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A NOTE ON THE MOVING SPHERE METHOD

Yūki Naito and Takashi Suzuki

We treat the Dirichlet problem for elliptic equations on
annular regions, and show the monotonicity and symmetry
properties of positive solutions with respect to the sphere.
We generalize the argument of the method of moving spheres
to more general partial differential equations.

1. Introduction.

Let A = {x ∈ Rn : 1/a < |x| < a} be an annulus with a > 1 and n ≥ 2.
In [10] Padilla proved the following theorem by emplying the method of
moving spheres.

Theorem A. Let n > 2 and let u be a solution to

−∆u = u
n+2
n−2 , u > 0 in A and u = 0 on ∂A.

Then u satisfies

u(x) = |x|2−nu

(
x

|x|2

)
for x ∈ A and(

|x|
n−2

2 u
)

r
< 0 for 1 < r = |x| < a.

The method of moving spheres is a variant of the method of moving planes
as presented in Gidas, Ni, and Nirenberg [6] or Berestycki and Nirenberg
[1]. Roughly speaking, we make reflection with respect to spheres instead
of planes, and then obtain the symmetry of solutions. In the works of Chou
and Chu [5], Chen and Li [4], Li and Zhu [9], and Kurata and Matsuda
[8], the method of moving spheres is used and is useful for solving various
questions about elliptic differential equations.

In this note we generalize the argument of the method of moving spheres
to more general partial differential equations. Let us consider the equation

(1) −∆u = f
(
x, |x|

n−2
2 u, (x · ∇)

(
|x|

n−2
2 u

))
, u > 0 in A,

107

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.1999.189-1
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where x · ∇ =
∑n

i=1 xi∂/∂xi. We assume that f = f(x, s, q) is continuous
on A× [0,∞)×R, C1 in s and q, and even with respect to q:

f(x, s,−q) = f(x, s, q) (x ∈ A, s ≥ 0, q ∈ R) .

We obtain the following theorems.

Theorem 1. Suppose that, for each 1 ≤ r∗ ≤ a, ω ∈ Sn−1, s ≥ 0, and
q ≥ 0,

r
n+2

2 f (rω, s, q) ≥ r
n+2

2
∗ f (r∗ω, s, q) for

1
r∗
≤ r ≤ r∗.

Then, any u ∈ C2(A) ∩ C(A) satisfying (1) and u = 0 on |x| = a has the
properties

(2) |x|
n−2

2 u(x) ≤
(

1
|x|

)n−2
2

u

(
x

|x|2

)
on 1 ≤ |x| ≤ a

and

(3)
(
|x|

n−2
2 u

)
r

< 0 for 1 < r = |x| < a.

Theorem 2. Suppose that, for each 1/a ≤ r∗ ≤ 1, ω ∈ Sn, s ≥ 0, and
q ≥ 0,

r
n+2

2 f (rω, s, q) ≥ r
n+2

2
∗ f (r∗ω, s, q) for r∗ ≤ r ≤ 1

r∗
.

Then, any u ∈ C2(A) ∩ C(A) satisfying (1) and u = 0 on |x| = 1/a has the
properties

|x|
n−2

2 u(x) ≥
(

1
|x|

)n−2
2

u

(
x

|x|2

)
on 1 ≤ |x| ≤ a

and (
|x|

n−2
2 u

)
r

> 0 for
1
a

< r = |x| < 1.

Remark. It is shown in [6, Theorem 2] by the method of moving planes
that the positive solutions u of the equation ∆u + f(u) = 0 in A with u = 0
on ∂A satisfies ur < 0 on (1 <) (a + a−1)/2 ≤ r < a.

As a consequence of Theorems 1 and 2 we obtain the following corollary.

Corollary 1. Suppose that, for each ω ∈ Sn−1, s ≥ 0, and q ≥ 0,
r(n+2)/2f(rω, s, q) is nonincreasing in r ∈ (1, a) and

r
n+2

2 f(rω, s, q) ≡ r−
n+2

2 f(r−1ω, s, q) for 1 ≤ r ≤ a.
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Then, any u ∈ C2(A) ∩ C(A) satisfying (1) and u = 0 on ∂A has the
properties

(4) |x|
n−2

2 u(x) ≡
(

1
|x|

)n−2
2

u

(
x

|x|2

)
on 1 ≤ |x| ≤ a

and (3).

Remark. If (1) has a solution u satisfying (4), then we must have

(5) |x|
n+2

2 f(x, s(x), q(x)) ≡ |x|−
n+2

2 f(x/|x|2, s(x), q(x)) for 1 ≤ |x| ≤ a,

where s(x) = |x|(n−2)/2u(x) and q(x) = x · ∇s(x). In fact, v(x) =
|x|(n−2)/2u(x) and w(x) = |y|(n−2)/2u(y), y = x/|x|2, satisfy

|x|2∆v − (n− 2)x · ∇v − (n− 2)2

4
v + |x|

n+2
2 f (x, v(x), (x · ∇) v(x)) = 0

and

|x|2∆w − (n− 2)x · ∇w − (n− 2)2

4
w + |y|

n+2
2 f (y, w(x), (x · ∇) w(x)) = 0,

respectively. (See (7) and (8) below.) Then v(x) ≡ w(x) implies (5).

We consider the following typical problem

(6) ∆u + g(x, u) = 0, u > 0 in A u = 0 on ∂A,

where g = g(x, s) is continuous on A × [0,∞) and C1 in s. In this case
we see that f(x, s, q) = g(x, |x|−(n−2)/2s). Note that the existence of pos-
itive nonradial solution u of the problem (6) has been studied by many
authors, see, e.g., Brezis and Nirenberg [2], Suzuki [11], Byeon [3], and
the references therein. As a consequence of Corollary 1 we obtain the
following corollary, which in the special case g(x, u) = u(n+2)/(n−2) (and
f(x, s, q) = |x|−(n+2)/2s(n+2)/(n−2)) yields Theorem A.

Corollary 2. Suppose that, for each ω ∈ Sn−1 and s ≥ 0, r
n+2

2 g
(
rω,

r−
n−2

2 s
)

is nonincreasing in r ∈ (1, a) and

r
n+2

2 g(rω, r−
n−2

2 s) ≡ r−
n+2

2 g(r−1ω, r
n−2

2 s) for 1 ≤ r ≤ a.

Let u ∈ C2(A) ∩ C(A) be a solution of (6). Then u satisfies the properties
(4) and (3).

Remark. For example,

g(rω, s) = r−
(n+2)+p(n−2)

2 h(ω)sp + cs
n+2
n−2 , c, p ∈ R, p ≥ 1,
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where h(ω) is continuous and positive on Sn−1, satisfies the conditions in
Corollary 2. For the case g(rω, s) = r−2h(ω)s + s(n+2)/(n−2), the existence
of positive solutions for the problem (6) is investigated in [2].

In our proof we use the operator ∆gv = |x|2∆v − (n − 2)x · ∇v. We
note that ∆g is the Laplace-Beltrami operator on the Riemannian space
(Rn, dx2/|x|2). We find that Equation (1) is written as

∆gv −
(n− 2)2

4
v + |x|

n+2
2 f (x, v, (x · ∇) v) = 0 in A

for the function v(x) = |x|(n−2)/2u(x), and that the operator ∆g is invariant
under the transformation x 7→ y = λ2x/|x|2.

In Section 2 we prove Theorems. In fact, we only present the proof of
Theorem 1 since the proof of Theorem 2 is very similar. In Appendix we
show that the operator ∆g is invariant under the transformation by using
of the property of the Kelvin transformation.

2. Proof of Theorems.

Due to similarity, we only give the proof of Theorem 1. Given λ ∈ (1, a), we
set

Tλ = {|x| = λ} and Σλ = {λ < |x| < a} .

For x ∈ Σλ, let xλ = λ2x/|x|2. Then we have

|x| >
∣∣∣xλ

∣∣∣ =
λ2

|x|
>

1
|x|

for x ∈ Σλ.

Define the operator ∆g by ∆gv = |x|2∆v − (n− 2)x · ∇v. We note that ∆g

is the Laplace-Beltrami operator on the Riemannian space (Rn, dx2/|x|2).
For a solution u of (1), the function v(x) = |x|

n−2
2 u(x) satisfies

(7) |x|2∆v − (n− 2)x · ∇v − (n− 2)2

4
v + |x|

n+2
2 f (x, v, (x · ∇) v) = 0

in A, which is written as

∆gv −
(n− 2)2

4
v + |x|

n+2
2 f (x, v, (x · ∇) v) = 0 in A.

Let vλ(x) = v(xλ) and y = xλ. By Lemma A in Appendix, we find that
∆gv

λ(x) = ∆gv(y). We have x ·∇ = r∂r for r = |x| (see, e.g., [7]) and hence

x · ∇xvλ = r∂rv
λ = −s∂sv = −y · ∇yv,

where r = |x| and s = |y| = λ2/r. Therefore, the property f(x, s,−q) =
f(x, s, q) implies the relation

(8) ∆gv
λ − (n− 2)2

4
vλ +

∣∣∣xλ
∣∣∣n+2

2
f

(
xλ, vλ, (x · ∇) vλ

)
= 0 in A.
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It follows that |x| >
∣∣xλ

∣∣ > 1/|x| and 1 < λ < |x| < a for x ∈ Σλ. Then the
assumption on f in Theorem 1 guarantees∣∣∣xλ

∣∣∣n+2
2

f(xλ, s, q) ≥ |x|
n+2

2 f(x, s, q)

for x ∈ Σλ, s ≥ 0, and q ≥ 0. Therefore, the function wλ = vλ − v satisfies

∆gwλ −
(n− 2)2

4
wλ + |x|

n+2
2

(
f

(
x, vλ, (x · ∇) vλ

)
− f (x, v, (x · ∇) v)

)
≤ 0

on Σλ. Writing

bλ(x) =
∫ 1

0
fs

(
x, tvλ(x) + (1− t)v(x), (x · ∇)vλ(x)

)
dt and

cλ(x) =
∫ 1

0
fq

(
x, v(x), t(x · ∇)vλ(x) + (1− t)(x · ∇)v(x)

)
dt,

we obtain

∆gwλ −
(n− 2)2

4
wλ + |x|

n+2
2 (bλ(x) + cλ(x)x · ∇) wλ ≤ 0 on Σλ.

Let zλ(x) = |x|−
n−2

2 wλ(x). Then we have

|x|
n+2

2 ∆zλ = ∆gwλ−
(n− 2)2

4
wλ and |x|

n−2
2 x·∇zλ = −n− 2

2
wλ+x·∇wλ.

Define

b̃λ(x) = |x|
n−2

2

(
bλ(x) +

n− 2
2

cλ(x)
)

and c̃λ(x) = |x|
n−2

2 cλ(x).

We have shown the following lemma.

Lemma 1. Under the assumptions of Theorem 1, each λ ∈ (1, a) admits
the inequality

(9) ∆zλ + b̃λ(x)zλ + c̃λ(x)x · ∇zλ ≤ 0 on Σλ,

where zλ(x) = |x|−
n−2

2

(
vλ − v

)
.

Once Lemma 1 is proven, Theorem 1 follows from the standard argument
([1]). Putting

Λ ≡ {λ ∈ (1, a) : zλ > 0 in Σλ} ,

we see that the desired consequence follows from Λ = (1, a). We show
Λ = (1, a) by three steps.

Step 1. We have [r0, a) ⊂ Λ for r0 close to a, that is, Λ 6= ∅.

Proof. We see that the coefficents b̃λ(x) and c̃λ(x) in (9) are uniformly
bounded. Then for r0 close to a, the maximum principle holds for the
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Equation (9) on any subdomain of A \ Br0 and for any λ, where Br0 =
{x ∈ Rn : |x| < r0}. (See e.g. [1].) This implies [r0, 1) ⊂ Λ. �

We prepare the following lemma.

Lemma 2. (i) If λ ∈ Λ, then

(10)
∂zλ

∂ν
< 0 on Tλ,

where ν denotes the outer unit normal vector on Tλ from Σλ;
(ii) If λ 6∈ Λ, then there exists some x0 ∈ Σλ ∩Br0 such that zλ(x0) ≤ 0.

Proof. (i) Let λ ∈ Λ. Then we have zλ = 0 on Tλ, and zλ > 0 in Σλ.
Therefore, Hopf’s boundary lemma can be applied by (9) so that (10) holds.

(ii) As we have proven in Step 1, λ < r0 and hence Σλ∩Br0 6= ∅. Suppose
to the contrary that

zλ(x) > 0 on Σλ ∩Br0 .

Then we get

∆zλ + b̃λ(x)zλ + c̃λ(x)x · ∇zλ ≤ 0 in Σλ \Br0 ,

and
zλ ≥ 0 on ∂

(
Σλ \Br0

)
.

Now the maximum principle guarantees zλ > 0 in Σλ \ Br0 . However, we
have zλ > 0 in Σλ ∩ Br0 and hence zλ > 0 in Σλ. This means λ ∈ Λ, a
contradiction. �

Step 2. Λ is left-open.

Proof. If Λ is not left-open, there exist λ0 ∈ Λ and a sequence {λn}
satisfying

λ0 −
1
n

< λn < λ0 and λn 6∈ Λ.

Lemma 2 (ii) guarantees the existence of xn ∈ Σλn ∩Br0 satisfying

(11) zλn(xn) ≤ 0.

Note that zλn = 0 on Tλn . Then we have a point yn on the segment con-
necting xn and λ2

nxn/|xn|2 satisfying

(12)
∂zλn

∂r
(yn) ≤ 0.

Taking a subsequence if necessary, we may suppose the existence of some
x0 ∈ Σλ0 ∩ Br0 satisfying xn → x0. By (11) we obtain zλ0(x0) ≤ 0. Since
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λ0 ∈ Λ, we must have x0 ∈ Tλ0 . In particular, yn → x0 and ∂zλ0/∂r(x0) ≤ 0
follows from (12). However, this is equivalent to

∂zλ0

∂ν
(x0) ≥ 0,

which contradicts to (10) valid for λ = λ0 ∈ Λ. �

Step 3. Λ is left-closed.

Proof. In fact, let {λn} ⊂ Λ be a sequence satisfying λn ↓ λ1 > 1. Then,
we have

∆zλ1 +
(

˜bλ1(x) + ˜cλ1(x)x · ∇
)

zλ1 ≤ 0 and zλ1 ≥ 0 in Σλ1 .

Since zλ1 > 0 on |x| = a, we have zλ1 6≡ 0 in Σλ1 . Therefore, the maximum
principle implies zλ1 > 0 in Σλ1 , or equivalently, λ1 ∈ Λ. �

As a consequece of Steps 1-3, we obtain Λ = (1, a). This implies v1(x) ≥
v(x) on 1 ≤ |x| ≤ a, and then (2) holds. The property (3) follows from
Lemma 2 (i). This completes the proof. �

Appendix.

Let ∆gv = |x|2∆v−(n−2)x ·∇v. We show that the operator ∆g is invariant
under the transformation x 7→ y = λ2x/|x|2, that is, ∆gv = ∆gV for v(x) =
V (y). Here we use the well-known property of the Kelvin transformation
η = ξ/|ξ|2 expressed as

∆ηU = |ξ|n+2∆ξu for U(η) = |ξ|n−2u(ξ).

Lemma A. Let v(x) = V (y) and y = λ2x/|x|2 with λ > 0. Then we have

(13) |x|2∆xv − (n− 2)x · ∇xv = |y|2∆yV − (n− 2)y · ∇yV,

where ∆x =
∑n

i=1 ∂2/∂x2
i and x · ∇x =

∑n
i=1 xi∂/∂xi.

Proof. Writing w(x) = |x|−
n−2

2 v(x) we have

(14) |x|
n+2

2 ∆xw = |x|2∆xv − (n− 2)x · ∇xv − (n− 2)2

4
v.

Similarly, writing W (y) = |y|−
n−2

2 V (y) we have

(15) |y|
n+2

2 ∆yW = |y|2∆yV − (n− 2)y · ∇yV − (n− 2)2

4
V.
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By |y| = λ2/|x| it follows that

|x|
n−2

2 w(x) = v(x) = V (y) = |y|
n−2

2 W (y) =
(

λ2

|x|

)n−2
2

W (y).

Then we obtain

W (y) =
(
|x|
λ

)n−2

w(x).

By the property of the Kelvin transformation, we obtain

∆yW =
(
|x|
λ

)n+2

∆xw.

Then we have

|x|
n+2

2 ∆xw =
(

λ2

|x|

)n+2
2

(
|x|
λ

)n+2

∆xw = |y|
n+2

2 ∆yW.

Therefore, by (14) and (15), we obtain the property (13). This completes
the proof. �
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