WEAK PALEY–WIENER PROPERTY FOR COMPLETELY SOLVABLE LIE GROUPS

Gayatri Garimella
WEAK PALEY–WIENER PROPERTY FOR COMPLETELY SOLVABLE LIE GROUPS

Gayatri Garimella

We prove a weak Paley–Wiener property for completely solvable Lie groups, i.e. if the group Fourier transform of a measurable, bounded and compactly supported function vanishes on a set of positive Plancherel measure then the function itself vanishes almost everywhere on the group.

1. Introduction.

Let G be a connected, simply connected, and completely solvable Lie group, with the Lie algebra \mathfrak{g}. Let \mathfrak{g}^* be the dual of \mathfrak{g}. The equivalence classes of irreducible unitary representations \hat{G} of G is parametrized by the coadjoint orbits \mathfrak{g}^*/G via the Kirillov-Bernat bijective map $K: \hat{G} \rightarrow \mathfrak{g}^*/G$. If $\rho \in \hat{G}$ and $\ell \in K(\rho)$, then there exists an analytic subgroup H of G and a unitary character χ of H, such that $\ell|_{\mathfrak{h}} = Id_{\chi}$, where \mathfrak{h} is the Lie algebra of H. The induced representation $\rho = \text{Ind}_H^G \chi$ is irreducible. Moreover, K is a bijection. The image on \mathfrak{g}^*/G of a measure equivalent to Lebesgue measure gives a Plancherel measure on \hat{G}.

Let ϕ be a bounded, measurable and compactly supported function on \mathbb{R}^n. By the classical Paley–Wiener theorem, the Fourier transform $\hat{\phi}$ of ϕ extends to an entire function on \mathbb{C}^n. Using this we can conclude that if $\hat{\phi}$ vanishes on a set of positive Plancherel measure which is nothing but the Lebesgue measure, then $\hat{\phi}$ vanishes on the whole of \mathbb{R}^n. This in turn implies that $\phi = 0$ on \mathbb{R}^n.

In the same spirit, for a completely solvable Lie group we will think of the following as a weak Paley–Wiener property:

Theorem. Let G be a connected, simply connected, and completely solvable Lie group, with the unitary dual \hat{G}. Let ϕ be a measurable, bounded, and compactly supported function (i.e $\phi \in L^\infty_c(G)$). Assume that there exists a subset $E \subset \hat{G}$ with positive Plancherel measure such that $\hat{\phi}_\rho = 0$ for all $\rho \in E$ where $\hat{\phi}_\rho$ is the group Fourier transform of ϕ. Then $\phi = 0$ almost everywhere on G.

In [GG1] we proved, the same theorem for nilpotent Lie groups, by induction on the dimension of G. To prove the above theorem, also by using
induction on the dimension of G, we need a description of the dual space \hat{G} of G and an explicit Plancherel measure on \hat{G}. Here, we use the results of B.N. Currey [C], which are generalizations of the results of L. Pukanszky [Pu] on nilpotent Lie groups concerning the Plancherel measure and the Plancherel formula.

2. Preliminaries.

Let G be a connected, simply connected, and completely solvable Lie group, with the Lie algebra g. Let g^* be the dual of g. We fix a basis $B = \{X_1, \ldots, X_n\}$ of g, such that g_i is spanned by the vectors $\{X_1, X_2 \cdots, X_j\}$, $1 \leq j \leq n$ and $g_0 = (0)$. As G is completely solvable, there exists a chain of ideals

\[0 = g_0 \subset g_1 \subset \cdots \subset g_{n-1} \subset g_n = g \]

of g, such that the dimension of g_i be i for all $1 \leq i \leq n$. Let $B^* = \{X_1^*, \ldots, X_n^*\}$ be the dual basis of g^*. We fix a Lebesgue measure dX on g, and a right Haar measure dg on G such that $d(\exp X) = j_G(X)dX$, where

\[j_G(X) = \left| \det \left(\frac{1 - e^{-adX}}{adX} \right) \right|. \]

Let Δ be the modular function such that for all $g' \in G$, $d(gg') = \Delta(g')dg$. Let O be a coadjoint orbit in g^* and $\ell \in O$. The bilinear form $B_\ell : (X,Y) \rightarrow \ell([X,Y])$ defines a skew-symmetric and nondegenerate bilinear form on g/ℓ. As the map $X \rightarrow X.\ell$ induces an isomorphism between g/ℓ and the tangent space of O at ℓ, the bilinear form B_ℓ defines a nondegenerate 2-form ω_ℓ on this tangent space. If $2k$ is the dimension of O we note that

\[\beta_O = (2\pi)^{-k}(k!)^{-1}\omega \wedge \cdots \wedge \omega \quad (k \text{ times}) \]

the canonical measure on O. Lemma 3.2.2. in [DR], says us that there exists a nonzero rational function ψ on g^* such that $\psi(g.\ell) = \Delta(g)^{-1}\psi(\ell)$, $g \in G$, and $\ell \in g^*$. We fix one such ψ. There exists a unique measure m_ψ on g^*/G such that

\[\int_{g^*} \phi(\ell)\psi(\ell)d\ell = \int_{g^*/G} \left(\int_O \phi(\ell)d\beta_O(\ell) \right) dm_\psi(O) \]

for all Borel functions ϕ on g^*.

B.N. Currey [C] gave an explicit description of the measure m_ψ with the help of the coadjoint orbits g^*/G. We recall the theorem proved by B.N. Currey in [C] which is the essential tool to prove our Paley–Wiener property:

Theorem 2.1. Let G be a connected, simply connected, and completely solvable Lie group. There exists a Zariski open subset U of g^*, a subset $J = \{j_1 < j_2 < \cdots < j_{2k}\}$ of $\{1, 2, \cdots, n\}$, a subset $M = \{j_{r_1} < j_{r_2} < \cdots < j_{r_a}\}$ of J, for each j in M a real valued rational function q_j (non
vanishing on \(U \)), and real analytic \(P_j, 1 \leq j \leq n \) functions in the variables \(w_1, w_2, \ldots, w_{2k}, \ell_1, \ell_2, \ldots, \ell_n \) such that the following hold.

1) If \(\epsilon \) denotes the number of elements in \(M \), for each \(\epsilon \in \{1, -1\}^a \), the set
\[
U_\epsilon = \{ \ell \in U \mid \text{sign of } q_j(\ell) = \epsilon_m, 1 \leq m \leq a \}
\]
is a non empty open subset in \(g^* \).

2) Define \(V \subset \mathbb{R}^{2k} \) by \(V = \prod R_r \), where \(R_r = [0, \infty[\) if \(j_r \in M \) and \(R_r = \mathbb{R} \) otherwise. Let \(\epsilon \in \{1, -1\}^a \) and for \(v \in V \), define \(ev \in \mathbb{R}^{2k} \) by \((ev)_j = \epsilon_m v_j \) if \(j = j_m \in M \) and \((ev)_j = v_j \) otherwise. Then for each \(\ell \in U_\epsilon \), the mapping \(v \rightarrow \sum_j P_j(\epsilon v, \ell) X_j^* \) is a diffeomorphism of \(V \) with the coadjoint orbit of \(\ell \).

3) Define \(W_D \) as the subspace spanned by the vectors \(\{ X_j^* \mid i \not\in J \} \) and \(W_M \) the subspace spanned by \(\{ X_j^* \mid j \in M \} \). Then the set
\[
W = \{ \ell \in (W_D \oplus W_M) \cap U \mid |q_j(\ell)| = 1, j \in M \}
\]
is a cross-section for the coadjoint orbits \(U \). For each \(j \in M \) the rational function \(q_j \) is of the form \(q_j(\ell) = \ell_j + p_j(\ell_1, \ell_2, \ldots, \ell_{j-1}) \), where \(p_j \) is a rational function.

4) For each \(\ell \in U \), let \(\epsilon(\ell) \in \{1, -1\}^a \) such that \(\ell \in U_{\epsilon(\ell)} \). Then the mapping \(P : V \times W \to U \), defined by \(P(v, \ell) = \sum_j P_j(\epsilon(\ell) v, \ell) X_j^* \), is a diffeomorphism.

B.N. Currey [C] proved that \(m_\psi \) is a Plancherel measure on \(W \).

The idea is to compute the measure \(\psi(\ell)dl \) in terms of product measures on \(V \times W \) and then, using Lemma 1.3 of [C], we can read off \(m_\psi \) as a measure on \(W \). We have to determine coordinates for \(W \).

If the subset \(M \) of \(J \) is empty, then \(W = W_D \cap U \) and the coordinates for \(W \) are obtained by identifying \(W_D \) with \(\mathbb{R}^{n-2k} \), which is the parametrization of \(g^* \) in the nilpotent case. On the other hand, suppose that \(M \) is non empty, and \(a \) denotes the number of elements in \(M \). From [C], for each \(\epsilon \in \{1, -1\}^a \), there exists a non empty Zariski open subset \(U_\epsilon \) of \(U \) and \(U \) is the disjoint union of the sets \(U_\epsilon \). Let \(\epsilon \in \{1, -1\}^a \) and set \(W_\epsilon = W \cap U_\epsilon \). From [C], we have that
\[
W_\epsilon = \{ \ell \in (W_D \oplus W_M) \cap U \mid \text{for each } j = j_m \in M, \ell_j = \epsilon_m - p_j(\ell_1, \ell_2, \ldots, \ell_{j-1}) \}
\]
where \(j \in M \) and \(p_j \) is a rational nonsingular function on \(U_\epsilon \).

Let \(\epsilon \in \{1, -1\}^a \). Then from [C], there is a Zariski open subset \(\Lambda_\epsilon \) of \(W_D \) and a rational function \(p_\epsilon : \Lambda_\epsilon \to W_M \) such that \(W_\epsilon = \text{graph}(p_\epsilon) \).

From [C], the projection of \(U_\epsilon \) into \(W_D \) parallel to \(W_J \) defines a diffeomorphism \(\pi_\epsilon \) of \(W_\epsilon \) with \(\Lambda_\epsilon \).

Remark 2.2. If \(G \) is nilpotent, then \(M \) is empty, \(U_\epsilon = U \), \(p_\epsilon = 0 \), and \(\Lambda_\epsilon = W = U \cap W_D \) is a open subset in \(W_D \).
Let $O_{\lambda, \epsilon}$ be the coadjoint orbit via $\pi_{\epsilon}^{-1}(\lambda)$ for $\lambda \in \Lambda_\epsilon$ and let $\beta_{\lambda, \epsilon}$ be the canonical measure on $O_{\lambda, \epsilon}$. Identify W_D with \mathbb{R}^{n-2k} via the basis $\{X_i^* \mid i \not\in J\}$ and let $d\lambda$ be the Lebesgue measure on W_D. If $W_D = \{0\}$ the measure $d\lambda$ is a point mass measure. This is the case for the “$ax + b$ group” (see the example, paragraph 5).

Define $\Theta_\epsilon : V \times \Lambda_\epsilon \rightarrow U_\epsilon$ by $\Theta_\epsilon(v, \lambda) = P(v, \pi_{\epsilon}^{-1}(\lambda))$. Then Θ_ϵ is a diffeomorphism.

From 2.8 of [C], for any integrable function F on g^*/G, we have

$$\int_{g^*/G} F(O) dm_\psi(O) = \sum_{\epsilon} \int_{\Lambda_\epsilon} F(O_{\lambda, \epsilon}) |\psi(\pi_{\epsilon}^{-1}(\lambda))| |Pf(\pi_{\epsilon}^{-1}(\lambda))|(2\pi)^{-2k} d\lambda$$

where $Pf(\pi_{\epsilon}^{-1}(\lambda))$ denotes the Pfaffian in $\pi_{\epsilon}^{-1}(\lambda)$.

Set $[\rho_{\lambda, \epsilon}] = K^{-1}(O_{\lambda, \epsilon})$ for $\epsilon \in \{1, -1\}^a$ and $\lambda \in \Lambda_\epsilon$. For each nonzero rational function ψ on g^* satisfying $\psi(g, \ell) = \Delta(g)^{-1}\psi(\ell)$ for $g \in G$ and $\ell \in g^*$, let $A_{\psi, \lambda, \epsilon}$ denote the semi-invariant operator of weight Δ for the irreducible representation $\rho_{\lambda, \epsilon}$ corresponding to the restriction of ψ to $O_{\lambda, \epsilon}$ (this operator is constructed in [DR]).

In summary: Let G be a connected, simply connected, and completely solvable Lie group. Let $\{X_1^*, X_2^*, \cdots, X_n^*\}$ be a Jordan-Hölder basis of g^*. Then, there is a finite collection of disjoint open subsets U_ϵ of g^* and there is a subspace W_D of g^* such that for each ϵ, U_ϵ is parametrized by a Zariski open subset Λ_ϵ of W_D, $\cup U_\epsilon$ is dense in g^*, and the complement of $\cup U_\epsilon$ has Plancherel measure zero. Let ψ be a non empty rational function on g^* such that $\psi(g, \ell) = \Delta(g)^{-1}\psi(\ell)$ for $g \in G$ and $\ell \in g^*$. For each ϵ, there is a rational function $r_{\psi, \epsilon}$ on W_D such that for any smooth compactly supported function ϕ on G, the function

$$\lambda \rightarrow \text{Tr}(A_{\psi, \lambda, \epsilon}^{-1/2}\rho_{\lambda, \epsilon}(\phi)A_{\psi, \lambda, \epsilon}^{-1/2}) r_{\psi, \epsilon}(\lambda)$$

on Λ_ϵ is Lebesgue integrable. For any such ϕ we have

$$\phi(\epsilon) = \sum_{\epsilon} \int_{\Lambda_\epsilon} \text{Tr}(A_{\psi, \lambda, \epsilon}^{-1/2}\rho_{\lambda, \epsilon}(\phi)A_{\psi, \lambda, \epsilon}^{-1/2}) r_{\psi, \epsilon}(\lambda) d\lambda$$

where $r_{\psi, \epsilon}(\lambda) = \psi(\pi_{\epsilon}^{-1}(\lambda))Pf(\pi_{\epsilon}^{-1}(\lambda))(2\pi)^{-2k}$.

We consider two cases:

First case: We suppose that $g^\ell \subset g_{n-1}$ for all $\ell \in W_\epsilon$ i.e. all the general position orbits are saturated with respect to g_{n-1}. We can choose a basis of g in which the first $n-1$ vectors of the basis

$$\{X_1(\ell), \ldots, X_r(\ell), \ldots, X_m(\ell), \ldots, X_{n-1}(\ell)\}$$
for \(\ell \in W_\epsilon \) depends on \(\ell \), the \(X_i(\ell) \) are in \(g^{\ell_j}_j \) for certain \(j \) with \(\ell_j = \ell|_{g_j} \), and \(g^{\ell_j}_j = \{ X \in g_j | ad^*X \ell_j = 0 \} \). As \(g^\ell \subset g_{n-1} \), the last vector of the basis does not depend on \(\ell \). Let

\[
\mathcal{B}_W(\ell) = \{ X_1(\ell), \ldots, X_r(\ell), \ldots, X_m(\ell), \ldots, X_{n-1}(\ell), \: X_n \}
\]

be one such basis of \(g \).

Remark that the index set \(J_1 \) for \(G_{n-1} \) is equal to \(J \backslash \{ j_1, j_2, \ldots, j_{r_1} \} \) and that \(M_1 = \{ j_{r_2}, \ldots, j_{r_{a_1}} \} \) is a subset of \(J_1 \). For each \(\epsilon_1 \in \{ 1, -1 \}^{a_1} \), the set \(U_{\epsilon_1} \) is a nonempty open subset of \(g^{\epsilon_1}_{n-1} \). Denote \(W_{D_1} \) the subspace spanned by \(\{ X^*_j \mid i \notin J_1 \} \) in \(g^{\epsilon_1}_{n-1} \). Then, we have \(W_{D_1} = W_D \oplus R X^*_{j_1} \) and \(W_{M_1} \) is the subspace spanned by \(\{ X^*_j \mid j \in M_1 \} \).

Set \(W_{\epsilon_1} = W_1 \cap U_{\epsilon_1} \) where

\[
W_1 = \{ \ell_1 \in (W_{D_1} \oplus W_{M_1}) \cap U_1 \mid |q_j(\ell_1)| = 1, j \in M_1 \}.
\]

Now, by the corresponding theory for \(G_{n-1} \) we have a Zariski open subset \(\Lambda_{\epsilon_1} \) of \(W_{D_1} \) and a rational function \(p_{\epsilon_1} : \Lambda_{\epsilon_1} \rightarrow W_{M_1} \) such that \(W_{\epsilon_1} = \text{graph}(p_{\epsilon_1}) \).

Remark that \(a_1 = a - 1 \). In fact there is a case where \(a_1 = a \). If we start with any chain of ideals \(0 = g_0 \subset g_1 \subset \cdots \subset g_i \subset \cdots \subset g_{n-1} \subset g_n = g \), to avoid this case it suffices to choose a chain in such a manner that the chain passes through the nil-radical of \(g \) when \(g \) is non nilpotent. Also \(\epsilon_1 \) is obtained by deleting an element from \(\epsilon \). Let \(A_{\epsilon_1} \) denote the projection of \(\Lambda_{\epsilon_1} \) on \(g^{\epsilon_1}_{n-1} \), and \(A^\prime_{\epsilon_1} \) denote the projection of \(\Lambda_{\epsilon_1} \) on \(g^{\epsilon_1}_{n-1} \).

The measure on \(W_{\epsilon_1} \) is

\[
d\mu_1(\pi^{-1}_{\epsilon_1}(\lambda_1)) = \sum_{\epsilon_1 \in \{ 1, -1 \}^{a_1}} (2\pi)^{(2k-2)}\psi_1(\pi^{-1}_{\epsilon_1}(\lambda_1))Pf(\pi^{-1}_{\epsilon_1}(\lambda_1))d\lambda_1
\]

where \(Pf(\pi^{-1}_{\epsilon_1}(\lambda_1))^2 = \det(\pi^{-1}_{\epsilon_1}(\lambda_1)([X_i, X_j])_{i,j \in J_1}) \) with \(\pi^{-1}_{\epsilon_1}(\lambda_1) = \pi^{-1}_{\epsilon_1}(\lambda)|_{g^{\epsilon_1}_{n-1}} \) and \(\psi_1 \) is a non empty rational function on \(g^{\epsilon_1}_{n-1} \) such that we have \(\psi_1(h, \ell_1) = \Delta(h)^{-1}\psi_1(\ell_1) \). Remark that, \(g^{\epsilon_{n-1}} = g^\ell \oplus R X_{j_1}, \quad [X_i, X_j] \in g_{n-1} \) for \(i, j \) in \(J_1 \), and \(\ell([X_{j_1}, g_{n-1}]) = 0 \).

Remark 3.1. For \(\ell \in W_\epsilon \), let \(A(\ell) = (\ell([X_i, X_j])_{i,j \in J} \) be the skew-symmetric matrix.

\[
A(\ell) = \begin{pmatrix}
0 & \cdots & 0 & \ell([X_n, X_{j_1}]) \\
0 & \ddots & \ddots & \ddots \\
\vdots & \ddots & A_{n-1}(\ell) & \ddots \\
\ell([X_{j_1}, X_n]) & \cdots & \cdots & * \\
\end{pmatrix}
\]

where \(A_{n-1}(\ell) = \ell([X_i, X_{j_1})_{i,j \in J_1} \).

Then: \(\det A(\ell)^{\frac{1}{2}} = |\ell([X_{j_1}, X_n])|(|\det A_{n-1}(\ell)|^{\frac{1}{2}} \).

That is, \(Pf(\ell) = \ell([X_{j_1}, X_n])Pf(\ell_{n-1}) \) where \(\ell_{n-1} = \ell|_{g_{n-1}} \).
Lemma 3.2. We suppose that \(g^\ell \subset g_{n-1} \) for all \(\ell \in W_\epsilon \). Let \(\psi \) be a non empty rational function on \(g^* \) such that \(\psi(x,\ell) = \Delta(x)^{-1}\psi(\ell) \) for all \(\ell \in W_\epsilon \) and \(x \in G \). Then:

i. \(\psi(\ell) = \psi(\ell') \) for \(\ell' \in \ell + g_{n-1}^* \).

ii. Let \(\ell_1 \in g_{n-1}^* \) and \(\tilde{\ell}_1 \) be an extension of \(\ell_1 \) to \(g^* \). By taking \(\psi_1(\tilde{\ell}_1) = \psi(\ell_1) \) we obtain a rational function \(\psi_1 \) on \(g_{n-1}^* \) verifying \(\psi(\ell_1) = \Delta G_{n-1}(h)^{-1}\psi_1(\tilde{\ell}_1) \) for \(h \in G_{n-1} \) and \(\ell_1 \in W_\epsilon \).

\[\text{Proof.} \] We have \(G^\ell \subset G^\ell_{n-1} \) for \(\ell \in W_\epsilon \) hence the stabilizer of \(\ell_{n-1} \in g_{n-1}^* \) in \(G \) is also equal to \(G^\ell_{n-1} \).

Let \(\ell' = \ell + \gamma \) where \(\gamma \in g_{n-1}^* \). Then \(\ell' = a.\ell \) with \(a \in G^\ell_{n-1} \), hence we have that \(\psi(\ell') = \psi(a.\ell) = \Delta(a)^{-1}\psi(\ell) \). We have to verify that \(\Delta(a) = 1 \) if \(a \in G^\ell_{n-1} \). But, \(\Delta(a) = \Delta G_{n-1}(a) \) since \(G_{n-1} \) is normal in \(G \). Moreover, \(G_{n-1}/G^\ell_{n-1} \) has an invariant measure, so we have \(\Delta G_{n-1}(a) = \Delta G^\ell_{n-1}(a) \).

It suffices to see that \(G^\ell_{n-1} \) is abelian since, the orbit of \(\ell_1 \) is of maximal dimension (see [B2], Chapter II). Hence \(\psi(\ell') = \psi(\ell) \) which allows us to define \(\psi_1 \).

For all \(h \in G_{n-1} \) and \(\ell_1 \in g_{n-1}^* \) we have

\[\psi_1(h.\ell_1) = \psi(h.\tilde{\ell}_1) = \psi(h.\ell_1) = \Delta G(h)^{-1}\psi_1(\tilde{\ell}_1) = \Delta G_{n-1}(h)^{-1}\psi_1(\ell_1). \]

\[\square \]

We express the measure \(d\mu_1 \) on \(W_\epsilon \) in terms of local coordinates on \(g_{n-1}^* \). From the above remark and the Lemma we have that

\[d\mu_1 = \sum_{\epsilon_1 \in \{1, -1\}^{n_1}} \frac{(2\pi)^{2k-2}}{\psi_1(\pi^{-1}_\epsilon(\lambda_1))} \frac{1}{Pf(\pi^{-1}_\epsilon(\lambda_1))} d\lambda_1 \]

\[= \left(\sum_{\epsilon'} \frac{(2\pi)^{2k-2} \pi^{-1}_\epsilon(\lambda)(X_{j_1}, X_{n})}{Pf(\pi^{-1}_\epsilon(\lambda))} \frac{1}{\psi(\pi^{-1}_\epsilon(\lambda))} d\lambda \right) dX_{j_1}^* \]

where \(\epsilon' \) describes a part of \(\{1, -1\}^{n_1} \).

This measure \(W_\epsilon \subset g_{n-1}^* \) is a Plancherel measure on \(\widehat{G}_{n-1} \), the unitary dual of \(G_{n-1} \).

For \(\ell \in W_\epsilon \), \(\rho_\ell = \rho_{\lambda, \epsilon} \) is an induced representation of \(G \), where \(\ell_{n-1} = \ell|_{g_{n-1}} \) and \(\rho_{\lambda, \epsilon} = \rho_{\lambda, \ell_{n-1}} \) is a representation of \(G_{n-1} \). Let \(\mathcal{C}^\infty(G, \rho) \) be the set of \(f \in \mathcal{C}^\infty(G) \) with compact support modulo \(G_{n-1} \) such that \(f(hg) = (\rho_{\ell_{n-1}}(h))f(g) \) for all \(h \in G_{n-1}, g \in G \).

For all \(\phi \in \mathcal{C}^\infty(G) \) and \(\rho_\ell \in \widehat{G} \) such that \(\ell \in W_\epsilon \), the group Fourier transform is defined by

\[\widehat{\phi}_{\rho_\ell} = \int_G \phi(g)\rho_\ell(g)dg. \]
Set \(\ell^t = Ad^*(\exp(-tX))\ell\). Remark that
\[
\rho_{t^*}(g) = \rho_t(\exp(tX).g.\exp(-tX)).
\]
Choose \(X \in g\setminus g_{n-1}\). For all \(s, t\ in \mathbb{R}\), the action of \(\phi \in C_c^\infty(G)\) on \(f \in \mathcal{H}_{\rho_t}\) gives us
\[
(\hat{\phi}_{t^*})f(\exp(tX)) = \int_G \phi(g)\rho_t(g)f(\exp(tX))dg.
\]
As the induced representation acts by right translation on \(f \in \mathcal{H}_{\rho_t}\), we have
\[
(\hat{\phi}_{t^*}f)(\exp(tX)) = \int_G \phi(g)f(\exp(tX).g)dg
\]
\[
= \int \int \int_{G_{n-1}} \phi(h.\exp(sX))f(\exp(tX).h.\exp(sX))dhds
\]
\[
= \int \int \int_{G_{n-1}} \phi(h.\exp(sX))f(\exp(tX).h.\exp(-tX).\exp(tX).\exp(sX))dhds
\]
\[
= \int \int \int_{G_{n-1}} \phi(h.\exp(sX))f(\exp(tX).h.\exp(-tX).\exp(t+s)X)dhds
\]
\[
= \int \int \int_{G_{n-1}} \phi(h.\exp(sX))\rho_{(t^*)_{n-1}}(h)f(\exp(t+s)X)dhds
\]
\[
= \int \int \int_{G_{n-1}} \phi^s(h)\rho_{(t^*)_{n-1}}(h)f(\exp(t+s)X)dhds
\]
\[
= \int \int_{G_{n-1}} (\hat{\phi}_{(t^*)_{n-1}}^s) f(\exp(t+s)X)ds
\]
where \(\phi^s(h) = \phi(h.\exp(sX))\).
For all \(\alpha \in \mathbb{R}\) we set \(f_\alpha(h.\exp(sX)) = e^{i\alpha s}f(h.\exp(sX))\). We have \(f_\alpha \in \mathcal{H}_{\rho_t}\), since \(f\) is in \(\mathcal{H}_{\rho_t}\).
Let \(\ker \rho_t\) denote the kernal of \(\rho_t\) in \(C^*(G)\), the \(C^*\)- algebra of the group \(G\). If \(\phi \in \ker \rho_t\), then, from the above calculations, for all \(f \in \mathcal{H}_{\rho_t}\) we have
\[
0 = \int \int_{G_{n-1}} (\hat{\phi}_{(t^*)_{n-1}}^s) f_\alpha(\exp(s+t)X)ds
\]
\[
= \int \int_{G_{n-1}} e^{i\alpha(s+t)}\hat{\phi}_{(t^*)_{n-1}}^s f(\exp(s+t)X)ds
\]
\(\forall \alpha \in \mathbb{R}\),
which implies that \(\hat{\phi}_{(t^*)_{n-1}}^s = 0\) for all \(s \in \mathbb{R}\). Conversely, for all \(s\) and \(t\) in \(\mathbb{R}\), if \(\hat{\phi}_{(t^*)_{n-1}}^s = 0\) we have \(\hat{\phi}_{t^*} = 0\) which implies that \(\phi \in \ker \rho_t\). We have established an equivalence
\[
\phi \in \ker \rho_t \iff (\hat{\phi}_{(t^*)_{n-1}}^s = 0 \forall s, t).
\]
Second case: If all the general position orbits are not saturated with respect to \(g_{n-1} \), we can choose a basis of \(g \) in such a way that the last vector of the basis \(X_n \) does not depend on \(\ell \) and \(X_n(\ell) \in g^\ell \). Let
\[
\mathfrak{B}_W(\ell) = \{X_1(\ell), \ldots, X_r(\ell), \ldots, X_m(\ell), \ldots, X_{n-1}(\ell), X_n(\ell)\}
\]
be one such basis of \(g \) in which the \(X_i(\ell) \) are in \(g^\ell_j \) for certain \(j \) with \(\ell_j = \ell|_{g_j} \).

Lemma 3.3. Assume that \(g^\ell \not\subset g_{n-1} \) for all \(\ell \in W_e \). Let \(\psi \) be a non empty rational function on \(g^\ast \) such that \(\psi(x, \ell) = \Delta(x)^{-1}\psi(\ell) \) for all \(\ell \in W_e \) and \(x \in G \). Let \(\ell_1 \in g^*_{n-1} \) and \(\tilde{\ell}_1 \) be an extension of \(\ell_1 \) to \(g^\ast \). By letting \(\psi_1(\ell_1) = \psi(\tilde{\ell}_1) \) we obtain a rational function \(\psi_1 \) on \(g^*_{n-1} \) satisfying \(\psi_1(h, \ell_1) = \Delta(h)^{-1}\psi_1(\ell_1) \) for all \(h \in G_{n-1} \).

Proof. For all \(\ell \in g^\ast \) and \(\alpha \in \mathbb{R} \) we have \(\ell_\alpha = \ell + \alpha X_n^\ast \) and \(g^\ast = g^*_{n-1} \oplus \mathbb{R} X_n^\ast \). For all \(h \in G_{n-1} \), we have \(h, \ell_\alpha = h, \ell + \alpha X_n^\ast \) since \(G.X_n^\ast = X_n^\ast \). By choosing \(\alpha = 0 \), we have \(\ell_0 = \ell + 0X_n^\ast \) and \(h, \ell_0 = h, \ell \). Hence, \(\psi_1(\ell_1) = \psi(\tilde{\ell}_1) \) and
\[
\psi_1(h, \ell_1) = \psi(h, \ell_1) = \Delta(h)^{-1}\psi(\ell_1) = \Delta_{G_{n-1}}(h)^{-1}\psi_1(\ell_1).
\]

Remark that the set of indices \(J_1 \) for \(G_{n-1} \) is equal to \(J \). In this case as \(g^\ell = g^{n-1} + \mathbb{R} X_n \) we have \(W_D = W_{D_1} + \mathbb{R} X_n \), where \(W_{D_1} \) is the subspace of \(g^*_{n-1} \) corresponding to \(W_D \) in \(g^\ast \). Moreover, \(\Lambda_\epsilon = \Lambda_{\epsilon_2} + \mathbb{R} X^\ast \). The Plancherel measure over \(\tilde{G} \) can be written as;
\[
d\mu(\ell) = \sum_\epsilon (2\pi)^{2k} \frac{1}{\psi(\pi_{\epsilon^{-1}}(\lambda))} \frac{1}{Pf(\pi_{\epsilon^{-1}}(\lambda))} dX_1^\ast \cdots dX_{n-2k-1}^\ast dX_n^\ast
\]
\[
= \left(\sum_{\epsilon_2} (2\pi)^{2k} \frac{1}{\psi_1(\pi_{\epsilon_2^{-1}}(\lambda_1))} \frac{1}{Pf(\pi_{\epsilon_2^{-1}}(\lambda_1))} dX_1^\ast \cdots dX_{n-2k-1}^\ast \right) dX_n^\ast
\]
\[
= d\mu_1 \times dX_n^\ast.
\]

For \(\ell = \pi_{\epsilon^{-1}}(\lambda) \in W_e \), and \(\alpha \in \mathbb{R} \) we let \(\ell_\alpha = \ell + \alpha X^\ast \). Hence, \(\ell_\alpha(X) = \ell(X) + \alpha \) and \(\rho t_\alpha = \rho \ell \otimes \chi_\alpha \) with \(\chi_\alpha(h, \exp(sX)) = e^{\iota \alpha s} \) for all \(h \in G_{n-1} \).
The restriction of ρ_{ℓ_α} to G_{n-1} is irreducible and equivalent to $\rho_{\ell_{n-1}}$ for all $\alpha \in \mathbb{R}$. For all $\xi, \eta \in H$, we have

$$\langle \hat{\phi}_{\rho_{\ell_\alpha}} \xi, \eta \rangle = \int_G \langle \rho_{\ell_\alpha}(g) \xi, \eta \rangle \phi(g) \, dg$$

$$= \int_G \langle \rho_{\ell} \otimes \chi_\alpha(g) \xi, \eta \rangle \phi(g) \, dg$$

$$= \int_{\mathbb{R}} \int_{G_{n-1}} \langle \rho_{\ell} \otimes \chi_\alpha(\exp(sX) . h) \xi, \eta \rangle \phi(\exp(sX) . h) \, dh \, ds$$

$$= \int_{\mathbb{R}} \int_{G_{n-1}} \langle e^{i\alpha s} \rho_{\ell}((\exp(sX)) \rho_{\ell_{n-1}}(h)) \xi, \eta \rangle \phi(\exp(sX) . h) \, dh \, ds$$

$$= \int_{\mathbb{R}} e^{i\alpha s} \langle \rho_{\ell}(\exp(sX)) \hat{\phi}^s_{\rho_{\ell_{n-1}}} \xi, \eta \rangle \, ds$$

where $\phi^s(h) = \phi(\exp(sX) . h)$. Hence we have expressed $\hat{\phi}_{\rho_{\ell_\alpha}}$ with the help of $\hat{\phi}^s_{\rho_{\ell_{n-1}}}$.

4. Weak Paley–Wiener Property.

Theorem 4.1. Let G be a connected, simply connected, and completely solvable Lie group with the unitary dual \hat{G}, and let ϕ be a bounded, measurable and compactly supported function (i.e. $\phi \in L^\infty_c(G)$). Assume that there is a subset $E \subset \hat{G}$ with positive Plancherel measure such that $\hat{\phi}_{\rho_{\ell_\alpha}} = 0$ for all $\rho \in E$, where $\hat{\phi}_{\rho}$ is the group Fourier transform of ϕ. Then $\phi = 0$ almost everywhere on G.

Proof. We proceed by induction on the dimension n of G. The result is true if the dimension of G is one, since $G \cong \mathbb{R}$. Assume that the result is true for all groups of dimension $n-1$. We can assume that E is contained in W_ϵ (it suffices to take E as the finite union of $E \cap W_\epsilon$).

First case: $g^\ell \subset g_{n-1}$ for all $\ell \in W_\epsilon$. Let $\phi \in C^\infty_c(G)$. By hypothesis, for all ρ_{ℓ}, such that $\ell \in E$ we have $0 = \hat{\phi}_{\rho_{\ell}}$; we will show that $\phi = 0$ almost everywhere on G.

Notice that for all $\epsilon_1 \in \{-1, 1\}^{\alpha_n}$, the associated set Λ_{ϵ_1} corresponds to two sets Λ_{ϵ_+} and Λ_{ϵ_-}, $\epsilon_+ \in \{-1, 1\}^n$ in W_D. If Λ_{ϵ_+}' and Λ_{ϵ_-}' are the projections of Λ_{ϵ_+} and Λ_{ϵ_-} on g_{n-1} such that $\Lambda_{\epsilon_+}' = (\exp \mathbb{R}X). \Lambda_{\epsilon_+}' \cup (\exp \mathbb{R}X). \Lambda_{\epsilon_-}'$ and $T_{\ell} = \{\exp tX. \ell_{n-1} \mid t \in \mathbb{R}\}$ are contained in the projection of Λ_{ϵ_+} or in Λ_{ϵ_-}. Λ_{ϵ_1}' is a Zariski open set in Λ_{ϵ_1}.

From paragraph 3 we have that

$$\phi \in \ker \rho_{\ell} \iff \left(\hat{\phi}^s_{\rho_{\ell}(t)_{n-1}} = 0 \forall s, t \right).$$
By hypothesis, $\hat{\phi}_{\rho_t} = 0$ for all $\ell \in E$ and from the above equivalence we have
$$\hat{\phi}_{\rho_{(t)} n_{-1}}^{s} = 0$$
for all s, t in \mathbb{R}. This relation tells us that a set A contained in $\Lambda_{t_{+}} \cup \Lambda_{t_{-}}$ has positive Plancherel measure if and only if the set $\cup_{\rho_{t} \in A T_{\ell}}$ has positive Plancherel measure in $\Lambda_{t_{1}}$.

In applying this remark to the set E, we obtain
$$\hat{\phi}_{\rho_{s} \rho_{(t)} n_{-1}}^{s} = 0$$
for all s, t in \mathbb{R}. This relation tells us that a set A contained in $\Lambda_{t_{+}} \cup \Lambda_{t_{-}}$ has positive Plancherel measure if and only if the set $\cup_{\rho_{t} \in A T_{\ell}}$ has positive Plancherel measure in $\Lambda_{t_{1}}$.

In applying this remark to the set E, we obtain
$$\hat{\phi}_{\rho_{s} \rho_{(t)} n_{-1}}^{s} = 0$$
for all $\rho_{t} n_{-1}$ in $E' \subset \hat{G}_{n-1}$ with positive Plancherel measure.

By the induction hypothesis $\phi^{s} = 0$ almost everywhere on G_{n-1}, which implies that $\phi = 0$ almost everywhere on G by using Fubini’s theorem.

Second case: $g^{\ell} \not\subset g_{n-1}$ for all $\ell \in W_{\epsilon}$. Let $\rho \in C_c^{\infty}(G)$. By hypothesis, for all ρ_{t}, such that $\ell \in E$ we have $\hat{\phi}_{\rho_{t}} = 0$; let us show that $\hat{\phi}_{\rho_{t}} = 0$ for all $\ell \in W_{\epsilon}$.

Let $\ell \in E$. For all $\alpha \in \mathbb{R}$ we have
$$\langle \hat{\phi}_{\rho_{t_{\alpha}}} \xi, \eta \rangle = \int_{\mathbb{R}} e^{i\alpha s} \rho_{\ell}(\exp(sX)) \hat{\phi}_{\rho_{t_{n_{-1}}}}^{s} \xi, \eta \rangle ds;$$
hence
$$\hat{\phi}_{\rho_{t_{\alpha}}} = \int_{\mathbb{R}} e^{i\alpha s} \rho_{\ell}(\exp(sX)) \hat{\phi}_{\rho_{t_{n_{-1}}}}^{s} ds.$$
Set
$$\Psi(s) = \rho_{\ell}(\exp(sX)) \hat{\phi}_{\rho_{t_{n_{-1}}}}^{s}.$$
Hence
$$\hat{\phi}_{\rho_{t_{\alpha}}} = \int_{\mathbb{R}} \Psi(s) e^{i\alpha s} ds$$
$$= \hat{\Psi}(\alpha).$$
By hypothesis, for all $\ell \in E$ we have $\hat{\phi}_{\rho_{t}} = 0$. The above calculation tells us that there exists a set $E' \subset E$ with positive Plancherel measure such that $\hat{\Psi}(\alpha) = 0$ for α belonging to a set of reals with positive Lebesgue measure and $\ell \in E'$. Hence $\Psi = 0$ almost everywhere; consequently we have $\Psi(s) = 0$ for almost every $s \in \mathbb{R}$. Hence
$$0 = \hat{\phi}_{\rho_{t_{\alpha}}} = \int_{\mathbb{R}} e^{i\alpha s} \rho_{\ell}(\exp(sX)) \hat{\phi}_{\rho_{t_{n_{-1}}}}^{s} ds$$
for all α in \mathbb{R}, which implies that $\hat{\phi}_{\rho_{t_{n_{-1}}}}^{s} = 0$ for all $\ell_{n_{-1}}$ in E_{1} (path of E on $g_{n_{-1}}^{s}$) with positive Plancherel measure on \hat{G}_{n-1}. By using the induction hypothesis $\hat{\phi}_{\rho_{t_{n_{-1}}}}^{s} = 0$ for almost all $\ell_{n_{-1}} \in W_{\epsilon}'$ (path of W_{ϵ} on $g_{n_{-1}}^{s}$). Hence, $0 = \hat{\phi}_{\rho_{t}}$ for almost all $\ell \in W_{\epsilon}$ (from the above calculation of $\hat{\phi}_{\rho_{t_{\alpha}}}$).
Hence \(\hat{\phi}_{\rho} = 0 \) for almost all \(\rho \) relating with the Plancherel measure. By the Plancherel formula for completely solvable Lie groups, we have

\[
\phi(e) = \sum_{\epsilon} \int_{\Lambda_{\epsilon}} \text{Tr}(A_{\psi,\lambda,\epsilon}^{-1/2} \rho_{\lambda,\epsilon}(\phi) A_{\psi,\lambda,\epsilon}^{-1/2}) |r_{\psi,\epsilon}(\lambda)| d\lambda
\]

which implies that \(\phi = 0 \).

Now, we consider \(\phi \in L_c^\infty(G) \). Let \(\{f_n\}_n \) be an approximate identity in \(C_c^\infty(G) \). For all integers \(n \), \(f_n * \phi \in C_c^\infty(G) \). Let \(\rho \in E \). If \(\hat{\phi}_{\rho} \) vanishes, then \((f_n * \phi)_\rho \) also vanishes. Hence by what precedes, \(f_n * \phi = 0 \) (for all integers \(n \)). But, \((f_n * \phi)_n \in \mathbb{N} \) converges to \(\phi \) in \(L^1(G) \), which implies that \(\phi = 0 \) almost everywhere on \(G \).

\(\square \)

5. Example: The \(ax + b \) Group.

Consider the group

\[
G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a > 0, b \in \mathbb{R} \right\}.
\]

We use the notation

\[
(a, b) = \begin{pmatrix} a \\ b \\ 0 \\ 1 \end{pmatrix}.
\]

The Matrix multiplication gives:

\[
(a_1, b_1)(a_2, b_2) = (a_1 a_2, a_1 b_2 + b_1)
\]

and the inverse

\[
(a, b)^{-1} = (a^{-1}, -ba^{-1}).
\]

Let \(H = (1, b) \) be the derived group of \(G \) which is identified with \(\mathbb{R} \). Let \(y \in \mathbb{R} \), \(\chi_y \) the character of \(H \) defined by \(\chi_y((1, b)) = e^{iby} \).

Remark that \((a, b) = (1, b)(a, 0) \). Let \(\rho_y = \text{Ind}_H^G \chi_y \) be the induced representation of \(G \). This representation is realized in the space \(L^2(\mathbb{R}) \). Recall that for all \(y > 0 \), \(\rho_y \) is equivalent to \(\rho_1 \) and we denote by \(\rho_+ \) the class of the representation \(\rho_1 \). If \(y < 0 \), \(\rho_y \) is equivalent to \(\rho_{-1} \); we denote by \(\rho_- \) the equivalence class of this representation.

The Lie algebra \(g \) of \(G \) is the set of matrices

\[
g = \left\{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix}, (x, y) \in \mathbb{R}^2 \right\}.
\]

In the basis

\[
X = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad Y = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}
\]

we have \([X, Y] = Y\). With the basis \(X \) and \(Y \) we have

\[
\text{Ad}(a, b) = \begin{pmatrix} 1 & 0 \\ -b & a \end{pmatrix}.
\]
Also in the dual basis $\{X^*, Y^*\}$

$$Ad^*(a, b) = \begin{pmatrix} 1 & ba^{-1} \\ 0 & a^{-1} \end{pmatrix}.$$

For $\ell = \alpha X + \beta Y^* \in \mathfrak{g}^*$ the orbits of G in \mathfrak{g}^* are the upper half plane $\beta > 0$, the lower half plane $\beta < 0$ and the points $(\alpha, 0)$.

Let $\mathfrak{g} = \{X, Y\}$ be the basis of \mathfrak{g} defined above, and $\mathfrak{g}^* = \{X^*, Y^*\}$ the dual basis of \mathfrak{g}^*. There exists a set $J = \{j_1, j_2\} \subseteq \{1, 2\}$ and $M = \{j_2\}$ a subset of J, so that $V \subset \mathbb{R}^2$, $V =]0, \infty[\times \mathbb{R}$. We have $W_D = \emptyset$ and W_M is spanned by the vector $\{X^*_j \mid j_2 \in M\}$.

The Zariski open sets U_+ and U_- are the half planes of \mathfrak{g}^* defined above and $U = U_+ \cup U_-$. Here, $a = 1$ and $\epsilon \in \{1, -1\}$.

Since there are only two orbits, the set

$$W = \{\ell \in W_M \cap U \mid |q_{j_2}(\ell)| = 1, j_2 \in M\}$$

is a union of two points in \mathfrak{g}^*. We have $W_+ = W \cap U_+$ and $W_- = W \cap U_-$. Let $\epsilon \in \{1, -1\}$. In this case the Zariski open set is $\Lambda_\epsilon = \Lambda_\epsilon$ or $\Lambda_\epsilon = \Lambda_\epsilon$ of W_D, which reduces to a point.

In this particular case we can prove weak Paley–Wiener property by direct calculations.

Let $\phi \in \mathcal{C}_c^\infty(G)$, $f \in L^2(\mathbb{R}_+^*)$ and $(t, 0) \in \mathbb{R}_+^*$: then

$$(\hat{\phi}_{pt} f)(t) = \int_G \phi((a, b))\rho_t((a, b))f(t)a^{-2}dadb$$

$$= \int_G \phi((a, b))f((a, b)^{-1}(t, 0))a^{-2}dadb$$

$$= \int_{\mathbb{R}_+^*} \int_{\mathbb{R}} \phi((a, b))f((a^{-1}t, -ba^{-1}))a^{-2}dadb$$

$$= \int_{\mathbb{R}_+^*} \int_{\mathbb{R}} \phi((a, b))f((a^{-1}t, 0)(1, -bt^{-1}))a^{-2}dadb$$

$$= \int_{\mathbb{R}_+^*} \int_{\mathbb{R}} \phi((a, b))\chi_y((1, -bt^{-1}))f((a^{-1}t, 0))a^{-2}da$$

$$= \int_{\mathbb{R}_+^*} \int_{\mathbb{R}} \phi^a(b)e^{-ibt^{-1}}f((a^{-1}t, 0))a^{-2}da$$

$$= \int_{\mathbb{R}_+^*} \phi^a_{\chi_yt^{-1}}f((a^{-1}t, 0))a^{-2}da,$$

where $\phi^a(b) = \phi((a, b))$.

Remark that $\phi^a \in \mathcal{C}_c^\infty(\mathbb{R})$. By hypothesis we have $\hat{\phi}_{pt} = 0$ for all $\ell \in E$. The above calculation implies that for all $a > 0$ we have $\hat{\phi}^a_{\chi_yt^{-1}} = 0$ for almost all $t > 0$ and for fixed y.

As \(\phi^a \in C_\infty^\infty(\mathbb{R}) \), \(\hat{\phi}^a_{\lambda,\mu^{-1}} \) extends as an entire function over \(\mathbb{C} \). \(\hat{\phi}^a_{\lambda,\mu^{-1}} \) vanishes on a set in which the Plancherel measure \(d\mu_1 \) is positive hence by the classical Paley–Wiener theorem, we can conclude that \(\phi^a = 0 \), and then \(\phi = 0 \) almost everywhere on \(G \).

Acknowledgement. This article is part of the author’s Ph.D thesis. The author is indebted to her advisor Professor Gérard Grélaud, for his help with this work.

References

Received July 21, 1997 and revised October 22, 1997.

INDIAN STATISTICAL INSTITUTE
BANGALORE - 560059
INDIA
E-mail address: gaya@is.isibang.ac.in