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Moriah and Schultens have demonstrated that an irreduc-
ible Heegaard splitting of an orientable Seifert fibered space
over an orientable base surface is either vertical or horizon-
tal. In this paper it is determined precisely which vertical
and horizontal splittings are irreducible. Let M be a Seifert
fibered space which admits a horizontal splitting at the fiber
f . If the genus of the horizontal splitting at f is less than
the genus of the vertical splittings, its genus will be minimal
and the splitting irreducible. Otherwise, this splitting will
be irreducible if and only if the multiplicity of the fiber f is
strictly greater than the least common multiple of the multi-
plicities of the other fibers. In particular, each Seifert fibered
space possesses at most one irreducible horizontal splitting.
The vertical splittings will be reducible if and only if M has
a horizontal splitting with genus strictly less than the genus
of the vertical splittings.

1. Introduction.

Throughout this paper a Seifert fibered space, M , will denote a closed,
orientable Seifert fibered space over an orientable base surface B. Then M
may be written M = {g0, e0|(α1, β1), (α2, β2), . . . , (αn, βn)}, where g0 is the
genus of the base surface B, e0 is the Euler number of M , n is the number of
exceptional fibers, and (αi, βi) are the Seifert invariants of the exceptional
fiber fi. In particular, αi denotes the multiplicity of the exceptional fiber fi.

If M has less than three exceptional fibers and base surface a 2-sphere
then M is S3 or a lens space (or S2 × S1) and the irreducible Heegaard
splittings of M are classified by Waldhausen [W] and Bonahon and Otal
[BO], respectively. (S3 has a unique horizontal splitting and lens spaces
have a unique vertical splitting.) We therefore assume that n ≥ 3 or g0 ≥ 1.

The main results of [MS] and [Schu2] imply that irreducible Heegaard
splittings of Seifert fibered spaces are vertical or horizontal. Every Seifert
fibered space M possesses vertical splittings and when n ≥ 2 they may be
thought of as a Heegaard splittings of M which are also Heegaard splittings
of the product manifold M − N(E), where N(E) is a neighborhood of the
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exceptional fibers. When n < 2 it is necessary to also remove the neighbor-
hood of one or two regular fibers. Nevertheless, each vertical splitting of M
will have the same genus, denoted gv, and will be identified up to isotopy
by a non-trivial partition of the exceptional fibers (and possibly one or two
regular fibers).

A horizontal splitting exists if and only if the manifold M can be described
as a Dehn filling on a surface bundle F ×̃S1, where the surface F has a single
boundary component, the bundle has finite monodromy and the meridian of
the attached solid torus intersects the curve ∂F exactly once. In this case
the core of the attached solid torus will be a regular or exceptional fiber f
and we say that M has a horizontal splitting at f . Necessary and sufficient
conditions for this to occur are given in terms of the Seifert invariants in
[MS]. The genus of the horizontal splitting at f will be given by gh(f) =
2g(F ), where g(F ) is the genus of the surface F .

In this paper we will decide the irreducibility of the vertical and horizontal
splittings. Typically, gh(f) will be greater than the genus of the vertical
splittings gv. When it is not the horizontal splitting will be called small.
As the genus of a horizontal splitting is determined by a bundle structure
on the complement of the fiber f , M0 = M −N(f), the presence of a small
horizontal splitting places restrictions on the manifold M0, and hence upon
the manifold M . These restrictions will be quantified by Theorem 5.3.

Theorem. Let M admit a horizontal splitting at f . This splitting is small
if and only if one the following holds:

M0 = {g0|∅}, g0 ≥ 1, f is regular or exceptional;(1)

M0 = {0|(2, 1), . . . , (2, 1)}, n0 ≥ 3 and odd, f is exceptional;(2)

M0 = {0|(2, 1), . . . , (2, 1)}, n0 ≥ 3 and odd, f is regular;(3)

M0 = {0|(2, 1), (3, β2)}, f is exceptional;(4)

M0 = {0|(2, 1), (4, β2)}, f is exceptional;(5)

M0 = {0|(3, β1), (3, β2)}, f is exceptional.(6)

Furthermore, if (1) or (2) holds then gh(f) = gv − 1. If one of (3)-(6) holds
then gh(f) = gv.

This characterization will yield Corollary 5.5.

Corollary. A small horizontal splitting is of minimal genus and hence ir-
reducible.

Non-small horizontal splittings are by definition not minimal genus and
it is thus considerably more difficult to determine their irreducibility. This
requires a close analysis of once punctured surface bundles and an applica-
tion of a slight generalization of Casson’s rectangle condition ([CG1]). The
result of this analysis is Theorems 6.1 and 8.1, summarized as follows:
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Theorem. Let M admit a non-small horizontal splitting at the fiber f .
Then this splitting will be irreducible if and only if the multiplicity of the
fiber f is strictly greater than the least common multiple of the multiplicities
of the other exceptional fibers.

From this theorem and the characterization in Theorem 5.3 we obtain
Corollary 8.2.

Corollary. The Seifert fibered space M admits an irreducible horizontal
splitting at at most one fiber f .

Using the work of [LM], [M], and [Schu3] the irreducibility of the vertical
splittings is determined in Theorem 5.6.

Theorem. The vertical splittings will be reducible if and only if M has a
horizontal splitting with genus strictly less than the genus of the vertical
splittings. In this case there is a horizontal splitting of genus one less than
the vertical splittings.

The author gratefully acknowledges the helpful comments provided by
Cameron Gordon and Jennifer Schultens.

2. Preliminaries.

The following notation and definitions are standard. For more information
regarding Heegaard splittings see [RS], [ST2], or [Scha].

A handlebody is a homeomorph of a closed regular neighborhood of a
connected graph in S3. A Heegaard splitting of a closed orientable 3-manifold
M is a decomposition M = H1 ∪G H2, where H1 and H2 are handlebodies
such that ∂H1 = ∂H2 = H1∩H2 = G. The genus of the Heegaard splitting
is the genus of the surface G and the genus of M , g(M) is the least genus
of all Heegaard splittings of M .

An essential disk in a manifold with boundary M is a properly embedded
disk D such that ∂D is an essential loop in ∂M . A Heegaard splitting is:
stabilized if there are essential disks D1 ⊂ H1 and D2 ⊂ H2 such that
∂D1 ∩ ∂D2 = {point}, reducible if there are essential disks D1 ⊂ H1 and
D2 ⊂ H2 such that ∂D1 = ∂D2, and weakly reducible if there are essential
disks D1 ⊂ H1 and D2 ⊂ H2 such that ∂D1 ∩ ∂D2 = ∅.

3. Vertical Heegaard Splittings.

In this section we give a brief description of vertical Heegaard splittings of
Seifert fibered spaces and state a few well known facts that will be needed
in later sections. A more detailed treatment of vertical splittings is given in
[BZ] (see also [MS] and [Schu1]).

By identifying each fiber to a point we obtain a projection, ρ : M → B,
from the Seifert fibered space onto the base surface B. If f is a fiber then
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e = ρ(f) is a point on the base surface B. We will call e the anchor point
corresponding to the fiber f .

A vertical Heegaard splitting of a Seifert fibered space is identified by
choosing a non-trivial partition of the exceptional fibers contained in M .
(If the number of exceptional fibers is less than two then we cannot form a
non-trivial partition and must add 1 or 2 regular fibers to the exceptional
fibers and then partition.) Choose a minimal graph Σ in the base surface
B so that B − Σ is a disk and Σ is disjoint from the anchor points of the
fibers in the partition. Take arcs on B and adjoin to Σ the anchor points of
each of the fibers from the first half of the partition, and for all but one of
the fibers in the second half, adjoin to Σ a loop on B encircling its anchor
point. We may lift this graph to M and attach to it the fibers from the first
half of the partition. A closed regular neighborhood of the resulting graph,
Σ′, is clearly a handlebody. Moreover, the complement of an open regular
neighborhood of Σ′ is also a handlebody (see [Schu1]).

Definition 3.1. Let Σ′ be obtained as above. The Heegaard splitting M =
N(Σ′) ∪N(Σ′)C is called a vertical splitting of M .

In this manner we can construct vertical splittings for any Seifert fibered
space. The isotopy class of the vertical splitting obtained will be well-defined
up to the choice of partition, a fact established in [LM]. However, the choice
of a different partition produces a vertical splitting which may or may not be
isotopic to the first. (A great deal is known about the equivalence of vertical
splittings, see [L], [LM], and [M].) As the genus of a vertical splitting is
independent of the partition chosen and depends solely on the genus of the
base surface, g0, and the number of of exceptional fibers, n, all vertical
splittings of M have the same genus and we may define:

Definition 3.2. The vertical genus of M , gv, is the genus of each of the
vertical splittings.

The vertical genus was first calculated by Boileau and Zieschang ([BZ])
and is given by:

If n < 2 then gv = 2g0 + 1.

If n ≥ 2 then gv = 2g0 + n− 1.

For “most” Seifert fibered spaces the vertical splittings will be of minimal
genus and the vertical genus will coincide with the Heegaard genus of the
manifold; the exceptions to this rule will be determined in Theorem 5.3 and
Corollary 5.7.
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4. Once Punctured Surface Bundles and Horizontal Heegaard
Splittings.

This section contains background material regarding the horizontal con-
struction that will be essential in proving the main theorems.

Choose a fiber, f , (regular or exceptional) and remove a solid torus neigh-
borhood of this fiber from M . Let (α, β) be the Seifert invariants of the fiber
f . Then M0 = M − N(f) = {g0|(α1, β1), . . . , (αn0 , βn0)} is an orientable
Seifert fibered space over an orientable base surface B0 = B−N(pt) with n0

exceptional fibers (where n0 = n or n−1) and a single boundary component.
It is known ([J, VI.32]) that a Seifert fibered space with a single boundary

component fibers as a periodic surface bundle over the circle, M0 = F ×̃S1,
where the fiber F is a connected and orientable surface and the orbit of
any point under the S1 action is a fiber in the Seifert fibering. We can
write M0 = F × I/(x × {1} ∼ h(x) × {0}) where h : F → F is the peri-
odic homeomorphism associated with the bundle M0 = F ×̃S1. The periodic
homeomorphism h will have degree d = lcm{α1, . . . , αn0}. Define the equiv-
alence, x ∼ y, if y = hi(x) for some i. Let [x] denote the equivalence class of
x. Then the map ρ : M0 → B0 given by ρ(x× i) = [x] is the standard pro-
jection map of the Seifert fibered space M0. If we restrict to F , ρ : F → B0

is a branched covering. Let e1, . . . , en0 be the anchor points on B0 of the
exceptional fibers f1, . . . , fn0 which have multiplicities α1, . . . , αn0 . Then
ρ : F → B0 will have degree d = lcm{α1, , . . . , αn0} and branch points
e1, . . . , en0 with corresponding branching indices α1, . . . , αn0 . In Figure 1
there are two anchor points with multiplicities α1 = 3, α2 = 2 (d = 6).

F

B0

ρ 3 2

Figure 1. ρ : F → B0.

We state our first restriction: Consider only the case where the fiber F
has a single boundary component. Choose two disjoint copies of the surface
fiber, F1 and F2, and cut along these surfaces to decompose M0 = F ×̃S1
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into two pieces, F×I1 and F×I2. Label the surfaces F1 and F2 and orient I1

and I2 so that F ×I1
− = F1, F ×I1

+ = F2, F ×I2
− = F2, and F ×I2

+ = F1.
We may assume that the monodromy h is the identity on F × I1 and is h on
F × I2. Note that each of these pieces is a handlebody, being a punctured
surface cross an interval. The boundary of M0 is decomposed into two
annuli, ∂M0 = A1 ∪A2 where Ai is the annulus ∂F × Ii.

We obtain M by gluing the solid torus neighborhood of f , N(f), to the
boundary of M0. We now introduce the second restriction: The meridian m
of the solid torus N(f) must intersect ∂F exactly once. Then m1 = m∩A1

and m2 = m ∩ A2 will each be a single arc and the manifold M may be
thought of as the quotient M0/(A1 = A2) where the gluing of A1 and A2 is
defined by identifying the arcs m1 and m2. (See Figure 2.)

F1

A2

F2

A1

Figure 2. M = M0/(A1 = A2).

We have expressed M as the union of two handlebodies glued along their
common boundary, this is a Heegaard splitting of M . If the surface fiber F
does not have a single boundary component or the meridian disk does not
meet the boundary of the surface fiber exactly one time, the manifold M
will fail to have a horizontal Heegaard splitting corresponding to the fiber f .
(However, it may have a horizontal splitting corresponding to removing the
neighborhood of a different regular or exceptional fiber.) A test in terms of
the Seifert invariants is given in [MS]. Assuming that the two restrictions
are met we define:

Definition 4.1. The Heegaard splitting M = (F × I1) ∪G (F × I2), where
G = F1 ∪A1 ∪ F2 = F2 ∪A2 ∪ F1 is called a horizontal splitting of M at
f .

Note that the horizontal splitting at f will be determined only up to
homeomorphism as the fibration M0 = F ×̃S1 is determined only up to
homeomorphism of M0. This author suspects (but has not proven) that
some Seifert fibered spaces will possess an infinite number of non-isotopic but
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homeomorphic splittings obtained by twisting a given horizontal splitting in
vertical tori.

We now calculate the genus of the horizontal splittings. This calculation
was made in [MS] and is included here for the sake of completeness. Remove
disk neighborhoods of the anchor points ei on B0 to obtain B′

0 = B0 −
N(∪i=1,... ,n0ei). Similarly remove the lifts of these neighborhoods from F
to obtain F ′ = F − N(ρ−1(∪i=1,... ,n0ei). The restriction, ρ : F ′ → B′

0, is a
(non-branched) covering of degree d, under which the Euler characteristic is
multiplicative. Thus,

χ(B′
0) = χ(B0)− n0 = 1− 2g0 − n0

χ(F ′) = dχ(B0) = d(1− 2g0 − n0).

We now replace the disks that we removed from F to get F ′. In doing
so we observe that the disk containing ei will be branched covered by d/αi

disjoint disks each with branching index αi.

χ(F ) = χ(F ′) +
n0∑
i=1

d/αi

= d

(
1− 2g0 − n0 +

n0∑
i=1

1/αi

)
.

Let gh(f) denote the genus of a horizontal splitting at f . If M admits
a horizontal splitting at f , gh(f) will be twice the genus of the punctured
surface F .

gh(f) = 2g(F ) = 1− χ(F )

= 1 + d

(
n0 + 2g0 − 1−

n0∑
i=1

1/αi

)
.

If M does not admit a horizontal splitting at f define

gh(f) = ∞.

Definition 4.2. Call gh = min {gh(f) | f is a regular or exceptional fiber},
the horizontal genus of the manifold M .

If M does not admit a horizontal splitting gh = ∞.
We will need a more concise description of ∂M0 before the identification

of A1 and A2 is made. We will denote by 〈a, b〉 the oriented intersection
number of the curves a and b on ∂M0.

Recall that the horizontal construction requires that the meridian m of the
solid torus N(f) meets ∂F precisely once. That means that (∂F, m) is a basis
for the homology of the boundary torus ∂M0. We will use this coordinate
system for the remaining discussion. Let x ∈ ∂B0. Then fr = ρ−1(x) is a
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regular fiber on ∂M0. As ρ restricts to a branched covering of degree d on
F we may orient ∂F such that 〈∂F, fr〉 = d.

Furthermore, since f is a fiber of multiplicity α we can orient m so that
〈fr,m〉 = α. Recall that we have restricted the monodromy h to the piece
F × I2, thus fr = α · ∂F + d ·m will appear as pictured in Figure 3.

∂F1

∂F1

∂F2

f

∂M0

m1

m2

Figure 3. ∂M0 in (∂F, m) coordinates.

As the fiber fr consists of a single component, we have established the
following lemma.

Lemma 4.3. Let M admit a horizontal splitting at the fiber f . Then α and
d are relatively prime.

Additionally, since d = lcm{α1, , . . . , αn0} we have:

Lemma 4.4. Let M admit a horizontal splitting at the fiber f . Then α is
relatively prime to the multiplicity of each of the other fibers.

Definition 4.5. A regular arc is an arc of the form x× Ii where x ∈ ∂Fi.

Define a metric on ∂B0 so that the length of ∂B0 is one and lift it to a
metric on ∂F . With this metric the length of ∂F is d.

A regular arc is a sub-arc of a regular fiber which lies in ∂M0. In the
(∂F, m) coordinate system a regular arc on A1 will be vertical, whereas a
regular arc on A2 will have an α shift. In the following sections it will be
relevant to compare the values α and d. If α > d then every regular arc on
A2 will necessarily intersect the arc m2. Conversely, if α < d then there is a
regular arc on A2 that will not intersect m2.

5. Small Horizontal Splittings and the Irreducibility of Vertical
Splittings.

In this section we classify the horizontal splittings which have genus less
than the vertical splittings and demonstrate that they are irreducible. Ad-
ditionally, using methods and results from [Schu1], [Schu3], and [LM] we
determine under what conditions the vertical splittings are reducible.
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Definition 5.1. Let M admit a horizontal splitting at the fiber f . If
gh(f) ≤ gv then we say that this splitting is small.

A horizontal splitting is derived from a branched covering of the base
surface and unless the degree of the covering, d, and the genus of the base
surface, g0, are small, we expect the genus of the horizontal splitting to be
quite large, and in particular to exceed the genus of the vertical splittings.
This statement is made precise in the following lemma.

Lemma 5.2. Let M admit a horizontal splitting at f . This splitting is small
if and only if one of the following statements holds:

1) d = 1.
2) d = 2 and g0 = 0.
3) g(F ) = 1 and (g0 = 0).

Proof. There are three cases according to the value of d.

Case. d = 1.
When d = 1, n0 = 0 and n ≤ 1. The horizontal genus is

gh(f) = 1 + 1(0 + 2g0 − 1) = 2g0

and the vertical genus is given by

gv = 2g0 + 1.

Thus,

gh(f) = gv − 1

and the result follows in this case.

Case. d = 2.
When d = 2 we have that for all i = 1, . . . , n0, αi = 2 and therefore∑n0

i=1 1/αi = n0/2. The horizontal genus is then

gh(f) = 1 + 2(n0 + 2g0 − 1− n0/2) = n0 + 4g0 − 1.

If n ≥ 2 then gv = 2g0+n−1 ≤ 2g0+n0. There is at least one multiplicity
two fiber in M0, hence n0 ≥ 1. If n < 2 then gv = 2g0 + 1 ≤ 2g0 + n0.
Therefore,

gv ≤ 2g0 + n0.

Then gh(f) ≤ gv if and only if

n0 + 4g0 − 1 ≤ 2g0 + n0

g0 ≤ 1/2
g0 = 0,

as g0 is a non-negative integer. This establishes the result for the case d = 2.
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Case. d ≥ 3.
When d ≥ 3 we have that αi ≥ 2 for every i and therefore

∑n0
i=1 1/αi ≤ n0/2.

The horizontal genus is then

gh(f) ≥ 1 + d

(
n0 + 2g0 − 1−

n0∑
i=1

1/αi

)
≥ 1 + 3(n0/2 + 2g0 − 1) = 3/2n0 + 6g0 − 2.

As in the previous case,

gv ≤ 2g0 + n0.

Then gh(f) ≤ gv if and only if

3/2n0 + 6g0 − 2 ≤ 2g0 + n0

n0 + 4g0 ≤ 2.

It follows that g0 = 0 and n0 ≤ 3. Recalling that gh(f) = 2g(F ) we further
calculate

2g(F ) = gh(f) ≤ gv ≤ 2g0 + n0

2g(F ) ≤ 3

g(F ) ≤ 3/2.

As M is not S3 or a lens space we always have that gh(f) ≥ 2 and therefore
g(F ) ≥ 1. We conclude that g(F ) = 1. By the same reasoning we always
have gv ≥ 2. Thus, when g(F ) = 1 we have that gh(f) ≤ gv. This establishes
the result for the case d ≥ 3.

�

Combining the previous lemmas with some basic facts about horizontal
splittings we can give a list of the small horizontal splittings.

Theorem 5.3. Let M have a horizontal splitting at f . This splitting is
small if and only if one the following holds:

M0 = {g0|∅}, g0 ≥ 1, f is regular or exceptional;(1)

M0 = {0|(2, 1), . . . , (2, 1)}, n0 ≥ 3 and odd, f is exceptional;(2)

M0 = {0|(2, 1), . . . , (2, 1)}, n0 ≥ 3 and odd, f is regular;(3)

M0 = {0|(2, 1), (3, β2)}, f is exceptional;(4)

M0 = {0|(2, 1), (4, β2)}, f is exceptional;(5)

M0 = {0|(3, β1), (3, β2)}, f is exceptional.(6)

Furthermore, if (1) or (2) holds then gh(f) = gv − 1. If one of (3)-(6) holds
then gh(f) = gv.

Proof. There are three cases according to the value of d:



HEEGAARD SPLITTINGS OF SEIFERT FIBERED SPACES 183

Case. d = 1.
Then n0 = 0 and n = 0 or 1. As M is not S3 or a lens space, it follows that
g0 ≥ 1. This is (1) where we can readily calculate that

gv = 2g0 + 1

gh(f) = 1 + d

(
n0 + 2g0 − 1−

n0∑
i=1

1/αi

)
= 2g0

gh(f) = gv − 1.

Case. d = 2.
It follows from Lemma 5.2 that g0 = 0. Then M0 = {0|(2, 1), (2, 1), . . . ,
(2, 1)} and we note that

χ(F ) = d

(
n0∑
i=1

1/αi − n0 + 1− 2g0

)
= 2(n0/2− n0 + 1− 0) = 2− n0.

If n0 is even the surface F will have more than one boundary component
and the horizontal construction will fail. Thus n0 is odd. Since g0 = 0 we
require n ≥ 3. Then

gv = 2go + n− 1 = n− 1

gh(f) = 1 + d

(
n0 + 2g0 − 1−

n0∑
i=1

1/αi

)
= 1 + 2(n0 − 1− n0/2) = n0 − 1.

Either f is an exceptional fiber, n = n0 + 1 and

gh(f) = n = gv − 1,

or f is regular, n = n0 and

gh(f) = n− 1 = gv.

These are the cases (2) and (3).

Case. d ≥ 3.
It follows from Lemma 5.2 that g(F ) = 1 and g0 = 0. As M is not a lens
space or S3, n ≥ 3 and n0 ≥ 2. Also each αi ≥ 2 implies

∑n0
i=1 1/αi ≤ n0/2.

We have
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gh(f) = 2g(F )

1 + d

(
n0 + 2g0 − 1−

n0∑
i=1

1/αi

)
= 2

1 + 3(n0/2− 1) ≤ 2

n0 ≤ 8/3.

Hence n0 = 2, f is an exceptional fiber and n = 3.
It is now demonstrated that d ≤ 6. Suppose that d > 6. Then one of

α1, α2 is strictly larger than 3, say α1 > 3. Then

2 = 1 + d(2− 1− 1/α1 − 1/α2) > 1 + 6(1− 1/3− 1/α2)

1/6 > 1− 1/3− 1/α2

2 > α2

α2 = 1.

This is a contradiction, and we conclude that d ≤ 6.
As d = lcm(α1, α2) it follows that (α1, α2) is one of (2, 2), (2, 3), (2, 4),

(2, 6), (3, 3), (3, 6), (4, 4), (5, 5), (6, 6). Calculate χ(F ) for:

(2, 2) : χ(F ) = d

(
n0∑
i=1

1/αi − n0 + 1− 2g0

)
= 2(1/2 + 1/2− 2 + 1) = 0;

(2, 6) : χ(F ) = 6(1/2 + 1/6− 2 + 1) = −2;

(3, 6) : χ(F ) = 6(1/3 + 1/6− 2 + 1) = −3 = 1− 2g(F ) ⇒ g(F ) = 2;

(4, 4) : χ(F ) = 4(1/4 + 1/4− 2 + 1) = −2;

(5, 5) : χ(F ) = 5(1/5 + 1/5− 2 + 1) = −3 = 1− 2g(F ) ⇒ g(F ) = 2;

(6, 6) : χ(F ) = 6(1/6 + 1/6− 2 + 1) = −4.

For the pairs (2, 2), (2, 6), (4, 4) and (6, 6) the Euler characteristic χ(F ) is
even, so F has more than one boundary component and the horizontal con-
struction fails. For (3, 6) and (5, 5) g(F ) = 2 which contradicts our assump-
tions. We are left with the cases where the pair (α1, α2) = (2, 3), (2, 4) or
(3, 3). The horizontal construction can indeed work in these cases. This is
(4), (5) or (6) with the α’s listed.

In these cases:

gv = 2g0 + n− 1 = 2

gh(f) = 2g(F ) = 2

gh(f) = gv = 2.

�
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We can now refer to a small horizontal splitting as being one of type
(1)-(6). Using this characterization, we can easily prove

Theorem 5.4. M admits a small horizontal splitting at at most one fiber
f .

Proof. Seeking a contradiction, suppose that M admits distinct small hor-
izontal splittings at f and f ′. We know from Lemma 4.4 that the corre-
sponding multiplicities α and α′ are relatively prime.

Suppose that one of the splittings, say the one at f , is a type (1) small
splitting, i.e.

M0 = {g0|∅}, g0 ≥ 1, f is regular or exceptional.

As f ′ belongs to M0 it must be a regular fiber. Furthermore, f must be an
exceptional fiber or these splittings are both at regular fibers and are not
distinct. Corresponding to the splitting at f ′ we have

M ′
0 = {g0|(α, β)}, g0 ≥ 1, f ′ is regular.

But then d′ = α > 1, as f is not regular, and g0 ≥ 1 together imply that
the splitting at f ′ is not small. This is a contradiction.

Next, suppose that no pair of the fibers in M0 are relatively prime. Then,
no matter how we select α′ it will never be relatively prime to d′. This
prevents M from possessing two distinct horizontal splittings (small or not)
where one is a small splitting of type (2),(3),(5) or (6).

The remaining case is when both the splitting at f and the splitting at
f ′ are type (4),

M0 = M ′
0 = {0|(2, 1), (3, β2)}, f is exceptional.

Again, this is impossible, as α would have to be 2 or 3 so that M ′
0 appeared

as a type (4) splitting. This contradicts the fact that α and d are relatively
prime.

�

Finally this establishes:

Corollary 5.5. A small horizontal splitting is of minimal genus and hence
irreducible.

Proof. Minimal genus splittings are always irreducible. If M admits a small
horizontal splitting at f , then it must be of minimal genus. If there were
a splitting of smaller genus, which we may assume is irreducible, by [MS]
it would either be horizontal or vertical. It cannot be vertical, given the
hypothesis that the splitting at f is small. Nor can it be horizontal, for
this would imply that M admitted two distinct small horizontal splittings
in direct contradiction with the previous lemma. �
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The following theorem determines the irreducibility of the vertical split-
tings. Although this particular phrasing may be new, the theorem is essen-
tially a corollary of the earlier work of Lustig, Moriah and Schultens ([LM],
[Schu1] and [Schu3]).

Theorem 5.6. The following statements hold:

(i) gh < gv if and only if M admits a small horizontal splitting of type (1)
or (2) if and only if the vertical splittings are reducible.

(ii) gh = gv if and only if M admits a small horizontal splitting of type
(3)-(6). If so, then the vertical splittings are irreducible.

(iii) gh > gv implies that the vertical splittings are irreducible.

Proof. We start with statement (i). Theorem 5.3 establishes that gh < gv

if and only if M admits a type (1) or (2) small horizontal splitting. If the
vertical splittings are reducible then there must be a splitting of smaller
genus and by [MS] it is horizontal and we have that gh < gv.

The more difficult implication is that when gh < gv the vertical splittings
are reducible. The argument is due to Schultens ([Schu3]). Let M admit
a small horizontal splitting of type (1) or (2). Then M has a unique (up
to isotopy) vertical splitting. If this splitting is type (1) then n ≤ 1 and
there will be only one non-trivial partition of a collection of 2 fibers. If
the splitting is type (2) then β = 1 for all but at most one fiber in M
(the fiber not of multiplicity 2). As demonstrated in the proof of [LM]
Theorem 2.8 M then admits only one vertical splitting. (If f is a fiber with
β = 1 then there is an isotopy between any two vertical splittings whose
partitions differ only by f .) In [Schu3] Schultens shows that a stabilization
of a horizontal splitting at f is a splitting of the manifold M0. In [Schu1]
it is also shown that irreducible splittings of manifolds with boundary are
vertical. It follows that in this case the stabilization of a horizontal splitting
at f coincides with the unique vertical splitting of M . Thus the vertical
splitting is a stabilization of the unique horizontal splitting (in M , not in
M0) and is reducible.

Statement (ii) is cases (3)-(6) of Theorem 5.3. As the vertical splittings
are of minimal genus they are irreducible.

In the case of statement (iii) the vertical splittings are of minimal genus
and hence irreducible.

�

The following corollary addresses the Heegaard genus of Seifert fibered
spaces. Most of this problem was solved in [BZ]; the few remaining cases
follow from the results in [MS]. We include it here for completeness.

Corollary 5.7. The Heegaard genus of a Seifert fibered space M is equal
to the vertical genus unless M admits a type (1) or (2) small horizontal
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splitting. In the latter case, the Heegaard genus of M is one less than the
vertical genus.

6. Reducibility of Horizontal Splittings.

In this section we will prove the first half of the main theorem.

Theorem 6.1. Let M admit a horizontal splitting at f which is not small.
If α < d then this splitting is reducible.

The proof is postponed until later in this section. Casson and Gordon
demonstrated that a weakly reducible Heegaard splitting is either reducible
or the manifold in question contains an incompressible surface. Although
Seifert fibered spaces usually contain incompressible surfaces, in [Schu2]
Schultens demonstrates that weakly reducible horizontal splittings are in-
deed reducible. We therefore seek to prove that these horizontal splittings
are weakly reducible. The following lemma will be our primary tool in estab-
lishing the theorem. Recall that an essential arc in a surface F is a properly
embedded arc which does not cobound a disk on F with an arc on ∂F .

Lemma 6.2. Let M admit a horizontal splitting at a fiber f so that α < d.
If there are essential arcs γ1 and γ2 in F such that

(i) γ1 ∩ (γ2 ∪ h(γ2)) = ∅, and
(ii) There is an interval I ⊂ ∂F of length less than 1 that contains, in

sequence, both of the endpoints of γ1 followed by both of the endpoints
of γ2. (The orientation on I is given by the orientation on ∂F.),

then this splitting is weakly reducible (and hence reducible).

Proof. Note that we do not require that γ2 ∩ h(γ2) = ∅.

Claim. The length of I can be taken to be arbitrarily small.
The endpoints of h(γ2) are a positive integer distance from the endpoints

of γ2 and thus cannot be contained in the interval I of length less than one.
Therefore we may choose a neighborhood of I which is disjoint from h(γ2).
Within this neighborhood we can isotope the arcs so that their endpoints
are arbitrarily close together. This can be done while maintaining γ1∩ (γ2∪
h(γ2)) = ∅.

Define the product disks D1 = γ1 × I1 and D2 = γ2 × I2. These disks
are essential in the handlebodies H1 = F × I1 and H2 = F × I2. We now
check that the boundaries of these disks are disjoint on the splitting surface
G = F1 ∪ A1 ∪ F2 = F2 ∪ A2 ∪ F1 by analyzing the intersection ∂D1 ∩ ∂D2

as restricted to each of the pieces, F1, F2 and A = A1 = A2.
On F1 we have D1 ∩ F1 = γ1 and D2 ∩ F1 = h(γ2) which are disjoint by

hypothesis. Similarly on F2, D1 ∩ F2 = γ1 and D2 ∩ F2 = γ2 are disjoint by
assumption.
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Before we make the identification A = A1 = A2 we note that the boundary
of D1 on ∂M0 is two regular arcs on A1 which are vertical and that the
boundary of D2 on ∂M0 is two regular arcs on A2 which have an α shift.
See Figure 4. We may take the endpoints of the arcs to be arbitrarily close
together. In particular as α < d we may make them close enough so that
after identifying A1 to A2 the regular arcs on A1 will not intersect the regular
arcs on A2. Therefore, ∂D1 ∩∂D2 = ∅ and the splitting is weakly reducible.



A1

A2

x1 x1+ε+α

A=A1=A2

Figure 4. The regular arcs will not intersect after identify-
ing A1 and A2.

�

With Lemma 6.2, all that is needed to prove the main theorem of the sec-
tion is to show that for a non-small horizontal splitting we can always find
such arcs γ1 and γ2. However, we know that we will never be able to produce
such arcs for a small splitting (or else we could make it reducible). Unfor-
tunately, this forces the proof of the main theorem to be quite technical; it
must make exact use of the properties of non-small horizontal splittings.

Proof of Theorem 6.1. The horizontal splitting being considered is not small,
according to our characterization in Lemma 5.2 this leaves us with two pos-
sibilities, either

1) g0 ≥ 1, or
2) d ≥ 3 and g(F ) > 1.

We will prove these two cases separately.

Case. g0 ≥ 1.
In this case we can find a non-separating essential curve on the base surface
B0. Furthermore, we may take two disjoint copies of this curve, φ1 and φ2,
and adjoin to them embedded arcs, τ1 and τ2 (resp.), which attach them
to ∂B0 and so that regular neighborhoods of each of the resulting graphs
are disjoint from each other and from the anchor points of the exceptional
fibers. See Figure 5. As the total length of ∂B0 is equal to 1, the distance
between the endpoint of τ1 and τ2 is strictly less than 1.

Recall that ρ : F → B is a branched covering map. We may consider the
preimages of our chosen graphs and neighborhoods on F . The preimage,
ρ−1(τi), of the arc τi will be d disjoint copies of τi. For each i choose
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B0

ρ τ2

τ1'

φ1 φ2



φ1' τ1

γ1

Figure 5. Lift neighborhoods of the graphs to F .

an arc τ ′i ⊂ ρ−1(τi) so that the distance from the endpoint of τ1 to the
endpoint of τ ′2 is a positive number less than 1. Each of these arcs joins a
closed loop φi

′ ⊂ ρ−1(φi) to ∂F . For i = 1, 2 choose regular neighborhoods
N(φi

′ ∪ τi
′) ⊂ ρ−1(N(φi ∪ τi)). One component of ∂(N(τi

′ ∪ φi
′)) will be an

arc γi (the other component is a curve). As φi
′ is essential and non-boundary

parallel, γi is an essential arc on F . By taking the regular neighborhood to
be sufficiently small we have that the endpoints of γ1 are followed by those
of γ2 and all are contained in an interval of length less than one. The arcs
then satisfy hypothesis ii) of Lemma 6.2.

Moreover, γ1 is disjoint from both γ2 and h(γ2). To see this note that
γ1 ⊂ ρ−1(N(φ1 ∪ τ1)) and γ2, h(γ2) ⊂ ρ−1(N(φ2 ∪ τ2)). In turn, these sets
are disjoint being preimages of disjoint neighborhoods on B0. Therefore, the
essential arcs γ1 and γ2 satisfy the conditions of Lemma 6.2. In this case
the horizontal splitting at f is weakly reducible.

We now to proceed to the second (and more difficult) case.

Case. d ≥ 3 and g(F ) > 1.
We assume that g0 = 0 (otherwise the result follows from the previous case).
Now, there are no essential loops or arcs on the base surface that we can lift
to F and we must construct γ1 and γ2 by more laborious means.

Definition 6.3. An almost essential arc on the base surface B0 is a
properly embedded arc on B0 which is also an essential arc on the punctured
surface B0

′ = B0 − N(∪i=1,... ,n0ei), where the ei are the anchor points of
exceptional fibers contained in M0.

Note that the preimage under ρ of an almost essential arc on B0 will be
a collection of essential arcs on F .
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Choose an almost essential arc γ on the base surface B0 and choose an
arc γ1 ⊂ ρ−1(γ) on F . Apply the surface homeomorphism h iteratively to
obtain the essential arcs γ2 = h(γ1), and γ3 = h(γ2).

Claim. γi and γi+1 are disjoint and not parallel.
Suppose that γi and γi+1 are parallel. Then every arc in Γ = ρ−1(γ) will

be parallel and Γ will contain at least 3 arcs (d ≥ 3). From Γ choose three
parallel and adjacent arcs: γa, γb and γc. Let R1 be the disk region bounded
by γa and γb and R2 be the disk region bounded by γb and γc. We know
that γ separates the disk B0 into two subdisks B1 and B2 and ρ restricted
to R1 is a branched covering of one of B1 or B2, say B1. It follows that ρ
restricted to R2 is a branched covering of B2. This implies that each of the
disk regions Ri is a double branched cover of the corresponding Bi. So B1

and B2 each contain exactly one branch point of multiplicity 2 and d = 2, a
contradiction.

Consider F − (γ1 ∪ γ2 ∪ γ3). We have assumed that g(F ) > 1 and the
previous claim shows that neither γ1 nor γ3 is parallel to γ2. Thus, γ2 is
on the boundary of a non-disk region E of F − (γ1 ∪ γ2 ∪ γ3). We may
choose an essential arc δ ⊂ E ⊂ F with endpoints at x2 + 2ε and x2 + 3ε
(0 < ε < 1/3) where x2 is one of the endpoints of γ2. (See Figure 6.) Then
h(δ) is disjoint from γ2, γ3 and γ4. So δ and h(δ) may not be disjoint, but,
(δ ∪ h(δ)) ∩ (γ2 ∪ γ3) = ∅. Let x3 = h(x2), the endpoints of h(δ) will be
x3 + 2ε and x3 + 3ε.

x 2

x2'

δ
γ2

γi

γiγi

γi

x 2
+2

ε

x 2
+3

ε

E

Figure 6. Choosing the arc δ.

Claim. Let R be the component of F − (δ ∪ h(δ)) that contains the point
x2. Then R is not a disk.

Suppose that R is a disk. From Figure 7 we can see that ∂F − (δ ∪ h(δ))
consists of four interval components. Let J2 be the interval containing x2,
J2 = (x3 + 3ε, x2 + 2ε), and J3 be the interval containing x3, J3 = (x2 +
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3ε, x3 + 2ε). Note that R contains the entire arc γ2 and J2 ⊂ ∂R (and
possibly J3 ⊂ ∂R).

Suppose both endpoints of γ2, x2 and x2
′, lie on the interval J2. That

would imply that the arc γ2 is inessential which is a contradiction.
Therefore x2

′ lies on the interval J3 and the disk R contains the arc γ3

as well. Then γ3 must have also have an endpoint on each of J2 and J3 (or
it is inessential). But then, γ2 and γ3 lie in the disk R and have adjacent
endpoints on the intervals J2 and J3 and are thus parallel on the surface F .
This is a contradiction, hence R is not a disk.

R

RR

γ2

γ2 γ2

γ3

γ3

δ
h(δ)

J2

J3

J2 J2

J3

x3

x2

Figure 7. R is not a disk.

As R is not a disk we can find an essential arc ζ ⊂ R with endpoints at
x2 and x2 + ε. So ζ is an essential arc on F that is disjoint from δ ∪ h(δ).

The endpoints of δ are at x2 + 2ε and x2 + 3ε and ε < 1/3. Then the arcs
ζ and δ satisfy the hypotheses of Lemma 6.2 and a horizontal splitting at f
is weakly reducible.

�

7. The Rectangle Condition.

Non-small horizontal splittings are by definition not of minimal genus. To
prove their irreducibility it must be directly shown that any pair of essential
disks, one in each handlebody, intersect at least twice. In [CG1], Casson
developed the rectangle condition which allows one to analyze the intersec-
tion of any pair of disks by working with prechosen disk systems. Casson’s
rectangle condition was given by a pair of pants decomposition of a surface,
here it is generalized to a planar decomposition.

Definition 7.1. Let G be a closed surface and C ⊂ G a collection of pairwise
disjoint curves. Then C is a complete curve system for G if P = G − C
is a collection of planar surfaces, none of which is a disk or an annulus. We
call P the induced planar decomposition.
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Definition 7.2. Let ∆ be a collection of disjoint essential disks in a han-
dlebody H, no two of which are parallel. If H − ∆ is a collection of balls
then we call ∆ a complete collection of disks for H.

Note that if ∆ is a complete collection of disks for a handlebody H then
∂∆ is a complete collection of curves for G = ∂H and hence induces a planar
decomposition of G.

Definition 7.3. Let P be a planar surface. Suppose that c ⊂ ∂P is a single
curve and C1 ⊂ ∂P and C2 ⊂ ∂P are non-empty and disjoint collections
of curves such that ∂P = c t C1 t C2. We will call the decomposition
∂P = c t C1 t C2 a non-trivial partition of ∂P .

Definition 7.4. Let P and P ′ be planar surfaces embedded on a closed
surface G. If for each non-trivial partition of ∂P = c t C1 t C2 and each
non-trivial partition of ∂P ′ = c′ t C1

′ t C2
′ there exist curves c1 ∈ C1, c2 ∈

C2, c1
′ ∈ C1

′, and c2
′ ∈ C2

′ such that P ∩P ′ contains a rectangle bounded by
c1, c2, c1

′, and c2
′ then P and P ′ are said to satisfy the rectangle condition

for planar surfaces.

Definition 7.5. Let C and C′ be collections of curves on a surface G. Then
C and C′ intersect essentially if no component of G− (C ∪ C′) is a bigon,
a disk region bounded by two arcs.

Definition 7.6. Suppose that C and C′ are complete collections of curves
that intersect essentially on a surface G and that P and P ′ are their re-
spective induced planar decompositions. Then C and C′ are said to satisfy
the rectangle condition for curve systems if for each P ∈ P and each
P ′ ∈ P ′, P and P ′ satisfy the rectangle condition for planar surfaces.

Definition 7.7. Let M = H ∪G H ′ be a Heegaard splitting. Let ∆ and ∆′

be complete collections of disks for H and H ′, respectively. Further assume
that ∂∆ ⊂ G and ∂∆′ ⊂ G intersect essentially and that P and P ′ are their
respective induced planar decompositions. If for each choice of P ∈ P and
P ′ ∈ P ′, P and P ′ satisfy the rectangle condition for planar surfaces then
we say that ∆ and ∆′ satisfy the rectangle condition for disk systems.

Lemma 7.8. Let H ∪F H ′ be a Heegaard splitting. Let D ⊂ H and D′ ⊂
H ′ be essential disks. If there are complete collections of disks, ∆ ⊂ H
and ∆′ ⊂ H ′, which satisfy the rectangle condition for disk systems then
|∂D ∩ ∂D′| ≥ 4. In particular, the splitting H ∪F H ′ is strongly irreducible.

Proof. First isotope the disks D and D′ so that the quantity |∂D ∩ ∂D′ ∩
∂∆ ∩ ∂∆′| is minimal.

Claim. No two curves in the collection ∂D ∪ ∂D′ ∪ ∂∆ ∪ ∂∆′ intersect
inessentially.
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If so, then there is an innermost bigon (other arcs may be contained in
the bigon, but they join distinct boundary arcs of the bigon). As ∂∆ ∩ ∂∆′

is essential by the definition of the rectangle condition, one of these disks
must be D or D′, say D. The bigon can be used to construct an isotopy of
D that reduces |∂D ∩ ∂D′ ∩ ∂∆ ∩ ∂∆′|. But, we have assumed that this
quantity is minimal. The claim holds.

As there are no innermost bigons, there are no bigons at all and the
curves ∂D and ∂D′ must intersect minimally. Furthermore, as handlebodies
are irreducible we may isotope the interiors of the disk so that there are no
closed loops of intersection in D ∩∆ and D′ ∩∆′.

Consider an outermost subdisk D0 of D−∆. Let δ designate the portion
of ∂D that is coincident with ∂D0. Either D0 ( D and δ is an arc or
D0 = D and δ = ∂D, a loop. See Figure 8. δ is properly embedded in a
single component P ∈ P.

Claim. δ is an essential loop or arc.
If δ is an arc and inessential then it forms a bigon with some c ∈ ∂P and

there is an inessential intersection which contradicts the previous claim. If δ
is a loop and inessential then the disk D is inessential, again a contradiction.

Similarly, we can find an essential arc (or loop) δ′ that lies entirely and
essentially in a planar piece P ′.

Case. δ and δ′ are both arcs.
As δ belongs to an outermost disk both of its endpoints belong to a single
loop c ∈ ∂P . As δ is essential in ∂P it separates the remaining curves,
∂P − c, into two non-empty sets C1 and C2. We obtain the non-trivial
partition ∂P = c t C1 t C2. Similarly δ′ yields the non-trivial partition
∂P ′ = c′ t C1

′ t C2
′ where δ′ separates C1

′ from C2
′.

By assumption C and C′ satisfy the rectangle condition for curve systems
which in turn implies that the pieces P and P ′ satisfy the rectangle condition
for planar surfaces. Thus there exist curves c1 ∈ C1, c2 ∈ C2, c1

′ ∈ C1
′, and

c2
′ ∈ C2

′ which bound a rectangle on P ∩P ′. As δ separates c1 and c2 on P
(it separates C1 from C2) and δ′ separates c1

′ and c2
′ on P ′, the arcs δ and

δ′ must meet in the rectangle. See Figure 8.
Any such outermost arc δ must meet any outermost arc δ′ at least once.

There will be at least two outermost subdisks on D and thus we obtain
at least two distinct choices for δ. Similarly there are at least two distinct
choices for δ′. For each pair we obtain a distinct point of intersection. Thus
∂D ∩ ∂D′ ≥ 4.

Case. δ is a loop and δ′ is an arc.
As δ is essential and entirely contained in P it separates ∂P into two col-
lections C1 and C2. One collection, say C1, contains more than one curve
(P is not an annulus). Select c ∈ C1 and form the non-trivial partition



194 ERIC SEDGWICK ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��������������������� ��������������������� ��������������������� ��������������������� ��������������������� ��������������������� ��������������������� ��������������������� ���������������������
D0

D

δ

δ

P

δ

δ

δ'

c1 c2

P

P'

c1'

c2'

Figure 8. δ and δ′ must meet in the rectangle.

∂P = c t (C1 − c) t C2. δ separates the curves in C1 − c from those in C2.
As before the arc δ′ will induce a non-trivial partition ∂P ′ = c′ t C1

′ t C2
′

where it separates separates C1
′ from C2

′.
As our curve systems satisfy the rectangle condition, we can find curves

c1 ∈ C1, c2 ∈ C2, c1
′ ∈ C1

′, and c2
′ ∈ C2

′ which bound a rectangle on P ∩P ′.
Again δ will separate c1 and c2 on P and δ′ will separate c1

′ and c2
′ on P ′.

Then δ and δ′ will have a point of intersection x1.
Let δ1

′ = δ′ ∩ P be the subarc of δ′ that contains the point x1. Then δ1
′

is a properly embedded arc on P that joins the curves c1 and c2. See Figure
8.

Note that δ also separates the curves in C1 − c1 (non-empty) from the
curves in C2 and we obtain the non-trivial partition ∂P = c1t(C1−c1)tC2.
Then there are curves d1 ∈ C1 − c1, d2 ∈ C2 and d1

′ ∈ C1
′, and d2

′ ∈ C2
′

which bound a rectangle on P ∩ P ′. Because δ and δ′ separate the curves
in the chosen non-trivial partitions they must meet at a point x2 in this
rectangle.

Let δ2
′ = δ′ ∩ P be the subarc of δ′ that contains the point x2. Then δ2

′

is a properly embedded arc on P that joins the curves d1 and d2. Note that
c1 6= d1 (d1 ∈ C1 − c1) so the subarcs δ1

′ and δ2
′ are distinct. Therefore the

points of intersection x1 and x2 are distinct.
As before there is a distinct choice for δ′ that will provide two additional

points of intersection. Again, |∂D ∩ ∂D′| ≥ 4.

Case. δ and δ′ are both loops.
We proceed as in the previous case. For each loop there are at least two
choices of a non-trivial partition. There are four combinations each yielding
a point of intersection. Again, we can check that the points of intersection
are distinct by checking that they are contained in different subarcs of ∂∆∩
P ′ and ∂∆′ ∩ P .

�
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8. Irreducibility of Horizontal Splittings.

In this section we complete the proof of the main theorem using the rectangle
condition.

Theorem 8.1. Let M admit a horizontal splitting at f . If α > d then this
splitting is irreducible.

Before proving this theorem we will note and prove the following corollary.

Corollary 8.2. A Seifert fibered space admits an irreducible horizontal
splitting at at most one fiber f .

Proof. Suppose that M admits two irreducible splittings, at distinct fibers
f and f ′ with multiplicities α and α′. We have already demonstrated (The-
orem 5.4) that both of these splittings cannot be small.

Nor can it be that neither splitting is small. In that case, our condition
for irreducibility implies that α > lcm{αi}i=1,... ,n0 . In particular α > α′.
Symmetrically α′ > α. This is a contradiction.

We then suppose that one of the splittings, say the one at f , is a small
splitting and the other, at f ′, is not small. We may assume that α ≤ α′

(otherwise the above argument works).
If the splitting at f is a type (1) splitting then

M0 = {g0|∅}, g0 ≥ 1, f is regular or exceptional,

and in particular α′ = 1. Now α ≤ α′ implies that α = 1. Then both f and
f ′ are regular fibers and these two splittings are the same.

In the proof of Theorem 5.4 it was demonstrated that if M admits a
small splitting of type (2),(3),(5), or (6) then this is the only horizontal
splitting that M admits. The remaining case is when there is a type (4)
small horizontal splitting at f . So

M0 = {0|(2, 1), (3, β2)}, f is exceptional.

We know that α ≤ α′ = 2 or 3. Moreover, α is relatively prime to d = 6 and
therefore α = 1. This contradicts the fact that f is an exceptional fiber (M
is not a lens space). �

We now proceed with the proof of the second half of the main theorem.

Proof of Theorem 8.1. Let E ⊂ B0 be the collection of anchor points of
exceptional fibers. Let E2 be the sub collection of multiplicity two anchor
points. Choose the following collections of disjoint embedded arcs in B0.

Γ1 = {2g0 arcs chosen such that B0 − Γ1 is a single disk}
Γ2 = {|E2| arcs, each joining a multiplicity two anchor point to a point

on ∂B0}. These arcs will be called half arcs.
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When E2 ( E let Γ3 = { |E| − |E2| − 1 arcs so that B0 − Γ1 − Γ2 − Γ3

is a collection of disks each of which contains exactly one point from the
collection E − E2}.

When E2 = E let Γ3 = {∅}.
These collections can be chosen so that the union Γ0 = Γ1 ∪Γ2 ∪Γ3 is an

embedded disjoint collection of arcs in B0. With the exception of the arcs
in Γ2 these arcs are properly embedded in B0.

Let Γ = ρ−1(Γ0). Each arc in Γ is essential on F . If the anchor points
are all of multiplicity two then B0 − Γ0 is a single disk which contains no
branch points. Otherwise it is a collection of disks each containing exactly
one branch point of multiplicity greater than or equal to 3. It follows that
F − Γ0 is a collection of disks. Furthermore,

Claim. No two arcs in Γ are parallel.
Let γa and γb be adjacent parallel arcs and R be the component of F −Γ

bounded by them. Along ∂R we see two arcs and two intervals of ∂F . The
branched covering ρ : F → B0 restricts to a branched covering, ρ : R → R0,
for some component R0 in B0 − Γ0. If E 6= E2 then R0 contains an anchor
point of multiplicity at least three and R has at least three arcs on its
boundary, a contradiction. Therefore, all branch points are multiplicity
two and R0 is the sole component of B0 − Γ0. Also, there are no branch
points in the interior of R0, so R is a copy of R0. But along ∂R0 we see
2|Γ1| + |Γ2| = 4g0 + |E2| arcs (the half arcs are doubled to look like full
arcs). It follows that g0 = 0 and E = E2 = 2. So F is a branched cover
over the disk with two branch points each of multiplicity two. Then F is an
annulus, and does not have a single boundary component, contradicting the
horizontal construction.

Let ∆1 = Γ × I1 and ∆2 = Γ × I2 be disk systems for H1 = F × I1 and
H2 = F × I2 respectively. As no arc γ ∈ Γ is inessential, each disk D ∈ ∆i

is essential. Moreover, as no two arcs in Γ are parallel, no two disks in ∆i

are parallel. Each piece of Hi − ∆i is a {disk} × I, in other words a ball.
Thus ∆i is a complete collection of disks for Hi.

Note that the boundaries of the disk collections are not transverse on the
surfaces F1 and F2 but are coincident there. In fact ∂∆1 ∩ ∂∆2 ∩ F1 (and
similarly for F2) is the collection of arcs Γ. By perturbing each disk in ∆2

slightly we may arrange that each coincident arc becomes a single point of
intersection between ∆1 and ∆2 (See Figure 9). We treat this coincident
arc as a single point of intersection and refer to it as a a long crossing.

By examining how the disk systems ∆1 and ∆2 intersect on the splitting
surface G = F1 ∪A1 ∪F2 = F2 ∪A2 ∪F1 it can be seen that they satisfy the
rectangle condition.

Claim. The disk collections ∂∆1 and ∂∆2 intersect essentially.
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Figure 9. The disks intersect on Fi in a long crossing.

If the disk collections ∂∆1 and ∂∆2 do not intersect essentially then some
component of G − ∂∆1 ∪ ∂∆2 is a bigon. There are no components of
G−∂∆1∪∂∆2 lying entirely on the surfaces Fi so we focus on A = A1 = A2.
See Figure 10. Each disk in ∆i is of the form {arc} × Ii. Thus ∂∆i ∩
Ai is a collection of regular arcs. On A the components of G − ∂∆1 ∪
∂∆2 are quadrilaterals contained on A or triangular regions that extend
onto one the surfaces Fi. The components of the first type are not bigons.
The components of the second type already have three crossings, a regular
crossing and two long crossings. Such a component cannot be a bigon unless
its long crossings are coincident. This is impossible, the bigon would then
imply that one of the arcs in Γ (the long crossing) is inessential on Fi. Hence,
there are no innermost bigons, and the intersection between ∂∆1 and ∂∆2

is minimal.

R1

R2

R

cj cj+1

cl

cl+1

Figure 10. ∂M0 when α > d.

Let P1 be any component of ∂H1−∆1 and ∂P1 = ctC1tC2 any non-trivial
partition of its boundary components. Then P1 = R×I1 for some component
R of F − Γ and appears as in Figure 11. By following ∂R around we may
cyclically label the arcs in ∂R∩Γ as they are encountered. Each component
c of ∂P1 corresponds to one of these arcs and we can thus cyclically label
the components of ∂P1, ∂P1 = {c1, c2, . . . , cm}. As the components are
cyclically ordered there must be consecutive boundary components cj ∈ C1

and cj+1 ∈ C2 (or vice-versa). Select the rectangle R1 which is the subset
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of the annulus A1 that is bounded by these adjacent curves. In the same
fashion given any planar piece P2 and a non-trivial partition of its boundary
curves we choose a rectangle R2 bounded by adjacent curves, cl and cl+1,
that belong to different components of the partition.

R1

cj

cj+1

Figure 11. A piece of F × Ii −∆i.

Consider ∂M0 = A1 ∪ A2 as pictured in Figure 10. The rectangle R1 is
bounded by adjacent regular arcs on A1 and is thus a vertical strip. The
rectangle R2 is also bounded by adjacent regular arcs and is therefore a strip
with an α shift.As α > d, after the identification A1 = A2 is made, R1 ∪R2

will contain a rectangle R.
The rectangle R is contained in R1 ∩R2 ⊂ P1 ∩P2 and is bounded by the

curves cj , cj+1, cl and cl+1 that were selected from different components of
each of the given partitions. As the planar pieces and partitions were chosen
arbitrarily, we have demonstrated that the disk collections ∆1 and ∆2 satisfy
the rectangle condition, hence this horizontal splitting is irreducible.

�
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