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We prove the global convergence of an analytical trial free-
boundary algorithm, called the operator method, in the con-
text of a very large class of multiple-free-boundary problems
in RN , N ≥ 2. We study the general case of a finite num-
ber of annular flow-layers, having a nested family of closed,
(N − 1)-dimensional hypersurfaces as interfaces. Each inter-
face is characterized by a general non-linear joining condition
relating the normal derivatives of the stream functions in the
two adjoining layers.

1. Introduction and main results.

The main purpose of this paper is to prove the global convergence of an
analytical trial free-boundary method, called the operator method, for the
successive approximation of classical solutions of general multi-layer free-
boundary problems. Our results are in the context of the following problem
with general non-linear joining conditions across the unknown nested layer-
interfaces:

1.1. Problem. In RN (N ≥ 2), for given <0 ≥ 0, let X(<0) denote the
family of all simple closed (N − 1)-dimensional hypersurfaces S in RN such
that S ∪ D(S) is starlike relative to {x ∈ RN : |x| ≤ <0}, where D(S)
(resp. E(S)) denotes the interior (exterior) complement of S. In X(<0),
we write S1 < S2 (resp. S1 ≤ S2) iff S ∪ D(S1) (resp. D(S1)) is a subset
of D(S2). For any k ∈ N, let XXk(<0) denote the family of all ordered
k-tuples S = (S1, . . . , Sk) ∈ [X(<0)]k such that S1 < S2 < · · · < Sk.
Given k ∈ N, a pair (S−∗ , S

+
∗ ) ∈XX2(<0) such that S−∗ (resp. S+

∗ ) has an
interior (exterior) tangent ball at every point, and a family of C1-functions
Fi(x, p, q) : RN × R+ × R+ → R, i = 1, . . . , k, we seek a C1-multisurface
S = (S1, . . . , Sk) ∈ XXk(<0) such that S−∗ < Si < S+

∗ for i = 1, . . . , k, and

(1.1) Fi(x, |∇Ui(x)|, |∇Ui+1(x)|) = 0 on Si

for i = 1, . . . , k. Here Ui(x) solves the boundary-value problem

(1.2) ∆Ui(x) = 0 in Ωi, Ui(Si−1) = 0, Ui(Si) = 1,
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where S0 := S−∗ , Sk+1 := S+
∗ , Ωi := D(Si) ∩ E(Si−1), and ∆ denotes the

Laplace operator.
Our study of Problem 1.1 is restricted to the case where each given C1-

function F := Fi(x, p, q) : RN ×R+ ×R+ → R has the following properties:

(A1) We have ∂F/∂p < 0 < ∂F/∂q wherever F is defined.

(A2) We have F (x0 + λv, p/λ, q/λ) ≥ 0 for any x0, v ∈ RN , p, q ∈ R+, and
λ ∈ [1,∞) such that F (x0 + v, p, q) ≥ 0 and |x0| ≤ <0.

(A3) For any η > 0 and any compact set K ⊂ RN , there exists a value µ
so large that F (x, p, q) > 0 whenever x ∈ K, p ∈ (0, η], and q ≥ µ, and
F (x, p, q) < 0 whenever x ∈ K, q ∈ (0, η], and p ≥ µ.

The above assumptions are all satisfied if for each i = 1, . . . , k, the joining
function is in the form Fi(x, p, q) = qβi + Ai(x) − pαi , where 0 < βi ≤ αi,
and where Ai(x) : RN → R+ is a strictly-positive continuous function such
that, for any x0, v ∈ RN with |x0| ≤ <0, the related function φi(t) :=
tαiAi(x0 + tv) is weakly increasing in t ≥ 0. In the important special case
where αi = βi = 2 for each i, Problem 1.1 can be interpreted as a flow of
k+1 immiscible ideal fluids (with stream functions U1, . . . , Uk+1) such that
the flow-speeds on the flow interfaces S1, . . . , Sk satisfy Bernoulli’s law in
the form

(1.3) |∇Ui(x)|2 = |∇Ui+1(x)|2 +Ai(x) on Si

for i = 1, . . . , k. Flow problems with joining conditions in the form (1.3)
have been extensively studied in arbitrary dimensions (see [4, 5, 11, 16]).
The author showed in [4, Thm. 3.1] that Problem 1.1 has a unique multi-
surface solution S ∈ XXk(<0) provided that each joining condition (1.1) is
in the form (1.3), where Ai(x) is a strictly-positive C∞-function such that
φ(t) := t2Ai(x0 + tv) is weakly increasing in t ≥ 0 for any x0, v ∈ RN

with |x0| ≤ <0. The author showed in [7] that if S = (S1, . . . , Sk) is
any k-tuple of nested, simple closed (N − 1)-dimensional C2-hypersurfaces
such that (1.1) and (1.2) hold, then S is uniquely determined and actually
S ∈ XXk(<0), provided that (S0, Sk+1) ∈ XX2(<0) and the joining functions
Fi all satisfy (A1) and (A2). In [8], the author obtained convex existence
results for Problem 1.1 under suitable convex conditions.

1.2. Operator definition. Assume in Problem 1.1 that the functions
Fi(x, p, q), i = 1, . . . , k, satisfy Assumptions (A1)-(A3). Let

(1.4) YY = YY(<0, S
±
∗ )

: = {S = (S1, . . . , Sk) ∈ XXk(<0) : S−∗ < Si < S+
∗ for i = 1, . . . , k}.

Our successive approximation algorithm is based on the mappings

(1.5) T ε(S) = T (S; ε) : YY → YY, ε ∈ (0, 1).
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Here, the i-th component of T ε(S) ∈ YY is given by

(1.6) Tε,i(S) = {x ∈ ωε,i : Fi(x, (ε/d(x, S−ε,i)), (ε/d(x, S+
ε,i))) = 0},

for any S = (S1, . . . , Sk) ∈ YY, where we define ωε,i := E(S−ε,i) ∩ D(S+
ε,i),

S+
ε,i := {Ui+1(x) = ε}, and S−ε,i := {Ui(x) = 1 − ε}. Here, the functions Ui

solve (1.2) relative to S = (S1, . . . , Sk), and d(·, ·) denotes the Euclidian
distance between two sets (or a point and a set).

1.3. Fixed point problem. For any ε ∈ (0, 1), we seek S̃ε ∈ YY such that
T ε(S̃ε) = S̃ε.

Definition 1.4. We define the metric M in XXk(0) such that

(1.7) M(S1,S2) := inf{λ ≥ 0: exp(−λ)S1 ≤ S2 ≤ exp(λ)S1}
for any S1 = (S1,1, . . . , S1,k), S2 = (S2,1, . . . , S2,k) ∈ XXk(0), where, for
α > 0, we define the multisurface αS1 ∈ XXk(0) and the multi-surface in-
equalities S1 ≤ S2,S1 < S2 component-wise (αS1 = (αS1,1, . . . , αS1,k),
where αΣ := {αx : x ∈ Σ} for any set Σ ⊂ RN , and S1 ≤ S2 (resp.
S1 < S2) ⇔ S1,i ≤ S2,i (resp. S1,i < S2,i) for i = 1, . . . , k).

Our purpose is to study the convergence properties of the operator method
of successive approximations, in which, for any given initial multisurface
S0 ∈ YY and any given sequence (εn)∞n=0 of values in the interval (0, 1), the
sequence (Sn)∞n=0 of multisurfaces in YY is defined recursively such that

(1.8) Sn+1 = T (Sn; εn)

for n = 0, 1, 2, . . . . For the case where εn = ε ∈ (0, 1) and Sn = T n
ε (S0) for

all n, we will prove (under Assumptions (A1)-(A3)) that for all initial mul-
tisurfaces S0 ∈ YY having a specified degree of componentwise separation,
we have

(1.9) M(Sn, S̃ε) ≤ CαnM(T ε(S0),S0)

for all n ∈ N, where C > 0 and α ∈ (0, 1) are suitable constants and S̃ε ∈ YY
denotes the unique multi-surface solution of Problem 1.3 (see §7.11). This
establishes a geometric convergence rate for the fixed-ε iteration. Under the
additional assumption that the solution S̃ ∈ YY of Problem 1.1 exists as a
C1,1-multisurface, we prove (see §9.2) that

(1.10) M(S̃ε, S̃) → 0 as ε ↓ 0.

We will also prove (see §9.3) that if the classical solution S̃ ∈ YY of Problem
1.1 is a C1,1-multisurface, then

(1.11) M(Sn, S̃) → 0 as n→∞
provided that (εn)∞n=0 is any null sequence such that

∑∞
n=0 εn = ∞.
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The “operator method” is a trial free-boundary method, in the sense of
determining Sn+1 in terms of the capacitary potentials of the multisurface
Sn for each n ∈ N. For general discussions of trial free-boundary methods for
one-free-boundary problems in elliptic PDE’s, we refer the reader to Crank
[12] and Cryer [13]. Like any trial free-boundary method, the operator
method is highly geometric, in the sense that the iterates are all multisur-
faces. To the author’s knowledge, no other trial free-boundary method has
been applied to Problem 1.1, and no other has yielded to a general mathe-
matical convergence analysis.

This paper is devoted to proving (1.9), (1.10) and (1.11). Our main
proofs, in §§7, 9, are assembled componentwise, according to organizing
principles related to the construction of weighted metrics and of inner and
outer solutions, from several uniform 2-surface, 3-surface, and 4-surface op-
erator estimates developed for the purpose in §§3, 5, 6, 8. For the fixed
point results in §7, we first construct families of multisurfaces in YY, each
of which is an inner or outer solution of Problem 1.3 at all ε ∈ (0, 1) si-
multaneously. This is accomplished by multiple application of an estimate
for ordered triples of similar surfaces given in §3.1. Secondly, for any given
S ∈ YY and ε ∈ (0, 1), we show, by multiple application of a 4-surface sep-
aration estimate given in §5.1, that the component-surfaces of the operator
iterates T n

ε (S) are pairwise separated by a distance which is independent
of n ∈ N. Thirdly, for any fixed ε ∈ (0, 1), we apply a 3-surface operator
estimate obtained in §6.1 componentwise to construct a weighted multi-
surface metric M ε such that the operator T ε, applied to multisurfaces with
sufficiently-separated components, is a contraction relative to M ε. Once
the metric M ε has been constructed (for any fixed ε ∈ (0, 1)), the geomet-
ric convergence of the multi-surface operator iterates to the multi-surface
fixed point S̃ε easily follows by the familiar contraction-mapping principle.
The proof of (1.10) is a natural by-product of the proof of (1.11), which
we discuss next. In the first place, the proof of (1.11) does not follow from
the fixed-ε convergence results of §7, due to the critical dependence of the
multi-surface metric M ε on ε. Our proof of (1.11) is based on the construc-
tion in §9, by multiple application of 3-surface operator estimates in §8.4, of
continuously and monotonically-varying parametrized families of inner and
outer solutions of Problem 1.1, which we denote by S±(r), r ∈ [0, r0]. The
construction is such that S±(0) = S̃, S−(r0) ≤ S ≤ S+(r0) for all S ∈ YY,
and, for some constant C > 0 and null function z(·), we have

(1.12) T ε(S−(r)) ≥ S−(φ(r, ε)); T ε(S+(r)) ≤ S+(φ(r, ε))

for all r ∈ [0, r0] and ε ∈ (0, 1), where φ(r, ε) := (1 − Cε)r + εz(ε). The
second convergence theory is closely related to the first. The relationship is
perhaps best exhibited by the fact that {S ∈ YY : S−(r) ≤ S ≤ S+(r)} =
{S ∈ YY : M0(S, S̃) ≤ r} for all r ∈ (0, b0], where the weighted multi-surface
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metric M0 and the constant b0 > 0 are suitably chosen. Thus, the estimates
(1.12) are actually globally-applicable generalizations of the estimate:

(1.13) M0(T ε(S), S̃) ≤ (1− Cε)M0(S, S̃) + ε z(ε),

which holds for all ε ∈ (0, 1) and all S ∈ YY such that M0(S, S̃) ≤ b0.
Essentially, the estimate (1.13) introduces a uniform metric by restricting
attention to the distance of the operator iterates from the classical solution
S̃. This idea is not applicable in the fixed-point approach.

The author has previously studied the convergence of successive approx-
imations for the operator method for Problem 1.1 in the case of 2 layers
and one free surface (k = 1; see [3], [4, §4], [6]). Since the present multi-
surface operator definition consists of the componentwise application of the
earlier definition, it is important to emphasize that the present convergence
results do not follow by multiple (componentwise) application of the previ-
ous results or operator estimates. While the earlier papers treated operator
iterations of one free surface between two known C2-surfaces, nothing is
known about the immediate neighbors of a particular free surface in the
present context unless it follows from the analysis itself. For example, the
unknown neighboring free surfaces have no known smoothness properties,
because the operator has not been shown theoretically to preserve any par-
ticular degree of smoothness. Therefore, the present proof of (1.9) must
be based on operator estimates applicable to practically arbitrary 3-surface
configurations. Uniform separation of components, which was not an is-
sue in the one-free-surface case, is a key factor in this proof. While some
one-sided smoothness is retained in the construction of the inner and outer
solution families S±(r), r ∈ [0, r0], used in the proof of (1.11), the induc-
tive multi-surface constructions are necessarily very complex relative to the
2-layer case.

Remark 1.5. Recently, extensive numerical studies of the operator method
have been carried out in the work of Kadakal [15] and Acker, Kadakal, and
Miller [9]. Further study is in progress. These studies show that the opera-
tor method can be adapted to a variety of free boundary problems (including
the one-layer fluid problem with or without geometric constraints on the free
boundary, the two-layer fluid problem, and the Prandtl-Batchelor problem),
where it often converges quite quickly and painlessly even in geometric situa-
tions not quite covered by the author’s analytical convergence proofs. In this
context, the purpose of the present paper is to provide the full theoretical
justification for extending the same numerical methods to the multi-surface
case.

Remark 1.6. The author’s theoretical results for the operator method
do not answer the question of the best choice of the parameter εn at the
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n-th step of the iteration. Although it has not been shown that the op-
erator iterates Sn remain smooth, no computational examples have been
encountered in which they did not appear to do so. In view of this appar-
ent smoothness, one encounters the following trade-off in the application of
the operator T ε: It is preferable to choose ε ∈ (0, 1) large, because (a) the
forward progression of the multisurface induced by the operator application
is approximately proportional to ε, and (b) the difficulty of computing the
operator iteration increases as ε decreases, because the grid dimension in the
computation of the capacitary potentials must decrease correspondingly. On
the other hand, it is preferable for ε ∈ (0, 1) to be small, because the fixed
point S̃ε of T ε is then a more accurate approximation of the classical so-
lution S̃. Due to (a) and (b), it is important that the sequence (εn) not
approach zero too fast, since this would result in “apparent convergence” of
the iterates short of reaching the actual solution. It is also important that
(εn) not approach zero too slowly, since the accuracy of the n-th iterate
(as an approximation of the solution) will generally not be better than the
accuracy of the “fixed point” S̃ε at ε = εn. The following has proved to be
a safe, routine procedure (see [9, 15]): First iterate at a fixed, “large” value
of ε, such as ε = 1/2, until the iterates are near the fixed point S̃1/2, then
continue the iteration at a new, smaller value, such as ε = 1/4, until the
iterates approach the new fixed point S̃1/4, then reduce ε again, etc. (Of
course it would be wasteful to require too much accuracy of the fixed points
prior to the final one.) In this way, one can be sure that the iterates are close
to the classical solution S̃ when ε is small, and that the early iterations will
be accomplished very quickly. In the examples studied in [9, 15], the fixed
point at ε = 1/10 proved to be a good approximation to the free-boundary
solution. Another reasonable possibility is to choose εn+1 = f(En) for each
n, where f denotes some empirically-chosen, positive, increasing function,
and where En denotes the maximum forward progression accomplished by
the n-th iteration, divided by εn. Presumably, En is a reasonable measure
of the current error.

2. Definitions and preliminary results.

2.1. General notation and definitions. For any x0 ∈ RN and r ≥ 0, we
define the open ball B(x0; r) = {x ∈ RN : |x − x0| < r} and closed ball
B(x0; r) = {x ∈ RN : |x−x0| ≤ r}. For Σ,Σ0 ⊂ RN and x0 ∈ RN , we define
d(Σ,Σ0) = inf{|x − y| : x ∈ Σ, y ∈ Σ0} and d(x0,Σ) = d({x0},Σ). For any
set Σ and value α > 0, we use Cl (Σ) (resp. ∂Σ, Nα(Σ)) to denote the closure
(boundary, α-neighborhood) of Σ. The term “null function” denotes a fixed
but arbitrary continuous, strictly increasing function z(t) : [0, ∞) → R such
that z(0) = 0.
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2.2. Additional surface and multi-surface families and metrics. Let
X denote the family of all simple closed (N − 1)-dimensional hypersur-
faces S in RN , and let D(S) (resp. E(S)) denote the interior (exterior)
complement of S ∈ X. The partial orderings “<” and “≤” in X are de-
fined as in §1.1. For any values 0 ≤ <0 ≤ <1 < ∞, let X(<0,<1) de-
note the family of all surfaces S ∈ X(<0) such that S ⊂ B(0;<1). For
0 < ρ ≤ <0 < <1, let X−(<0,<1; ρ) (resp. X+(<0,<1; ρ)) denote the
family of all surfaces S ∈ X(<0,<1) such that S has an interior (resp. exte-
rior) tangent ball of radius ρ at every point. We also define X(<0,<1; ρ) =
X−(<0,<1; ρ) ∩ X+(<0,<1; ρ). For any S1, S2 ∈ X(<0,<1), we use the no-
tation min(S1, S2) ∈ X(<0,<1) (resp. max(S1, S2) ∈ X(<0,<1)) to de-
note the boundary of the region D(S1) ∩ D(S2) (resp. D(S1) ∪ D(S2)).
Clearly, min(S1, S2) ∈ X+(<0,<1; ρ) whenever S1, S2 ∈ X+(<0,<1; ρ),
and max(S1, S2) ∈ X−(<0,<1; ρ) whenever S1, S2 ∈ X−(<0,<1; ρ). If S ∈
X±(<0,<1; ρ), then αS ∈ X±(α<0, α<1;αρ) for any α > 0. For any
k ∈ N, we use XXk(<0,<1) (resp. XX±

k (<0,<1; ρ), XXk(<0,<1; ρ)) to de-
note the family of all multisurfaces S = (S1, . . . , Sk) ∈ Xk(<0,<1) (resp.
[X±(<0,<1; ρ)]k, Xk(<0,<1; ρ)) such that Si < Si+1 for i = 1, . . . , k − 1.
For any λ = (λ1, . . . , λk) ∈ (1,∞)k, we define the metric Mλ in XXk(0)
such that

(2.1) Mλ(S1,S2) := max{M(S1,i, S2,i)/ ln(λi) : i = 1, 2, . . . , k}
for any S1 = (S1,1, . . . , S1,k), S2 = (S2,1, . . . , S2,k) ∈ XXk(0), where

(2.2) M(S1, S2) := inf{λ ≥ 0: exp(−λ)S1 ≤ S2 ≤ exp(λ)S1}
for any S1, S2 ∈ X(0). Observe that for any λ ∈ (1,∞)k, the metric Mλ

is equivalent to the metric M of Eq. (1.7). Moreover, M e = M , where
e = (e, . . . , e) and e = exp(1).

2.3. Definitions for the operator method. Given S1, S2 ∈ X such that
S1 < S2 or S2 < S1, we use Ω(S1, S2) to denote the annular domain whose
boundary is S1 ∪ S2. We use U+ = U+(S1, S2;x) to denote the capacitary
potential in (the closure of) Ω = Ω(S1, S2), oriented such that U+(x) = 0
(resp. U+(x) = 1) on the inner (outer) boundary component of Ω(S1, S2).
We also define U−(S1, S2;x) = 1 − U+(S1, S2;x). Given ε ∈ (0, 1) and
surfaces S1, S2 ∈ X with S1 < S2 or S2 < S1, we define

(2.3) Φ±ε (S1, S2) : {x ∈ Ω(S1, S2) : U±(S1, S2;x) = ε} ∈ X.

Observe that for any 0 ≤ <0 < <1, we have Φ±ε (S1, S2) ∈ X(<0,<1)
whenever S1, S2 ∈ X(<0,<1) (see [6, Lemma 3.3]). Clearly, the surface
Φ±ε (S1, S2) lies between the surfaces S1 and S2, and Φ±ε (S1, S2) = Φ∓1−ε(S1,
S2). For ε ∈ (0, 1) and any surfaces S1, S2 ∈ X with S1 < S2, we define

(2.4) Ψε(S1, S2) := {x ∈ Ω(S1, S2) : f(x, (d(x, S1)/ε), (d(x, S2)/ε)) = 0}.
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Here, we define f(x, p, q) := F (x, 1/p, 1/q), where F (x, p, q) : RN × R+ ×
R+ → R denotes a given C1-function satisfying Assumptions (A1)-(A3) for
some given value <0 ≥ 0. For any <1 ∈ [<0,∞), it follows from these
properties that Ψε(S1, S2) ∈ X(<0,<1) whenever S1, S2 ∈ X(<0,<1) (see
[6, Lemma 3.3]). Finally, for any <1 ∈ [<0,∞), ε ∈ (0, 1), and (S−, S, S+) ∈
XX3(<0,<1), we define

(2.5) Tε(S−, S, S+) = Ψε(Φ−ε (S−, S), Φ+
ε (S, S+)) ∈ X(<0,<1).

Lemma 2.4. Let S1, S2, Ŝ1, Ŝ2 ∈ X denote surfaces such that S1 < S2,
Ŝ1 < Ŝ2, S1 ≤ Ŝ1, and S2 ≤ Ŝ2. Then, for any ε ∈ (0, 1), we have:

(a) Φ±ε (S1, S2) ≤ Φ±ε (Ŝ1, Ŝ2), where the inequality is strict unless S1 = Ŝ1

and S2 = Ŝ2, and
(b) Φ±ε (λS1, λS2) = λΦ±ε (S1, S2) for any λ > 0.

If actually S1, S2, Ŝ1, Ŝ2 ∈ X(0), then, for any ε ∈ (0, 1), we have:

(c) Ψε(S1, S2) ≤ Ψε(Ŝ1, Ŝ2), where the inequality is strict if either S1 < Ŝ1

or S2 < Ŝ2,
(d) Ψε(λS1, λS2) ≥ λΨε(S1, S2) for 0 < λ ≤ 1, and
(e) Ψε(λS1, λS2) ≤ λΨε(S1, S2) for λ ≥ 1.

Proof. See [6, Lemmas 3.8, 3.9, and 3.10].

Lemma 2.5. Let (S−, S, S+ ) and (Ŝ−, Ŝ, Ŝ+) be ordered triples in XX3(0).
Then, for any ε ∈ (0, 1), we have:

(a) Tε(S−, S, S+) ≤ Tε(Ŝ−, Ŝ, Ŝ+) if S ≤ Ŝ and S± ≤ Ŝ±, where the
inequality is strict unless S = Ŝ and S± = Ŝ±,

(b) Tε(λS−, λS, λS+) ≥ λTε(S−, S, S+) for 0 < λ ≤ 1,
(c) Tε(λS−, λS, λS+) ≤ λTε(S−, S, S+) for λ ≥ 1, and
(d)

M(Tε(S−, S, S+), Tε(Ŝ−, Ŝ, Ŝ+))(2.6)

≤ max{M(S, Ŝ),M(S−, Ŝ−),M(S+, Ŝ+)},

in terms of the metric of Eq. (2.2).

Proof. Parts (a), (b), (c) follow from Lemma 2.4, and part (d) follows from
parts (a), (c).

Remark 2.6. For each ε ∈ (0, 1), the mapping T ε(S) = T (S; ε) : YY → YY
introduced in Eqs. (1.5), (1.6) is also defined by

T ε(S) = T ε(S1, . . . , Sk)(2.7)

: = (Tε,1(S0, S1, S2), Tε,2(S1, S2, S3), . . . , Tε,k(Sk−1, Sk, Sk+1)),
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where S0 := S−∗ , Sk+1 := S+
∗ , and, for each i = 1, . . . , k, the definition of

Tε,i(Si−1, Si, Si+1) coincides with the definition of Tε(S−, S, S+) in §2.3, in
the case where S := Si ∈ X(<0), S± := Si±1 ∈ X(<0), and F := Fi. As a
direct consequence of Lemma 2.5(a), (d), the transformation T ε is monotone
and continuous, in the sense that T ε(S1) ≤ T ε(S2) whenever ε ∈ (0, 1) and
S1 ≤ S2 in YY, and M(T ε(S1),T ε(S2)) ≤ M(S1,S2) for all ε ∈ (0, 1) and
S1,S2 ∈ YY.

3. A three-similar-surface estimate.

Theorem 3.1. In the context of §2.3, for fixed values 0 < r ≤ <0 ≤ <1,
there exist a value η ∈ (0, 1) and a strictly-positive function g(t) : (0, η] →
R+ such that

(3.1) Tε(P−S, S, P+ S) ≥ exp[g(P+ − 1) ε]S

for all S ∈ X−(<0,<1; r), all ε ∈ (0, 1), and all values P± > 0 with 0 <
±(P± − 1) ≤ η and (1− P−) ≤ g(P+ − 1), and such that

(3.2) Tε(P−S, S, P+ S) ≤ exp[−g(1− P−) ε]S

for all S ∈ X+(<0,<1; r), all ε ∈ (0, 1), and all values P± > 0 with 0 <
±(P± − 1) ≤ η and (P+ − 1) ≤ g(1− P−).

Remark 3.2. Under the assumptions of Theorem 3.1, the assertion can
be restated as follows: There exist a value η0 ∈ (0, 1) and a strictly-positive
function g0(t) : (0, η0] → R+ such that Tε(S, P S, P P̂ S) ≥ exp[g0(P̂ −
1) ε]P S for all S ∈ X−(<0,<1; r), ε ∈ (0, 1), and values 1 < P ≤ P̂ ≤ 1+η0

satisfying (P−1) ≤ g0(P̂−1), and such that Tε(P P̂ S, P S, S) ≤ exp[−g0(1−
P̂ ) ε]P S for all S ∈ X+(<0,<1; r), ε ∈ (0, 1), and values 1−η0 ≤ P̂ ≤ P < 1
satisfying (1− P ) ≤ g0(1− P̂ ).

Lemma 3.3. In the context of §2.3:
(a) For any x ∈ RN and λ ∈ R+, there exists one and only one pair

(α, β) ∈ R2
+ such that f(x, α, β) = 0 and α+ β = λ.

(b) For a given compact set K ⊂ RN , let A(λ, µ) := sup(Q(λ, µ)) for any
0 < λ ≤ µ < ∞, where Σ(λ, µ) denotes the set of all ordered pairs
(α, β) ∈ R2

+ such that λ ≤ α + β ≤ µ and f(x, α, β) = 0 for some
x ∈ K, and where Q(λ, µ) := {(β/α), (α/β) : (α, β) ∈ Σ(λ, µ)} 6= ∅.

Then 0 < A(λ, µ) ≤ A(λ′, µ′) < ∞ whenever 0 < λ′ ≤ λ ≤ µ ≤ µ′ < ∞. It
follows that α ≤ A(λ, µ)β, β ≤ A(λ, µ)α, and

(3.3) λ/(1 +A(λ, µ)) ≤ α, β ≤ µA(λ, µ)/(1 +A(λ, µ))

for any (x, α, β) ∈ K × R2
+ such that λ ≤ α+ β ≤ µ and f(x, α, β) = 0.
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Proof. These results follow easily from Assumptions (A1), (A3).

Lemma 3.4. In the context of §2.3, let <1 ∈ R+ be given. Then

(3.4) d(Ψε(S−, S+), S±) ≥ δ0/(1 +A [(δ0/ε), (2ρ0/ε)])

uniformly for all values ε ∈ (0, 1) and 0 < δ0 < ρ0, and over all surfaces
S± ∈ X(0,<1) such that d(S−, S+) ≥ δ0 and d(x, S±) ≤ ρ0 for all x ∈
Ω(S−, S+).

Proof. Under the assumptions, we have δ0 ≤ d(S−, S+) ≤ d(x, S−) +
d(x, S+) ≤ 2ρ0 for all x ∈ Ω(S−, S+). Therefore, the assertion follows from
Lemma 3.3(b), where we set α = d(x, S−), β = d(x, S+), K = B(0;<1),
λ = δ0/ε, and µ = 2ρ0/ε.

Lemma 3.5. Given the values 0 < a0 < b0, there exist fixed values A±0 > 0
such that

(3.5) Φ±ε (S(r), S(p±r)) ≥ S(p±ε r)

for all ε ∈ (0, 1) and all values r, p± > 0 such that a0 ≤ p−r < r < p+ r ≤ b0,
where p±ε := 1 +A±0 (p± − 1) ε and S(r) := ∂B(0; r) for all r > 0.

Proof. Explicit calculations involving spherically-symmetric solutions of the
Laplace equation show that

Φ±ε (S(r), S(p±r)) = S(φ±ε r)

where we define φ±ε = φ±ε (p±) such that φ±ε = pε
± for N = 2, and φ±ε =

(1 + [p2−N
± − 1] ε)1/(2−N) for N ≥ 3. Further explicit calculations show that

(3.6) φ±ε ≥ p±ε := 1 +A±0 (p± − 1) ε

whenever (a0/b0) ≤ p− ≤ 1 ≤ p+ ≤ (b0/a0) and 0 < ε < 1, where we define
A±0 = (a0/b0)±(N−1) for N ≥ 2.

Lemma 3.6. Let the values 0 < <0 < <1 be given. Then for any S ∈
X(<0,<1), we have:

(3.7a,b) <0|t− 1| ≤ d(tx, S) ≤ <1|t− 1|;<0|t− 1| ≤ d(x, t S) ≤ <1|t− 1|

for x ∈ S and t > 0, and we have

(3.8) <0|t− 1| ≤ d(x, t S)− d(x, S) ≤ <1|t− 1|

for all x ∈ Cl(D(S)) and t ≥ 1, and for all x ∈ Cl(E(S)) and t ∈ (0, 1].
It follows from (3.8) that <0|t − 1| ≤ d(t x, S) − t d(x, S) ≤ <1|t − 1| for
x ∈ D(S) and t ∈ (0, 1], and for x ∈ E(S) and t ≥ 1.
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Proof. The inequalities (3.7a) follow easily from the properties of the sur-
faces S ∈ X(<0,<1). The inequalities (3.7b) follow from (3.7a) via the iden-
tity d(x, t S) = t d((x/t), S). For any x ∈ D(S) and t ≥ 1, it follows from
(3.7b) that

d(x, t S) ≤ d(x, S) + d(y, t S) ≤ d(x, S) + <1 (t− 1),

where y ∈ S is a point such that |y−x| = d(x, S). It also follows from (3.7b)
that

d(x, t S) = |x− y|+ |y − z| ≥ d(x, S) + d(y, t S) ≥ d(x, S) + <0 (t− 1)

for any given x ∈ D(S) and t ≥ 1, where y ∈ S and z ∈ t S are chosen such
that |z − x| = d(x, t S) and such that the points x, y, z are colinear. This
completes the proof of (3.8) in the case where x ∈ D(S) and t ≥ 1. The
proof of the alternate case is similar.

3.7. Proof of Theorem 3.1. We only prove the estimate (3.1), since the
proof of (3.2) is analogous. Let the surface S ∈ X−(<0,<1; r) be fixed. We
have that D(S) = ∪x∈ΣB(x; r), where Σ denotes the set of all x ∈ RN such
that B(x; r) ⊂ D(S). For any t > 0, let S(t) := ∂Ntr(Σ) = the boundary of
the tr-neighborhood of Σ. Thus S(1) = S. For all t > 1− (r/<1), we have

(3.9) S(1 + h±(t− 1)) ≤ tS ≤ S(1 + h∓(t− 1)) when ± (t− 1) > 0,

by Lemma 3.6, where h+ := (<0/r) and h− := (<1/r). Therefore

(3.10) P±S ≥ S(p±)

for 0 < ±(P± − 1) < η0 := (r/<1), where p± := 1 + h±(P± − 1). It follows
from (3.10) that for any x0 ∈ Σ, we have ∂B(x0; p±r) ≤ P±S under the
same assumptions. Choose η1 ∈ (0, η0] such that (1/2) ≤ p− < 1 < p+ ≤ 2
whenever 0 < ±(P± − 1) ≤ η1. Then, for 0 < ±(P± − 1) ≤ η1, Lemmas
2.4(a) and 3.5 (with a0 = r/2, b0 = 2r) imply that

(3.11) Φ±ε (S, P±S) ≥ Φ±ε (∂B(x0; r), ∂B(x0; p±r)) ≥ ∂B(x0; p±ε r)

for all ε ∈ (0, 1), where p±ε := 1 +A±0 (p±− 1)ε = 1 +A±0 h±(P±− 1)ε. Since
x0 is arbitrary in Σ, it follows from (3.11) that Φ±ε (S, P±S) ≥ S(p±ε ) for
0 < ±(P± − 1) ≤ η2, where η2 ∈ (0, η1] is small enough so that p−ε > 0. It
follows by Lemma 2.4(c) that

(3.12) Tε(P−S, S, P+S) ≥ Ψε(S(p−ε ), S(p+
ε ))

for 0 < ±(P±−1) ≤ η2 and ε ∈ (0, 1). Let α = α(P−, P+) := ((p+
ε −p−ε )/ε) =

α+ + α−, where α± = α±(P±) := ±((p±ε − 1)/ε) = ±A±0 h±(P± − 1) > 0.
For 0 < ±(P± − 1) ≤ η2 and ε ∈ (0, 1), we have

(3.13) d(S(p−ε ), S(p+
ε )) ≥ α r ε ≥ (p+

ε − 1) r = α+ rε,

(3.14) d(x, S(p−ε )) ≤ α rε for all x ∈ Ω(S(p−ε ), S(p+
ε )).
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In view of (3.14), Lemma 3.6 implies S(p+
ε ) ≤ [1 + (α rε/<0)]S(p−ε ), and

then that

(3.15) d(x, S(p+
ε )) ≤ d(x, [1 + (α rε/<0)]S(p−ε )) ≤ (<1/<0)α rε

for all x ∈ Ω(S(p−ε ), S(p+
ε )). Under the assumptions that 0 < ±(P±−1) ≤ η2

and α− < α+, it follows from (3.13), (3.14), (3.15), and Lemma 3.4 that

d(Σ,Ψε(S(p−ε ), S(p+
ε ))) = d(Σ, S(p−ε )) + d[S(p−ε ),Ψε(S(p−ε ), S(p+

ε ))]

≥ r + (2φ(α+)− α−)rε(3.16)

for all ε ∈ (0, 1), where we define

0 < φ(α+) := (α+/2[1 +A(α+ r, 4 (<1/<0)α+ r)]) < (α+/2),

and where we have used the fact that d(Σ, S(p−ε )) = p−ε r = (1−α− ε) r. Let

g1(P+ − 1) := ( r/<1A
−
0 )φ(α+(P+)),

g2(P+ − 1) := (C0 r/<1)φ(α+(P+)),

where C0 := min{1/3, (2<1/<0A
+
0 η2)} (so that (1 + t) ≥ exp(C0 t) when-

ever 0 ≤ t ≤ (A+
0 <0 η2/2<1), where the latter value is an upper bound for

(rφ(α+)/<1) over all P+ ∈ (1, η2]). Then

Tε(P−S, S, P+ S) ≥ (1 + (r/<1) (2φ(α+)− α−)ε)S(3.17)

≥ (1 + (r/<1)φ(α+) ε)S

= (1 + [g2(P+ − 1)/C0] ε)S

≥ exp[g2(P+ − 1) ε]S

whenever 0 < ±(P± − 1) ≤ η2, (1 − P−) ∈ (0, g1(P+ − 1)], and ε ∈ (0, 1),
where the first inequality in (3.17) follows from (3.9), (3.12), and (3.16). To
complete the proof of (3.1), we define g(t) := min{g1(t), g2(t)}, and observe
that all the above estimates are independent of S ∈ X−(<0,<1; r).

4. Variational estimates for capacitary potentials and their
boundary derivatives.

Theorem 4.1. Given the values 0 < <0 ≤ <1, 0 < µ0 < 1 < µ1, ε ∈ (0, 1),
and P > 1, there exist constants 0 < C0 ≤ C1 such that

(4.1) exp(C0 (β−α)) ≤ [U+(S1, αS2;x)/U+(S1, βS2;x)] ≤ exp(C1 (β−α))

uniformly for all α, β ∈ [µ0, µ1] and S1, S2 ∈ X(<0,<1) such that α < β,
PS1 < S2, and PS1 < αS2, and for all x ∈ Ω(S1,Φ+

ε (S1, αS2)). Also,

(4.2) exp(C0 (β−α)) ≤ [U−(βS1, S2;x)/U−(αS1, S2;x)] ≤ exp(C1 (β−α))

uniformly for all α, β ∈ [µ0, µ1] and S1, S2 ∈ X(<0,<1) such that α < β,
PS1 < S2, and Pβ S1 < S2, and for all x ∈ Ω(Φ−ε (βS1, S2), S2).
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Corollary 4.2. In the context of Theorem 4.1, under the assumptions for
(4.1), we have

exp(C0 (β − α)) ≤ [|∇U+(S1, αS2;x)|/|∇U+(S1, βS2;x)|](4.3)

≤ exp(C1 (β − α))

for all x ∈ S1 at which the derivatives exist. Under the assumptions for
(4.2), we have

exp(C0 (β − α)) ≤ [|∇U−(βS1, S2;x)|/|∇U−(αS1, S2;x)|](4.4)

≤ exp(C1 (β − α))

for all x ∈ S2 at which the derivatives exist.

Theorem 4.3. Given the values 0 < ρ < <0 < <1, 0 < P− < 1 < P+,
and 0 < µ0 < 1 < µ1, let (S−, S, S+) ∈ XX3(<0,<1) denote a fixed ordered
triple such that S ∈ X(<0,<1; ρ) and S− < P−S < S < P+ S < S+. For
any µ > 0, we define the surfaces

(4.5) S−(µ) = min(P−S, µS−);S+(µ) = max(P+S, µS
+).

Let Q±(x) = (1/|∇U±(x)|) on S, where U±(x) = U±(S, S±;x). Also let
Q±(µ;x) = (1/|∇U±µ (x)|) for any x ∈ S and µ > 0, where U±µ (x) =
U±(S, S±(µ);x) in the closure of the domain Ω±(µ) := Ω(S, S±(µ)). Then
there exist constants 0 < A0 ≤ A1 such that

(4.6) A(1/µ) ln(µ) ≤ Q+(µ;x)−Q+(x) ≤ A(µ) ln(µ)

uniformly for all x ∈ S and µ ∈ [µ0, µ1], and

(4.7) A(µ) ln(1/µ) ≤ Q−(µ;x)−Q−(x) ≤ A(1/µ) ln(1/µ)

uniformly for all x ∈ S and µ ∈ [µ0, µ1]. Here, we define A(µ) = A0 > 0 for
µ ∈ [µ0, 1] and A(µ) = A1 ≥ A0 for µ ∈ (1, µ1].

Lemma 4.4. Given 0 < <0 < <1, P > 1, and 0 < α < β < 1, there exists
a value λ > 1 such that Φ+

α (S1, λS2) ≤ Φ+
β (S1, S2) for all S1, S2 ∈ X :=

X(<0,<1) such that S2 ≥ PS1.

Proof. If the assertion is false, then there exist sequences (S1,n), (S2,n) of
surfaces in X and a sequence (λn) of values in (1,∞) such that λn ↓ 1 as
n→ ∞, and such that for each n ∈ N, it is true that S2,n ≥ P S1,n, but it is
not true that Φ+

α (S1,n, λnS2,n) ≤ Φ+
β (S1,n, S2,n). Now the polar-coordinate

representations of surfaces in X are equicontinuous and uniformly bounded.
Therefore, any sequence in X has a convergent subsequence, due to the
theorem of Ascoli-Arzela. By passing to a subsequence (still indexed by
n ∈ N) if necessary, we can assume that S1,n → S1 ∈ X and S2,n → S2 ∈ X
as n → ∞, where S2 ≥ PS1. Clearly Φ+

α (S1, S2) < Φ+
β (S1, S2), and it

is easily seen that Φ+
α (S1,n, λnS2,n) → Φ+

α (S1, S2) and Φ+
β (S1,n, S2,n) →
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Φ+
β (S1, S2), both as n → ∞. Therefore, Φ+

α (S1,n, λnS2,n) < Φ+
β (S1,n, S2,n)

for all sufficiently large n ∈ N, contradicting our choice of the sequences
(S1,n), (S2,n), and (λn). Therefore the assertion holds.

Lemma 4.5. Let 0 < <0 < <1 and P > 1 be given. Then:
(a) For any α, β ∈ [0, 1] such that α < β, there exists a value d0 > 0 such

that d(Φ+
α (S1, S2),Φ+

β (S1, S2)) ≥ d0 for all S1, S2 ∈ X := X(<0,<1)
such that S2 ≥ PS1.

(b) For any α, β ∈ (0, 1) with α ≤ β, the derivative |∇U+(S1, S2;x)| is
bounded above, uniformly over all S1, S2 ∈ X such that P S1 < S2, and
over all x ∈ Ω(S1, S2) such that α ≤ U+(S1, S2;x) ≤ β.

Proof. For any surfaces S1, S2 ∈ X such that S2 ≥ PS1, we have S1(x0) ≤
S1 and S2(x0) ≤ S2 for all x0 ∈ S1. Here, we define S1(x0) = ∂H(x0)
and S2(x0) = ∂Nδ(H(x0)) for all x0 ∈ A := B(0;<1)\B(0;<0), where
δ = <0(P −1) and H(x0) denotes the convex hull of the set {x0}∪B(x1;µ),
where x1 = (1 − (<0/|x0|))x0 and µ = <2

0/<1. For given α ∈ (0, 1), we
have d0(α) := d(S1(x0),Φ+

α (S1(x0), S2(x0))) > 0 for all x0 ∈ A, due to
the congruence of the annular domains Ω(S1(x0), S2(x0)), x0 ∈ A. Since
Φ+

α (S1, S2) ≥ Φ+
α (S1(x0), S2(x0)) for all x0 ∈ S1 by Lemma 2.4(a), it fol-

lows that d(S1,Φ+
α (S1, S2)) ≥ d0(α) for all S1, S2 ∈ X such that S2 ≥

PS1. One can show analogously that d(S2,Φ+
α (S1, S2)) ≥ d1(α) > 0 for

α ∈ (0, 1) and for all S1, S2 ∈ X such that S2 ≥ PS1. Part (b) follows
easily from these estimates, in view of the fact that |∇U+(S1, S2;x)| ≤
N/min{d(S1,Φ+

α (S1, S2)), d(S2,Φ+
β (S1, S2))} for any S1, S2 ∈ X such that

S1 < S2, and any x ∈ Ω(S1, S2) such that α ≤ U+(S1, S2;x) ≤ β (see [14,
Thm. 2.10]). Part (a) follows from this.

Lemma 4.6. Given 0 < <0 < <1 and P > 1, there exist constants 0 <
m ≤M such that

(4.8) m ≤
∫

Si

|∇U+(S1, S2; x)| (x · ∇U+(S1, S2; x)) dσ ≤M

for i = 1, 2, uniformly for all C2-surfaces S1, S2 ∈ X := X(<0,<1) such
that S2 ≥ PS1, where dσ denotes differential area of the (N−1)-dimensional
hypersurface.

Proof. Given the C2-surfaces S1 < S2 in X, let U(x) = U+(S1, S2; x) in
Ω := Ω(S1, S2). By the Cauchy-Schwarz inequality, we have∫

Si

|∇U(x)| (x · ∇U(x)) dσ =
∫

Si

|∇U(x)|2 (x · ν) dσ

≥

((∫
Si

|∇U(x)| (x · ν) dσ
)2/∫

Si

(x · ν) dσ

)
(4.9)
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for i = 1, 2, where ν denotes the exterior normal to Si (thus ν = ∇U/|∇U |).
However, it follows from Si ∈ X that x · ν ≥ <0 for all x ∈ Si, i = 1, 2. Also,
we have

(4.10) K(S1, S2) ≥ K(∂B(0; <0), ∂B(0; <1)) > 0

uniformly for all S1, S2 ∈ X with S1 < S2, whereK(S1, S2) :=
∫
S1
|∇U |dσ=∫

S2
|∇U |dσ denotes the capacity of the annular domain Ω = Ω(S1, S2). Also,

it follows easily by the divergence theorem that

(4.11)
∫

Si

(x · ν) dσ ≤ (2πN/2/Γ(N/2))<N
1

for i = 1, 2, where Γ(·) denotes the gamma function and (2πN/2/N Γ(N/2))
is the volume of the unit ball in RN . In view of (4.10) and (4.11), it follows
from (4.9) that∫

Si

|∇U(x)| (x · ∇U(x)) dσ

≥ Γ(N/2) <2
0K

2(∂B(0; <0), ∂B(0; <1))/(2πN/2 <N
1 ),

for i = 1, 2, which establishes the uniform lower bound asserted in (4.8). To
establish the uniform upper bound in (4.8) in the case where i = 2, we first
observe that Û(x) = 2U(x)−1 in Ω̂ := Ω(Ŝ, S2), where Ŝ = {U = 1/2} and
Û is the capacitary potential in Ω̂. Thus, by Lemma 4.5 (b), there exists a
constant C0 > 0 such that

|∇Û(x)| = 2|∇U(x)| ≤ C0

for all x ∈ Ŝ, independent of admissible S1, S2 ∈ X. By a direct scaling argu-
ment, we have K(tŜ, tS2) = tN−2K(Ŝ, S2) for all t > 0, where K(tŜ, tS2)
denotes the capacity of the domain t Ω̂ = Ω(tŜ, tS2). For any admissible
S1, S2 ∈ X, it follows by application of the well-known Poincaré variational
formula for capacity that

0 ≤ (N − 2)K(Ŝ, S2) = ((d/dt)K(tŜ, tS2))t=1

=
∫

bS |∇Û(x)|(x · ∇Û(x)) dσ −
∫

S2

|∇Û(x)| (x · ∇Û(x)) dσ.

The uniform upper bound follows.

4.7. Proof of Theorem 4.1. We will only prove (4.1), since the proof of
(4.2) is analogous. For given ε ∈ (0, 1), let εi = ε+ (i/6) η for i = 1, . . . , 5,
where η := 1 − ε. By Lemma 4.5(a), the surfaces S1, S2, and Φ+

εi
(S1, S2),

i = 1, . . . , 5, are all pairwise uniformly separated, independent of S1, S2 ∈
X̃ := X(<0, µ1<1) such that PS1 ≤ S2. Let µ∗ ∈ (0, 1) denote the smallest
positive value such that

(4.12a,b) Φ+
ε5

(S1, µ∗S2) ≥ Φ+
ε4

(S1, S2); Φ+
ε2

(S1, µ∗S2) ≥ Φ+
ε1

(S1, S2)
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for all surfaces S1, S2 ∈ X̃ such that PS1 < S2, and let µ∗ ∈ (1, ∞) denote
the largest value such that

(4.13) Φ+
ε2

(S1, µ
∗S2) ≤ Φ+

ε3
(S1, S2)

for all S1, S2 ∈ X̃ such that PS1 < S2. The values µ∗ ∈ (0, 1) and µ∗ ∈ (1,∞)
both exist by Lemma 4.4. By (4.12a) and the uniform separation property,
there exist constants 0 < C2 ≤ C3 such that

(4.14) C2 ≤ G(S1, µS2;x0, x) ≤ C3

uniformly for all S1, S2 ∈ X̃ such that PS1 ≤ S2, all µ ∈ [µ∗, µ∗], all x0

such that ε1 ≤ U+(S1, S2;x0) ≤ ε3, and all x such that U+(S1, µS2;x) = ε5,
where G(S1, µS2;x0, x) denotes Green’s function in the domain Ω(S1, µS2).

For a fixed, but arbitrary pair of surfaces S1, S2 ∈ X̃ such that PS1 < S2

and S2 is a C2-surface, we define U(x) := U+(S1, S2;x) in the closure of
Ω := Ω(S1, S2), and let U(µ;x) := U+(S1, µS2;x) in the closure of Ω(µ) :=
Ω(S1, µS2) for any µ > 0 such that µS2 > S1. For any fixed µ̂ > µ∗, let z0(·)
denote a null function such that

max {U(µ;x) : x ∈ (µ/µ̂)S1} ≤ max {U(µ̂;x) : x ∈ (µ/µ̂)S1} ≤ z0(µ− µ̂)

for µ ≥ µ̂. It is easily verified that the inequality

(4.15) 0 ≤ U(µ;x)− U(µ̂; (µ̂ x/µ)) ≤ z0(µ− µ̂) [1− U(µ̂; (µ̂ x/µ))]

holds for sufficiently small µ > µ̂ and for all x ∈ (µ/µ̂)S1 ∪ µS2. Therefore
(4.15) holds for all x in Ω((µ/µ̂ )S1, µS2), by the maximum principle. In view
of the assumed smoothness of S2 (which implies the uniform continuity of
the function ∇U(µ̂;x) in a neighborhood of µ̂ S2 relative to Cl (Ω(µ̂)); see
[14, Thm. 8.34]), it follows from (4.15) that

(4.16) max {|U(µ;x)− U(µ̂; (µ̂ x/µ))| : x ∈ µ̂ S2} ≤ (µ− µ̂) z1(µ− µ̂)

as µ ↓ µ̂, where z1(·) denotes a particular null function. We define the
function

V (µ̂, µ;x) = [U(µ;x)− U(µ̂;x)]/(µ− µ̂)
in Cl (Ω(µ̂)) for µ > µ̂. Then for all x ∈ µ̂ S2, we have

lim
µ↓bµ V (µ̂, µ;x) = lim

µ↓bµ ([U(µ̂; (µ̂ x/µ))− U(µ̂;x)]/(µ− µ̂))(4.17)

= −([x · ∇U(µ̂;x)]/µ̂),

where the first equation follows from (4.16) and the second equation can be
directly verified by using the known regularity of the function U(µ̂; ·). Ob-
serve that the convergence in (4.17) is uniform over all x ∈ µ̂ S2. Obviously,
we also have that V (µ̂, µ;x) = 0 for x ∈ S1 and ∆V (µ̂, µ;x) = 0 in Ω(µ̂),
both for any µ > µ̂. It follows by the maximum principle that

(4.18) max{|V (µ̂, µ;x)−W (µ̂;x)| : x ∈ Cl(Ω(µ̂))} → 0
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as µ ↓ µ̂, where W (µ̂;x) denotes the unique solution of the boundary value
problem:

(4.19) ∆W (µ̂;x) = 0 in Ω(µ̂),

(4.20) W (µ̂;S1) = 0; W (µ̂;x) = −([x · ∇U(µ̂;x)]/µ̂) for all x ∈ µ̂ S2.

By Green’s second identity, we have

(4.21) W (µ̂;x0) =
∫

bµ S2

|∇xG(µ̂;x0, x)|W (µ̂;x) dσ

for all x0 ∈ Ω(µ̂), where G(µ̂;x0, x) := G(S1, µ̂S2;x0, x). It follows from
(4.14) that

(4.22) (6C2/η) (1− U(µ̂ ;x)) ≤ G(µ̂ ;x0, x) ≤ (6C3/η) (1− U(µ̂ ;x))

if ε1 ≤ U(x0) ≤ ε3, and if either U(µ̂;x) = ε5 or U(µ̂;x) = 1. Therefore
(4.22) holds whenever ε1 ≤ U(x0) ≤ ε3 and ε5 ≤ U(µ̂;x) ≤ 1, by the
maximum principle for harmonic functions. Therefore, we have

(4.23) (6C2/η) |∇U(µ̂;x)| ≤ |∇xG(µ̂;x0, x)| ≤ (6C3/η) |∇U(µ̂ ;x)|
for all x ∈ µ̂ S2, and for all x0 ∈ Ω such that ε1 ≤ U(x0) ≤ ε3. Since
W (µ̂;x) < 0 throughout Cl (Ω(µ̂)), it follows from (4.20), (4.21), and (4.23)
that

6C2

∫
bµS2

|∇U(µ̂ ;x)| |W (µ̂ ;x)|dσ ≤ η |W (µ̂ ;x0)|

≤ 6C3

∫
bµS2

|∇U(µ̂ ;x)| |W (µ̂ ;x)| dσ(4.24)

provided that ε1 ≤ U(x0) ≤ ε3. In view of Lemma 4.6 and the definition of
the function W (µ̂;x), it follows from (4.24) that

(4.25) (6mC2/η) ≤ µ̂ |W (µ̂;x0)| ≤ (6M C3/η)

for ε1 ≤ U(x0) ≤ ε3, where m and M denote the constants in Lemma 4.6
in the case where <1 is replaced by µ1<1. Now for any fixed x0 ∈ Ω with
ε1 ≤ U(x0) ≤ ε3, the function φ(µ) := U(µ;x0) (defined for all µ > 0 such
that x0 ∈ Ω(µ)) is clearly continuous. It follows from (4.18) and (4.25) that

(4.26) (6mC2/µ̂ η) ≤ −Dµ φ(µ̂ ) := −Dµ U(µ;x0)|µ=bµ ≤ (6M C3/µ̂ η),

where Dµ denotes either of the two right-handed Dini derivatives with re-
spect to the variable µ. It follows from (4.26) via a well-known estimate in-
volving Dini derivatives of continuous functions that for any α, β ∈ [µ∗, µ∗]
with α < β, we have

(6mC2/µ
∗ η) (β − α) ≤ φ(α)− φ(β)(4.27)

= U(α;x0)− U(β;x0) ≤ (6MC3/µ∗ η) (β − α)
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for any x0 ∈ Ω with ε1 ≤ U(x0) ≤ ε3. In view of (4.12b), (4.13), it follows
from (4.27) that

(4.28) (6mC2/µ
∗ηε2) (β − α)U(α;x) ≤ U(α;x)− U(β;x)

for all α, β ∈ [µ∗, µ∗] with α < β, and all x ∈ Cl (Ω(α)) such that U(α;x) = 0
or U(α;x) = ε2, and that

(4.29) U(α;x)− U(β;x) ≤ (6MC3/µ∗ηε2) (β − α)U(β;x)

for all α, β ∈ [µ∗, µ∗] with α < β, and all x ∈ Cl (Ω(β)) such that U(β;x) = 0
or U(β;x) = ε2. It follows by the maximum principle that (4.28) holds
uniformly in {0 ≤ U(α;x) ≤ ε2}, and that (4.29) holds uniformly in {0 ≤
U(β;x) ≤ ε2}. Since the surfaces S1 ∈ X̃ and S2 ∈ X̃ ∩ C 2 used in the
definition of the functions U(µ;x) were arbitrary apart for the requirement
that PS1 < S2, it follows from (4.28) and (4.29) that

C0 U
+(S1, αS2;x) ≤

(
[U+(S1, αS2;x)− U+(S1, βS2;x)]/[β − α]

)
≤ C1 U

+(S1, βS2;x)(4.30)

for any S1 ∈ X̃, S2 ∈ X̃ ∩ C2 and α, β ∈ [µ∗, µ∗] such that α < β,
PS1 < S2 and PS1 < αS2, and for any x ∈ Ω(S1,Φ+

ε2
(αS2)), where C0 =

(6mC2/µ
∗ηε2) and C1 = (6MC3/µ∗ηε2). In (4.30), the assumption that

S2 ∈ C2 is easily eliminated by invoking the continuous dependence of the
function U+(S1, µS2;x) on S2 ∈ X̃ (such that PS1 < µS2). Therefore

(4.31) C0 ≤ −Dµ ln (U+(S1, µS2;x)) ≤ C1

for any S1, S2 ∈ X̃ and µ ∈ [µ∗, µ∗] such that PS1 < S2 and PS1 < µS2,
and for any x ∈ Ω(S1,Φ+

ε2
(µS2)), where Dµ denotes any one of the four

Dini derivatives. For the particular case where µ0 = µ∗ and µ1 = µ∗, the
assertion follows by integrating (4.31). The original assertion now follows
by multiple application of this result.

4.8. Proof of Theorem 4.3. We will prove only (4.6), since the proof
of (4.7) is analogous. It is easily seen by a barrier argument that there
exist constants 0 < C2 ≤ C3 such that (1/C3) ≤ |∇U+(µ;x)| ≤ (1/C2) for
µ ∈ [µ0, µ1] and x ∈ S. Thus

(4.32) C2 ≤ Q+(µ;x) ≤ C3

for µ ∈ [µ0, µ1] and x ∈ S. Choose µ∗ ∈ [µ0, 1) such that µ∗S+ > P+S. Since
S+(µ) = µS+ for µ ∈ [µ∗, µ1], it follows from Corollary 4.2 (Eq. (4.3))
that there exist constants 0 < C0 ≤ C1 (the same ones appearing in Eqs.
(4.1)-(4.4)) such that

(4.33) exp(C0 (µ− 1)) ≤ (Q+(µ;x)/Q+(x)) ≤ exp (C1 (µ− 1))

for µ ∈ [1, µ1], and

(4.34) exp (C0 (1− µ)) ≤ (Q+(x)/Q+(µ;x)) ≤ exp(C1 (1− µ))



MULTI-SURFACE PROBLEMS 19

for µ ∈ [µ∗, 1]. For µ ∈ [µ0, µ∗], we have

S+(µ) ≤ S+(µ∗) ≤ (µ∗/µ)S+(µ),

from which in follows by maximum principles that

0 < V +(µ;x) := U+(S, (µ∗/µ)S+(µ);x) ≤ U+(µ∗;x) ≤ U+(µ;x)

in Ω+(µ), and therefore that

(4.35) |∇V +(µ;x)| ≤ |∇U+(µ∗;x)| ≤ |∇U+(µ;x)|
for all x ∈ S. Since S+(µ) ∈ X(<0,<1), it follows from (4.35), and from
(4.3) in the case where S1 := S, S2 := S+(µ), α = 1, and β = (µ∗/µ), that

1 ≤ (Q+(µ∗; x)/Q+(µ; x)) ≤ (|∇U+(µ; x)|/|∇V +(µ;x)|)(4.36)

≤ exp((C1/µ0)(µ∗ − µ))

for x ∈ S and µ ∈ [µ0, µ∗]. We have

(4.37) exp (C5 (µ− 1)) ≤ (Q+(µ;x)/Q+(x)) ≤ exp (C4 (µ− 1))

for C4 = ((1 − µ∗)C0/(1 − µ0)) ∈ (0, C0], C5 = (C1/µ0) > C1, µ ∈ [µ0, 1],
and x ∈ S. In fact (4.37) follows from (4.34) if µ ∈ [µ∗, 1]. For the case where
µ ∈ [µ0, µ∗], (4.37) follows from (4.36) and (4.34), where we set µ = µ∗ in
(4.34). It follows directly from (4.33) that

(4.38) exp (C4 (µ− 1)) ≤ (Q+(µ;x)/Q+(x)) ≤ exp (C5 (µ− 1))

for x ∈ S and µ ∈ [1, µ1]. It then follows from (4.32), and from the theorem
of the mean applied to the equivalent logarithmic forms of (4.37) and (4.38),
that

(4.39) (C2C4) (µ− 1) ≤ Q+(µ; x)−Q+(x) ≤ (C3C5) (µ− 1)

for x ∈ S, and µ ∈ [1, µ1], and

(4.40) (C3C5) (µ− 1) ≤ Q+(µ; x)−Q+(x) ≤ (C2C4) (µ− 1)

for x ∈ S and µ ∈ [µ0, 1]. The assertion (4.6) (with A0 = (µ0C2C4) and
A1 = (µ1C3C5)) follows from (4.39) and (4.40), in view of the fact that

(µ− 1) (µ− 1− µ1 ln (µ)) ≤ 0 ≤ (µ− 1) (µ− 1− µ0 ln (µ))

for all µ ∈ [µ0, µ1].

5. A uniform separation estimate.

Theorem 5.1. Let the values 0 < <0 ≤ <1 and κ > 0 be given. For
any values δ, δ± ∈ (0, κ], let Y(δ−, δ, δ+ ) denote the family of all ordered
4-tuples S = (S−0 , S

−, S+, S+
0 ) ∈ XX4(<0,<1) such that d(S−, S+ ) ≥ δ and

d(S±, S±0 ) ≥ δ±. Let F±(x, p, q) : RN×R+×R+ → R denote given functions
satisfying Assumptions (A1)-(A3). For any ε ∈ (0, 1), δ, δ± ∈ (0, κ], and S =
(S−0 , S

−, S+, S+
0 ) ∈ Y(δ−, δ, δ+), let the surfaces T−ε (S−0 , S

−, S+) ∈ X :=
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X(<0,<1) and T+
ε (S−, S+, S+

0 ) ∈ X be as defined in §2.3, where we set F :=
F±(x, p, q). Then there exists a strictly positive function h0(t, ε0, ε1) : (0, κ]×
(0, 1)× (0, 1) → R+ such that for any given values ε0, ε1 with 0 < ε0 < ε1 <
1, we have

(5.1) d(T−ε (S−0 , S
−, S+), T+

ε (S−, S+, S+
0 )) ≥ δ

for all ε ∈ [ε0, ε1], all values δ, δ± ∈ (0, κ] such that either δ ∈ (0, h0(δ+, ε0,
ε1)] or δ ∈ (0, h0(δ−, ε0, ε1)], and all ordered 4-tuples S = (S−0 , S

−, S+, S+
0 )∈

Y(δ−, δ, δ+).

Lemma 5.2. For given values 0< <0 ≤ <1 and δ >0, let S = (S−0 , S
−, S+,

S+
0 ) ∈ XX4(<0,<1) be such that d(S−, S+) ≥ δ. For fixed ε ∈ (0, 1), and for

all σ± ∈ X := X(<0,<1) such that S− ≤ σ− < σ+ ≤ S+, let t−ε (σ−) :=
T−ε (S−0 , σ

−, S+) ∈ X and t+ε (σ+) := T+
ε (S−, σ+, S+

0 ) ∈ X, where the op-
erators T±ε are defined as in §2.3, in terms of given functions F±(x, p, q)
satisfying Assumptions (A1)-(A3). Assume that d(σ∓, t±ε (σ±)) ≥ λA± for
all λ ∈ (0, δ] and all surfaces σ± ∈ X such that S− ≤ σ− < σ+ ≤ S+ and
d(σ−, σ+) ≥ λ, where the values A± > 0 are fixed. Then

(5.2) d(T−ε (S−0 , S
−, S+), T+

ε (S−, S+, S+
0 )) = d(t−ε (S−), t+ε (S+)) ≥ C δ,

where C = min{1, A−, A+}max{A−, A+}.

Proof. We will prove the assertion only in the case where A− ≥ A+,
since the opposite case is analogous. Since d(S−, S+) ≥ δ, we have that
d(S−, t+ε (S+)) ≥ A+ δ ≥ λ := δmin{1, A+} by assumption. In view of this,
we have

(5.3) t+ε (S+) ≥ S+
λ := ∂Nλ(D(S−)) ∈ X(λ) := X(<0 + λ,<1 + λ),

where S+
λ ≤ S+ because λ ≤ δ. Let S−λ,λ := ∂Nλ(E (S+

λ )) ∈ X. Then S−λ,λ ≥
S−, since d(x, S+

λ ) ≥ d(S−, S+
λ ) = λ for all x ∈ S−. Since d(S+

λ , S
−
λ,λ) ≥ λ,

we have that d(S+
λ , t

−
ε (S−λ,λ)) ≥ µ := A− λ by assumption. In view of this,

we have

(5.4) t−ε (S−) ≤ t−ε (S−λ,λ) ≤ S−λ,µ := ∂Nµ(E (S+
λ )) ∈ X(λ− µ)

by Lemma 2.5(a). It follows from (5.3) and (5.4) that

d(t−ε (S−), t+ε (S+)) ≥ d(S−λ,µ, S
+
λ ) ≥ µ := A−λ = A−min{1, A+} δ,

which is (5.2) in the case 0 < A+ ≤ A−.

Lemma 5.3. Let K = K(ρ, r0, ν0) denote the convex hull of the set {0} ∪
B(r0 ν0; ρ), where the constants 0 < ρ < r0 and the unit vector ν0 are fixed.
Let S0 = ∂K, and let Sδ = ∂Nδ(K) for any δ > 0. Given a (large) positive
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constant κ, let φ(ε) := min{(|x|/2κ) : x ∈ Φ+
ε (S0, S2κ)} for each ε ∈ [0, 1].

Then, in the context of §2.3, with <0 = 0, we have

(5.5) Tε(S0, Sδ, Sα) ≥ ∂B(0;λ δ)

for any δ, δ0 ∈ (0, κ] and 0 < ε ≤ ε1 < 1, where α := δ + δ0 and we set λ =
φ(1− ε1). Also, there exists a strictly-positive function h(λ, δ0, ε0) : [1,∞)×
(0, κ] × (0, 1) → R+ such that h(λ, δ0, ε0) < δ0, and such that (5.5) holds
whenever δ0 ∈ (0, κ], λ ≥ 1, 0 < ε0 ≤ ε < 1, and δ ∈ (0, h(λ, δ0, ε0)].

Proof. We have that µSt ≤ Sµt for any t ≥ 0 and 0 < µ ≤ 1. In view of
Lemma 2.4(a),(b), it follows that

Φ−ε (S0, Sδ) ≥ Φ−ε ((δ/η)S0, (δ/η)Sη)(5.6)

= (δ/η) Φ−ε (S0, Sη) ≥ ∂B(0; δ φ(1− ε)),

Φ+
ε (Sδ, Sα) ≥ Φ+

ε (S0, Sα) ≥ Φ+
ε ((α/η)S0, (α/η)Sη)(5.7)

= (α/η) Φ+
ε (S0, Sη) ≥ ∂B(0;αφ(ε))

for any ε ∈ (0, 1) and 0 < δ < α ≤ η := 2κ. Obviously

(5.8) Tε(S0, Sδ, Sα) ≥ Φ−ε (S0, Sδ) ≥ ∂B(0; δ φ(1− ε)) ≥ ∂B(0; δ φ(1− ε1))

for any 0 < δ < α ≤ η and 0 < ε ≤ ε1 < 1, due to (5.6). By (5.6), (5.7), and
Lemmas 2.5(a) and 3.4, we have

Tε(S0, Sδ, Sα) ≥ Ψε(∂B(0; δ φ(1− ε)), ∂B(0;αφ(ε)))(5.9)

≥ ∂B(0; ([αφ(ε) + δ Aφ(1− ε)]/[1 +A]))

≥ ∂B(0; [δ0 φ(ε0)/(1 +A)])

for any 0 < δ < α ≤ η and 0 < ε0 ≤ ε < 1, where A = A([αφ(ε) − δ φ(1 −
ε)]/ε). If we assume that δ0 ∈ (0, κ] and 0 < δ < δ0 min{1, [φ(ε0)/2φ(1 −
ε0)]}, then we have

(5.10) (δ0 φ(ε0)/2) ≤ ([αφ(ε)− δ φ(1− ε)]/ε) ≤ (η/ε0),

from which it follows that A = A([δ0 φ(ε0)/2], [η/ε0]) in (5.9). The assertion
(5.5) now follows easily from (5.8), (5.9), and (5.10).

5.4. Proof of Theorem 5.1. For any point x0 ∈ B(0;<1)\B(0;<0), we
define K±(x0) to be the convex hull of the set {x0}∪B((1±(r0/|x0|))x0; ρ),
where the constants 0 < ρ < r0 are fixed such that r0 ≤ <0 and (ρ/r0) ≤
(<0/<1).We set S±(x0) := ∂K±(x0) and S±(x0; δ) := ∂Nδ(K±(x0)) for δ >
0. Let F±0 (p, q) : R 2

+ → R denote fixed, continuously-differentiable functions
satisfying Assumptions (A1)-(A3), and such that±(F±0 (p, q)−F±(x, p, q)) ≥
0 for all x ∈ B(0; 2<1) and all p, q > 0. For any ε ∈ (0, 1), δ, δ± ∈ (0, κ],
4-tuple S = (S−0 , S

−, S+, S+
0 ) ∈ Y(δ−, δ, δ+), and x0 ∈ S−, let the surfaces

T+
0,ε(S

−, S+, S+
0 ) ∈ X and T+

0,ε(S
−(x0; 0), S−(x0; δ), S−(x0; δ + δ+)) ∈ X

be defined by Eqs. (2.3), (2.4), and (2.5), where we choose F (x, p, q) :=
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F+
0 (p, q). (The latter surface is in X because it is starlike relative to a suffi-

ciently small ball centered at x0.) Then

S−(x0) ≤ S−, S−(x0; δ) ≤ S+, S−(x0; δ + δ+) ≤ S+
0 ,

from which it follows by Lemma 2.5(a) (in a slightly generalized context
admitting the same proof) and Lemma 5.3 that for any given ε0, ε1 ∈ (0, 1),
we have

T+
ε (S−, S+, S+

0 ) ≥ T+
0,ε(S

−, S+, S+
0 )(5.11)

≥ T+
0,ε(S

−(x0), S−(x0; δ), S−(x0; δ + δ+))

≥ ∂B(x0;λ δ)

if ε ∈ (0, ε1], λ = φ(1 − ε1), and x0 ∈ S−, or if ε ∈ [ε0, 1), λ ≥ 1, δ ∈
(0, h(λ, δ+, ε0)], and x0 ∈ S−. Since x0 is arbitrary in S−, it follows from
(5.11) that

(5.12) d(S−, T+
ε (S−, S+, S+

0 )) ≥ λ δ

if ε ∈ (0, ε1] and λ = φ(1−ε1), or if ε ∈ [ε0, 1), λ ≥ 1, and δ ∈ (0, h(λ, δ+, ε0)].
Only for the remainder of this proof, we extend the partial ordering in X
to the family X0 := {S ∈ X : 0 /∈ S} (where 0 denotes the origin) in such a
way that S1 ≤ S2 (resp. S1 < S2) if G(S1) ⊂ G(S2)(Cl (G(S1)) ⊂ G(S2)),
where G(Si) denotes the connected component of the complement of Si

(in RN ) which contains the origin. For any δ, δ± ∈ (0, κ], ε ∈ (0, 1),
S = (S−0 , S

−, S+, S+
0 ) ∈ Y(δ−, δ, δ+), and x0 ∈ S+, let the surfaces

T−0,ε(S
−
0 , S

−, S+ ) ∈ X and T−0,ε(S
+(x0; δ + δ−), S+(x0; δ), S+(x0)) ∈ X0 be

defined by Eqs. (2.3), (2.4), and (2.5), where “<” and “≤” are interpreted
in the present sense, and where we set F (x, p, q) = F−0 (p, q). Since

S+ ≤ S+(x0), S− ≤ S+(x0; δ), S−0 ≤ S+(x0; δ + δ−),

it follows from Lemma 2.5(a) (in a generalized context permitting the same
proof) and Lemma 5.3 that

T−ε (S−0 , S
−, S+) ≤ T−0,ε(S

−
0 , S

−, S+)(5.13)

≤ T−0,ε(S
+(x0; δ + δ−), S+(x0; δ), S+(x0))

≤ ∂B(x0, λ δ)

if ε ∈ (0, ε1], λ = φ(1 − ε1), and x0 ∈ S+, or if ε ∈ [ε0, 1), λ ≥ 1, δ ∈
(0, h(λ, δ−, ε0)], and x0 ∈ S+. Since x0 is arbitrary in S+, it follows from
(5.13) that

(5.14) d(S+, T−ε (S−0 , S
−, S+)) ≥ λ δ

if ε ∈ (0, ε1] and λ = φ(1−ε1), or if ε ∈ [ε0, 1), λ ≥ 1, and δ ∈ (0, h(λ, δ−, ε0)].
We define the function h0(t, ε0, ε1) : (0, κ] × (0, 1) × (0, 1) → R+ such that
h0(t, ε0, ε1) := h(λ, t, ε0) in the particular case where λ = (1/φ(1− ε1)). At
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this point, the assertion follows from Lemma 5.2 and Eqs. (5.12) and (5.14),
where we set λ = (1/φ(1− ε1)).

6. Uniform contraction property for uniformly-separated ordered
triples.

Theorem 6.1. In the context of §2.3, for given values 0 < <0 ≤ <1, P >
1, and ε ∈ (0, 1), there exist constants A0 ∈ (0, 1) and B0 ∈ (0, 1/2) such
that

(6.1) Tε(Ŝ−, Ŝ, Ŝ+) ≤ λ(1−κ0) r Tε(S−, S, S+),

uniformly for all values λ > 1, λ± ≥ 1, and κ0 ∈ (0, 1) such that

(6.2) λκ0 (λ−/λ)A(λ−/λ) (1−B) (λ+/λ)A(λ+/λ) B ≤ 1,

with

(6.3) B = B
(
(λ+/λ)A(λ+/λ) (λ/λ−)A(λ−/λ)

)
,

and uniformly for all r ≥ 0 and all surfaces S, S±, Ŝ, Ŝ± ∈ X := X(<0,<1)
such that P 2 S− ≤ PS ≤ S+, P 2 Ŝ− ≤ P Ŝ ≤ Ŝ+, and

(6.4) Ŝ ≤ λr S, Ŝ± ≤ λr
± S

±.

Here, we define the functions A(t), B(t) : R+ → R+ such that A(t) = A0

and B(t) = B0 for 0 < t < 1, and A(t) = 1 and B(t) = B1 := (1 − B0) for
t ≥ 1.

Remark 6.2. It follows from Theorem 6.1 that

µM (Tε(S−, S, S+), Tε(Ŝ−, Ŝ, Ŝ+))(6.5)

≤ (1− κ0) max{µM (S, Ŝ), µ−M (S−, Ŝ−), µ+M (S+, Ŝ+)},

uniformly for all λ, λ± > 1 and κ0 ∈ (0, 1) satisfying (6.2), (6.3), and all
surfaces S, S±, Ŝ, Ŝ± ∈ X := X(<0,<1) such that P 2 S− ≤ PS ≤ S+ and
P 2 Ŝ− ≤ P Ŝ ≤ Ŝ+. Here, the metric M is defined in (2.2), and we define
µ = (1/ ln (λ)) and µ± = (1/ ln (λ±)).

Remark 6.3. The main assumption for Theorem 6.1 (namely Eq. (6.2))
actually requires that λα

− λ
β
+ ≤ λ(1−eκ0) when 1 ≤ λ− < λ < λ+, and that

λβ
− λ

α
+ ≤ λ(1−eκ0) when 1 ≤ λ+ < λ < λ−, where α = (A0B0)/(A0B0+B1) ∈

(0, 1/2), β = (1 − α) ∈ (1/2, 1), and κ̃0 = (κ0/(A0B0 + B1)) > 0. In the
case where 1 ≤ λ− < λ > λ+ ≥ 1, Eq. (6.2) requires that λ(1−B)

− λB
+ ≤

λ(1−[κ0/A0]) for B ∈ {B0, B1}.
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Lemma 6.4. In the context of §2.3, for given values 0 < <0 < <1, P > 1,
and ε ∈ (0, 1), there exists a constant A0 ∈ (0, 1) such that

(6.6a,b) Φ−ε (λS1, S2) ≤ λA0 Φ−ε (S1, S2); Φ+
ε (S1, λ S2) ≤ λA0 Φ+

ε (S1, S2)

uniformly for all λ ∈ [P−1/2, 1] and for all S1, S2 ∈ X := X(<0,<1) such
that PS1 ≤ S2.

Proof. For fixed surfaces S1, S2 ∈ X such that PS1 ≤ S2, and we define
U+(λ;x) = U+(S1, λ S2;x) and U−(λ;x) = U−(λS1, S2;x) for any λ ∈
[P−1/2, 1]. For a given a unit vector e, and for any λ ∈ [P−1/2, 1], choose
the values α±(λ) > 0 such that U±(λ;α±(λ) e) = ε. This is equivalent to
the requirement that α−(λ) e ∈ Φ−ε (λS1, S2) and α+(λ) e ∈ Φ+

ε (S1, λ S2) for
any λ ∈ [P−1/2, 1]. Thus α±(λ) ≤ α±(µ) for P−1/2 ≤ λ ≤ µ ≤ 1, by Lemma
2.4(a). By Theorem 4.1 and the theorem of the mean, we have

M±
0 (λ, µ) (α±(µ)− α±(λ))(6.7)

≥ ±(U±(λ;α±(µ) e)− U±(λ;α±(λ) e))

= ±(U±(λ;α±(µ) e)− U±(µ;α±(µ) e))

≥ ±(exp (±C0 (µ− λ))− 1) ε,

for any values P−1/2 ≤λ ≤ µ ≤1, where M±
0 (λ, µ)=max{|e·∇U±(λ; γ±e)| :

γ± ∈ [α±(λ), α±(µ)]}. It follows from (6.7) in the limit as µ → λ or
λ → µ that Dλ α

±(λ) ≥ (C0/M
±
1 ) for λ ∈ (P−1/2, 1), where M±

1 =
max {|∇U±(λ;α±(λ) e)| : λ ∈ [P−1/2, 1]} and Dλ denotes any Dini deriv-
ative. Thus λDλ ln(α±(λ)) ≥ (C0/<1 P

1/2 M±
1 ) for λ ∈ (P−1/2, 1). Since

α±(λ) depends continuously on λ ∈ [P−1/2, 1], one concludes that α±(λ) ≤
λa α±(1) for λ ∈ [P−1/2, 1], where a denotes any constant in the interval
(0, (C0/<1 P

1/2 M±
1 )]. By Lemma 4.5(b), there exist constants C±1 such

that M±
1 = M±

1 (S1, S2; e) ≤ C±1 , uniformly over all S1, S2 ∈ X such that
PS1 ≤ S2, and over all e ∈ ∂B(0; 1). This completes the proof of the esti-
mates (6.6a,b), where A0 denotes any constant in the interval (0, 1/2] such
that A0 ≤ (C0 /<1 P

1/2C±1 ).

Lemma 6.5. In the context of §2.3, for given values 0 < <0 < <1, P > 1,
and ε ∈ (0, 1), there exists a constant A0 ∈ (0, 1) such that

Φ+
ε (Ŝ1, Ŝ2) ≤ λ

(1−A(λ2/λ1))
1 λ

A(λ2/λ1)
2 Φ+

ε (S1, S2),(6.8)

Φ−ε (Ŝ1, Ŝ2) ≤ λ
A(λ1/λ2)
1 λ

(1−A(λ1/λ2))
2 Φ−ε (S1, S2),(6.9)

for any values λ1, λ2 > 0 and any surfaces S1, S2, Ŝ1, Ŝ2 ∈ X := X(<0, <1)
such that PS1 ≤ S2, Ŝ1 < Ŝ2, Ŝ1 ≤ λ1S1, and Ŝ2 ≤ λ2 S2, where A(λ) =
A0 ∈ (0, 1) for λ ∈ (0, 1) and A(λ) = 1 for λ ∈ [1,∞).
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Proof. It suffices to prove (6.8) and (6.9) in the case where λ1, λ2∈ [(<0/<1),
(<1/<0)]. In fact, since ∂B(0;<0) ≤ Ŝi ≤ λi Si ≤ λi ∂B(0;<1) for i =
1, 2 by assumption, we must have λ1, λ2 ≥ (<0/<1) for any admissible
configuration. On the other hand, for any S1, S2, Ŝ1, Ŝ2 ∈ X, there exist
values λ1, λ2 ∈ (0, (<1/<0)] such that Ŝ1 ≤ λ1S1 and Ŝ2 ≤ λ2 S2, and the
assertions in the general case follow directly from this case. We will only
prove (6.8), since the proof of (6.9) (based on (6.6a)) is analogous. For the
case where (<0/<1) 2 ≤ (λ2/λ1) < 1, choose a fixed value α ∈ (0, 1) so small
that (λ2/λ1)α ≥ (<0/<1) 2α ≥ P−1/2. Since Ŝ1 ≤ λ1S1 and Ŝ2 ≤ λ2 S2 ≤
λ1 (λ2/λ1)α S2, it follows from Lemmas 2.4(a),(b) and 6.4 (Eq. (6.6b)) that

Φ+
ε (Ŝ1, Ŝ2) ≤ Φ+

ε (λ1S1, λ1(λ2/λ1)α S2)

= λ1 Φ+
ε (S1, (λ2/λ1)α S2) ≤ λ1(λ2/λ1)α bA0 Φ+

ε (S1, S2),

where Â0 ∈ (0, 1) denotes the constant in Lemma 6.4. Thus (6.8) holds in
the case where 0 < λ2 < λ1, where we have defined A0 = αÂ0. For the case
where 0 < λ1 ≤ λ2, it follows from Lemmas 2.4(a),(b) that

Φ+
ε (Ŝ1, Ŝ2) ≤ Φ+

ε (λ2 S1, λ2 S2) = λ2 Φ+
ε (S1, S2),

which is the assertion in this case.

Lemma 6.6. In the context of §2.3, for given values 0 < <0 ≤ <1, P > 1,
and ε ∈ (0, 1), there exists a constant b ∈ [1/2, 1) such that

(6.10a,b) Ψε(S1, λ S2 ) ≤ λb Ψε(S1, S2 ); Ψε(λS1, S2 ) ≤ λb Ψε(S1, S2),

both uniformly for all λ ∈ [1, P 1/2] and all S1, S2 ∈ X := X(<0,<1) such
that PS1 < S2.

Proof. We will prove only (6.10a), since the proof of (6.10b) is analogous.
By Lemma 3.6 (Eq. (3.7)), we have

(6.11) d(x, S1) ≥ <0 (P 1/2 − 1); d(y, λS2) ≥ d(y, S2) ≥ <0 (1− P−1/2)

for any λ ≥ 1, any S1, S2 ∈ X such that PS1 ≤ S2, and any x ∈ E (P 1/2 S1)
and y ∈ D(P−1/2 S2). Also, by Lemma 3.6 (Eq. (3.8)), we have

(<0/P
1/2) (λ− 1) ≤ d(x, S1)− d(x, λS1);(6.12)

d(y, µS2)− d(y, λS2) ≤ <1 P
1/2 (µ− λ)

for all S1, S2 ∈ X, 1 ≤ λ ≤ µ ≤ P 1/2, x ∈ E (λS1), and y ∈ D(λS2). We have
Ω(S1, λS2) ⊃ D(P−1/2 S2) ∩ E (P 1/2 S1) for any λ ≥ 1 and any S1, S2 ∈ X
such that PS1 ≤ S2. Therefore, it follows from (6.11) that

(6.13) d(x, S1) + d(x, λS2) ≥ <0 (1− P−1/2 )
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uniformly for all λ ≥ 1, all S1, S2 ∈ X such that PS1 ≤ S2, and all x ∈
Ω(S1, λS2). We also have that

d(x, S1) + d(x, λS2) ≤ d(x, ∂B(0;<0)) + d(x, ∂B(0;λ<1))(6.14)

≤ λ<1 −<0 ≤ P 1/2 <1

uniformly for all S1, S2 ∈ X such that S1 < S2, all λ ∈ [1, P 1/2], and all
x ∈ Ω(S1, λS2). In view of (6.13), (6.14), and Lemma 3.4, there exist values
0 < a0 < a1 such that

(6.15) a0 ≤ d(x, S1) ≤ a1; a0 ≤ d(x, λS2) ≤ a1,

both uniformly for all λ ∈ [1, P 1/2], all S1, S2 ∈ X such that PS1 ≤ S2, and
all x ∈ Ω(S1, λS2) such that fε (x, d(x, S1), d(x, λS2)) = 0, where we define
fε(x, p, q) = f (x, p/ε, q/ε) = F (x, ε/p, ε/q). For fixed admissible S1, S2,

and ε, a fixed unit vector e, and any λ ∈ [1, P 1/2], choose ψ(λ) > 0 such
that ψ(λ) e ∈ Ψε(S1, λS2). By the definition of Ψε(S1, λS2), we have
(6.16a,b)
fε (α e, d(α e, S1), d(α e, λ S2 )) = 0 = fε (β e, d(β e, S1), d(β e, µS2)),

for any 1 ≤ λ ≤ µ ≤ P 1/2, where α := ψ(λ) ≤ β := ψ(µ) (by Lemma 2.4(c)).
Since κ = κ(λ, µ) := (β/α) ≥ 1, it follows from (6.16a) and Assumption
(A2) that

fε (κα e, κ d(α e, S1), κ d(α e, λ S2))(6.17)

= fε (β e, d(β e, κ S1), d(β e, κλS2)) ≥ 0.

If we assume that κλ > µ, then d(β e, κ S1) ≤ d(β e, S1) and d(β e, µS2 ) <
d(β e, κλS2), from which it follows (by Eq. (6.16b) and Assumption (A1))
that fε (β e, d(β e, κ S1), d(β e, κλS2)) < 0. This contradiction (of (6.17))
shows that κλ ≤ µ and therefore that 1 ≤ κ ≤ (µ/λ) ≤ P 1/2 for any
1 ≤ λ ≤ µ ≤ P 1/2. By (6.15) and the theorem of the mean, we have that

(6.18) fε (x0, p1, q1) ≤ fε (x0, p0, q0)− C0 (p0 − p1) + C1 (q0 − q1),

where x0 := β e, and

0 < p1 := d(β e, κS1) ≤ p0 := d(β e, S1);

0 < q1 := d(β e, κλS2 ) ≤ q0 := d(β e, µS2),

C0 = min{∂fε (x, p, q)/∂p : <0 ≤ |x| ≤ P 1/2 <1, a0 ≤ p, q ≤ a1} > 0,

C1 = max{|∂fε (x, p, q)/∂q| : <0 ≤ |x| ≤ P 1/2 <1, a0 ≤ p, q ≤ a1} > 0.

Since fε (x0, p0, q0) = 0 (by Eq. (6.16b)) and fε (x0, p1, q1) ≥ 0 (by Eq.
(6.17)), we have

(6.19) (p0 − p1) ≤ (C1/C0) (q0 − q1).
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On the other hand, it follows from (6.12) that

p0 − p1 := d(β e, S1)− d(β e, κS1) ≥ (<0/P
1/2) (κ− 1),(6.20)

q0 − q1 := d(β e, µS2)− d(β e, κλS2) ≤ <1 P
1/2 (µ− κλ)(6.21)

for 1 ≤ κλ ≤ µ ≤ P 1/2 and βe ∈ E(κS1) ∩ D(κλS2). By substituting
(6.20) and (6.21) into (6.19), we obtain (κ− 1) ≤ (<1C1P/<0C0) (µ− κλ).
Therefore

(6.22) κ := (β/α) ≤ (µ+ C2)/(λ+ C2),

where C2 := (<0C0/<1C1P ). It easily follows from (6.22) (with α = ψ(λ),
β = ψ(µ)) in the limit as µ ↓ λ that

(6.23) ψ′(λ)/ψ(λ) ≤ 1/(λ+ C2) ≤ b/λ

for each λ ∈ [1, P 1/2], where we define b = (P 1/2/(P 1/2 + C2)) ∈ (0, 1).
By integrating (6.23), we conclude that ψ(λ) ≤ ψ(1)λb for λ ∈ [1, P 1/2].
The assertion now follows from the observation that the constant “b” in this
estimate does not depend on the particular choice of the surfaces S1, S2 ∈
X := X(<0,<1) (such that PS1 < S2) or the unit vector e.

Lemma 6.7. In the context of §2.3, for given values 0 < <0 ≤ <1, P > 1,
and ε ∈ (0, 1), there exists a constant b ∈ [1/2, 1) such that

(6.24) Ψε(Ŝ1, Ŝ2) ≤ λ1−B(µ/λ) µB(µ/λ) Ψε(S1, S2),

for any λ, µ ∈ [1, ∞) and for any surfaces S1, S2, Ŝ1, Ŝ2 ∈ X := X(<0,<1)
such that PS1 ≤ S2, P Ŝ1 ≤ Ŝ2, Ŝ1 ≤ λS1, and Ŝ2 ≤ µS2, where B(t) =
B0 := (1 − b) ∈ (1, 1/2) for 0 < t < 1 and B(t) = B1 := b ∈ (1/2, 1) for
t ≥ 1.

Proof. We will prove (6.24) only in the case where 1 ≤ µ < λ, since a similar
proof applies to the case where 1 ≤ λ ≤ µ. Set Ŝ2,i = min (Ŝ2, µ

i/n S2) ∈ X
and Ŝ1,i = min(Ŝ1, λ

i/n S1, (1/P ) Ŝ2,i) ∈ X, both for i = 0, . . . , n, where
n denotes a fixed positive integer such that (λ/µ)1/n ≤ P 1/2. It is easily
verified that Ŝ1,i ≤ (1/P ) Ŝ2,i for i = 0, . . . , n, and that Ŝ2,i+1 ≤ µ1/n Ŝ2,i

and Ŝ1,i+1 ≤ λ1/n Ŝ1,i, both for all i = 0, . . . , n − 1. In view of these facts,
it follows from Lemma 2.4(c), (e) and Lemma 6.6 that

Ψε(Ŝ1,i+1, Ŝ2,i+1) ≤ Ψε(λ1/n Ŝ1,i, µ
1/n Ŝ2,i)(6.25)

≤ µ1/n Ψε((λ/µ)1/n Ŝ1,i, Ŝ2,i)

≤ µ1/n (λ/µ)b/n Ψε(Ŝ1,i, Ŝ2,i)

= λb/n µ(1−b)/n Ψε(Ŝ1,i, Ŝ2,i)
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for i = 0, . . . , n−1. We conclude from (6.25) by induction that Ψε(Ŝ1,n, Ŝ2,n)
≤ λb µ1−b Ψε(Ŝ1,0, Ŝ2,0). The assertion follows from this, in view of the facts
that Ŝ2,n = Ŝ2 (due to Ŝ2 ≤ µS2), Ŝ1,n = Ŝ1 (due to Ŝ1 ≤ λS1 and Ŝ1 ≤
(1/P ) Ŝ2), Ŝ2,0 := min (Ŝ2, S2) ≤ S2, and Ŝ1,0 := min (Ŝ1, S1, (1/P )S2) ≤
S1.

6.8. Proof of Theorem 6.1. For any constants λ > 1, λ± ≥ 1,
and κ0 ∈ (0, 1) satisfying (6.2) and (6.3), and for any r ≥ 0 and any
triples (S−, S, S+ ), (Ŝ−, Ŝ, Ŝ+) ∈ XX3 satisfying the assumptions (includ-
ing (6.4)), it follows from Lemma 6.5 that

(6.26) Φ±ε (Ŝ, Ŝ±) ≤ λ
r A(λ±/λ)
± λr (1−A(λ±/λ)) Φ±ε (S, S±).

Moreover, there is a constant P1 > 1 such that P1 Φ−ε (S−, S ) ≤ Φ+
ε (S, S+)

and P1 Φ−ε (Ŝ−, Ŝ) ≤ Φ+
ε (Ŝ, Ŝ+) uniformly for all admissible configurations.

Therefore, it follows from Lemma 6.7 (with P replaced by P1) that

Tε(Ŝ−, Ŝ, Ŝ+)(6.27)

= Ψε

(
Φ−ε (Ŝ−, Ŝ), Φ+

ε (Ŝ, Ŝ+)
)

≤
(
λr (λ−/λ)r A(λ−/λ)

)(1−B) (
λr (λ+/λ)r A(λ+/λ)

)B

·Ψε

(
Φ−ε (S−, S), Φ+

ε (S, S+)
)

≤
(
λκ0 (λ−/λ)A(λ−/λ) (1−B) (λ+/λ)A(λ+/λ) B

)r

· λ(1−κ0) r Tε(S−, S, S+),

where B is defined by (6.3). The assertion (6.1) follows directly from (6.2)
and (6.27).

7. Multi-surface problem: Monotonicity and fixed-point
properties of the operators T ε.

7.1. Assumptions. In Problem 1.1, we assume, for given constants
0 < ρ0 ≤ <0 ≤ <1 that S±∗ ∈ X±(<0,<1; ρ0), and that the C1-functions
Fi (x, p, q) : RN × R+ × R+ → R, i = 1, . . . , k, all satisfy Assumptions
(A1)-(A3).

7.2. Inner and outer solutions. We call S ∈ YY an inner (resp. outer)
solution of Problem 1.3 at ε ∈ (0, 1) if T ε(S) ≥ S (resp. T ε(S) ≤ S). We
use S−

ε (resp. S+
ε ) to denote the family of all inner (outer) solutions at

ε ∈ (0, 1).

Lemma 7.3.
(a) For any ε ∈ (0, 1), T ε(S) is a weakly increasing (decreasing) mapping

of the family S−
ε (resp. S+

ε ) into itself.
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(b) For any ε ∈ (0, 1) and multisurfaces S±ε ∈ S±
ε , we have that S−ε ≤ S+

ε .

Therefore, Problem 1.3 has at most one solution at each ε ∈ (0, 1). If S̃ε

solves Problem 1.3 at ε ∈ (0, 1), then S−ε ≤ S̃ε ≤ S+
ε for any multisurfaces

S±ε ∈ S±
ε .

Proof. Part (a) follows easily from the monotonicity of T ε (Remark 2.6).
For the proof of part (b), let S±ε = (S±ε,1, S

±
ε,2, . . . , S

±
ε,k). To prove S−ε ≤ S+

ε ,

it suffices to show λi ≤ 1 for i = 1, . . . , k, where we define λi = min{t >
0: t S+

ε,i ≥ S−ε,i}. (We also define λ0 = λk+1 = 1, S±ε,0 = S−∗ , and S±ε,k+1 =
S+
∗ .) If the assertion is false, then one can choose j ∈ {1, . . . , k} such that
λj = max{λ1, . . . , λk} > 1 and either λj−1 < λj or λj+1 < λj . Then we
have

S−ε,j ≤ Tε,j(S−ε,j−1, S
−
ε,j , S

−
ε,j+1)(7.1)

< Tε,j(λjS
+
ε,j−1, λjS

+
ε,j , λjS

+
ε,j+1)

≤ λj Tε,j(S+
ε,j−1, S

+
ε,j , S

+
ε,j+1) ≤ λj S

+
ε,j ,

by Lemma 2.5(a), (c) and the definitions of S±
ε . However, (7.1) shows that

λj could have been chosen slightly smaller without violating the requirement
that λj S

+
ε,j ≥ S−ε,j , a contradiction which proves the assertion.

7.4. Additional definitions. In the context of §1.2, for any given P > 1,
let YY(P ) denote the family of all multisurfaces S = (S1, . . . , Sk) ∈ YY such
that PSi ≤ Si+1 for all i = 0, 1, . . . , k− 1, where S0 := S−∗ and Sk+1 := S+

∗ .
Obviously, YY(P2) ⊂ YY(P1) for 1 < P1 ≤ P2. For given values δ1, . . . , δk−1 >
0 and given multisurfaces S±0 ∈ YY, we use YY(S−0 ,S

+
0 ; δ1, . . . , δk−1) to

denote the family of all multisurfaces S = (S1, . . . , Sk) ∈ YY such that
S−0 ≤ S ≤ S+

0 , and such that d(Si, Si+1) ≥ δi for all i = 1, . . . , k − 1.

Lemma 7.5. For any P > 1 and any k-tuple λ = (λ1, . . . , λk) ∈ (1,∞)k,
the multi-surface family YY(P ) is complete in the metric Mλ (of Eq. (2.1)).

Proof. Let (Sn)∞n=1 denote a Cauchy sequence in YY(P ) relative to the
metric Mλ, where Sn = (Sn,1, . . . , Sn,k) for each n ∈ N. Then for each
i = 1, . . . , k, (Sn,i)∞n=1 is a Cauchy sequence in the metric M of Eq. (2.2),
which therefore converges in the same metric to a surface Si ∈ X(<0,<1).
We have S := (S1, . . . , Sk) ∈ YY(P ), as follows directly from the fact that
Sn ∈ YY(P ) for all n ∈ N. Obviously Mλ(Sn,S) → 0 as n→ ∞.

Lemma 7.6. Given the value P > 1, there exist two fixed multisurfaces
S±0 := (S±0,1, . . . , S

±
0,k) ∈ YY such that PS+

0,1 ≥ S+
∗ and S−0,k ≤ PS−∗ , and

such that S±0 ∈ S±
ε for all ε ∈ (0, 1).
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Proof. We will construct only the outer solution S+
0 , since the construction

of S−0 is analogous. Choose η > 0 and the function g(t) : (0, η] → R+ so
that the second assertion of Theorem 3.1 applies to all S ∈ X+((<0/P ),<1;
(ρ0/P )). Choose η0 ∈ (0, η] such that (1 + η0)k+1 ≤ P. Choose the values
λ1, . . . , λk+1 inductively such that 1 < λi < 1 + η0 for i = 1, . . . , k + 1, and
λi < 1 + g(1− (1/λi−1)) for i = 2, . . . , k+ 1. Define the values P0, . . . , Pk+1

by backwards induction such that Pk+1 = 1 and Pi−1 = (Pi/λi) for i =
1, . . . , k + 1. By assumption, we have (1/P ) ≤ P0 < P1 < · · · < Pk <
Pk+1 = 1, so that Pi S ∈ X+((<0/P ),<1; (ρ0/P )) for i = 1, . . . , k. Define
S+

0,0 = S−∗ ≤ P0 S
+
∗ and S+

0,i = Pi S
+
∗ for i = 1, . . . , k + 1. It follows from

Theorem 3.1 (Eq. (3.2)) with S = S+
0,i that

Tε(S+
0,i−1, S

+
0,i, S

+
0,i+1) ≤ Tε((1/λi)S+

0,i, S
+
0,i, λi+1S

+
0,i) ≤ S+

0,i

for i = 1, . . . , k, and for all ε ∈ (0, 1). The assertion follows.

Lemma 7.7. There exists a constant P > 1 such that PS−∗ ≤ S̃ε,1 and
PS̃ε,k ≤ S+

∗ for any ε ∈ (0, 1) and any solution S̃ε = (S̃ε,1, . . . , S̃ε,k) ∈ YY
of Problem 1.3 at ε ∈ (0, 1).

Proof. This follows directly from Lemmas 7.3(b) and 7.6.

Lemma 7.8. Let the values P > 1 and 0 < ε0 < ε1 < 1, be given.
Then, in the context of Definitions 7.4, the multisurfaces S±0 and the values
δ1, . . . , δk−1 > 0 can be chosen such that YY(P ) ⊂ YY(S−0 ,S

+
0 ; δ1, . . . , δk−1),

and such that the transformation T ε maps the family YY(S−0 ,S
+
0 ; δ1, ..., δk−1)

into itself for all ε ∈ [ε0, ε1].

Proof. Choose S±0 := (S±0,1, . . . , S
±
0,k) ∈ YY such that PS+

0,1 ≥ S+
∗ , S

−
0,k ≤

PS−∗ , and S±0 ∈ S±
ε for all ε ∈ (0, 1) (as in Lemma 7.6). Let κ > 0

and the function h0(t, ε0, ε1) : (0, κ] → R+ be as introduced in Theorem
5.1. Set κ̂ = min{κ,<0 (P − 1)}. Choose the values δ1, . . . , δk−1 ∈ (0, κ̂]
inductively such that δi ∈ (0, h0(δi−1, ε0, ε1)] for i = 1, . . . , k − 1, where
δ0 := d(S−∗ , S

−
0,1), or such that δi ∈ (0, h0(δi+1, ε0, ε1)] for i = 2, . . . , k − 1,

where δk := d(S+
0,k, S

+
∗ ). We have YY(P ) ⊂ ŶY := {S ∈ YY : S−0 ≤ S ≤ S+

0 },
since S−0,i ≤ S−0,k ≤ PS−∗ ≤ Si and PSi ≤ S+

∗ ≤ PS+
0,1 ≤ PS+

0,i for any S =

(S1, . . . , Sk) ∈ YY(P ). Therefore YY(P ) ⊂
∼
YY := YY(S−0 ,S

+
0 ; δ1, . . . , δk−1),

since Lemma 3.6 implies that d(Si, Si+1) ≥ <0 (P − 1) ≥ δi for S ∈ YY(P )
and i = 1, . . . , k − 1. Also, T ε(S) : ŶY → ŶY for ε ∈ (0, 1), due to Remark
2.6 and the fact that S±0 ∈ S±

ε , and we have d(Tε,i(S), Tε,i+1(S)) ≥ δi for

S ∈
∼
YY and i = 1, . . . , k − 1, by Theorem 5.1.

Lemma 7.9. Let the values 0 < ε0 < ε1 < 1 and P > 1 be given. Then
there exists a value P1 > 1 such that T n

ε (S) ∈ YY(P1) for all S ∈ YY(P ), all
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ε ∈ [ε0, ε1], and all n ∈ N, where T n
ε refers to the n-fold application of the

operator T ε.

Proof. In the context of §§7.4, 7.8, we have YY(P ) ⊂ YY(S−0 ,S
+
0 ; δ1, . . . ,

δk−1), for suitable multisurfaces S±0 ∈ YY and values δ1, . . . , δk−1. On the
other hand, we have YY(S−0 ,S

+
0 ; δ1, . . . , δk−1) ⊂ YY(P1) provided that P1 >

1 is chosen sufficiently close to 1.

Theorem 7.10. For given 0 < <0 < <1, P > 1, and ε ∈ (0, 1), one can
choose a value κ0 ∈ (0, 1) and a k-tuple λ = (λ1, . . . , λk) ∈ (1,∞)k such
that

(7.2) Mλ(T ε(S),T ε(Ŝ)) ≤ (1− κ0) Mλ(S, Ŝ)

uniformly for all multisurfaces S, Ŝ ∈ YY(P ).

Theorem 7.11. For any given ε ∈ (0, 1) and any sufficiently small P > 1
(small enough so that YY(P ) 6= ∅), there exists a (unique) solution S̃ε ∈ YY
of Problem 1.3 at ε, and there exist a constant κ0 ∈ (0, 1) and a k-tuple
λ = (λ1, . . . , λk) ∈ (1,∞)k such that

(7.3) Mλ(T n
ε (S), S̃ε) ≤ ((1− κ0)n/κ0) Mλ(T ε(S),S)

uniformly for all S ∈ YY(P ) and all n ∈ N. The estimate (1.9) follows by
the equivalence of the metrics M and Mλ. Thus, the iterates T n

ε (S), n ∈ N,
converge geometrically to the fixed point S̃ε of T ε as n → ∞. Moreover,
the iterates converge monotonically to S̃ε as n → ∞ provided that S ∈
S−

ε ∪S+
ε .

Proof. For given, small P > 1, there exists a value P1 > 1 such that
YY(P1) contains the image of YY(P ) under all multiple applications of the
transformation T ε. Then (7.2) holds for all S ∈ YY(P1), where κ0 ∈ (0, 1)
and the k-tuple λ = (λ1, . . . , λk) are chosen as in Theorem 7.10, but relative
to the family YY(P1).At this point, the assertion follows by the classical proof
of the contraction-mapping theorem (see [14, §5.1]). In particular, it follows
from (7.2) that

(7.4) Mλ(T n
ε (S),T m

ε (S)) ≤ ((1− κ0)n/κ0) Mλ(T ε(S),S)

uniformly for all S ∈ YY(P ) and m,n ∈ N such that n < m. For any
S ∈ YY(P ), Eq. (7.4) implies that (T n

ε (S))∞n=1 is a Cauchy sequence, which
therefore must converge to the solution S̃ε ∈ YY(P1) of Problem 1.3 (which
is unique by Lemma 7.3(b), or by Eq. (7.2)). The assertion (7.3) follows
directly from (7.4) in the limit as m→ ∞. For the case where S ∈ S−

ε ∪S+
ε ,

the monotonicity of the convergence follows from the monotonicity of the
mapping T ε : YY → YY (see Lemma 7.3(a)).
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7.12. Proof of Theorem 7.10. We will choose a k-tuple λ = (λ1, . . . , λk)
and a value κ0 > 0 such that

(7.5) 1 =: λ0 < λ1 < · · · < λm−1 < λm > λm+1 > · · · > λk > λk+1 := 1,

where either k = 2m or k = 2m− 1, and such that

(7.6) Tε,i(Ŝi−1, Ŝi, Ŝi+1) ≤ λ
(1−κ0) r
i Tε,i(Si−1, Si, Si+1), i = 1, . . . , k,

for any r ≥ 0, and for any ordered k-tuples S = (S1, ..., Sk), Ŝ = (Ŝ1, ..., Ŝk)
∈ YY(P ) such that Ŝi ≤ λr

i Si for i = 1, . . . , k (where S0 = Ŝ0 = S−∗ and
Sk+1 = Ŝk+1 = S+

∗ ). The assertion follows directly from this (see Remark
6.2). For λ = (λ1, . . . , λk) in the form given in (7.5), the condition (7.6)
holds for i ∈ {1, . . . , k} if

λα
i−1 λ

β
i+1 ≤ λ

(1−κ1)
i for i = 1, . . . , m− 1,(7.7)

λβ
i−1 λ

α
i+1 ≤ λ

(1−κ1)
i for i = m+ 1, . . . , k,(7.8)

λ
(1−B)
m−1 λB

m+1 ≤ λ(1−κ2)
m ,(7.9)

where α = A0B0/(A0B0 + B1) ∈ (0, 1/2), β = (1 − α) ∈ (1/2, 1), κ1 =
κ0/(A0B0 + B1 ) > 0, B ∈ {B0, B1}, and κ2 = κ0/A0 > 0. These sufficient
conditions for (7.6) follow from Theorem 6.1 and Remark 6.3. It is easily
seen (by direct substitution) that if κ0 > 0 is sufficiently small (so that
κ1 ∈ (0, 1−2(αβ)1/2)), then the conditions in (7.7) and (7.8) are all satisfied
as equalities by setting

ln (λi) = ((Ri
2 −Ri

1)/(R
m
2 −Rm

1 )) ln(λm) for i = 0, 1, . . . ,m,(7.10)

ln(λi) = ((Rk+1−i
2 −Rk+1−i

1 )/(Rk+1−m
2 −Rk+1−m

1 )) ln(λm)(7.11)
for i = m, . . . , k + 1,

where the values R1 =R1(κ0)∈(0, (α/β)1/2) and R2 =R2(κ0)∈((α/β)1/2, 1)
are the two solutions of the equation

(7.12) φ(t) := (α/t) + β t = 1− κ1,

and where the constant λm > 1 is arbitrary. A simple argument based on
(7.10) and (7.11) shows that the monotonicity requirements of (7.5) are all
satisfied if

(7.13) (R2/R1)m < ((1−R1)/(1−R2)).

Also, it follows from (7.12) that R1(κ0) ↓ (α/β) and R2(κ0) ↑ 1 as κ0 ↓ 0.
Therefore, (7.13) is obviously satisfied if the constant κ0 > 0 is sufficiently
small. It is easy to see by using (7.10) and (7.11) that the inequality (7.9)
is satisfied if

(7.14) (1−B)
(

(Rm−1
2 −Rm−1

1 )
(Rm

2 −Rm
1 )

)
+B

(
(Rk−m

2 −Rk−m
1 )

(Rk+1−m
2 −Rk+1−m

1 )

)
≤ (1−κ2),
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for B ∈ {B0, B1}. Obviously, (7.14) holds if

(7.15) ((Ri−1
2 −Ri−1

1 )/(Ri
2 −Ri

1)) ≤ (1− κ2)

for i = m and i = k + 1−m. A sufficient condition for (7.15) is that

(7.16) (R2/R1)i−1 ≤ ([1− (1− κ2)R1]/[1− (1− κ2)R2]).

Therefore, (7.14) and (7.9) both hold in each of the cases k = 2m − 1 and
k = 2m, provided that

(7.17) [R2/R1]m ≤ ([1− (1− κ2)R1]/[1− (1− κ2)R2]).

However, (7.17) holds for sufficiently small κ2 > 0, by an argument closely
related to the validation of (7.13) for small κ0 > 0. Therefore, if κ0 > 0
is sufficiently small, than the requirements (7.7), (7.8), and (7.9) are all
satisfied by choosing the values λi, i = 1, . . . , k, as in (7.10) and (7.11).

8. A contraction property for 3-surface configurations involving
classical solutions.

Theorem 8.1. In the context of §2.3, for given values 0 < ρ ≤ <0 ≤
<1, let (S−, S, S+) ∈ XX3(<0,<1) denote an ordered triple such that S ∈
X(<0,<1; ρ) and such that the joining condition: F (x, |∇U−(x)|, |∇U+(x)|)
= 0 holds for all x ∈ S, where we define U±(x) := U±(S, S±;x). Let the
values 0 < µ0 < 1 < µ1, C0 > 1, and 0 < P− < 1 < P+ be chosen such that
S− < P−S < S < P+ S < S+. For any µ > 0, let

(8.1) S−(µ) = min(P−S, µS−); S+(µ) = max(P+ S, µS
+)

(as in Theorem 4.3). Then there exist values κ0 > 0, 0 < A0 ≤ A1, B0 ∈
(0, 1/2), B1 = (1 − B0) ∈ (1/2, 1), and a null function z(·) (all dependent
only on F, S, S±, and the values µ0, µ1, C0, P±) such that, for any given
r0 > 0, we have

Tε(S−(µr
−), S, S+(µr

+)) ≤ exp(ε (z(ε)− κ0 r))S,(8.2)

Tε(S−(µ−r
− ), S, S+(µ−r

+ )) ≥ exp(ε (κ0 r − z(ε)))S,(8.3)

both uniformly for all ε ∈ (0, 1), all r ∈ [0, r0], and all values µ± ∈
[µq0

0 , µ
q0
1 ] ∩ [µ−q0

1 , µ−q0
0 ] (where q0 := 1/r0) such that

(8.4) C0 (µ−)(1−B) A(µ−) (µ+)B A(µ+) ≤ 1.

Here, we define

(8.5) B = B
(
(µ+)A(µ+)/(µ−)A(µ−)

)
,
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and we use A(t), B(t) : R+ → R+ to denote functions such that A(t) = A0

and B(t) = B0 both for 0 < t ≤ 1, and A(t) = A1 and B(t) = B1 both for
t > 1.

Corollary 8.2. In the context of Theorem 8.1, let the values 1 < Λ0 < Λ1

and κ > 0 be given (instead of µ0, µ1, and C0). Let the functions A(t), B(t) :
R+ → R+ be as defined previously, where we choose µ0 = (1/Λ1) < 1 <
µ1 = (Λ1/Λ0). Then, given r0 > 0, there exist a value κ0 > 0 and a null
function z(·) such that

(8.6) λ−(1−κ0 ε) r−ε z(ε) S ≤ Tε(Ŝ−, Ŝ, Ŝ+) ≤ λ(1−κ0ε) r + ε z(ε) S

uniformly for all ε ∈ (0, 1), all r ∈ [0, r0], all λ ∈ [Λ0, Λ1] and λ± ∈ [1,Λ1]
such that the corresponding values µ± := (λ±/λ) ∈ [µ q0

0 , µq0
1 ] ∩ [µ−q0

1 , µ−q0
0 ]

satisfy (8.4) and (8.5) with C0 = λκ, and all ordered triples (Ŝ−, Ŝ, Ŝ+) ∈
XX3(<0,<1) such that

(8.7) λ−r S ≤ Ŝ ≤ λr S; λ−r S±(µ−r
± ) ≤ Ŝ± ≤ λr S±(µr

±),

where the surfaces S±(µ) are defined in (8.1).

8.3. Remarks. (a) For any (S−, S, S+) ∈ XX3(<0,<1) such that S ∈
X(<0,<1; ρ), we have U± = U±(S, S±; ·) ∈ C1,α(S ∪ Ω(S, S±)) for any
α ∈ (0, 1), as follows from [14, Thm. 8.34]. We also have ∇U±(x) 6= 0
on S by the Hopf boundary-point lemma [14, Lemma 3.4]. Since we as-
sume S ∈ X(<0,<1; ρ) in Theorem 8.1, the functions |∇U±(x)| : S → R+

appearing in the joining condition: F (x, |∇U−(x)|, |∇U+(x)|) = 0 are auto-
matically Hölder continuous and strictly positive. (b) The main assumption
in Corollary 8.2 (that µ± := (λ±/λ) satisfy (8.4) and (8.5) with C0 = λκ)
reduces to the requirement that λα

− λ
β
+ ≤ λ1−κ1 in the case λ− < λ < λ+,

and to the requirement that λβ
− λ

α
+ ≤ λ1−κ1 in the case λ− > λ > λ+, where

we set α = (A0B0/(A0B0 + A1B1)) ∈ (0, 1/2), β = (1 − α) ∈ (1/2, 1),
and κ1 = κ/(A0B0 + A1B1). For the case where λ− < λ > λ+, the same
condition reduces to the requirement that λ1−Bi

− λBi
+ ≤ λ1−κ2 for i = 0, 1,

where κ2 = (κ/A0).

Theorem 8.4. In the context of §2.3, for given values 0 < ρ ≤ <0 ≤
<1, let (S−, S, S+) ∈ XX 3(<0,<1) denote a particular ordered triple such
that S ∈ X(<0,<1; ρ), and such that the joining condition: F (x, |∇U−(x)|,
|∇U+(x)|) = 0 holds for all x ∈ S, where U±(x) := U±(S, S±;x). Given
the values 1 < Λ0 < Λ1 < ∞, choose fixed values 0 < δ− ≤ δ̂− < 1/2,
0 < δ+ ≤ δ̂+ < 1/2, and C > 0 such that

(8.8) Tε(Ŝ, P− Ŝ, P− P̂− Ŝ) ≥ λC ε P− Ŝ

for all Ŝ ∈ X−(<0,<1; ρ), ε ∈ (0, 1), and λ ∈ [Λ0, Λ1], and

(8.9) Tε(P̂+ P+ Ŝ, P+Ŝ, Ŝ) ≤ λ−C ε P+Ŝ
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for all Ŝ ∈ X+ (<0,<1; ρ), ε ∈ (0, 1) and λ ∈ [Λ0, Λ1], where P± = 1 ∓ δ±
and P̂± = 1∓ δ̂± (see Theorem 3.1 and Remark 3.2). Given the values κ > 0
and r0 > 0, let M denote the set of all ordered triples (λ−, λ, λ+) such
that λ ∈ [Λ0,Λ1] and λ± ∈ [1,Λ1], and such that the corresponding values
µ± := (λ±/λ) ∈ [µq0

0 , µ
q0
1 ] ∩ [µ−q0

1 , µ−q0
0 ] (where q0 := 1/r0) satisfy (8.4) and

(8.5) with C0 = λκ. Then there exist a value κ0 > 0 and a null function z(·)
such that

(8.10) λ(κ0 r−z(ε)) ε S−(r) ≤ Tε(Ŝ−, Ŝ, Ŝ+) ≤ λ(z(ε)−κ0 r) ε S+(r),

uniformly for any (λ−, λ, λ+) ∈ M, any ε ∈ (0, 1), any r ∈ [0, r0], and any
pair of ordered triples (S−−(r), S−(r), S +

− (r))∈XX−
3 (<0,<1; ρ), (S−+(r), S+(r),

S+
+(r)) ∈ XX+

3 (<0,<1; ρ) such that

λ−r
− S− ≤ S−−(r) ≤ S−; S−(r) := max(λ−r S, P− S

−
−(r));(8.11)

S+
−(r) := max(λ−r

+ S+, P̂− S−(r)),

S+ ≤ S+
+(r) ≤ λr

+ S
+; S+(r) := min(λr S, P+ S

+
+(r));(8.12)

S−+(r) := min(λr
− S

−, P̂+ S+(r)),

both corresponding to the same triple (λ−, λ, λ+) ∈ M, and all ordered triples
(Ŝ−, Ŝ, Ŝ+) ∈ XX3(<0,<1) such that

(8.13) S−(r) ≤ Ŝ ≤ S+(r); S±−(r) ≤ Ŝ± ≤ S±+(r).

Lemma 8.5. In the context of Theorem 8.1, let Q±(µ±;x) :=(1/|∇U±(µ±;
x)|) on S for any µ± ∈ I := [µ0, µ1], where U±(µ±;x) := U±(S, S±(µ±);x)
in Cl(Ω(S, S±(µ±))), and the surfaces S±(µ±) are defined by Eq. (8.1). For
any vector e ∈ ∂B(0; 1), any values µ± ∈ I, and any ε ∈ (0, 1), let the values
α0 = α0(e) > 0 and α(e, ε) = α(µ−, µ+, e; ε) > 0 be uniquely determined
by the requirement that x0 = x0(e) := α0 e ∈ S and x(e, ε) := α(e, ε) e ∈
Tε(S−(µ−), S, S+(µ+)). Let the value h = h(µ−, µ+, e) be the unique solution
(in the open interval J (µ−, µ+, e) := (−[Q−(µ−;x0)/θ], [Q+(µ+;x0)/θ])) of
the equation
(8.14)
φ(h) = φ(µ−, µ+, e;h) := f (x0, Q

−(µ−;x0) + θ h,Q+(µ+;x0)− θ h) = 0,

where f(x, p, q) := F (x, 1/p, 1/q), ν = ν(e) denotes the exterior unit normal
to S at the point x0 = x0(e) = α0 e ∈ S, and θ = θ(e) = ν · e. Then

(8.15) | [(α(µ−, µ+, e; ε)− α0(e))/ε]− h(µ−, µ+, e)| ≤ z(ε)

as ε ↓ 0, where the estimate is uniform over all unit vectors e and all values
µ± ∈ I.
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Proof. For any x0 = α0 e ∈ S and µ± ∈ I, Equation (8.14) has one and
only one solution h(µ−, µ+, e) ∈ J (µ−, µ+, e), by Lemma 3.3(a). By a simple
barrier argument, there exist constants 0 < C0 ≤ C1 such that

(8.16) C0 ≤ Q±(µ±;x0) ≤ C1

for all µ± ∈ I and x0 ∈ S. Therefore

2C0 ≤ Q−(µ−;x0) +Q+(µ+;x0)(8.17)

= (Q−(µ−;x0) + θ t) + (Q+(µ+;x0)− θ t) ≤ 2C1

uniformly for all µ± ∈ I, x0 ∈ S, and t ∈ J (µ−, µ+, e). In view of (8.17) and
Lemma 3.3(b), there exist constants 0 < C2 ≤ C3 such that

(8.18) C2 ≤ (Q±(µ±; x0)∓ θ h) ≤ C3

uniformly for all µ± ∈ I, x0 ∈ S, where h = h(µ−, µ+, e). Under the as-
sumptions, there exists a null function z0(·) such that

(8.19) |∇U±(µ±; x)−∇U±(µ±; x0)| ≤ z0(|x− x0|)
for all x0 ∈ S, µ± ∈ I, and x ∈ S ∪ Ω(S, S±1/2(µ±)), where we define
S±ε (µ±) := Φ±ε (S, S±(µ±)) for all ε ∈ (0, 1). This follows from the esti-
mate given in [14, Thm. 8.33]. If d(x0, S

±
ε (µ±)) = |x0− x±ε (µ±)| for x0 ∈ S

and x±ε (µ±) ∈ S±ε (µ±), then

(8.20) ε = U±(µ±;x±ε (µ±)) = ∇U±(µ±;x∗) · (x±ε (µ±)− x0)

by the theorem of the mean, where x∗ denotes some point on the line-
segment joining x0 to x±ε (µ±). Since the vectors (x±ε (µ±)−x0) and∇U±(µ±;
x±ε (µ±)) are parallel, it follows easily from (8.19) and (8.20) that

(8.21) | [ε/d(x0, S
±
ε (µ±))]− |∇U±(µ±;x0)|| ≤ 3 z0(d[x0, S

±
ε (µ±)]),

uniformly for all x0 ∈ S and µ± ∈ I. Since d(x0, S
±
ε (µ±)) ≤ O(ε) as ε ↓ 0,

uniformly for all x0 ∈ S and µ± ∈ I, it follows from (6.16) and (8.21) that
there exists a null function z1(·) such that

(8.22) | [d(x0, S
±
ε (µ±))/ε]−Q±(µ±;x0) | ≤ z1(ε),

uniformly for all x0 ∈ S, µ± ∈ I, and ε ∈ (0, 1/2]. It follows from (8.16) and
(8.22) that there exist positive constants 0 < C4 ≤ C5 such that

(8.23) C4 ≤ [d(x0, S
±
ε (µ±))/ε] ≤ C5

uniformly for all x0 ∈ S, µ± ∈ I, and ε ∈ (0, ε0], where ε0 > 0 is suffi-
ciently small. Clearly, the point x(e, ε) := α(e, ε) e ∈ Ω(S−ε (µ−), S +

ε (µ+))
is defined by the equation

(8.24) f (x(e, ε), [d(x(e, ε), S−ε (µ−))/ε], [d(x(e, ε), S +
ε (µ+))/ε]) = 0.

Also, an argument based on (8.19) shows that as ε ↓ 0, the direction of
the shortest line-segment joining x(e, ε) to the surface S±ε (µ±) approaches
the direction of the vector ∇U±(µ±; x0(e)). It follows from straight-forward
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geometric considerations based on this fact that there exists a null function
z2(·) such that

∣∣[d(x(e, ε), S±ε (µ±))/ε]− [d(x0(e), S±ε (µ±))/ε]± θ(e) [(α(e, ε)− α0(e))/ε]
∣∣(8.25)

≤ z2(ε)

uniformly for e ∈ ∂B(0; 1), µ± ∈ I, and ε ∈ (0, 1/2]. By the triangle inequal-
ity, we have

[d(S−ε (µ−), S+
ε (µ+))/ε](8.26)

≤ [d(x(e, ε), S−ε (µ−))/ε] + [d(x(e, ε), S+
ε (µ+))/ε]

≤ 2 max{[d(y0, S
−
ε (µ−))/ε] + [d(y0, S

+
ε (µ+))/ε] : y0 ∈ S}

for any e ∈ ∂B(0; 1), µ± ∈ I and ε ∈ (0, 1). In view of (8.23), it follows from
(8.26) that there exist positive constants 0 < C6 ≤ C7 such that

(8.27) C6 ≤ [d(x(e, ε), S−ε (µ−))/ε] + [d(x(e, ε), S +
ε (µ+))/ε] ≤ C7

uniformly for e ∈ ∂B(0; 1), µ± ∈ I and ε ∈ (0, ε0]. In view of Lemma
3.4, it follows from (8.24) and (8.27) that there exist uniform constants
0 < C8 ≤ C9 such that

(8.28) C8 ≤ [d(x(e, ε), S±ε (µ±))/ε] ≤ C9

uniformly for e ∈ ∂B(0; 1), µ± ∈ I and ε ∈ (0, ε0]. It follows from (8.22) and
(8.25) that

|[d(x(e, ε), S±ε (µ±))/ε]−Q±(µ±;x0(e))± θ(e) [(α(e, ε)− α0(e))/ε]|(8.29)

≤ z3(ε)

uniformly for e ∈ ∂B(0; 1), µ± ∈ I and ε ∈ (0, ε0], where z3(ε) := z1(ε) +
z2(ε). It follows from (8.28) and (8.29) that there exist constants 0 < C10 ≤
C11 such that

(8.30) C10 ≤ Q±(µ±;x0(e))∓ θ(e) [(α(e, ε)− α0(e))/ε] ≤ C11

uniformly for e ∈ ∂B(0; 1), µ± ∈ I and ε ∈ (0, ε0]. It follows from (8.16) and
(8.30) that there exist constants 0 < C12 ≤ C13 such that

(8.31) C12 ≤ Q±(µ±;x0(e))∓ θ(e) t ≤ C13

uniformly for all e ∈ ∂B(0; 1), µ± ∈ I, ε ∈ (0, ε0], and t in the interval
between h(e) and [(α(e, ε) − α0(e))/ε]. In view of (8.28), (8.31) and the
assumed continuity of f, it follows from (8.24) and (8.29) that there exists
a null function z4(·) such that

(8.32) |φ(µ−, µ+, e, [(α(µ−, µ+, e, ε)− α0(e))/ε])| ≤ z4(ε)
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uniformly for all e ∈ ∂B(0; 1), µ± ∈ I, and ε ∈ (0, ε0], where the func-
tion φ(µ−, µ+, e, t) is defined in (8.14). Now it follows from (8.32) and the
theorem of the mean (and the fact that φ(h) = 0) that

(8.33) |φ′(t∗)([(α(µ−, µ+, e, ε)− α0(e))/ε]− h(µ−, µ+, e))| ≤ z4(ε),

for some value t∗ = t∗(µ−, µ+, e, ε) lying in the interval between h(µ−, µ+, e)
and ((α(µ−, µ+, e, ε)− α0(e))/ε). Since

φ ′(t) = θ(e) g (x0, Q
−(µ−;x0) + θ t, Q+(µ+;x0)− θ t),

where g = (fp + |fq|), it follows from (8.31) and Assumption (A1) that

(8.34) φ′(t) ≥ C > 0

for all t between h(µ−, µ+, e) and [(α(µ−, µ+, e, ε) − α0(e))/ε], where C is
independent of µ± ∈ I and e ∈ ∂B(0; 1). Now the assertion follows easily
from (8.33) and (8.34).

8.6. Proof of Theorem 8.1. For any fixed values µ± > 0, any fixed
unit vector e, and any values r ∈ [0, r0] and ε ∈ (0, 1), choose the values
α0 = α0(e) > 0 and α±(r, ε) = α±(e; r, ε) > 0 such that x0 := α0 e ∈ S and

x±(r, ε) := α±(r, ε) e ∈ Tε(S−(µ±r
− ), S, S +(µ±r

+ )).

By Lemma 8.5, there exists a null function z(·) such that

(8.35) | [(α±(r, ε)− α0(r))/ε]− h±(r)| ≤ z(ε)

for any µ± ∈ I := [µ q0
0 , µq0

1 ] ∩ [µ−q0
1 , µ−q0

0 ] (with q0 := 1/r0), e ∈ ∂B(0; 1),
r ∈ [0, r0] and ε ∈ (0, 1), where the values h±(r) = h±(e, r) uniquely solve
the equations
(8.36)
φ±(e, r;h±(r)) := f(x0, Q

−(µ±r
− ; x0)+θ h±(r), Q+(µ±r

+ ; x0)−θ h±(r)) = 0.

Here we define θ = θ(e) = e · ν, where ν = ν(e) denotes the exterior unit
normal to the surface S at the point x0(e) ∈ S. Observe that h±(0) = 0. By
(8.18), there exist uniform constants 0 < C0 ≤ C1 such that

C0 ≤ ψ±−(r) := Q−(µ±r
− ; x0) + θ h±(r) ≤ C1,(8.37)

C0 ≤ ψ±+(r) := Q+(µ±r
+ ; x0)− θ h±(r) ≤ C1,(8.38)

uniformly for all µ± ∈ I, e ∈ ∂B(0; 1), and r ∈ [0, r0]. By the theorem of
the mean, for any fixed µ± ∈ I and e ∈ ∂B(0; 1), we have

0 = φ±(e, r + δ;h±(r + δ))− φ±(e, r ;h±(r))

= fp (X±(r, δ)) (ψ±−(r + δ)− ψ±−(r))(8.39)

+ fq (X±(r, δ)) (ψ±+(r + δ)− ψ±+(r))

for 0 ≤ r < r + δ ≤ r0, where X±(r, δ) = (x0, p
±(r, δ), q±(r, δ)) ∈ RN+2

denotes a point on the straight line-segment joining the point (x0, ψ
±
−(r),
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ψ±+(r)) ∈ RN+2 to the point (x0, ψ
±
−(r + δ), ψ±+(r + δ)) ∈ RN+2. We have

C0 ≤ p±(r, δ), q±(r, δ) ≤ C1 by (8.37), (8.38). It follows from (8.39) that

(ψ±+(r + δ)− ψ±+(r))(8.40)

= (|fp (X±(r, δ))|/fq (X±(r, δ))) (ψ±−(r + δ)− ψ±−(r)),

where, by Assumption (A1), there exist constants 0 < C2 ≤ C3 such that

(8.41) C2 ≤ (|fp (X±(r, δ))|/fq (X±(r, δ))) ≤ C3

uniformly for all µ± ∈ I, e ∈ ∂B(0; 1), r ∈ [0, r0), and sufficiently small
δ ∈ (0, r0 − r]. Eqs. (8.40) and (8.41) imply

(8.42) (ψ±+(r)− ψ±+(0)) = P±(r) (ψ±−(r)− ψ±−(0))

for r ∈ [0, r0], where P±(r) ∈ [C2, C3] for any fixed µ± ∈ I and e ∈ ∂B(0; 1).
In view of the definitions of ψ±+(r) and ψ±−(r), and the fact that h±(0) = 0,
it follows from (8.42) that

θ h±(r) = (1− β±(r))
(
Q−(x0)−Q−(µ±r

− ; x0)
)

(8.43)

+ β±(r)
(
Q+(µ±r

+ ; x0)−Q+(x0)
)

for r ∈ [0, r0], where β±(r) := 1/(1 + P±(r)) ∈ [(1/(1 + C3)), (1/(1 + C2))]
for any fixed µ± ∈ I and e ∈ ∂B(0; 1). For any µ± ∈ I, it follows from
Theorem 4.3 (by substituting µ = µ±r

+ in (4.6) and µ = µ±r
− in (4.7)) that

±(Q+(µ±r
+ ; x0)−Q+(x0)) ≤ A(µ+) ln(µ+) r(8.44)

±(Q−(x0)−Q−(µ±r
− ; x0)) ≤ A(µ−) ln(µ−) r(8.45)

both uniformly for all r ∈ [0, r0] and x0 ∈ S. By substituting (8.44) and
(8.45) into (8.43), we conclude that

(8.46) ±h±(r) ≤ ((1− β±)A(µ−) ln(µ−) + β±A(µ+) ln (µ+)) (r/θ),

where, for some constants B0 ∈ (0, 1/2) and B1 = 1 − B0, we have β± ∈
[B0, B1] independent of the choice of µ± ∈ I and e ∈ ∂B(0; 1). It follows
that

(8.47) ±h±(r) ≤ ((1−B)A(µ−) ln(µ−) +BA(µ+) ln(µ+))(r/θ)

for any µ± ∈ I, e ∈ ∂B(0; 1), and r ∈ [0, r0], where B = B(·) is defined as
in (8.5). By substituting (8.47) into (8.35), one sees that

(8.48) ± α±(e; r, ε)

≤ ±α0(e) + ((1−B )A(µ−) ln(µ−) +BA(µ+) ln(µ+)) (r ε/θ) + ε z(ε)
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uniformly for all µ± ∈ I, e ∈ ∂B(0; 1), r ∈ [0, r0] and ε ∈ (0, 1). It follows
from (8.48) by exponentiation that

± α±(e; r, ε)

≤ ±α0(e)
(
(µ−)(1−B) A(µ−)(µ+)B A(µ+)

)±(rε/α0θ)
exp (±ε z1(ε))

≤ ±α0(e) (1/C0 )±(rε/α0θ) exp(±ε z1(ε))
≤ ±α0(e) exp (∓κ0 rε ± ε z1(ε))

uniformly for all µ± ∈ I, e ∈ ∂B(0; 1), r ∈ [0, r0] and ε ∈ (0, 1), where
κ0 = ln (C0)/min {α0(e) (e · ν(e)) : e ∈ ∂B(0; 1)} and z1(·) is a suitable null
function.

8.7. Proof of Corollary 8.2. By redefining κ0 > 0 and the null function
z(·), the inequalities (8.2) and (8.3) can be rewritten in the form:

Tε(S−(µ r
−), S, S+(µr

+)) ≤ λ(ε [z(ε)−κ0 r]) S(8.49)

Tε(S−(µ−r
− ), S, S+(µ−r

+ )) ≥ λ(ε [κ0 r−z(ε)]) S,(8.50)

both valid for all λ ∈ [Λ0, Λ1], r ∈ [0, r0], ε ∈ (0, 1), and all values µ± ∈
[µq0

0 , µ
q0
1 ] ∩ [µ−q0

1 , µ−q0
0 ] satisfying (8.4) and (8.5). For all ordered triples

(Ŝ−, Ŝ, Ŝ+) ∈ XX3(<0,<1) satisfying (8.7), Lemma 2.5(a), (c) implies that

λ−r Tε(S−(µ−r
− ), S, S+(µ−r

+ ))(8.51)

≤ Tε(λ−r S−(µ−r
− ), λ−r S, λ−r S+(µ−r

+ ))

≤ Tε(Ŝ−, Ŝ, Ŝ +) ≤ Tε(λr S−(µr
−), λrS, λr S+(µr

+))

≤ λr Tε(S−(µ r
−), S, S+(µr

+))

for all λ > 1, r ≥ 0, ε ∈ (0, 1), and µ± > 0. Now the assertion follows by
substituting (8.49) and (8.50) into (8.51).

8.8. Proof of Theorem 8.4. For fixed (λ−, λ, λ+) ∈ M, and for any
r ∈ [0, r0], let the ordered triples (S−−(r), S−(r), S +

− (r)) ∈ XX−
3 (<0,<1; ρ)

and (S−+(r), S+(r), S +
+ (r)) ∈ XX+

3 (<0,<1; ρ) satisfy (8.11) and (8.12), re-
spectively. It follows that

S−(r) ≥ λ−r S; S±−(r) ≥ λ−r
± S±,(8.52)

S+(r) ≤ λr S; S±+(r) ≤ λr
± S

±.(8.53)
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In view of (8.52) and (8.53), it follows from (8.11) and (8.12) that

S−−(r) ≥ min (S−−(r), P+ λ
−rS)(8.54)

≥ min(λ−r
− S−, P+ λ

−r S) = λ−r Σ−−(µ−r
− ),

S+
−(r) := max(λ−r

+ S+, P̂− S−(r))(8.55)

≥ max (λ−r
+ S+, P̂− λ

−r S) = λ−r Σ+
− (µ−r

+ ),

S−+(r) := min(λr
− S

−, P̂+ S+(r))(8.56)

≤ min(λ r
− S

−, P̂+ λ
r S) = λr Σ−+(µr

−),

S+
+(r) ≤ max(S+

+(r), P− λr S)(8.57)

≤ max(λr
+ S

+, P− λ
r S) = λr Σ+

+(µr
+),

all for any r ∈ [0, r0], where we define

Σ−−(µ) = min(µS−, P+ S); Σ+
−(µ) = max(µS+, P̂− S),

Σ−+(µ) = min(µS−, P̂+ S); Σ+
+(µ) = max(µS+, P− S),

all for any µ > 0. In view of the inequalities (8.52)-(8.57), it follows from
Lemma 2.5 and Corollary 8.2 that there exist a value κ0 > 0 and a null
function z(·) such that

λ(κ0 r−z(ε)) ε (λ−r S)(8.58)

≤ Tε(λ−r Σ−−(µ−r
− ), λ−r S, λ−r Σ+

−(µ−r
+ ))

≤ Tε(S−−(r), S−(r), S+
−(r)) ≤ Tε(Ŝ−, Ŝ, Ŝ+)

≤ Tε(S−+(r), S+(r), S+
+(r))

≤ Tε(λr Σ−+(µr
−), λr S, λr Σ+

+(µr
+))

≤ λ (z(ε)−κ0 r) ε (λr S)

uniformly for all (λ−, λ, λ+) ∈ M, all ε ∈ (0, 1), all r ∈ [0, r0], all ordered
triples (S−−(r), S−(r), S+

−(r)) ∈ X−3 (<0, <1; ρ) and (S−+(r), S+(r), S+
+(r)) ∈

XX+
3 (<0, <1; ρ) satisfying (8.11) and (8.12), respectively, for a particular

(λ−, λ, λ+), and all ordered triples (Ŝ−, Ŝ, Ŝ+) ∈ XX3(<0,<1) satisfying
(8.13). It is also clear from (8.11) and (8.12) that

S−(r) ≥ P− S
−
−(r); S +

− (r) ≥ P̂− S−(r) ≥ P− P̂− S
−
−(r),

S+(r) ≤ P+ S
+
+(r); S−+(r) ≤ P̂+ S+(r) ≤ P+ P̂+ S

+
+(r),
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all for any r ∈ [0, r0]. Therefore, we have

P− S
−
−(r) ≤ S−(r) ≤ Ŝ ≤ S+(r) ≤ P+ S

+
+(r),(8.59)

P− P̂− S
−
−(r) ≤ S+

−(r) ≤ Ŝ + ≤ S +
+ (r),(8.60)

S−−(r) ≤ Ŝ− ≤ S−+(r) ≤ P+ P̂+ S
+
+(r),(8.61)

for any r ∈ [0, r0] and any (Ŝ−, Ŝ, Ŝ+) ∈ XX3(<0,<1) satisfying (8.13). In
view of assumptions (8.8) and (8.9), it follows from (8.59)-(8.61) and Lemma
2.5(a) that

(8.62) λC ε (P− S−−(r)) ≤ Tε(Ŝ−, Ŝ, Ŝ+) ≤ λ−C ε (P+S
+
+(r))

for all r ∈ [0, r0], λ ∈ [Λ0, Λ1], and ε ∈ (0, 1), and for any (Ŝ−, Ŝ, Ŝ + ) ∈
XX3(<0,<1) satisfying (8.13). It follows from (8.58) and (8.62) that

φ−(r, ε)S−(r) = φ−(r, ε) max (λ−r S, P− S
−
−(r)) ≤ Tε(Ŝ−, Ŝ, Ŝ+)

≤ φ+(r, ε) min (λ r S, P+ S
+
+ (r)) = φ+(r, ε)S+(r),(8.63)

uniformly for all (λ−, λ, λ+) ∈ M, all ε ∈ (0, 1), all r ∈ [0, r0], all ordered
triples (S−−(r), S−(r), S+

−(r)) ∈ XX−
3 (<0,<1; ρ) and (S−+(r), S+(r), S+

+(r)) ∈
XX+

3 (<0, <1; ρ) satisfying (8.11) and (8.12), respectively, for any particu-
lar (λ−, λ, λ+) ∈ M, and all ordered triples (Ŝ−, Ŝ, Ŝ+) ∈ XX3(<0,<1)
satisfying (8.13), where we define

φ−(r, ε) = min
{
λC ε, λ(κ0 r−z(ε)) ε

}
;(8.64)

φ+(r, ε) = max
{
λ−C ε, λ (z(ε)−κ0 r) ε

}
.

Now the assertion (8.10) follows directly from (8.63) and (8.64), where we
decrease the constant κ0 > 0 if necessary (so that κ0 r0 ≤ C).

9. Multi-surface problem: Convergence of successive
approximations.

9.1. Assumptions, definitions, notation. The assumptions of §7.1
apply throughout this section. For any constants 0 < P+

∗ < 1 < P−∗ ,
let YY(P−∗ , P

+
∗ ) denote the family of all multisurfaces S = (S1, . . . , Sk) ∈

XXk(<0,<1) such that P−∗ S−∗ < Si < P+
∗ S+

∗ for i = 1, . . . , k.

Theorem 9.2. In Problem 1.1 (under Assumptions 7.1), let S̃ = (S̃1, . . . ,

S̃k) denote a classical solution such that S̃ ∈ YY ∩XXk(<0,<1; ρ1) for some
ρ1 ∈ (0, ρ0]. Then (1.10) holds, where S̃ε ∈ YY denotes the unique solution
of Problem 1.3 at each ε ∈ (0, 1).

Theorem 9.3. In Problem 1.1 (under Assumptions 7.1), let S̃ = (S̃1, . . . ,

S̃k) denote a classical solution such that S̃ ∈ YY ∩XXk(<0,<1; ρ1) for some
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ρ1 ∈ (0, ρ0]. Given an initial multisurface S0 ∈ YY, let the sequence of
multisurfaces Sn ∈ YY, n ∈ N, be defined inductively by Eq. (1.8), where
(εn)∞n=0 denotes any given null sequence of values in the interval (0, 1) such
that Σ∞n=0εn = ∞. Then Sn → S̃ as n→ ∞, in the sense of Eq. (1.11).

As we will show (see §§9.7, 9.8), Theorems 9.2 and 9.3 are quite direct
consequences of Theorems 9.4 and 9.5, which follow.

Theorem 9.4. In Problem 1.1 (under Assumptions 7.1), let S̃ = (S̃1, . . . ,

S̃k) denote a classical solution such that S̃ ∈ YY(P−∗ , P
+
∗ ) ∩XX k(<0,<1; ρ1)

for some fixed values ρ1 ∈ (0, ρ0] and 0 < P+
∗ < 1 < P−∗ . For any r ≥ 0, let

the multisurfaces S±(r) = (S±1 (r), . . . , S±k (r)) ∈ YY be defined inductively
such that

S−i (r) := max(λ−r
i S̃i, P

−
i S−i−1(r));(9.1a,b)

S +
i (r) := min(λ r

i S̃i, P
+
i S +

i+1(r)),

both for all i = 1, . . . , k, where we define S−0 (r) := S−∗ and S+
k+1(r) := S +

∗ ,

and where the fixed values P−1 , P
−
2 , . . . , P

−
k > 1, P+

1 , P
+
2 , . . . , P

+
k ∈ (0, 1),

and λ1, . . . , λk > 1 are all chosen appropriately (as discussed in the proof
in §9.9). Then:

(a) For any 0 ≤ α ≤ β, r ≥ 0, i = 1, . . . , k, and t ∈ [0, r1] (where r1 > 0
is sufficiently small), we have

(9.2) S−(β) ≤ S−(α) ≤ S−(0) = S̃ = S+(0) ≤ S+(α) ≤ S+(β),

(9.3) λ−r
i S̃i ≤ S−i (r) ≤ S̃i ≤ S+

i (r) ≤ λ r
i S̃i,

(9.4) S±i (t) = λ±t
i S̃i.

Due to (9.3), we have

(9.5) Mλ(S, S̃) ≤ inf{r ≥ 0 : S−(r) ≤ S ≤ S+(r)}
for any multisurface S ∈ YY.

(b) Let the value r0 > 0 be suitably chosen. Then S±(r) = S±(r0)
for all r ≥ r0. We also have that T ε(ŶY) ⊂ ŶY for any ε ∈ (0, 1), where
we define ŶY = {S ∈ YY : S−(r0) ≤ S ≤ S+(r0)}. Moreover, we have
YY(P−∗ , P

+
∗ ) ⊂ ŶY.

(c) There exist a value κ0 > 0 and a null function z0(·) such that

(9.6) λ
(κ0 r−z0(ε)) ε
i S−i (r) ≤ Tε,i(S) ≤ λ

(z0(ε)−κ0 r) ε
i S +

i (r)

for all i = 1, . . . , k, r ∈ [0, r0], ε ∈ (0, 1), and multisurfaces S ∈ YY such
that

(9.7) S−(r) ≤ S ≤ S+(r).



44 ANDREW ACKER

Theorem 9.5. In the context of Theorem 9.4, we have

S−i (r − C (κ0 r − z0(ε)) ε) ≤ λ
(κ0 r−z0(ε)) ε
i S−i (r),(9.8)

λ
(z0(ε)−κ0 r) ε
i S+

i (r) ≤ S+
i (r − C (κ0 r − z0(ε)) ε)(9.9)

for any i = 1, . . . , k, and for any r ∈ [0, r0] and ε ∈ (0, 1) such that z0(ε) <
κ0 r. Here we define C = (min{ln(λi)})/(max{ln(λi)}) ∈ (0, 1). In view of
(9.6), it follows that

S− ((1− C κ0 ε) r + C ε z0(ε))(9.10)

≤ T ε(S) ≤ S+((1− C κ0 ε) r + C ε z0(ε))

for any r ∈ [0, r0] and ε ∈ (0, 1) such that z0(ε) < κ0 r, and for any multi-
surface S ∈ YY satisfying (9.7).

9.6. Remark. The inequalities (9.8) and (9.9) hold for all i = 1, . . . , k,
r ∈ [0, r1] and ε ∈ (0, ε0], provided that C = 1 and the values r1 ∈ (0, r0] and
ε0 ∈ (0, 1) are sufficiently small. In view of (9.4), it follows that if C = 1,
and if the values r1 ∈ (0, r0], ε0 ∈ (0, 1) are sufficiently small, then (9.10)
holds for any r ∈ [0, r1] and ε ∈ (0, ε0], and for any S ∈ YY satisfying (9.7).

9.7. Proof of Theorem 9.2. By Lemma 7.7, there exist values 0 <

P+
∗ < 1 < P−∗ such that S̃ε ∈ YY(P−∗ , P

+
∗ ) for all ε ∈ (0, 1), where S̃ε solves

Problem 1.3 at ε. In the context of Theorem 9.4, we define r(ε) := min {r ∈
[0,∞) : S−(r) ≤ S̃ε ≤ S+(r)} ∈ [0, r0] for all ε ∈ (0, 1). Then

S−((1− C κ0 ε) r(ε) + C ε z0(ε))

≤ T ε(S̃ε) ≤ S+((1− C κ0 ε) r(ε) + C ε z0(ε))

by Theorem 9.5 (Eq. (9.10)). Since S̃ε = T ε(S̃ε), it follows from the
definition of r(ε) that r(ε) ≤ (1−C κ0 ε) r(ε)+C ε z0(ε). Therefore, we have
r(ε) ≤ (z0(ε)/κ0) for each ε ∈ (0, 1). Thus Mλ(S̃, S̃ε) ≤ z0(ε)/κ0 by (9.5),
and the assertion follows from the equivalence of the metrics M and Mλ.

9.8. Proof of Theorem 9.3. For a given initial multisurface S0 ∈ YY,
choose values 0 < P+

∗ < 1 < P−∗ such that S̃,S0 ∈ YY(P−∗ , P
+
∗ ). Then

S−(r0) ≤ Sn ≤ S+(r0) for all n ∈ N, by Theorem 9.4(b). For each n =
0, 1, 2, . . . , let E (n) ∈ [0, r0], denote the minimum value of r ∈ [0, r0] such
that S−(r) ≤ Sn ≤ S+(r). By Theorem 9.5 (Eq. (9.10)), we have

(9.11) E (n+ 1) ≤ (1− C κ0 εn)E (n) + C εn z0(εn)

for any n = 0, 1, 2, . . . such that z0(εn) < κ0E (n). For any given η ∈ (0, r0],
there exists a positive integer n0 such that if n ≥ n0, then z0(εn) < (κ0 η/4)
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and εn z0(εn) < (η/2). It follows from (9.11) that

E (n+ 1) ≤ E (n)− C (κ0E (n)− z0(εn)) εn(9.12)

≤ E (n)− C ((κ0 η/2)− z0(εn)) εn
≤ E (n)− (κ0 η/4) εn

for n ≥ n0 and E (n) ∈ [(η/2), r0], whereas

(9.13) E (n+ 1) ≤ E (n) + εn z0(εn) ≤ E (n) + (η/2)

whenever n ≥ n0. Since Σ∞n=0εn = ∞, it follows directly from (9.12) that
E (n1) ≤ (η/2) for some integer n1 ≥ n0. It then follows from (9.12) and
(9.13) that E (n) ≤ η for all n ≥ n1. Since η ∈ (0, r0] was arbitrary in
the preceding argument, it follows that E (n) → 0 as n → ∞. Therefore,
Mλ(Sn, S̃) → 0 as n → ∞, by (9.5). The assertion (1.11) now follows,
since the metrics M and Mλ are equivalent.

9.9. Proof of Theorem 9.4. Assume that either k = 2m− 1 or k = 2m,
where m is a fixed positive integer. Choose the values Λ0 = 2,Λ1 = 2m+1,

and r0 = 2 ln(<1/<0)/ ln(2) > 0. For convenience, we set S̃0 := S−∗ and
S̃k+1 := S+

∗ . Let ρ2 = min{P+
∗ , (1/Λ1) k r0} ρ1 > 0, where S̃ ∈ YY(P−∗ , P

+
∗ )∩

XX k(<0,<1; ρ1). Let ĥ ∈ (0, 1/2] denote a fixed value such that

(1− ĥ) k > max{P+
∗ , (1/P

−
∗ )}(9.14)

S̃i < (1− ĥ)2S̃i+1 for i = 0, . . . , k.(9.15)

Let h := min{ĥ; η1, η2, . . . , ηk} and let g0(t) := min{g0,1(t), . . . , g0,k(t)} > 0
for each t ∈ (0, h], where, for each i = 1, . . . , k, ηi ∈ (0, 1/2] and g0,i(·) : (0, ηi]
→ R+ denote the constant and the positive null function of Remark 3.2, in
the case where r = ρ2 and Tε := Tε,i (see §2.6). Let the fixed (k + 1)-tuples
(P+

0 , . . . , P
+
k ), (P−1 , . . . , P

−
k+1) be defined by P±i := 1∓ δ±i , where the fixed

(k+1)-tuples (δ+0 , . . . , δ
+
k ), (δ−1 , . . . , δ

−
k+1) are defined inductively such that

δ−k+1, δ
+
0 ∈ (0, h], and such that

(9.16) δ±i ∈ (0, h], δ−i ∈ (0, g0(δ−i+1)], δ+i ∈ (0, g0(δ+i−1)],

for all i = 1, . . . , k. Choose C := min{g0(δ+1 ), . . . , g0(δ+k ), g0(δ−1 ), ..., g0(δ−k )}
> 0. By Theorem 3.1 and Remark 3.2, we have

(9.17) Tε,i(S, P−i S, P−i P−i+1 S ) ≥ λC ε P−i S

for all i = 1, . . . , k, S ∈ X−(<0, <1; ρ2), ε ∈ (0, 1), and λ ∈ [Λ0, Λ1],
whereas

(9.18) Tε,i(P+
i−1 P

+
i S, P+

i S, S) ≤ λ−C ε P+
i S

for all i = 1, . . . , k, S ∈ X+(<0,<1; ρ2), ε ∈ (0, 1), and λ ∈ [Λ0, Λ1].
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Given the above (k + 1)-tuples (P+
0 , . . . , P

+
k ), (P−1 , . . . , P

−
k+1), we will

show that parts (a) and (b) hold for any particular choice of λ = (λ1, . . . , λk)
∈ [Λ0,Λ1] k. For each r ≥ 0, let the surfaces S−0 (r), S−1 (r), . . . , S−k (r), S−k+1(r)
be defined inductively by (9.1a) (starting with S−0 (r) := S̃0), and let the
surfaces S+

0 (r), S+
1 (r), . . . , S+

k (r), S+
k+1(r) be defined inductively by (9.1b)

(starting with S+
k+1(r) := S̃k+1), where we set λ0 = 1 = λk+1. Since h ∈

(0, ĥ], it follows from (9.15) and (9.16) that

λ−r
i S̃i > λ−r

i (1 + ĥ )2S̃i−1 ≥ (1 + ĥ )S̃i−1 ≥ P−i S̃i−1(9.19)

λr
i S̃i < λr

i (1− ĥ)2S̃i+1 ≤ (1− ĥ )S̃i+1 ≤ P+
i S̃i+1,(9.20)

for i = 1, . . . , k and r ∈ [0, r1], where r1 = ln(1+ ĥ)/(m+1) ln(2). For given
i ∈ {1, . . . , k}, it follows from (9.1a) and (9.19) (resp. (9.1b) and (9.20))
that S−i (r) = λ−r

i S̃i (resp. S+
i (r) = λr

i S̃i), provided that S−i−1(r) = λ−r
i−1S̃i−1

(resp. S+
i+1(r) = λr

i+1S̃i+1). Since S−0 (r) = λ−r
0 S̃0 = S̃0 and S +

k+1(r) =
λr

k+1S̃k+1 = S̃k+1, it follows by induction that S±i (r) = λ±r
i S̃i for r ∈ [0, r1]

and i = 1, . . . , k, as was asserted in (9.4). As a special case of (9.4), we have
that S±(0) = S̃, as is asserted in (9.2). The remaining assertions in (9.2)
and (9.3) follow easily from (9.1) and (9.4). A simple extension of the same
arguments shows that

(9.21) S+
0 (r) ≥ S+

0 (0) = S̃0; S−k+1(r) ≤ S−k+1(0) = S̃k+1

for any r ≥ 0. Turning to part (b), we define r0 = 2 ln(<1/<0)/ ln(2) > 0. It
follows that λr

i ≥ 2r ≥ (<1/<0) for r ≥ r0 and i = 1, . . . , k, and therefore
that λr

i S̃i ≥ S̃k+1 and λ−r
i S̃i ≤ S̃0 for r ≥ r0 and i = 1, . . . , k. Since

S̃0 ≤ S−i (r) ≤ S+
i (r) ≤ S̃k+1 for any r ≥ 0 and i = 1, . . . , k, it follows by

(9.1a,b) that

(9.22) S±i (r) = P±i S±i±1(r)

for r ≥ r0 and i = 1, . . . , k. Thus S±(r) = S±(r0) for r ≥ r0. By (9.16) and
(9.22), we have

(9.23) S+
i (r0) ≥ (1− ĥ)S+

i+1(r0); S−i (r0) ≤ (1 + ĥ)S−i−1(r0)

for i = 1, . . . , k, and it follows from (9.14) and (9.23) that

S−i (r0) ≤ (1 + ĥ)kS̃0 < P−∗ S̃0 ≤ Si(9.24)

≤ P+
∗ S̃k+1 ≤ (1− ĥ)kS̃k+1 ≤ S+

i (r0)

for i = 1, . . . , k, and any multisurface S = (S1, . . . , Sk) ∈ YY(P−∗ , P
+
∗ ). Also,

it follows from (9.14), (9.16), and (9.22) that S±i (r0) ∈ X±(<0,<1; ρ2) for
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i = 1, . . . , k. In view of this, it follows from (9.17), (9.18), (9.21), (9.22),
and Lemma 2.5(a) that

(9.25) S−(r0) ≤ T ε(S−(r0)) ≤ T ε(S) ≤ T ε(S+(r0)) ≤ S+(r0)

for S ∈ ŶY and ε ∈ (0, 1). Part (b) follows from (9.24) and (9.25).
We now turn to the proof of Part (c), which requires further specification

of the vector λ. For each i = 1, . . . , k, let the functions Ai(t), Bi(t) : [0,∞) →
R+ be as defined in Theorem 8.1 and Corollary 8.2 for the particular case
where S := S̃i, S

± := S̃i±1, F := Fi, Tε := Tε,i, P± := P±i = 1 ∓ δ±i ,
Λ0 = 2, Λ1 = 2m+1, µ0 := (1/Λ1) = (1/2m+1), µ1 := (Λ1/Λ0) = 2m, and
r0 = 2 ln(<1/<0)/ ln(2). For each i = 1, 2, . . . , k, we write Ai(t) = A0,i > 0
and Bi(t) = B0,i ∈ (0, 1/2) for t ∈ [0, 1], and Ai(t) = A1,i ≥ A0,i and
Bi(t) = B1,i = 1− B0,i ∈ (1/2, 1) for t ∈ (1,∞). For each i = 1, . . . , k, and
for any small value κ > 0, we use Mi(κ) to denote the set of all ordered
triples (λ−, λ, λ+) such that λ ∈ [Λ0, Λ1] and λ± ∈ [1,Λ1], and such that
the values µ± := (λ±/λ) ∈ [µq0

0 , µ
q0
1 ] ∩ [µ−q0

1 , µ−q0
0 ] satisfy (8.4) and (8.5)

with µ0 := 1/Λ1, µ1 := Λ1/Λ0, q0 := 1/r0, C0 := λκ, A(t) := Ai(t), and
B(t) := Bi(t). Let M(κ) denote the family of all ordered k-tuples λ =
(λ1, λ2, . . . , λk) such that (λi−1, λi, λi+1) ∈ Mi(κ) for i = 1, 2, . . . , k, where
we set λ0 = λk+1 = 1.

We will first prove part (c) under the additional assumption that M(κ) 6=
∅ for some value κ > 0. Let λ = (λ1, . . . , λk) denote a fixed k-tuple
in M(κ). In view of results in §2.2, it is also clear from (9.1a,b) that
for any i ∈ {1, . . . , k}, r ∈ [0, r0], and ρ ∈ (0, ρ1] such that S−i−1(r) ∈
X−(<0,<1; ρ) (resp. S+

i+1(r) ∈ X+(<0,<1; ρ)), we have that S−i (r) ∈
X−(<0,<1; (1/Λ1)r0 ρ) (resp. S+

i (r) ∈ X+(<0,<1; (1 − h) ρ)). It follows
by induction from this (and the fact that S−0 (r) = S̃0 ∈ X−(<0,<1; ρ0),
S+

k+1(r) = S̃k+1 ∈ X+(<0,<1; ρ0), and (1− h)k > P+
∗ ) that

(9.26) S±i (r) ∈ X±(<0,<1; ρ2)

for all i = 0, 1, . . . , k, k + 1 and r ∈ [0, r0], where the constant ρ2 :=
min{P+

∗ , (1/Λ1)k r0} ρ1 > 0 was introduced previously. It is also clear from
(9.1a,b), (9.3), and (9.26) that for each i = 1, . . . , k and each r ∈ [0, r0], the
triples

(S−−(r), S−(r), S +
− (r)) := (S−i−1(r), S

−
i (r), S−i+1(r)) ∈ XX−

3 (<0,<1; ρ2),

(S−+(r), S+(r), S+
+(r)) := (S+

i−1(r), S
+
i (r), S+

i+1(r)) ∈ XX+
3 (<0,<1; ρ2)

satisfy the requirements of Theorem 8.4, Eqs. (8.11) and (8.12), respectively,
in the particular case where µ0 := 1/Λ1, µ1 := Λ1/Λ0, q0 := 1/r0, C0 := λκ

i ,

S := S̃i, S
± := S̃i±1, F := Fi, Tε := Tε,i, λ := λi, λ± := λi±1, P− := P−i ,

P̂− := P−i+1, P+ := P+
i , P̂+ := P+

i−1, and ρ0 := ρ2. In view of (9.17) and
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(9.18), it follows from Theorem 8.4 that for each i = 1, . . . , k, there exist a
value κ0,i > 0 and a null function zi(·) such that

(9.27) λ
(κ0,i r−zi(ε)) ε
i S−i (r) ≤ Tε,i(Si−1, Si, Si+1) ≤ λ

(zi(ε)−κ0,i r) ε
i S+

i (r)

for any r ∈ [0, r0], ε ∈ (0, 1), and ordered triple (Si−1, Si, Si+1) ∈ XX3(<0,<1)
such that

S−i (r) ≤ Si ≤ S +
i (r), S−i±1(r) ≤ Si±1 ≤ S +

i±1(r).

At this point, the asserted inequality (9.6) (with κ0 = min{κ0,i : i =
1, . . . , k} and z0(ε) = max{zi(ε) : i = 1, . . . , k} for any ε ∈ [0, 1)) follows
from (9.27), in view of Lemma 2.5(a) and the fact that S−0 (r) ≤ S̃0 ≤ S+

0 (r)
and S−k+1(r) ≤ S̃k+1 ≤ S+

k+1(r) for r ∈ [0, r0] (see (9.21)).
To complete the proof of Theorem 9.4(c), we will show M(κ) 6= ∅ for suf-

ficiently small κ > 0. For given κ > 0, we seek a k-tuple λ = (λ1, . . . , λk) ∈
M(κ) in the form (7.5), where either k = 2m or k = 2m−1 for some m ∈ N.
For λ = (λ1, · · · , λk) in this form, the condition that (λi−1, λi, λi+1) ∈
Mi(κ) for i ∈ {1, . . . , k}, i 6= m, reduces, according to Remark 8.3(b),
to the requirements that λαi

i−1 λ
βi
i+1 ≤ λ

(1−κ1,i)
i for i = 1, . . . , m − 1, and

λβi
i−1 λ

αi
i+1 ≤ λ

(1−κ1,i)
i for i = m+ 1, . . . , k, where αi = A0,iB0,i/(A0,iB0,i +

A1,iB1,i) ∈ (0, 1/2), βi = (1−αi) ∈ (1/2, 1), κ1,i = κ/(A0,iB0,i+A1,iB1,i ) >
0, all for each i 6= m. It is sufficient to replace these conditions by the re-
quirements (7.7) and (7.8), where we define α := min{αi : i 6= m} ∈ (0, 1/2),
β := (1−α) = max{βi : i 6= m} ∈ (1/2, 1), and κ1 = max{κ1,i : i 6= m} > 0.
The condition that (λm−1, λm, λm+1) ∈ Mm(κ) reduces (also according to
Remark 8.3(b)) to the requirement (7.9), where B ∈ {B0,m, B1,m} and
κ2 = κ/A0,m > 0. It is seen by the arguments in §7.12 that the condi-
tions (7.7), (7.8), and (7.9) are all satisfied for sufficiently small κ > 0 by
defining λ by (7.10) and (7.11).

It remains to validate our a priori assumption that λi ∈ [Λ0,Λ1] :=
[2, 2m+1] for i = 1, . . . , k. Since this assumption played a role in the above
theoretical determination of the values α, β, and κ, it is important that
its validation apply to any admissible choice of α, β, and κ. Here, we call
the triple (α, β, κ) admissible if α ∈ (0, 1/2), β = (1 − α) ∈ (1/2, 1), and
κ1 = κ1(κ) ∈ (0, 1 − 2 (αβ)1/2). For any admissible (α, β, κ), we have that
0 < R1 < R2 < 1. Therefore, it follows from (7.10) that

ln(λm) = ((Rm
2 −Rm

1 )/(R2 −R1)) ln (λ1)

= (Rm−1
1 +Rm−2

1 R2 +Rm−3
1 R 2

2 + · · ·+Rm−1
2 ) ln(λ1) ≤ m ln(λ1).

Thus, we have λm ≤ λm
1 . A similar argument based on (7.11) shows that

λm ≤ λ
(k+1−m)
k for admissible (α, β, κ). It easily follows that λ1, λk ≥

λ
(1/(m+1))
m for k = 2m − 1 or k = 2m, independent of admissible (α, β, κ).
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Therefore, by making the arbitrary choice λm = 2m+1, we conclude that
λi ∈ [2, 2m+1] for i = 1, . . . , k, independent of admissible (α, β, κ).

9.10. Proof of Theorem 9.5 and Remark 9.6(a). The inequalities
(9.8) and (9.9) follow from the fact that

(9.28a,b) αS−i (r) ≥ S−i (r − σ); β S +
i (r) ≤ S+

i (r − τ),

both for any r ∈ (0, r0] and i = 1, . . . , k, where α, β, σ, τ ≥ 0 denote values
such that

(9.29) 0 < β ≤ λ−τ
i ≤ 1 ≤ λσ

i ≤ α

for i = 1, . . . , k. In fact (9.8) (resp. (9.9)) follows from (9.28a) (resp.
(9.28b)) in the case where α = (1/β) = (min{λi})(κ0 r−z0(ε)) ε and σ =
τ = C (κ0r − z0(ε)) ε. To prove (9.28), we first observe that (9.28a) holds
trivially for i = 0, while (9.28b) holds trivially for i = k+ 1 (where we have
defined S−0 (r) = S̃0 and S+

k+1(r) = S̃k+1, both for any r ∈ [0, r0]). Now if,
for a given integer i ∈ {1, . . . , k}, we have

αS−i−1(r) ≥ S−i−1(r − σ); β S +
i+1(r) ≤ S +

i+1(r − τ),

for all r ∈ [0, r0], then it follows by (9.1) and (9.29) that

αS−i (r) = max{αλ−r
i S̃i, α P

−
i S−i−1(r)}

≥ max {λσ−r
i S̃i, P

−
i S−i−1(r − σ)} = S−i (r − σ),

β S +
i (r) = min {β λr

i S̃i, β P
+
i S+

i+1(r)}

≤ min {λr−τ
i S̃i, P

+
i S+

i+1(r − τ)} = S+
i (r − τ).

Therefore, (9.28) holds by induction.
For the proof of Remark 9.6(a), observe that S−i (r) = λ−r

i S̃i and S+
i (r) =

λr
i S̃i for i = 1, . . . , k, provided that r > 0 is sufficiently small. Therefore,

λ
(κ0 r−z0(ε)) ε
i S−i (r) = λ

(κ0 r−z0(ε)) ε−r
i S̃i = S−i (r − (κ0 r − z0(ε)) ε),

λ
(z0(ε)−κ0 r) ε
i S+

i (r) = λ
(z0(ε)−κ0 r) ε + r
i S̃i = S +

i (r − (κ0 r − z0(ε)) ε)

both for i = 1, . . . , k, provided that r > 0 and ε > 0 are both sufficiently
small.

9.11. Concluding remarks. (a) The author believes that by relatively
straight-forward modifications, the present convergence proof will extend to
several modified versions of Problem 1.1. First, one can generalize (1.2) such
that for each i = 1, . . . , k+ 1, the function Ui(x) is pi-harmonic (for a given
constant pi > 1) in the annular domain Ωi (see [6, 10, 17]). Secondly, one
can let the outermost boundary Sk+1 become a free boundary characterized
by the requirement that |∇Uk+1(x)| = A(x) on Sk+1, where the given posi-
tive function A(x) has suitable properties (guaranteeing the starlikeness of
solutions relative to some ball). Thirdly, one can consider the (essentially)
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limiting case of Problem 1.1 (or either of the above modified versions) in
which the layers are horizontally infinite, and the layer boundaries are the
graphs of functions z = Si(y) : RN−1 → R, each of which becomes constant
in the limit as |y| → ∞.

(b) At the cost of abandoning a general mathematical convergence analy-
sis, the above “operator method” can be modified to produce various related
trial free-boundary operators (for Problem 1.1) with improved convergence
properties, as observed in test cases such as the limiting case of infinite par-
allel planes. For example, one can seek to accelerate convergence by multi-
plying the forward progression induced by the operator by a factor λ > 1
at each step of the iteration. Given a smooth iterate Sn = (Sn,1, . . . , Sn,k),
one defines Sn+1 such that Sn+1,i = {x + λφn,i(x, εn) νn,i(x) : x ∈ Sn,i}
for i = 1, . . . , k, where νn,i(x) denotes the exterior unit normal to Sn,i

at x ∈ Sn,i, and φn,i(x, ε) denotes the translation of Sn,i in the direc-
tion νn,i(x) which is induced by applying the operator T εn to Sn. As a
limiting case (as εn ↓ 0, where λ = (µ/εn) for some fixed µ ∈ (0, 1]),
one defines Sn+1 such that Sn+1,i = {x + µφn,i(x) νn,i(x) : x ∈ Sn,i} for
i = 1, . . . , k, where φn,i(x) = limitε→0+(φn,i(x, ε)/ε) for x ∈ Sn,i. The func-
tions φn,i(x) : Sn,i → R, i = 1, . . . , k, solve the equations

Fi(x, [|∇Un,i|/(1 + φn,i|∇Un,i|)], [|∇Un,i+1|/(1− φn,i|∇Un,i+1|)]) = 0,

where the functions Un,1, . . . , Un,k+1 solve (1.2) in the case where S := Sn,
and the derivatives exist.
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