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The aim of this paper is to prove the existence of k-peak so-
lutions (solutions with more than one local maximum point)
for the following singularly perturbed problem without im-
posing any extra condition on the boundary 9Q:

—?2Au4+u=uP7l, inQ

(1.1) u > 0, in ©
g—z =0, on 9

where ¢ is a small positive number, € is a bounded C3-domain
in RN, n is the unit outward normal of 9Q at y,2 < p < 1\2,]:]2
ifN>3and2<p<4o0if N =2.

1. Introduction.

Problem (1.1) appears in applied mathematics. See for example [13, 14|
and the references therein. For the interesting link between this problem
and the modelling of activator-inhibitor systems, the authors can refer to
[11]. In [13, 14], Ni and Takagi prove that the least energy solution of (1.1)
has exactly one local maximum point z. which lies in 912, and z. tends to
a point xy which attains the maximum of H(z), where H(z) is the mean
curvature function of 0€2. Later, Wei [21] proves that for a solution u. of
(1.1) in a certain energy level, u. has only one local maximum point z.
which is in 0f2, and x. tends to a critical point of H(z). He also gets a
kind of converse, that is, for each nondegenerate critical point zg of H(x),
there exists a solution w,. for (1.1), such that u. has only one local maximum
point x¢, and x. — zg as ¢ — 0. In the recent paper [10], Li shows that
the assumption of nondegenercy can be replaced by C!-stable (see definition
0.1 in [10]). Of course, nondegenerate critical point, strictly local maximum
point and strictly local minimum point are C!-stable critical points. Thus,
Li extends the results in [8, 21]. Gui [8] and Li [10] also consider the
existence of multipeak solutions. But locally speaking, these solutions have
one local maximum point. Other results on this problem can also be found
in Bates, Dancer and Shi [5] and Wang [17]

We mention here the works on the Neumann problem involving critical
Sobolev exponent [1, 2, 12, 16, 18, 19, 20).
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Except in [19, 20], the results concerning the existence of multipeak so-
lutions for (1.1) in the papers just mentioned were obtained by gluing some
single peak solutions concentrating on different points together. So some
other conditions on J¢2 are needed and they exclude the case that € is a
ball. In [19, 20], double peak solutions have been constructed on the ball
by using the special symmetric properties of the ball. But whether there
exists k-peak solution for (1.1) on the ball with k£ > 3 is still not known.
Moreover, it is impossible to use these results to get a k-peak solution wu.
such that all the local maximum points of u. tend to the same point.

In this paper, we just assume that 9 is C3. We will prove that for each
integer £ > 1, (1.1) has a k-peak solution provided ¢ is small enough. Before
we state our main results, we introduce some notations.

Throughout this paper, we denote H(z) the mean curvature function of
0. Let U(y) be the unique positive solution (see [9]) of

—Au+u=uPl, on RV
(1.2) we HI(RN),
u(0) = max,cpy u(y).

It is well known (see [7]) that U(y) is radially symmetric about the origin,
decreasing and

lim U(y)el|y| V=272 = ¢5 > 0.

ly|—o0
Define
(1.3) (u,v)e = / e2Du - Dv 4 uw, Yu,v € HY(Q),
Q
1
(1.4 lulle = (w3,

For any g € RN, e > 0, let

Uerat) = U (470,

3

For any z; € 092,i = 1,2,...,k, define

oU. .
E.pk= {v € Hl(Q) t (Uegys 0)e = <8€’$l,v> =0,
T’L] e
i=1,2,...,k, j:1,2,...,N—1},
where {7;1,...,T(nv—1)} forms an orthoganal basis of the tangent space of

o) at x;.
The main results of the paper are the following:
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Theorem 1.1. For each fized positive integer k, there exists an g9 = eo(k),
such that for each ¢ € (0,e9], (1.1) has a solution of the form

k
Ue = g aEiUE,(EEi + Ve
=1

where

(1.5) o — lase—0,1=1,2,...,k,
(1.6) v €00, i=1,2,.. .k

(1.7) %i;xeﬂ—>+oo as € — 0, fori # j,
(1.8) Tei — x; and x; satisfies H(x;) = Ifg%)n H(z),
(1.9) Ve € ey ey ||0lI2 = 0(e™).

In particular, if H(x) has exactly one global minimum point xo, then x.; —
roase—0,i=1,2,...,k.

Theorem 1.2. Suppose that x¢ € 02 is a strictly local minimum point of
H(x). Then for any fized integer k > 0, there exists an ey > 0, such that
for each ¢ € (0,e¢], (1.1) has a solution of the form

k
Ue = Z O‘EiUE,in + ve
i=1
where ag;, e and ve satisfy (1.5)-(1.7) and (1.9). Moreover, x.; — xo as
£ 0,i=12,. ..k

In Section 2, we will prove Theorem 1.1. Since the proof of Theorem 1.2
is similar to that of Theorem 1.1, we just point out the necessary changes
in the proof of Theorem 1.2. We put the basic estimates in Appendix A.
In Appendix B, we will prove that the corresponding linear map A. . is
invertible and ||AZ1|| < C with C independent of ¢ and x € [9Q]".

£,%

2. Proof of Main Results.
Let

1
@1  I()= /(52\Du]2—|—u2) _ / WP, ueH'(Q).
2 Ja pJa
For fixed integer k > 0, let

(2.2) o= (a,...,a;) € RF,
(2.3) x=(x1,...,25) € R*Y, z;eRNi=1,.. k.
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Define

(2.4) Da,R:{x:xieaQ, i=1,2,.. .k M>R,i7éj},
3

(25) Megn={(@2,0): oy =1 <6,

i=1,2,...,k; x € Do g, v € Ecp g, ||v]|le < 56N/2}.
Let
k
(2.6) J(a,z,v) =T (Z iUe 2, + v) , (,x,v) € Mo s

i=1
First, we have the following decomposition lemma:

Lemma 2.1. There are g > 0,0 > 0 and R > 0, such that for each ¢ €
(0,e0) and each u € H'(Q), satisfying

k
i=1

u can be uniquely decomposed into

< 55N/2, for some z € D, R,

€

k
U = E OésiUs,a:Ei + Vg,
=1

where (az, e, ve) € Me s R.

The proof of Lemma 2.1 is almost identical to that of Proposition 7 in
[4]. We thus omit it here.
As a direct consequence of Lemma 2.1, we have:

Proposition 2.2. There exist g > 0 and § > 0 and R > 0, such that for
each € € (0,e0], (o, z,v) € M, 5 is a critical point of J(a,x,v) if and only
if u= Zle ;U z; +v is a critical point of I(u).

We mention here that it is easy to prove that if u = Zle o;Ue z; +vis a
solution of (1.1) with (o, s, v:) € M s g, then u is positive, see for example
[15].

In view of Proposition 2.2, the rest of this paper is devoted to find a
critical point (o, z,v) € M, 5r for J(o, x,v). On the other hand, by the
definition of E. ;, we know that (a,z,v) € M.sp is a critical point of
J(a, z,v) in the manifold M, s p if and only if there are Lagrange multipliers
A, By, 1=1,2,..., k, such that
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(2.7)
N-1
oJ(a, x,v) 9?U. ., .
— - =) By ! =1,...,N—1,1=1,....,k
omi Z & <8m3ﬂ"v T ’ e
j=1 7o le
(2.8)
oJ (o, x U)_O’ =1k
Oqy
(2.9)
k k N—1
oJ(a,z,v) U 4,
o = ;AlUs,xl + ; < BJ 87‘1

We will proceed in a similar way as [6]. That is, for each fixed z € D, g,
we first solve (2.8) and (2.9) simultaneously. Then we solve (2.7).

Proposition 2.3. There are eg > 0,6 > 0 and R > 0, such that for each
e € (0,0, there is a Ct-map (ae(x),v:(x)) : Do gp — R¥x E. .1, satisfying

(2.10) 8J((‘;"x’”):o, I=1,....k
o
aJ
(2.11) <(O‘avmw> -0, Vw € e gy
€
Moreover,
o lzi—=
(2.12) o —1=0{e+Y e |, I=1,...k
i#]
o lz;— j
(2.13) [velle = O | /2 5—1—26_% E ,

i#]
where o is some positive constant.

Before we give the proof of Proposition 2.3, we introduce some notation.
Let i=a;—1,1=1,...,k, = (B1,...,0) € R*. For each fixed £ > 0,
define

k
(214) <ﬂ57>€:€NZBl’yla VﬁaVGRk
=1

(2.15) 18]l = (8. )2.
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Let w = (3,v) € RF x E. ;. Define
(2.16)

<w<1),w(z>>€ - <5<1>, 5(2)>s + <v(1),v(2)>€, v, w® € R* x B, .1,

1
(2.17) |lw]e = (w,w)2, Yw € RF x Ec 2 k-
Finally, denote

k
(2.18) Heop =Y Uem,
=1
(2.19) Sz, w) =J(a,zv),  w=(Bv)=(a-10).

Proof of Proposition 2.3. As in Bahri [3], see also Rey [15], we expand
J*(z,w) at w = 0:

(2.20) J(z,w) = J(2,0) + (fez, w)e + %(Qg,xw,w>5 + R, »(w),

where f; , € RF x E. ;1 satisfies

k
(2‘21) faxa a /folkv"‘z |:<H6,:C,]€3UE,$1>€_/folkUE.rl:| B
=1

Q: . is a linear map from RF x E; . to RF x E. ; 1, satisfying
(2.22)

<Q6,a:w7 w>€ = Agx(ﬂ) + Agx(v) + Ag?a)c(ﬂﬂ U)?

k
(2.23) ARG =) [<Ue,:chaUs,xl>s(p )/Qfoisthstl} Brbi,
l,h=1

’

(2.24) AC)(v) = o] — (p— 1) /Q HY 20,

(2.25)
Aé@?:p(ﬂ? Y 1 Z/ .z, kUE xlvﬂl
R. ,(w) is the higher order term satisfying
(2:26) RO, (w) = O (Jlwlz=4=0) i =0,1,2.

Hence (2.8) and (2.9) are equivalent to
(2.27) few + Qegw + R, ,(w) = 0.

Now we prove that Q. is invertible and [|QZ;| < C with C independent
of e and x € D, p.
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From Lemmas A.1 and A.2, we get
k

(228 A0B) =Y (10wl 0= 1) [ UZ,,) 18P + o) |67
X ) e
=l - P g)+o 2
—<¥|@2-p) [ 0740 o] 1o
< |82 = —aol 2

where o(1) — 0 as R — +oc.
On the other hand, by Lemma A .4,

-0 (Zk: /Ugf’ml1
=1 V&
=0 (=% Joll-18] + o(D)llo |- 18]l )
= (0(2) + o(1)) [[o]- 18]l
Define B! : RF x E. . — R x E, 4 as follows:
(BGw,w) = A0 +AZ ().

Then it follows from (2.28) and Lemma B.1 that Bélgz is invertible and

()"

Let Béx = Qex — ngz From (2.29), ||B§292H — 0 as e — 0 and
R — 4o00. Thus if we choose R > 0 large enough, € > 0 small enough,
Q< is invertible and

(229 [aAB50)

)

|61l + 0(1)Hv|!a||ﬁ|!a>

<C.

l@.) | <

Let F(f,w) =t f+ Qeqw+ R. ,(w), f,w € R* x E, ;1. Then F(0,0) =0
and g—i(0,0) = Q. is invertible. So from the implicit function theorem,
(2.27) has a solution w, € R* x E. . 1, and w, satisfies

(2'30) ||ws||€ < CHfE,a:H'

Now we estimate || fc »||.
By Lemma A .4,

1
(2.31) /9wa v

k
:Z/ Ug’x}wr/ <Hf$1,€ ZU&})
=1
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N k
N 1
= O(e2 Yol + /Q (Hfm " Z Ué’@,})
=1

Suppose that 2 < p < 3. Then we have
Clal[bP=2 if [a] < 8],

Cla[P=2[p| if |a] > [b],
< Cla|P=D/2)p|(P=1/2,

(2.32) lla + bP=t — JalP~! - ]b]p*1| < {

We also have
(2.33) / e~ MWle=llv=2l gy — O(e=mmn(h)=a)lzly " for any o > 0.
RN

So,

(2.34) ‘ / (Hg’w} . Ug,r})

< CZ/ Uml U”] |v]

i#]

1—1
< CeMPlo)l Y

- p/-10]1
/ ( ’ Ul,(zj—wi)/e>
i#£]

|2j—]
=0 (MY e | ol
i#]

Note that in obtaining the second last inequality, we have used a change of
variable, replacing z by Z.
If p > 3, then

(2.35) ‘ / ( Ug’x}>

< CZ/ UP 22U, o, 0] =

i#] i#]

[v]]e-
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Combining (2.31) and (2.34)-(2.35), we obtain

o lzi—z;l
(2.36) [ =0 (e e ) ol
¢ i#]
On the other hand, from Lemma A.5

k
(237) Z [<stk7UE $z> / Hf:)l'lkUE,$l:| ﬁl
k
Z/Q <fo1k Ugwh) Unglﬁl

=1

+ 252/ Ethaxlﬁl

hl=1

k
=30 | (- U&,ﬁ) Usi i+ O H5]).

=1
As in the proof of (2.34) and (2. 35) we easily get

olxz Zj
(2.38) '/ (walk UM) Ueit| =0 [V e

7]
Putting (2.38) into (2.37), we get

k
(239) Z|:<H5xk:7 E:L"l /nglk 5$l:| l

_ 1o lmim74l
o G R 18]
i#]j

Finally, it follows from (2.21), (2.36) and (2.39) that

140 |z — Tj

[feull <O eN/? 5+ZG_T ¢
i#]

So we have completed the proof of Proposition 2.3. O
Let (az(z),vs(z)) be the function attained in Proposition 2.3. Consider
(2.40) sup{J(ae(x),z,v:(x)) : € D;R}.
Then Problem (2.40) is attained by some z. € D¢ g.



250 E.N. DANCER AND SHUSEN YAN

Proposition 2.4. Let x. be the point which attains (2.40). Then, as e —
0,
(2.41) ezl oo iz
£
(242) Teig — Ty, i:1,2,...,]{,‘,
where x; is some point in 0LY, satisfying H(x;) = mingcpq H(x).
Proof. From Proposition 2.3, for any x € D, g, we have
|xl T;
(2.43) J(ae(x),z,v:(x)) = J*(2,0) + O |V | 2 + Ze (140
i#]

Since z. is a maximum point of J(a.(x),x,v:(x)), for any z. € D, g, the

following relation holds:
J(aa(xa), Le, Ua(xa)) > J(aa(za)a Re Ua(za))'

It follows from (2.43) that
(2.44) J*(2:,0)+ 0 |V | e —i—Ze (1+0)
i#]

Izsz Tejl

> T (2,0) 4+ 0 | [ 24 3 e (o)
| i#]

Fix a xy € 09 with H(zp) = mingepo H(z). Let e;, 1 = 1,2,...,k be a
tangent vector of 0Q at xo with e; # e;fori # j. Let z;(t) be a curve in 99
at zo satisfying z;(0) = o, 2,(0) = e;. Let

1
2

(2.45) zei = 2i(€2), i=1,2,... k.

Then |ze — 25|/ = (!ei—ej|+o(1))/5% — 400 ase — 0. Thus 2. € D, p
if € > 0 is small enough.
It follows from Lemma A.3 that

k p
ZUE Zei - o ZUa,in
_ ;Z Ve zel2 - Z / (eNe_co/a)

{Z: K — > A — BH(z) ] + 0(52)}

N[(; >A BH(z0)e + O(e 3)}

(2.46)  J*(z,0
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On the other hand,

(2.47)
J*(2:,0)
k 1 1 k
= ZI(UE:fDEi) + 5 Z<U5@£i7 Usyx£j>5 - p/Q ( Z €,Xeq Z € Z‘sz)
i=1 1#] =1
11 ~
_ N . 2
— N |k <2 _ p) A—BZH(%Z)HO(E )

=1

k k
1
+ Z<U€,a¢5ia UE,:L“E]‘>€ - / ( Z (S Z a:cm> .
= pJa \|iD
i<j i
By Lemma A.5,
(248) Z<U5,xsi’ Ugyxsj>5
1<J
5 T ETei 1
=2.c /asz o Cewe T Z/ Ve Ve
z<] 1<)

(1=0)|zgs—zgyl
p—1qr N+1 -
=3 [ Uttn, +O (S 2

1<J i#j
Using the following inequality,
|la +b]P —a? — ¥ — pa?~ b — pab? !
< CaP/2pp/2 if 2<p<3,
~ | C(aP2b? + a?bP2) if p>3,

we get,

(2.49) /Q (

R ) o[

k
0 ULl D Uea +O | V) e
=2 i1#£j

p—1
U57xel

k

Z Ue .,

=2

(140) |Isz z€j|

o)

p—1

/Z Z Ue ., szgj‘i‘p/Zngsles:cw

i=j+1 1<J
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(140) |I€z zzsg|

NZ—

i#£]
Combining (2.47)-(2.49), we obtain
(2.50)
11 i
* _ _N . 2
J*(2:,0) =¢ [k: <2 - p) A-— B;H(:pa)z—:—i-O(s )
p—1

(1+o’)\z€i—a)€ |

/Q Z Z UE »Leig Us,zsj + O N Z e €

i=j+1 i#]
Putting (2.46) and (2.50) into (2.44), we are led to
p—1

(2.51) —BZH ei)e + O(e —N/ Z Z Use i Usya,

=1 = i=7+1

(1+U)\z€i—z€ |
+0 Ze : > —kBH (zq)e + O(%/?).

i#]
But
p—1
. z > U] O,
i=j+1
(1+c7/2)|z5Z Tej |
> ¢ Z e~ E ’ for some ¢y > 0.
i#]
As a result,
(2. 52)
(ro/2)loeimeey| (1t0)|oe;—zgjl
BZHmEZE—i—O +COZ€ —|—O Ze <
i=1 i#] i#]

< kBH (x0)e + O(%/?).

If we choose R sufficiently large, then the third term in (2.52) is much
smaller than the second term. So

k

(2.53) > H(wa) < kH (xo) + O(e?),
=1

(2.54) S e TETE 20,

i#£]
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Clearly, (2.54) implies (2.41). Suppose that z.; — z; as € — 0. Then
(2.53) gives

k
H <kH =k H
; (1) < kH (o) = k min H (z),
which clearly implies (2.42). So we have completed the proof of Proposi-
tion 2.4. U
Proof of Theorem 1.1. We only need to prove that (az(x:), zc, ve(zz)) satis-
fies (2.7).
From (2.41), we know that z. is an interior point of D, r. Conseqently,
oJ aah oJ oJ ov
2.55 0= —_—
(2:35) Z Do oy omi <8v’ am>
k N—-1
(9U5 @ ov
B sh
“on 22 2 2ot o)
h=1 j=1 €
aJ Nzl Ve,
oty 8%87’11
Thus, (2.7) holds. O

In order to prove Theorem 1.2, we only need to consider
sup{ J(a:(z), z,v:(z)) : ® € D, g, z; € Bs(xo),i=1,2,...,k}.

Then we see that the maximum z. satisfies x.; — o, % = 1,...,k, and

|-738i_-73sj‘ . .
5 — 400 fori#j ase — 0.

Appendix A.
Lemma A.1. Let x € 092. Then

1
Jvz.=e (A ~gel@) [ OG0l dy + 0<52>)
Q ’ 2 RN-1
where A = [y UP.

Proof. Choose a coordinate system such that z = 0 and
(A1) QN B (0) ={yn > f(¥)},
(A.2) 00N B-(0) ={yn = ()},

where 7 > 0 is a small constant and f(y') satisfies
| V-1

f@) szyz +O0(y'P), ¢ eBNH0) ={ly| <7}
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Then H(0) = 1Zz i Let

(A.3) Qep={y: ey+2ze€Q}, Q. =Qp,
(A4) Ue(y) = Ueo(y),

(A.5) BF(0) = B-(0) N {y > 0},

Since U(y) is exponentially small at infinity, we have

(A.6)

/ Uf = eV
B (0)\Q

N fey')/e , ,
/ Ur=e /N X / UP(y', yn) dyndy
B% (0\Qe Bg* 0) Jo

f(ey')/e
- /BNl /0 [Up(y,, 0) + O(‘yN’Up(y,’ 0))] dyndy'

As a result,

(A7) /Q ur =

Lemma A.2.

N-1
)
- UP(y',0 piyie + O(e*
2 i ( ); (e9)
! UP Ol P Zpew
2 /510 z

10 [ ool P o<62>] .

/ Ub + O(sNefT/E)
B, (0)NQ

/ ur - / UP 4 O(eNe )%
B (0) B (0)\0

(A.8) / e’|DU. .|* + UZ,
Q

1
(4= et [ 00l Pay
RN-1

oU(y',0)

1 / ) / ! 2
5ol [ U 0T+ o) ).
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Proof. Choose the coordinate systems as in Lemma A.1. Then

oU,
(A.9) /52|DU€@|2+U3I = g2 /(—EZAU5+U5)U5
Q ’ a0 On Q
o On Q
ovU, oU,
A.10 e | ==U :52/ —7/ey,
(A.10) o0 On a0nB. (0) In &)

For y € 02N B;(0),

1
of of >/ |9\’
=\3a - 7_1 1+ :
<3y1 OYyn—1 ; yi
Hence,
1
U. 1 of oU oU ar 2\’
— 1 .
on € [zz: 8yzazz< ) 821\7 (5)]/( +; y;
Thus,
(A.11)
o,
2 g
c o0 871,

ST 2O 2160
= [ TS/ [NZ (e + 02y 1)) 22T D)

y;
(=¥e7%)

dy + 0O
AU(y,0) "= ~
N / ) 20, 11—1
= Uy, 0)—=2=> pigily'| 'e
[/Bi“(m WOy ; v

U. dy/ +O(5 e s)

€

Uy, f (fsy’)/a)]
Oyn

L)

S2U(y,0) x= 1
- Uy,0)—=5"— —piyie +0(e?) | .
/ vy VO 3 5 (%)

But

82U(y/70) — 8U(y’,0) ’y/|71
oY%, or ’
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Consequently,
(A.12)
v, 1 oU(y',0)
2 € _ N | H / 3 ! / 2 )
R 5o [ o6 0y o)

Clearly, (A.9), (A.10), (A.12) and Lemma A.1 give the desired result. [
Lemma A.3.

[(U.y) = €N [(; - p) A — BH(z)e + 0(52)] :

where

1/1 1

B=_(--=> UP(y',0)|y|* d
s(5-5) [ o owiay
1 oU(y',0)

- = Uy, 0)—=—"2y| dy’ > 0.
Proof. This is just a direct consequence of Lemmas A.1 and A.2. O
Lemma A.4.

- E2+1)||/UHE7 \V/U wlth <UE,Z‘)U>E :0

'/Uplv

Proof. Suppose that x = 0. Then

(A.13) /QUgglv = 5N/ UP~lu(ey) = =&V 8—(]1)(63/)

0. (9n
o]
= 0(N?) </asz g%

87U2
on

1
2
) lo(ew)llmr ()

1
2\ 2
) [o]]e-

But
2 2
(A.14) / oul”_ oo +0(e" %)
o0, | On 99.nBz (0) | On
N-1
oU
2
/BN 1 ; szze"i'O ‘y| )] 0y;
/ /
. (y bé;y )/5) dy/—|-0(63)

=0(£%).
So, from (A.13) and (A.14), we get the desired result. O
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Lemma A.5. For any 6 > 0, we have

on Uei; = O(sN“e(la)

O(€N+1) Zf 1= jv
52/ OUe lzi—x;l o ,
0 e Zf 1 # ]

Proof.
(A.15)

OU; ., oU Ti— X
2 £,%; _ N e 4y I3
© /89 on Ve =€ a0. On v <y € >
=l / 8—UU <y—xj_$i> +0(e %)
99.nBz (0) N £

N / aU yi O(f(ey')/e) OUyn < Tj— :C’L>
—¢ AeY)/e)  TUUN ) iy ()
99:NBz (0) 37" lyl Oy or |yl €

+ O(e—é)]
- 9008z (0) \| O e2 |yl |or €
+0(Ne %)
< 06N+1/ e Wle—lv== (eNVe %)
99:NBz (0)

|arZ T

< OeN+1,-(1-0) / e 4 O(N %)
N 99:NBx (0)

_ O< N+1,—(1- 9)'1””) .

Appendix B.

For x € D, g, let A. , : E. ;5 — E. .1 be defined as follows:
p—2
VW.

k
(A, w0)e = (v, W) — (p— 1) /Q I

Lemma B.1. There exist g > 0, R > 0, such that for each € € (0,e9], x €
D. r, Acz is invertible and

1A

where C' is independent of € and x.

| <C,

E.ZE’
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Proof. First we prove that there are ¢y > 0, R > 0 and ¢y > 0, such that for
each ¢ € (0,e0], € D, g, we have

(B.1) | Az zv||e > collv]e, VoveE;: k.

We argue by contradiction. Suppose that there are ¢,, — 0, R, —

+o00, 2™ € D.,. Rn> Vm € E¢,, 2.k, such that
(B.2) 1A, wom Umlle, = o(1)[lvmlle,,-

We may assume
(B.3) lomllem = en>.
So,
(B.4) (A ot | = 02
That is,

k p—2
2
/ er DUy Dw + vppw — (p — 1)/ Z U o VW
(B5) (9] (9] i1 Em,T;
- 0(5%/2”’@”%’ Vwe Esm,z(m>,k'

For each fixed i, let
(B.6) Bn(y) = vin(Emy + ™),
(B.7) U ={y: emy+2™ €Q}.
Then, from (B.5), we have
(B.8)

K L) _ ) [P
/ Dvaw+vmw—(p—1)/ ZU y— L2 —— Umnw
Qm Om |21 Em
=oM)wll,  weF, mp

where
(B.9)

. oU ( _ u)
r; — X €
F m = . R ! = =
em 2™k {w <w, v ( € >> <w, 0Tji > 0

j=1,...,k, lzl,...,N—l},

and {7j1,...,7jnv—1)} forms an orthogonal basis for the tangent space of
00e o at “=72,
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Since ||y, || = 1, we may assume that
(B.10) U — v,  weakly in H'(RY)
(B.11) U, — 0, strongly in LY (RY).
Then it is easy to see that v satisfies
(B12) <U7 U>Rf =0,
ouU,
(B.13) <v, -z > =0,
8xj =0 Rf
where
= DvD .
<U,U}>R$ " vDw + vw

Now we claim that v = 0. Assume this for the moment. Since for each
fixed L > 0, we have

k

Z U:_i(m> =0 (e_(P—Q)L> , inQ \ Uf::lBLam (xl(m)> _
i=1
As a result,
(B.14)
k p—2 k
U, o v = / Ur—? w2 4+0 (e—(p—Z)L> N

=\ (0(1) +0 <e_(p_2)L>> ,

where o(1) — 0 as m — +o0.
Letting w = vy, in (B.5), from (B.14), we get

lowl2, = &b (o(1) + 0 (e72)).

This is a contradiction to (B.3) if L is chosen large enough.
So it remains to prove that v = 0. First we claim that v satisfies

(B.15) Dva—l—vw—(p—l)/ UP~2pw = 0, Vwe F,
RY RY

where

(B.16)

F = {w: <w,U>R£ = <w,(2[afC

> =0, i=1,...,N—15.
z=0 Rf
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In fact, for each w € F', we can choose ag»m), (.m), such that

lj
k (m) (m)
m €T —x:
-
j=1
(™) g ()
N_1 oU ( — JEZ>
Z (m)
- ’}/l . € F‘Emyx(m>7k'
P 7t

(m)

And it is easy to see that o’ — 0, 'yl;n
w = Ny, in (B.8), we easily deduce (B.15).
Define v(y', —yn) = v(y/, yn) for yn > 0. Then

)

— 0 as m — +4o00. Letting

(B.17) Dva—{—vw—(p—l)/ UP2pw = 0, Vwe Fr,
RN RN
where
(B.18)
oU, .
Fi={weHY(RN): (w,U)py = (w, —= =0, i=1,...,N}.

Since v € F; (see (B.12) and (B.13)), we know that (B.17) holds for all
w € HY(RYN). By [14], there are a; € R', i = 1,..., N, such that

So v =0.

From (B.1), it is standard to prove that A, , is invertible. In fact, (B.1)
implies that A, ; is one to one and A, ; is closed. If A, , E, ;1. # E: 5 i, then
there is w € (A 4Bz ;)" and w # 0. Thus,

<Aa,:r:vy w>a =0, Vove Es,m,k-

But (Ac v, w)e = (Ac zw,v).. Hence, A. ;w =0, and thus w = 0. This is a
contradiction. O
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