk(y)|+2ε/8. What we get is that for all x, y ∈ X
there exists k ≤ N such that dT (x, y) < |fk(x)− fk(y)|+ 3ε/8.

Consider N sequences of complex numbers (fk(xn))∞n=1, k = 1, ..., N .
They are bounded, since each fk is a bounded function. So there is a
subsequence (xni)

∞
i=1 such that all the subsequences (fk(xni))

∞
i=1 are con-

vergent, say to zk ∈ C. In particular, for any ε > 0 there exists J such
that j ≥ J implies |fk(xnj )− zk| < ε/8, for all k, and so i, j ≥ J im-
plies |fk(xni)− fk(xnj )| < 2ε/8 for all k. With the previous observation,
this means that i, j ≥ J implies dT (xni , xnj ) < |fk(xni)− fk(xnj )| + 3ε/8
< 2ε/8 + 3ε/8 < ε.

We can construct the desired dT -Cauchy subsequence (yk)∞k=1 of (xn)∞n=1

recursively in the following way. Let εn = 1/2n, n ≥ 1. First, we construct
subsequences (vkl)∞l=1 of (xn)∞n=1, for k ≥ 1, with the property that for i, j >
k, dT (vki, vkj) < εk. Let v11 = x1. Let (us)∞s=1 be a subsequence of (xn)∞n=1

constructed in the previous paragraph, for ε = ε1, and with J such that
i, j ≥ J implies dT (usi , usj ) < ε1 as above. Let v1l = vJ+l for l > 1, so that
for i, j > k, dT (v1i, v1j) < ε1. suppose we have constructed (vkl)∞l=1 for k =
1, ...,K−1. Let vKl = v(K−1)l for l = 1, ...,K. Let (us)∞s=1 be a subsequence
of (v(K−1)l)∞l=1, and J be such that i, j ≥ J implies dT (usi , usj ) < εK . Let
vKl = uJ+l−K for l > K, so that i, j > K implies dT (vKi, vKj) < εK . This
produces the desired subsequences (vkl)∞l=1, k ≥ 1. Clearly, (yk)∞k=1 defined
by yk = vkk satisfies that i, j > k implies dT (yi, yj) < εk.

We conclude that (X, dT ) is precompact.
(1) ⇒ (3) Let (X ′, dT ) be the completion of (X, dT ), which is compact.

Since any function f ∈ B1 is uniformly continuous on X, it extends uniquely
in a norm preserving way to a continuous function on X ′. Let B′1 = {f ′ :
f ∈ B1}. Since f ′ ∈ B′1 implies |f ′(x)− f ′(y)| ≤ dT (x, y) for all x, y ∈ X ′,
B′1 is an equicontinuous family of functions. Furthermore, for any x ∈ X ′,
and f ′ ∈ B′1, we have that |f ′(x)| ≤ dT (z, x) ≤ dX , the diameter of X, so it
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is bounded. By Arzela - Ascoli theorem, any sequence in B′1, and hence in
B1, has a subsequence which converges uniformly to a continuous function
on X ′, so to a bounded continuous function on X. We conclude that B1 is
compact.

(2) ⇔ (3) We showed in the proof of Theorem 2.2 that Q|M(z) is one-
to-one onto bicontinuous, with ‖Q|M(z)‖ ≤ 1 and ‖(Q|M(z))−1‖ ≤ 2. The
equivalence of (2) and (3) follows directly.

We show now that if (fn)∞n=1 ⊆ B1 converges uniformly to f , then f ∈
Lip(X, dT ), and p(f) ≤ 1. Fix any x, y ∈ X, let ε > 0, and let N be such
that n > N implies ‖f − fn‖ < ε/2. Then |f(x)− f(y)| ≤ |f(x)− fn(x)|+
|fn(x)− fn(y)|+ |fn(y)− f(y)| < |fn(x)− fn(y)|+ ε ≤ dT (x, y)+ ε, and we
conclude that |f(x)− f(y)| ≤ dT (x, y), as desired. In particular, it shows
that B1DdT

= {f ∈ Lip(X, dT ) : p(f) ≤ 1} is compact if (X, dT ) is precom-
pact, which is a variation of the conclusions of Theorem 4.6. �

Corollary 5.2. Let (X, T ) be a compact Hausdorff space, and let B be
a normed space. Let T be a linear operator with Dom(T ) ⊆ C(X), and
Range(T ) ⊆ B, which satisfies: (O1) Dom(T ) separates points of X; and
(O2) kerT = C1. Let dT be defined by dT (x, y) = sup{|f(x)− f(y)| : f ∈
Dom(T ) & ‖Tf‖ ≤ 1} for x, y ∈ X. The following are equivalent:

(1) dT is a metric on X, and TdT
= T .

(2) {f ∈ Dom(T ) : ‖Tf‖ ≤ 1}/C1 is compact. Equivalently, T̂−1 is com-
pact.

(3) For any fixed z ∈ X, the closure of B1 = {f ∈ Dom(T ) : f ∈
M(z) & ‖Tf‖ ≤ 1} is compact (in the norm topology). Equivalently,
(T |M(z))−1 is compact.

Proof. (2) ⇔ (3) is the same as in the theorem. For (1) ⇒ (2) or (3), if
TdT

= T , then (X, dT ) is compact, and (2) and (3) follow from the theorem.
Conversely, if (2) and (3) hold, then by the theorem, (X, dT ) is precompact.
But, by Proposition 3.1, (X, dT ) is always complete, so in fact (X, dT ) is
compact, and again by the same proposition, TdT

= T . �

We now present necessary and sufficient conditions for TdT
= T which follow

immediately from the results about de Leeuw derivations.

Theorem 5.3. Let (X, T ) be a compact Hausdorff space, and let B be a
normed space. Let T be a linear operator with Dom(T ) ⊆ C(X), kerT = C1,
and Range(T ) ⊆ B, which defines the metric dT on the set X.

(a) If TdT
= T then T is unbounded on every infinite dimensional subspace

of its domain.
(b) If D is the de Leeuw derivation associated to T , i.e. d is defined by dT ,

and if D is unbounded on every infinite dimensional subspace of its domain,
then TdT

= T .
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Proof. (a) Suppose that TdT
= T . By Proposition 4.5, for all f ∈ Dom(T ),

‖Tf‖ ≥ ‖D̂f‖. By Theorem 4.7, D̂, and hence T , is unbounded on every
infinite dimensional subspace of its domain.

(b) By Proposition 4.3, dD = dT . By Theorem 4.7, (X, dD) is precompact,
and hence so is (X, dT ). But, by Proposition 3.1, (X, dT ) is complete, so
in fact compact. Since by Proposition 3.1, T ⊆ TdT

, and both are compact
Hausdorff, we conclude that TdT

= T . �

Clearly, the above theorem could be also stated as: TdT
= T if and only

if the de Leeuw derivation associated to T is unbounded on every infinite
dimensional subspace of its domain.

Next, we show that the condition:

(O4): T is unbounded on every infinite dimensional subspace of its do-
main,

is only necessary, but not sufficient for TdT
= T . For the examples which

show that, we need some results about Banach spaces c0 and l1, which we
quote from [7].

Theorem 5.4. ([7], Theorem I.2.5.) Let X be either c0 or lp, 1 ≤ p < ∞.
Then every infinite dimensional subspace Y of X contains a subspace Z
which is isomorphic to X and complemented in X (and, therefore, also in
Y ).

Theorem 5.5. ([7], Theorem I.2.7.) Assume that 1 ≤ p < r < ∞. Then
every bounded linear operator from lr to lp is compact. The same is true
for linear operators from c0 to lp. Consequently, no space of the class lp,
1 ≤ p < ∞, and c0 is isomorphic to a subspace of another member of this
class.

We write down an easy consequence of these results which will be used.

Proposition 5.6. Let 1 ≤ p < ∞. There is no infinite dimensional sub-
space V of lp such that ∃M > 0 satisfying ‖f‖p/‖f‖∞ ≤M ∀f ∈ V .

Proof. Suppose that the claim is not true. Then there exists an infinite
dimensional subspace V of lp satisfying the above condition. By Theorem
I.2.5 of [7] (quoted above), there exists an infinite dimensional subspace W
of V which is isomorphic to lp and complemented in lp (and so also in V ).
Let T : lp → W be the isomorphism map. Let S = iT : lp → c0, where
i is the inclusion map i : W → c0, i(f) = f . Clearly, S is one-to-one,
and ‖S‖ ≤ ‖T‖‖i‖ = ‖T‖. Let Z = Range(S). Then S−1 : Z → lp and
S−1 = T−1i−1, and so ‖S−1‖ ≤ ‖T−1‖M . So S is an isomorphism of lp
with a subspace of c0. By Theorem I.2.7 of [7] (quoted above), that is not
possible, so we get the desired contradiction. �
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Example 5.7. This is an example of a closed operator T which is un-
bounded on every infinite dimensional subspace of its domain, yet TdT

6= T .
Let X = {xn : n ∈ N} ∪ {x0}, with x0 the only accumulation point, and
xn → x0 as n → ∞. For n ≥ 1, let en ∈ C(X) be defined by en(xk) = 1 if
k = n, and en(xk) = 0 if k 6= n. Clearly span(en) = M(x0) = {f ∈ C(X) :
f(xn) → 0} = c0. Let 1 ≤ p < ∞, and let Dom(T ) = lp({xk : k ≥ 1}).
Let T : Dom(T ) → lp(N) be defined by Tf = f . So ‖Ten‖ = 1. It is easily
checked that dT (xn, xk) = 1 for all different k, n ≥ 0, by taking first func-
tions in the span(en), and then concluding by Remark 2.3, that the metric
stays the same when we include all the functions in the domain of the closure
of the operator (which is here equal to Dom(T )).

Let V be any infinite dimensional subspace of Dom(T ). By Proposition
5.6, there is no such constant M for which ‖Tf‖/‖f‖ = ‖f‖p/‖f‖∞ ≤ M .
Thus T is unbounded on V .

We also show that the ratio ‖Tf‖/p(f) is unbounded on every infinite di-
mensional subspace of Dom(T ). Note that since d(x, y) = 1 for all x, y ∈ X,
p(f) = sup{ |f(x)− f(y)|/ d(x, y) : x, y ∈ X} = sup{|f(x)− f(y)|} ≤
2‖f‖∞. This in particular shows that Lip(X, d) = C(X). Also, ‖Tf‖/p(f) =
(‖Tf‖/‖f‖)(‖f‖/p(f)) ≥ (1/2)(‖Tf‖/‖f‖), and so ‖Tf‖/p(f) is un-
bounded on every infinite dimensional subspace of Dom(T ).

Example 5.8. This is an example of an operator T which is unbounded
on every infinite dimensional subspace of its domain, with TdT

= T , and
‖Tf‖/p(f) also unbounded on every infinite dimensional subspace of
Dom(T ). Let X = {xn : n ∈ N} ∪ {x0}, with x0 the only accumulation
point, and xn → x0 as n → ∞. For n ≥ 1, let en ∈ C(X) be defined by
en(xk) = 1 if k = n, and en(xk) = 0 if k 6= n. Let fn = en/n

2. Clearly
span(fn) = span(en), and so span(fn) = M(x0) = {f ∈ C(X) : f(xn) → 0}.
Let Dom(T ) = span(fn). Let T : Dom(T ) → l1(N) be defined by Tfn = en.
It is easily checked that dT (xn, xk) = 1/n2 for all k > n ≥ 1 and that
dT (xn, x0) = 1/n2 for all n ≥ 1.

If f ∈ Dom(T ) then f =
∑m

j=1 ajfj =
∑m

j=1 aj(ej/n2). Thus Tf =∑m
j=1 ajTfj =

∑m
j=1 ajej , and so ‖Tf‖ =

∑m
j=1 |aj |. On the other hand,

‖f‖∞ = sup{|
∑m

j=1 ajfj(xn)| : n ≥ 1} = sup{|an/n
2| : 1 ≤ n ≤ m} ≤

sup{|an| : 1 ≤ n ≤ m}. We have

‖Tf‖
‖f‖∞

=

∑m
j=1 |aj |

sup{|an/n
2| : 1 ≤ n ≤ m}

≥
∑m

j=1 |aj |
sup{|an| : 1 ≤ n ≤ m}

.

Let V be any infinite dimensional subspace of Dom(T ). By Proposition
5.6, there is no constant M such that (

∑m
j=1 |aj |/ sup{|an| : 1 ≤ n ≤ m}) ≤

M . Thus T is unbounded on V .
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We show that the ratio ‖Tf‖/p(f) is unbounded on every infinite dimen-
sional subspace of Dom(T ). Note that

p(f) = sup
{
|f(xl)− f(xk)|

d(xl, xk)
: l > k

}
= sup{k2|f(xl)− f(xk)| : l > k} = sup{k2| 1

l2
al − 1

k2ak| : l > k}

= sup{|k2

l2
al − ak| : l > k} ≤ 2 sup{|aj | : 1 ≤ j ≤ m}.

Thus
‖Tf‖
p(f)

≥ 1
2

∑m
j=a |aj |

sup{|aj | : 1 ≤ j ≤ m}
.

So ‖Tf‖/p(f) is unbounded on every infinite dimensional subspace of
Dom(T ).

6. Defining a metric on the state space of a C∗-algebra.

We turn our attention to noncommutative C∗-algebras. In fact, we gener-
alize our results in two directions: (1) from C(X) to any unital C∗-algebra
– that is, from commutative to the noncommutative case; (2) from a metric
on a compact Hausdorff space X to an extension of that metric to the space
of the probability measures on X, which in the noncommutative case means
the extension of the metric from the pure state space to the state space.

The discussion and notation follows that of [6], Section 4.3. Let A be any
unital C∗-algebra. We use the following notation: S(A) for the state space
of A, the set of all positive linear functionals ρ on A such that ρ(I) = 1;
P(A) for the set of all pure states of A, which is the set of extreme points of
S(A); P(A) = P(A)

w∗
for the pure state space of A, the weak-* closure of

P(A). Since S(A) is compact for the weak-* topology, by the Krein-Milman
theorem it is the closed convex hull of its extreme points, which means that
S(A) = co(P(A)). In the case when A = C(X) for X compact Hausdorff,
we have X “=” P(A) = P(A), and the weak-* topology on X coincides with
the original one. In this case S(A) = P(X), the set of probability measures
on X. However, in general, P(A) is not closed.

Recall that a function representation of a unital C∗-algebra A on a
compact Hausdorff space X is a linear map Φ : A→ C(X), such that ΦI = 1
(i.e. ΦI(x) = 1 ∀x ∈ X), and Φa ∈ C(X)+ if and only if a ∈ A+. If for all
x, y ∈ X there exists a ∈ A such that Φ(x) 6= Φ(y), then Φ is a separating
function representation. Furthermore, Φ is an isometry on Asa, the self-
adjoint elements of A, and for any a ∈ A, ‖a‖/2 ≤ ‖Φa‖∞ ≤ ‖a‖. So Φ is
a one-to-one bicontinuous operator, which means that it is a Banach space
isomorphism of A with Φ(A).

Let X be a closed subset of S(A) containing all the pure states, P(A) ⊆
X ⊆ S(A). Consider the canonical function representation Φ of A on



DEFINING METRIC SPACES VIA OPERATORS 309

X, a linear map Φ : A → C(X) defined by (Φa)(ρ) = ρ(a) for ρ ∈ X.
Clearly, we have: (1) ΦI = 1; (2) Φa ∈ C(X)+ if and only if a ∈ A+;
and (3) Φ is separating, since for any two distinct elements ρ, σ ∈ X there
exists an element a ∈ A such that ρ(a) 6= σ(a). This special function
representation is the one we are going to use, and it is called the canonical,
or Kadison’s function representation. In general Φ is not multiplicative,
so it is not an algebra homomorphism. However, as it is well known, if A
is commutative and X = P(A) = P(A), then Φ is the Gelfand transform,
which is multiplicative, and in fact an isometric isomorphism of two algebras,
A and C(P(A)).

Using the canonical function representation we can obtain noncommuta-
tive versions of Theorem 2.2, Corollary 5.2, and Theorem 5.3. The following
simple observation is crucial for passing from commutative to the noncom-
mutative case.

Proposition 6.1. Let A be a unital C∗-algebra, X a closed subset of S(A)
containing P(A), and Tw∗ the weak-* topology on X. Let Φ be the canonical
function representation of A on X. Let T be an operator with Dom(T ) ⊆ A,
and Range(T ) ⊆ B, where B is a normed space. Let dT be defined by the
formula

dT (φ, ψ) = sup{|φ(a)− ψ(a)| : a ∈ Dom(T ) & ‖Ta‖ ≤ 1},(5)

for φ, ψ ∈ X. Let S : C(X) → B be the operator with Dom(S) = Φ(Dom(T ))
and Range(S) = Range(T ), defined by S = TΦ−1. With dS defined as usual
in the commutative case, we have that dT = dS, and so:

(a) Dom(T ) separates points of X if and only if Dom(S) does, and kerT =
C1 if and only if kerS = C1. {a ∈ Dom(T ) : ‖Ta‖ ≤ 1}/C1 is bounded
if and only if {f ∈ Dom(S) : ‖Tf‖ ≤ 1}/C1 is bounded. {a ∈ Dom(T ) :
‖Ta‖ ≤ 1}/C1 is precompact if and only if {f ∈ Dom(S) : ‖Tf‖ ≤ 1}/C1 is
precompact.

(b) (1) dT is a metric on X if and only if dS is; (2) dT is a bounded
metric on X if and only if dS is; (3) TdT

= Tw∗ if and only if TdS
= Tw∗.

Proof. (a) is the consequence of the fact that Φ is one-to-one bicontinuous.
(b) We have for φ, ψ ∈ X

dS(φ, ψ) = sup{|f(φ)− f(ψ)| : f ∈ Dom(S) & ‖Sf‖ ≤ 1}
= sup{|Φa(φ)− Φa(ψ)| : a ∈ Dom(T ) & ‖TΦ−1Φa‖ = ‖Ta‖ ≤ 1}
= sup{|φ(a)− ψ(a)| : a ∈ Dom(T ) & ‖Ta‖ ≤ 1} = dT (φ, ψ).

So dS = dT , and (b) follows. �

The next theorem is the noncommutative version of Theorem 2.2.

Theorem 6.2. Let A be a unital C∗-algebra, and let X be a closed subset of
S(A) containing P(A). Let T be an operator with Dom(T ) ⊆ A, Range(T ) ⊆



310 BRANKA PAVLOVIĆ

B, where B is a normed space, which satisfies: (O1) Dom(T ) separates
points of X; and (O2) kerT = C1. Let dT be defined by the formula (5).
Let Q denote the quotient operator Q : Dom(T ) → Dom(T )/C1, and let T̂
be the induced one-to-one operator Dom(T )/C1 → B. The following are
equivalent:

(1) dT is a bounded metric on X.
(2) {a ∈ Dom(T ) : ‖Ta‖ ≤ 1}/C1 is bounded. Equivalently, T̂−1 is

bounded.

Proof. The claim is immediate from Theorem 2.2 and Proposition 6.1. �

The following is the noncommutative version of Corollary 5.2.

Theorem 6.3. Let A be a unital C∗-algebra, X a closed subset of S(A)
containing P(A), and Tw∗ the weak-* topology on X. Let T be an op-
erator with Dom(T ) ⊆ A, Range(T ) ⊆ B, where B is a normed space,
which satisfies: (O1) Dom(T ) separates points of X; and (O2) kerT = C1.
Let dT be defined by the formula (5). Let Q denote the quotient operator
Q : Dom(T ) → Dom(T )/C1, and let T̂ be the induced one-to-one operator
Dom(T )/C1 → B. The following are equivalent:

(1) dT is a metric on X, and TdT
= Tw∗.

(2) {a ∈ Dom(T ) : ‖Ta‖ ≤ 1}/C1 is compact. Equivalently, T̂−1 is com-
pact.

Proof. The equivalence of (1) and(2) is immediate from Proposition 6.1 and
Corollary 5.2. �

Theorem 5.3 has also its noncommutative analog.

Theorem 6.4. Let A be a unital C∗-algebra, X a closed subset of S(A)
containing P(A), and Tw∗ the weak-* topology on X. Let T be an operator
with Dom(T ) ⊆ A, Range(T ) ⊆ B, B a normed space, and suppose that T
defines a metric dT on X by the formula (5).

(a) If TdT
= Tw∗ then T is unbounded on every infinite dimensional sub-

space of its domain.
(b) If D is the de Leeuw derivation defined by dT , and if D is unbounded

on every infinite dimensional subspace of its domain, then TdT
= Tw∗.

Proof. (a) This follows from Proposition 6.1 and Theorem 5.3 (a).
(b) This is exactly the same as in Theorem 5.3 (b). �

As in the commutative case, the above theorem could be stated as: TdT
=

Tw∗ if and only if the de Leeuw derivation associated to T is unbounded on
every infinite dimensional subspace of its domain.

In most examples Dom(T ) separates points of S(A) (however, it is not
true that if Dom(T ) separates points of P(A), it does so on all of S(A)).
Usually, Dom(T ) = A, as is the case when T is defined from an unbounded
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Fredholm module (see the introduction), and in such a case it is easy to see
that Dom(T ) separates points of S(A). In cases like that it is natural to ask
whether, if T defines an appropriate metric on P(A), whether it does so on
all of S(A).

Theorem 6.5. Let A be a unital C∗-algebra, and suppose that T is an oper-
ator with Dom(T ) ⊆ A which separates points of S(A), and Range(T ) ⊆ B,
B a normed space, such that T defines metric dT on X = P(A).

(a) If dT is bounded on X, then T defines a bounded metric dT on S(A)
by formula (5).

(b) If TdT
= Tw∗ on P(A), then TdT

= Tw∗ on S(A).

Proof. (a) Since dT is bounded on P(A), by Theorem 2.2, {a ∈ Dom(T ) :
‖Ta‖ ≤ 1}/C1 is bounded, and since Dom(T ) separates points of S(A), by
Theorem 6.3, dT is a bounded metric on S(A).

(b) Since TdT
= Tw∗ on P(A), (P(A), dT ) is compact, and so by Theorem

6.3, {a ∈ Dom(T ) : ‖Ta‖ ≤ 1}/C1 is precompact. Since Dom(T ) separates
points of S(A), by Theorem 6.3 again, TdT

= Tw∗ on S(A). �

We give a commutative version of the above theorem.

Corollary 6.6. Let (X, T ) be a compact Hausdorff space, and suppose that
T is an operator with Dom(T ) ⊆ C(X) which separates points of P(X), and
Range(T ) ⊆ B, where B is a normed space, such that T defines a metric dT

on X.
(a) If dT is bounded on X, then T defines a bounded metric dT on P(X),

the space of probability measures on X by

dT (φ, ψ) = sup{|φ(f)− ψ(f)| : f ∈ Dom(T ) & ‖Tf‖ ≤ 1},

for φ, ψ ∈ P(X).
(b) If TdT

= T on X, then TdT
= Tw∗ on P(X).

Here is the same result phrased in terms of Lipschitz algebras and compact
metric spaces.

Corollary 6.7. Let (X, d) be a compact metric space. If the extension of
the metric d to P(X), the space of probability measures on X, is given by

d(φ, ψ) = sup{|φ(f)− ψ(f)| : f ∈ Lip(X, d), p(f) ≤ 1},

for φ, ψ ∈ P(X), then d is a metric on P(X), and Td = Tw∗ on P(X).

We finally come to our original goal, which is to characterize those un-
bounded Fredholm modules over a unital C∗-algebra A whose metric topol-
ogy coincides with the weak-* topology on S(A).
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Theorem 6.8. Let (H, D) be an unbounded Fredholm module over a unital
C∗-algebra A, and let the metric d on S(A) be defined by formula (1), that
is

d(φ, ψ) = sup{|φ(a)− ψ(a)| : a ∈ A, ‖[D, a]‖ ≤ 1},
for φ, ψ ∈ S(A).

(1) d is a bounded metric on S(A) if and only if {a ∈ A : ‖[D, a]‖ ≤ 1}/C1
is bounded.

(2) Td = Tw∗ on S(A) if and only if {a ∈ A : ‖[D, a]‖ ≤ 1}/C1 is compact.
(3) Td = Tw∗ on S(A) if and only if the de Leeuw derivation Dd is un-

bounded on every infinite dimensional subspace of its domain.

Note that (1) is a slight strengthening of [2], Proposition 4 of Connes.

Proof. Let T : A→ B(H) be defined by Ta = [D, a] for a ∈ A. By condition
(C2) in the Definition 1.1 of an unbounded Fredholm module, Dom(T ) is
dense in A, hence separates points of S(A). Also note that the conditions
in (1), (2), and (3) imply that kerT = C1. So we have that (1) follows from
Theorem 6.2, (2) follows from Theorem 6.3, and (3) follows from Theorem
6.4. �
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