Vol. 189, No. 1, 1999

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Pseudodifferential operators on differential groupoids

Victor Nistor, Alan Weinstein and Ping Xu

Vol. 189 (1999), No. 1, 117–152
Abstract

We construct an algebra of pseudodifferential operators on each groupoid in a class that generalizes differentiable groupoids to allow manifolds with corners. We show that this construction encompasses many examples. The subalgebra of regularizing operators is identified with the smooth algebra of the groupoid, in the sense of non-commutative geometry. Symbol calculus for our algebra lies in the Poisson algebra of functions on the dual of the Lie algebroid of the groupoid. As applications, we give a new proof of the Poincaré-Birkhoff-Witt theorem for Lie algebroids and a concrete quantization of the Lie-Poisson structure on the dual A of a Lie algebroid.

Milestones
Received: 25 April 1997
Published: 1 May 1999
Authors
Victor Nistor
Pennsylvania State University
University Park, PA 16802
Alan Weinstein
University of California, Berkeley
Berkeley, CA 94720
Ping Xu
Pennsylvania State University
University Park, PA 16802