RESTRICTED PRÉKOPA–LEINDLER INEQUALITY

Franck Barthe
We prove a functional version of the Brunn-Minkowski inequality for restricted sums obtained by Szarek and Voiculescu.

We only consider Lebesgue-measurable subsets of \mathbb{R}^n, and for $A \subset \mathbb{R}^n$, we denote its volume by $|A|$. If $A, B \subset \mathbb{R}^n$, their Minkowski sum is defined by

$$A + B = \{x + y, (x, y) \in A \times B\}.$$

The classical Brunn-Minkowski inequality provides a lower bound for its volume.

Theorem 1. Let A, B be compact, non void subsets of \mathbb{R}^n, one has

$$|A + B|^{\frac{1}{n}} \geq |A|^{\frac{1}{n}} + |B|^{\frac{1}{n}}.$$

In their study of the free analogue of the entropy power inequality [SV], Szarek and Voiculescu define the notion of restricted Minkowski sum of A and B with respect to $\Theta \subset A \times B$:

$$A + \Theta B = \{x + y, (x, y) \in \Theta\},$$

and show that an analogue of the Brunn-Minkowski inequality holds:

Theorem 1’. There exists a positive constant c such that for all $\rho \in]0, 1[$, $n \in \mathbb{N}$, for all $A, B \subset \mathbb{R}^n$ and $\Theta \subset A \times B$ such that:

$$\rho \leq \left(\frac{|A|}{|B|}\right)^{\frac{1}{n}} \leq \rho^{-1} \quad \text{and} \quad \frac{|\Theta|}{|A| \cdot |B|} \geq 1 - c \min(\rho \sqrt{n}, 1),$$

one has

$$|A + \Theta B|^{\frac{2}{n}} \geq |A|^{\frac{2}{n}} + |B|^{\frac{2}{n}}.$$

It is well known that the Brunn-Minkowski inequality can be derived from the Prékopa-Leindler inequality [Pré], [Lei], which we recall here:
Theorem 2. Let \(f, g \) be non-negative functions in \(L_1(\mathbb{R}^n) \) and \(\lambda \in [0, 1] \), let \(H \) be a measurable function on \(\mathbb{R}^n \) such that
\[
H(x) \geq \sup \{ f^\lambda(u)g^{1-\lambda}(v), (u, v) \in \mathbb{R}^n \times \mathbb{R}^n \text{ and } x = \lambda u + (1 - \lambda) v \},
\]
then
\[
\int_{\mathbb{R}^n} H(x) \, dx \geq \left(\int f \right)^\lambda \left(\int g \right)^{1-\lambda}.
\]

We show that a corresponding restricted version of this statement holds.

Theorem 2'. There exist positive scalars \(c \) and \(n_0 \) such that for all \(0 < \varepsilon \leq 1/2 \), for all \(\lambda \in [\varepsilon, 1 - \varepsilon] \) and for all \(n \geq n_0 \), if \(f, g \) are non-negative functions in \(L_1(\mathbb{R}^n) \) and if \(\Theta \) is a measurable subset of \(\mathbb{R}^{2n} \) such that
\[
\int_{\Theta} f(x)g(y) \, dx \, dy \geq \frac{1}{2} + \frac{c \log n}{\sqrt{n}},
\]
then
\[
\int_{\mathbb{R}^n} K(x) \, dx \geq \left(\int f \right)^\lambda \left(\int g \right)^{1-\lambda},
\]
as soon as the function \(K \) satisfies:
\[
K(x) \geq \sup \{ f^\lambda(u)g^{1-\lambda}(v), (u, v) \in \Theta \text{ and } x = \sqrt{\lambda} u + \sqrt{1 - \lambda} v \}.
\]

Let us return to the example given in [SV] to show that the condition on the ratio
\[
\theta = \int_{\Theta} f(x)g(y) \, dx \, dy / \left(\int f \right) \left(\int g \right)
\]
is asymptotically optimal. Let \(B^n_2 \) be the Euclidean unit ball in \(\mathbb{R}^n \) and let \(\Theta = \{ (x, y) \in \mathbb{R}^n \times \mathbb{R}^n, \langle x, y \rangle \leq 0 \} \), then \(|\Theta \cap (B^n_2 \times B^n_2)| = 1/2 |B^n_2|^2 \) and the \(\Theta \)-restricted sum of a ball of radius \(r_1 \) and a ball of radius \(r_2 \) is a ball of radius \(\sqrt{r_1^2 + r_2^2} \). In particular, for all \(\lambda \in [0, 1] \),
\[
\sqrt{\lambda} B^n_2 + \Theta \sqrt{1 - \lambda} B^n_2 = B^n_2.
\]
The conclusion of Theorem 2' applied when \(f \) and \(g \) are the characteristic function of \(B^n_2 \) would be
\[
|\sqrt{\lambda} B^n_2 + \Theta \sqrt{1 - \lambda} B^n_2| \geq |B^n_2|,
\]
and actually the equality holds. It is then clear that the conclusion of Theorem 2' becomes false for ratios \(\theta < 1/2 \).
We shall first show that Theorem 2′ implies Theorem 1′, maybe with different conditions on the parameters. Let A, B be two subsets of \mathbb{R}^n, let $\Theta \subset A \times B$ such that

$$\rho := \left(\frac{|A|}{|B|} \right)^{\frac{1}{n}} \leq 1.$$

Assume that the ratio $\theta = \frac{|\Theta|}{|A||B|}$ is larger than $\frac{1}{2} + c \sqrt{\frac{1 + \rho^2}{\rho^2}} \cdot \log n$. Let us define the set

$$\tilde{\Theta} = \left\{ \left(\frac{a}{|A|^\frac{1}{n}}, \frac{b}{|B|^\frac{1}{n}} \right) \in \mathbb{R}^{2n}, (a, b) \in \Theta \right\}.$$

Let

$$\tilde{A} = \frac{A}{|A|^\frac{1}{n}} \quad \text{and} \quad \tilde{B} = \frac{B}{|B|^\frac{1}{n}}$$

and let f and g be the characteristic functions of \tilde{A} and \tilde{B}. A simple change of variables gives that

$$\int_{\tilde{\Theta}} f(x) g(y) \, dx \, dy = \frac{|\Theta|}{|A||B|} = \theta,$$

so we can apply Theorem 2′ to f and g, with $\lambda = \frac{|A|^\frac{2}{n}}{|A|^\frac{2}{n} + |B|^\frac{2}{n}} = \frac{\rho^2}{1 + \rho^2}$ and get

$$\left| \sqrt{\lambda} \tilde{A} + \sqrt{1 - \lambda} \tilde{B} \right| \geq 1,$$

where

$$\sqrt{\lambda} \tilde{A} + \sqrt{1 - \lambda} \tilde{B} = \left\{ \sqrt{\lambda} \frac{a}{|A|^\frac{1}{n}} + \sqrt{1 - \lambda} \frac{b}{|B|^\frac{1}{n}}, (a, b) \in \Theta \right\}$$

$$= \left\{ \frac{a + b}{\sqrt{|A|^\frac{2}{n} + |B|^\frac{2}{n}}}, (a, b) \in \Theta \right\}$$

$$= \frac{A + \Theta B}{\sqrt{|A|^\frac{2}{n} + |B|^\frac{2}{n}}}.$$

Hence, we obtain

$$|A + \Theta B|^\frac{2}{n} \geq |A|^\frac{2}{n} + |B|^\frac{2}{n}.$$

Our method is based on an observation of Brascamp and Lieb [BL1]: the Prékopa-Leindler inequality is a limit case of the reverse sharp form of Young’s convolution inequality. We will first prove a restricted form of
Young’s inequality and its converse, using a modification of the method we developed in [Bar], and then take the limits in certain parameters. Our proof of Young’s inequality is based on measure-preserving mappings between measures. We use them in order to build a suitable change of variables which makes the problem simpler; then a simple arithmetico-geometric inequality gives the result. Now, we have to work with functions on \mathbb{R}^n, because the set Θ makes it difficult to use the classical tensorisation argument. In general, given two probability on \mathbb{R}^n, there are several measure-preserving mappings between them; for our purpose, the mapping built by Knothe in [Kno] fits:

Lemma 1. Let f, F be positive continuous functions on \mathbb{R}^n such that $\int f = \int F$. There exists a differentiable map $u : \mathbb{R}^n \to \mathbb{R}^n$ such that for $x \in \mathbb{R}^n$

$$\det(du(x)) \cdot f(u(x)) = F(x),$$

and for all $i \leq n$ and all $(x_i)_{i=1}^n \in \mathbb{R}^n$,

$$u((x_i)_{i=1}^n) = (u_1(x_1), u_2(x_1, x_2), \ldots, u_n(x_1, \ldots, x_n)),$$

where for all x_1, \ldots, x_{i-1}, the function $u_i(x_1, \ldots, x_{i-1}, \cdot)$ is increasing on \mathbb{R}. In particular $du(x)$ has always a lower triangular matrix with positive diagonal (in the canonical basis).

We also need a version of the arithmetico-geometric inequality for matrices of the previous form:

Lemma 2. Let M, N be lower triangular $n \times n$-matrices with non-negative diagonal and let $t \in [0, 1]$, then

$$\det(tM + (1-t)N) \geq (\det M)^t (\det N)^{1-t}.$$

The first step of the proof is the following restricted version of Young’s inequality. For $t > 1$, we denote by t' the real number such that $1/t + 1/t' = 1$.

Lemma 3. Let f, F, g, G be positive continuous functions on \mathbb{R}^n, of integral 1 and dominated by some Gaussian function. Let u and v denote the measure preserving mappings obtained when applying Lemma 1 to (f, F) and (g, G) and let T be the bijective map of $\mathbb{R}^n \times \mathbb{R}^n$ defined by $T(x, y) = (u(x), v(y))$. Let $p, q, r \geq 1$ such that $1/p + 1/q = 1 + 1/r$. We set

$$c = \sqrt{r'/q}, \quad s = \sqrt{r'/p'},$$

and notice that $c^2 + s^2 = 1$. Then

$$\int f(x)g(y)1_{\Theta}(x, y) \, dx \, dy = \int F(X)G(Y)1_{\Theta}(X, Y) \, dX \, dY,$$
and
\[
\left(\int \left(\int f^{\frac{1}{r}}(cx - sy)g^{\frac{1}{q}}(sx + cy)1_{T\Theta}(cx - sy, sx + cy) \right)^r \, dy \right)^{\frac{1}{r}} \leq \int \left(\int F^{\frac{1}{r}}(cX - sY)G^{\frac{1}{q}}(sX + cY)1_{\Theta}(cX - sY, sX + cY) \, dY \right)^{\frac{1}{r}} \, dX.
\]

Proof. Equality (2) is a consequence of the measure-preserving properties of \(u\) and \(v\). We give a detailed proof of the inequality. Let \(R\) be the rotation of matrix \(\begin{pmatrix} c & -s \\ s & c \end{pmatrix}\) in the canonical basis. We are going to use the change of variable in \(\mathbb{R}^n\) given by the function \(\Phi = (R \otimes I_n)(R \otimes I_n)\), where \(I_n\) is the identity map on \(\mathbb{R}^n\). More precisely \((x, y) = \Phi(X, Y)\) means
\[
x = cu(cX - sY) + sv(sX + cY),
\]
\[
y = -su(cX - sY) + cv(sX + cY).
\]
It is clear that \(\Phi\) is a differentiable bijection of \(\mathbb{R}^n\). Its jacobian at the point \((X, Y)\) is
\[
J_{\Theta}(X, Y) = \det(du(cX - sY)) \det(dv(sX + cY)).
\]
We want an upper estimate for the integral (finite by assumption)
\[
I = \left(\int \left(\int f^{\frac{1}{r}}(cx - sy)g^{\frac{1}{q}}(sx + cy)1_{T\Theta}(cx - sy, sx + cy) \right)^r \, dy \right)^{\frac{1}{r}}.
\]
Using the \((L^r, L^q)\)-duality, there exists a positive function \(h\) on \(\mathbb{R}^n\) such that \(\|h\|_{r'} = 1\) and
\[
I = \iint f^{\frac{1}{r}}(cx - sy)g^{\frac{1}{q}}(sx + cy)1_{T\Theta}(cx - sy, sx + cy)h(y) \, dx \, dy.
\]
By the change of variable \((x, y) = \Phi(X, Y)\), we obtain that \(I\) is equal to
\[
\iint f^{\frac{1}{r}}(u(cX - sY))g^{\frac{1}{q}}(v(sX + cY))h(-su(cX - sY) + cv(sX + cY))
\]
\[
\cdot 1_{T\Theta}(u(cX - sY), v(sX + cY))
\]
\[
\cdot \det(du(cX - sY)) \det(dv(sX + cY)) \, dX \, dY.
\]
In order to shorten the formulas, denote
\[
U = u(cX - sY), \quad V = v(sX + cY),
\]
\[
U' = \det(du(cX - sY)), \quad V' = \det(dv(sX + cY)).
\]
Noticing that the definition of \(T\) implies \(1_{T\Theta}(u(cX - sY), v(sX + cY)) = 1_{\Theta}(cX - sY, sX + cY)\), and using the differential formulas
\[
\det(du(x))f(u(x)) = F(x),
\]
\[\det(dv(x)) \cdot g(u(x)) = G(x), \]

we get

\[
I = \iint f^\frac{1}{r}(u(cX - sY))g^\frac{1}{q}(v(sX + cY))1_{\Theta}(cX - sY, sX + cY) \\
\cdot h(-sU + cV)U'V' dXdY \\
= \int \left(\int F^\frac{1}{r}(cX - sY)G^\frac{1}{q}(sX + cY)1_{\Theta}(cX - sY, sX + cY) \\
\cdot h(-sU + cV)(U')^\frac{1}{r'}(V')^\frac{1}{r'} dY \right) dX.
\]

Using Hölder's inequality for the integral in \(Y \) with parameters \(r \) and \(r' \), one has:

\[
I \leq \int \left(\int F^\frac{1}{r}(cX - sY)G^\frac{1}{q}(sX + cY)1_{\Theta}(cX - sY, sX + cY) dY \right)^\frac{1}{r'} \\
\cdot \left(\int h'^r(-sU + cV)(U')^\frac{r'}{r}(V')^\frac{r'}{r'} dY \right)^\frac{1}{r} dX.
\]

Let \(H(X) = \int h'^r(-sU + cV)(U')^\frac{r'}{r}(V')^\frac{r'}{r'} dY \), then

\[
H(X) = \int h'^r(a(X, Y))(\det du(cX - sY))^s(\det dv(sX + cY))^c dY,
\]

where

\[
a(X, Y) = -s u(cX - sY) + c v(sX + cY).
\]

It is clear that the partial differential of \(a \) with respect to \(Y \) is

\[
d_Y a(X, Y) = s^2 du(cX - sY) + c^2 dv(sX + cY).
\]

By the arithmetico-geometric inequality stated in Lemma 2,

\[
\det(dY a(X, Y)) \geq (\det du(cX - sY))^s(\det dv(sX + cY))^c,
\]

hence

\[
H(X) \leq \int h'^r(a(X, Y)) \det dY a(X, Y) dY \leq \int h'^r = 1,
\]

where we use the fact that \(a(X, Y) \) is an injective function of \(Y \) (indeed, \(u \) and \(v \) are by definition increasing for the lexicographic order on \(\mathbb{R}^n \)). This proves that

\[
I \leq \int \left(\int F^\frac{1}{r}(cX - sY)G^\frac{1}{q}(sX + cY)1_{\Theta}(cX - sY, sX + cY) dY \right)^\frac{1}{r} dX.
\]

\[\square \]
We are going to take a limit in \(r \) to obtain an inequality similar to the Prékopa-Leindler inequality. To simplify the notations, we set \(\kappa = 1 - \lambda \).

Lemma 4. Let \(f, g, F, G \) be as in Lemma 3. Let \(\Theta \subset \mathbb{R}^{2n} \) and denote \(\theta = \int_{\Theta} F(X)G(Y) \, dX \, dY \). Then

\[
\int \sup_{X=\sqrt{\lambda}u+\sqrt{\kappa}v} F^\lambda(u)G^\kappa(v) 1_{\Theta}(u, v) \, dX \\
\geq \inf_{A \subset \mathbb{R}^{2n}} \sup_{y \in \mathbb{R}^n} \int f^\lambda \left(\sqrt{\lambda} x - \sqrt{\kappa} y \right) g^\kappa \left(\sqrt{\kappa} x + \sqrt{\lambda} y \right) \\
\quad \cdot 1_A \left(\sqrt{\lambda} x - \sqrt{\kappa} y, \sqrt{\kappa} x + \sqrt{\lambda} y \right) \, dx,
\]

where the infimum is over the sets \(A \subset \mathbb{R}^{2n} \) such that \(\int_A f(x)g(y) \, dx \, dy \geq \theta \).

Proof. This lemma is a limit case of Lemma 3. For \(r > 1 \), we set

\[
p_r = \frac{r}{\lambda(r+1)}, \quad q_r = \frac{r}{\kappa(r+1)}.
\]

Then \(1/p_r + 1/q_r = 1 + 1/r \) and when \(r \) is large enough \(p_r, q_r \) > 1. We apply Lemma 3 with \(f, g, F, G \) for this triple and take the limit when \(r \) tends to \(+\infty \). Notice that

\[
\frac{1}{p_r} \to \lambda, \quad \frac{1}{q_r} \to \kappa,
\]

and

\[
c_r = \sqrt{\frac{p_r}{q_r}} = \sqrt{\frac{1 - q_r^{-1}}{1 - r^{-1}}} \to \sqrt{\lambda}, \quad s_r \to \sqrt{\kappa}.
\]

Our strong domination hypothesis ensures that the \(r \)-norms tend to essential suprema when \(r \) tends to infinity. We get:

\[
\sup_{y \in \mathbb{R}^n} \int f^\lambda \left(\sqrt{\lambda} x - \sqrt{\kappa} y \right) g^\kappa \left(\sqrt{\kappa} x + \sqrt{\lambda} y \right) \\
\quad \cdot 1_{\mathcal{T}_r\Theta} \left(\sqrt{\lambda} x - \sqrt{\kappa} y, \sqrt{\kappa} x + \sqrt{\lambda} y \right) \, dx \\
\leq \int_{\mathbb{R}^n} \sup_{Y \in \mathbb{R}^n} F^\lambda \left(\sqrt{\lambda} X - \sqrt{\kappa} Y \right) G^\kappa \left(\sqrt{\kappa} X + \sqrt{\lambda} Y \right) \\
\quad \cdot 1_{\Theta} \left(\sqrt{\lambda} X - \sqrt{\kappa} Y, \sqrt{\kappa} X + \sqrt{\lambda} Y \right) \, dX.
\]
Noticing that \(\begin{align*}
u &= \sqrt{\lambda} X - \sqrt{\kappa} Y \\
v &= \sqrt{\kappa} X + \sqrt{\lambda} Y
\end{align*} \)
is equivalent to \(\begin{align*}X &= \sqrt{\lambda} u + \sqrt{\kappa} v \\
Y &= -\sqrt{\kappa} u + \sqrt{\lambda} v,\end{align*} \)
we can rewrite the second member of the previous inequality as
\[
\int \sup_{X=\sqrt{\lambda} u+\sqrt{\kappa} v} F^\lambda(u)G^\kappa(v)1_\Theta(u,v) \, dX.
\]

By equality (2) in Lemma 3, we have \(\int_{T\Theta} f(x)g(y) \, dx dy = \theta \), which leads to the conclusion.

To finish the proof of Theorem 2', we have to estimate the infimum given in the previous lemma for two specific functions \(f \) and \(g \).

Lemma 5. Let \(F, G \) be as in Lemma 3, then
\[
\int \sup_{X=\sqrt{\lambda} u+\sqrt{\kappa} v} F^\lambda(u)G^\kappa(v)1_\Theta(u,v) \, dX \\
\geq E \left(\exp \left(\sqrt{\lambda\kappa} \sum_{i=1}^n X_i \right) 1\{\sum X_i \leq M_n,\theta\} \right),
\]
where \((X_i)_{i=1}^n\) is a sequence of i.i.d. random variables, their common law being the law of a difference of squares of two independent Gaussian variables \(N(0,1/\sqrt{2}) \) and the number \(M_n,\theta \) satisfies \(\mathbb{P}(\sum X_i \leq M_n,\theta) = \theta \).

Proof. We apply Lemma 4 with \(f(x) = g(x) = \pi^{-n/2} e^{-x^2} \).

We denote by \(\gamma_n \) the probability measure on \(\mathbb{R}^n \) with the previous density. We want a lower estimate of
\[
\mathcal{I} = \inf_{\gamma_n(A)=\theta} \sup_{y \in \mathbb{R}^n} \int \exp \left(-\lambda \left(\sqrt{\lambda} x - \sqrt{\kappa} y \right)^2 - \kappa \left(\sqrt{\kappa} x + \sqrt{\lambda} y \right)^2 \right) \\
\cdot 1_A \left(\sqrt{\lambda} x - \sqrt{\kappa} y, \sqrt{\kappa} x + \sqrt{\lambda} y \right) \pi^{-n/2} \, dx.
\]
Since the condition on \(A \) is rotation invariant, we can replace \(A \) by \(B \) such that \((x,y) \in B\) if and only if \((\sqrt{\lambda} x - \sqrt{\kappa} y, \sqrt{\kappa} x + \sqrt{\lambda} y) \in A\). Hence
\[
\mathcal{I} = \inf_{\gamma_n(B)=\theta} \sup_{y \in \mathbb{R}^n} \int \exp \left(-\lambda \left(\sqrt{\lambda} x - \sqrt{\kappa} y \right)^2 - \kappa \left(\sqrt{\kappa} x + \sqrt{\lambda} y \right)^2 \right) \\
\cdot 1_B(x,y) \pi^{-n/2} \, dx
\]
\[
\geq \inf_{\gamma_n(B)=\theta} \int \int \exp \left(x^2 - \lambda \left(\sqrt{\lambda} x - \sqrt{\kappa} y \right)^2 - \kappa \left(\sqrt{\kappa} x + \sqrt{\lambda} y \right)^2 \right) \\
\cdot 1_B(x,y) \, d\gamma_n(x),
\]
\cdot 1_B(x, y) \, d\gamma_n(x) d\gamma_n(y).

The matrix of the quadratic form on \(\mathbb{R}^n\), \(Q(x, y) = x^2 - \lambda(\sqrt{\lambda} x - \sqrt{\kappa} y)^2 - \kappa(\sqrt{\kappa} x + \sqrt{\lambda} y)^2\) in a suitable orthonormal basis is

\[
\sqrt{\lambda \kappa} \begin{pmatrix} I_n & 0 \\ 0 & -I_n \end{pmatrix},
\]

where \(I_n\) is the identity \(n \times n\) matrix. Hence, by rotation invariance of the Gaussian measure

\[
\mathcal{I} \geq \inf_{\gamma_2n(B) = \theta} \int_B \exp \left(\sqrt{\lambda \kappa} (x^2 - y^2) \right) \, d\gamma_n(x) d\gamma_n(y).
\]

This is exactly

\[
\mathcal{J} = \int_B \exp \left(\sqrt{\lambda \kappa} (x^2 - y^2) \right) \mathbf{1}_{\{x^2 - y^2 \leq M_{n, \theta}\}} \, d\gamma_n(x) d\gamma_n(y),
\]

where \(M_{n, \theta}\) is such that \(\gamma_2n(\{x^2 - y^2 \leq M_{n, \theta}\}) = \theta\). We get the conclusion of the lemma by rewriting this with \(X_i = x_i^2 - y_i^2\), where \(x_i\) and \(y_i\) are the \(i^{th}\) coordinates of \(x\) and \(y\). \(\square\)

We are going to use the central-limit theorem in the rather precise form of the Berry-Essen theorem. [Fel].

Theorem 3. Let \((X_i)_{i \in \mathbb{N}}\) be a sequence of i.i.d. random variables, let

\[
m = \mathbb{E}X_i, \quad \sigma = \left(\mathbb{E}X_i^2\right)^{1/2} \quad \text{and} \quad \beta = \mathbb{E}|X_i|^3.
\]

For all \(t \in \mathbb{R}\), let

\[
F_n(t) = \mathbb{P}\left(\frac{\sum_{i=1}^n X_i - nm}{\sigma \sqrt{n}} < t\right)
\]

and

\[
G(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-s^2/2} \, ds.
\]

There exists a universal constant \(c > 0\) such that for all \(t\) and for all \(n\),

\[
|F_n(t) - G(t)| \leq \frac{c\beta}{\sigma^3 \sqrt{n}}.
\]

Proof of Theorem 2'. By homogeneity, we may assume \(\int F = \int G = 1\). Comparing the assertions of Lemma 5 and Theorem 2%', we see that to prove the latter, it is enough to show that the expectation from the former is \(\geq 1\) provided the parameter \(\theta = \int_{\mathbb{R}^2} F(x) G(y) \, dx \, dy\) exceeds

\[
\frac{1}{2} + \frac{c}{\sqrt{2}} \frac{\log n}{\sqrt{n}}.
\]
To this end, we apply Theorem 3 to the variables X_i defined in Lemma 5, and notice that $m = 0$ and β, σ and c are universal constants. We set

$$\xi_n = \frac{\log n}{\sigma \sqrt{\lambda \kappa n}}$$

and

$$\alpha = \frac{c \beta}{\sigma^3}.$$

We fix λ and prove that, for n large enough and for

$$\theta = G(\xi_n) + \frac{\alpha}{\sqrt{n}},$$

the quantity

$$J = E \left(\exp \left(\sqrt{\lambda \kappa} \sum_{i=1}^{n} X_i \right) 1_{\{\sum X_i \leq M_{n,\theta}\}} \right)$$

is larger than 1.

As $E X_i = 0$, we get from the Berry-Essen theorem

$$P \left(\sum_{i=1}^{n} X_i < \xi_n \sigma \sqrt{n} \right) \leq G(\xi_n) + \frac{c \beta}{\sigma^3 \sqrt{n}} = \theta,$$

so $M_{n,\theta} \geq \xi_n \sigma \sqrt{n}$. We set $Z_n = \frac{\sum_{i=1}^{n} X_i}{\sigma \sqrt{n}}$, it is clear that

$$J \geq E \left(\exp \left(\sigma \sqrt{\lambda \kappa} Z_n \right) 1_{\{Z_n \leq \xi_n\}} \right).$$

Let $n_1(\lambda)$ be the smallest integer n such that $\xi_n \leq 1$, notice that it is a non-increasing function of $\lambda \in [0, 1/2]$. We work with $n \geq n_1(\lambda)$. When n is large, Z_n behaves like a normal Gaussian g. So we can almost estimate this expectation by replacing Z_n by g.

More precisely, let $d = 2 \alpha \sqrt{2 \pi e}$ and let $n_2(\lambda)$ be the smallest integer such that $\xi_n/3 \geq d/\sqrt{n}$, it is a non-decreasing function of $\lambda \in [0, 1/2]$. Then for $n > \max(n_1(\lambda), n_2(\lambda))$, one has

$$P_{Z_n}([t, \xi_n]) \geq P_g \left(\left[t, \xi_n - \frac{d}{\sqrt{n}} \right] \right).$$

This comes from the Berry-Essen theorem and from the fact that ξ_n stays in $[0, 1]$ where the density of the law of g is bounded from below:

$$P_{Z_n}([t, \xi_n]) \geq P_g ([t, \xi_n]) - 2 \frac{\alpha}{\sqrt{n}}$$

$$= P_g \left(\left[t, \xi_n - \frac{d}{\sqrt{n}} \right] \right) + \frac{1}{\sqrt{2 \pi}} \int_{\xi_n - \frac{d}{\sqrt{n}}}^{\xi_n} e^{-t^2/2} dt - 2 \frac{\alpha}{\sqrt{n}}$$

$$\geq P_g \left(\left[t, \xi_n - \frac{d}{\sqrt{n}} \right] \right) + \frac{1}{\sqrt{n}} \left(\frac{d}{\sqrt{2 \pi}} e^{-1/2} - 2 \alpha \right).$$
We are now able to compute a lower estimate of \mathcal{J}.

\[
\mathcal{J} \geq \int_{-\infty}^{\xi_n} \exp\left(\sigma \sqrt{\lambda \kappa n} t\right) \, dP_{Z_n}(t)
\]

\[
= \int_{-\infty}^{\xi_n} \sigma \sqrt{\lambda \kappa n} \exp\left(\sigma \sqrt{\lambda \kappa n} t\right) P_{Z_n}([t, \xi_n]) \, dt
\]

\[
\geq \int_{-\infty}^{\xi_n - \frac{d}{\sqrt{n}}} \sigma \sqrt{\lambda \kappa n} \exp\left(\sigma \sqrt{\lambda \kappa n} t\right) P_{g} \left(\left[t, \xi_n - \frac{d}{\sqrt{n}} \right] \right) \, dt
\]

\[
= \int_{-\infty}^{\xi_n - \frac{d}{\sqrt{n}}} \exp\left(\sigma \sqrt{\lambda \kappa n} t\right) e^{-t^2/2} \, dt \frac{1}{\sqrt{2\pi}}.
\]

Because of our assumptions on n, we can write:

\[
\mathcal{J} \geq \int_{\xi_n/2}^{2\xi_n/3} \exp\left(\sigma \sqrt{\lambda \kappa n} t\right) e^{-t^2/2} \, dt \frac{1}{\sqrt{2\pi}}
\]

\[
\geq \frac{\xi_n}{6} \exp\left(\sigma \sqrt{\lambda \kappa n} \xi_n/2\right) e^{-1/2} \frac{1}{\sqrt{2\pi}}
\]

\[
= \frac{\log n}{6\sigma \sqrt{2\pi e \lambda \kappa n}} \exp \left(\frac{\log n}{2} \right)
\]

\[
= \frac{\log n}{6\sigma \sqrt{2\pi e \lambda \kappa}}.
\]

We denote by $n_3(\lambda)$ the smallest integer n such that the previous quantity is larger than 1. It is a non-decreasing function of $\lambda \in [0, 1/2]$.

Eventually, if $\lambda \in [\varepsilon, 1/2]$, then for $n \geq \max(n_1(\varepsilon), n_2(1/2), n_3(1/2))$ the conclusion of Theorem 2' holds for

\[
\theta = G(\xi_n) + \frac{\alpha}{\sqrt{n}}.
\]

As by concavity, $G(t) \leq \frac{1}{2} + \frac{t}{\sqrt{2\pi}}$ for all t positive, one easily deduces the theorem from the previous result. Theorem 2' gives some information only if the quantity $1/2 + c \log n/\sqrt{\varepsilon n}$ is smaller than one. So the condition $n \geq n_1(\varepsilon)$ is implicitly contained in Theorem 2'.

\[
\square
\]

References

Received November 10, 1997 and revised June 30, 1998.

Université de Marne-la-Vallée
77454 Marne la Vallée Cedex 2
France
E-mail address: barthe@math.univ-mlv.fr