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We characterize those domains in the plane whose bound-
ary is a chord arc curve in terms of some L2 integrals, which
are mainly a version of Green’s theorem. As a consequence of
this we obtain a “converse” to a theorem due to Laurentiev
that states that for such domains harmonic measure and arc
length are A∞ equivalent.

Let Γ be a locally rectifiable Jordan curve in the plane that passes through
∞, and let Ω+, Ω− be the two domains bounded by Γ.

Given a function f defined on Γ, its Cauchy integral

Cf(z) =
∫

Γ

f(ζ)
ζ − z

dζ, z /∈ Γ

defines an analytic function off Γ.
If C+f , C−f denote the restrictions of Cf to Ω+ and Ω−, and if f+, f−

denote their boundary values, then

f±(z) = ±1
2
f(z) +

1
2πi

P.V.
∫

Γ

f(ζ)
ζ − z

dζ, z ∈ Γ.

G. David has shown in [D] that the Cauchy integral is bounded in L2(Γ)
if and only if Γ is regular, that is, there exists a constant C such that for all
z0 ∈ C and all R > 0, the arclength of B(z0, R) ∩ Γ is at most CR, where
B(z0, R) denotes the ball centered at z0 and radius R.

Several proofs have been given of the boundedness of the Cauchy integral
under stronger hypothesis on Γ. We shall concentrate on the first proof
presented in [C-J-S] which is based on complex variables methods. They
show the result for Lipschitz graphs, i.e.,

Γ = {x + iA(x) : x ∈ R} with A′ ∈ L∞.

By following their argument very closely one can notice that the theorem is
a consequence of the fact that for any F holomorphic in Ω± that decays to
zero at ∞, the following two integrals are equivalent:∫∫

Ω±

|F ′(z)|2δ(z) dx dy ∼=
∫

Γ
|F |2 ds

where δ(z) = dist(z, Γ).
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It is a well known result, [J-K], that such an equivalence holds if Γ is
a chord-arc curve (the length of the arc is comparable to the chord). The
main purpose of this paper is to show that the chord-arc condition is also
necessary for the equivalence to hold.

To avoid problems at ∞, we will assume that the curves Γ and the func-
tions F are analytic at ∞. In particular F (z) = O

(
1
z

)
at ∞. Note that if Γ

is the real line and Ω is the upper half plane, the equivalence of the integrals
is just Green’s theorem applied to the functions u(z) = |F (z)|2 and v(z) = y
in the domain ΩR = {z ∈ R+

2 ; |z| ≤ R} [G, p. 236]. Since F (z) = O
(

1
z

)
the

terms involving the line integral on {z = Reiθ; 0 < θ < π} will tend to 0 as
R tends to ∞.

Before stating the results we need to recall a few definitions:

A function ϕ ∈ L1
loc(R) lies in BMO(R) if

sup
I

1
|I|

∫
I
|ϕ− ϕI | dt = ‖ϕ‖∗ < ∞

where I ⊂ R is any bounded interval and ϕI = 1
|I|
∫
I ϕ dt. The space

BMOA(R) denotes the space of holomorphic functions in the upper half
plane that are Poisson integrals of functions in BMO(R).

A positive measure µ defined on the upper half plane is called a Carleson
measure if there is a constant N(µ) such that

µ(Q) ≤ N(µ)l(Q)

for all cubes
Q = {x0 < x < x0 + l(Q), 0 < y < l(Q)}.

There is a close connection between BMO functions and Carleson measures:
A function ϕ ∈ BMO(R) if and only if |∇ϕ(z)|2y dx dy is a Carleson measure
where ϕ(z) denotes the harmonic extension of ϕ. See [G, p. 240].

We are ready now to state the results:

Theorem 1. Let Γ be a locally rectifiable Jordan curve analytic at ∞ and
let Ω be a domain bounded by Γ.

Denote by Φ the conformal mapping from R+
2 onto Ω with Φ(∞) = ∞.

Then log Φ′ ∈ BMOA(R) if and only if there is a constant c, depending only
on the BMO constant, such that∫∫

Ω
|F ′|2δ(z) dx dy ≤ c

∫
Γ
|F |2 ds(1)

for any F holomorphic in Ω with F (z) = O
(

1
z

)
at ∞.

Note that the boundary values of Φ′ are defined a.e. on R because of our
assumptions on Γ.
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Theorem 2. Let Γ be a locally rectifiable Jordan curve bounding the do-
mains Ω+, Ω−. Suppose there exists a constant c such that∫

Γ
|F |2 ds ≤ c

∫∫
Ω+

|F ′|2δ(z) dx dy(2)

and ∫
Γ
|G|2 ds ≤ c

∫∫
Ω−

|G′|2δ(z) dx dy

for any holomorphic function F (G) on Ω+(Ω−) vanishing at ∞. Then Γ is
a chord-arc curve.

As we mentioned before its converse is also true. Also note that if (2)
holds then (1) holds, that is because if Ω is bounded by a chord-arc curve,
log Φ′ ∈ BMOA(R).

It will become clear from the proof of the theorem that (2) can be replaced
by ∫

Γ
|ϕ|2 ds ∼=

∫∫
C
|(Cϕ)′|2δ(z) dx dy

where ϕ = χI for any arc I ⊂ Γ.
It is also interesting to see what happens if we consider functions of the

form F (z) = 1
|z−w| , w /∈ Γ. Then the result is the following:

Theorem 3. Let Γ be a locally rectifiable curve, then Γ is regular if and
only if there exist constants c1, c2 such that

c1
1

δ(w)
≤
∫

Γ

|dz|
|z − w|2

≤ c2
1

δ(w)
, for all w /∈ Γ.(3)

The proofs of these theorems are contained in Section 1. Further remarks
and corollaries will be given in Section 2. Finally we would like to thank,
M. Melnikov for suggesting some questions and for many helpful conversa-
tions, and the referee for his comments which improved the presentation of
this paper.

1. Proofs of the Theorems.

Proof of Theorem 1. First note that by changing variables and by using
Koebe’s distortion theorem, (1) is equivalent to∫∫

R+
2

|f ′|2|Φ′|y dx dy ≤ c

∫
R
|f |2|Φ′| dx(4)

where f is a holomorphic function on R+
2 with f(z) = O

(
1
z

)
at ∞.

Consider now g = f(Φ′)1/2. Then applying Green’s Theorem as in the
remark of the introduction, we get∫

R
|g|2 dx = 4

∫∫
R+

2

|g′|2y dx dy.
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Since f ′(Φ′)1/2 = g′ − 1
2gΦ′′

Φ′∫∫
R+

2

|f ′|2|Φ′|y dx dy =
∫∫

R+
2

∣∣∣∣g′ − 1
2
g
Φ′′

Φ′

∣∣∣∣2 y dx dy

≤ 2
∫∫

R+
2

(
|g′|2 +

1
4
|g|2

∣∣∣∣Φ′′

Φ′

∣∣∣∣2
)

y dx dy

≤ 1
2

(∫
R
|g|2 dx +

∫∫
R+

2

|g|2 |Φ
′′|2

|Φ′|2
y dx dy

)
.

By the remark at the end of the introduction if log Φ′ ∈ BMOA(R), then
|Φ′′|2
|Φ′| y is a Carleson measure and (4) holds.

On the other hand, if (4) holds then∫∫
R+

2

|g|2
∣∣∣∣Φ′′

Φ′

∣∣∣∣2 y dx dy = 4
∫∫

R+
2

|g′ − (f ′)2Φ′|2y dx dy ≤ 4c

∫
R
|g|2 dx

which is equivalent to |Φ′′|2
|Φ′|2 y being a Carleson measure ([G, p. 33]). �

Proof of Theorem 2. Let I be an arc on Γ with length l(I) and endpoints α,
β.

Set f = χI and consider the functions C±f(z) defined in the introduction.
Since f = f+ − f−, (2) implies∫

Γ
|f |2 ds ≤ c

(∫∫
Ω+

|(C+f)′|2δ(z) dx dy +
∫∫

Ω−

|(C−f)′|2δ(z) dx dy

)
= c

∫∫
C\Γ

|(Cf)′|2δ(z) dx dy

that is

l(I) ≤ C

∫∫
C\Γ

δ(z)
∣∣∣∣∫

I

dζ

(ζ − z)2

∣∣∣∣ dx dy.

Let ζ(s), s ∈ [a, b] be a parameterization of I by arclength, then∫
I

dζ

(ζ − z)2
=
∫ b

a

ζ ′(s)
(ζ(s)− z)2

ds =
1

ζ(a)− z
− 1

ζ(b)− z
=

β − α

(α− z)(β − z)
.

Therefore

l(I) ≤ |β − α|2
∫∫

C\Γ

δ(z)
|z − α|2|z − β|2

dx dy.

It only remains to estimate the last integral. To do so we split it into three
integrals. Let B1 be the ball centered at α with radius |β−α|

2 and let B2 be
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the corresponding one centered at β. Then∫∫
B1

δ(z)
|z − α|2|z − β|2

dx dy ≤ 4
|β − α|2

∫∫
B1

dx dy

|z − α|
=

c

|β − α|
.

By a similar argument one can show that the same estimate holds on B2

and outside B1 ∪B2. Therefore

l(I) ≤ c|β − α|.

�

Proof of Theorem 3. Suppose first that Γ is a regular curve. Fix a point
w /∈ Γ, choose z0 ∈ Γ such that δ(w) = |w − z0| and consider the ball B
centered at z0 with radius 2δ(w). So:∫

Γ

|dz|
|z − w|2

=
∫

Γ∩B

|dz|
|z − w|2

+
∫

Γ\B

|dz|
|z − w|2

.

If z ∈ Γ ∩B, then |z − w| ∼= δ(w). Also, since Γ is regular l(Γ ∩B) ∼= δ(w).
Therefore, trivially ∫

Γ∩B

|dz|
|z − w|2

∼=
1

δ(w)
.

On the other hand ∫
Γ\B

|dz|
|z − w|2

=
∞∑

k=1

∫
Ak

|dz|
|z − w|2

where Ak = {z ∈ Γ : 2kδ(w) ≤ |z − z0| ≤ 2k+1δ(w)}.
If z ∈ Ak, |z − w| ∼= 2kδ(w). Since l(Ak) ∼= 2kδ(w) we get∫

Γ\B

|dz|
|z − w|2

∼=
1

δ(w)

which proves the first part of the theorem.

Suppose now that (3) holds. Choose any r > 0 and any point z0 ∈ C
and consider the ball B centered at z0 of radius r. Let A be the annulus
A = {2r < |z − z0| < 3r} and let w ∈ A be a point with the property that

δ(w) = sup
z∈A

δ(z).

We claim that there is a constant c depending only on c1, c2 such that
δ(w) ≥ cr. Assuming the claim let us finish the proof of the theorem:

l(Γ ∩B)
r2

≤
∫

Γ∩B

|dz|
|z − w|2

≤
∫

Γ

|dz|
|z − w|2

∼=
1

δ(w)
≤ c

r
.
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Therefore l(Γ∩B) ≤ cr, i.e. Γ is regular. To prove the claim consider a grid
on A of size δ(w). Then, because of the choice of w, any square of the grid
contains points of Γ. So, letting N ∼= r/δ(w), we have

c2

δ(w)
≥
∫

Γ

|dz|
|z − w|2

≥
N∑

k=1

∫
{z∈Γ:

kδ(w)<|z−w|<(k+1)δ(w)}

|dz|
|z − w|2

≥ c
N∑

k=1

1
kδ(w)

∼=
c

δ(w)
log r/δ(w).

Therefore r/δ(w) ≤ c which proves the claim. �

Note that the same result holds if we replace 1
|z−w|2 by 1

|z−w|α for any
α > 1. Then instead of (3) we get∫

Γ

|dz|
|z − w|α

∼= (δ(w))−α+1.

The proof is the same.

2. Further remarks.

Let w(x) > 0 be locally integrable on R.
Set w(E) =

∫
E w(x) dx, and let |E| denote the Lebesgue measure of E.

We say that w is an A∞ weight if for every ε > 0, there is a δ > 0 such that
if I is any interval and E ⊆ I, then

|E|
|I|

< δ ⇒ w(E)
w(I)

< ε.

If ω is an A∞ weight, then log w ∈ BMO. For a proof of this fact and some
related ones see [S].

As before, given an unbounded simply connected domain Ω other than
the plane itself, Φ will denote the conformal mapping from R+

2 onto Ω fixing
∞.

There is a theorem due to Laurentiev which states that if Ω is a domain
bounded by a chord-arc curve, then arc-length and harmonic measure on
∂Ω are A∞-equivalent. That is, |Φ′| is an A∞-weight.

A version of a converse is given in [J-K]. Before stating it we need some
more definitions.

A Jordan curve Γ that passes through ∞ is called a quasi-circle if it
satisfies the three-point condition, that is there is a constant c such that for
any three points z1, z2 ∈ Γ and z3 on the arc joining z1 and z2, |z1 − z3| ≤
c|z1 − z2|. Obviously a chord-arc curve is a quasicircle.
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A domain is called a Smirnov domain if log |Φ′(z)| is represented by
its Poisson integral. In particular domains bounded by regular curves are
Smirnov [Z].

Theorem 4 ([J-K]). Suppose Ω is a Smirnov domain, ∂Ω is a quasicircle
and harmonic measure is A∞-equivalent to arc length. Then ∂Ω is a chord-
arc curve.

Note that its converse is also true.
Using Theorem 2 we give another “converse” to Laurentiev’s theorem

which is very similar to [J-K].

Corollary 1. Suppose that the two sides of a curve Γ are Smirnov domains
and that on each domain harmonic measure is A∞-equivalent to arc-length.
Then Γ is a chord-arc curve.

As before note that its converse is also true.

Proof. Let Ω be one of the sides of Γ and let Φ : R+
2 → Ω be its conformal

mapping, Φ(∞) = ∞. We are assuming that |Φ′| is an A∞ weight, therefore
[G-W],∫

R
|F (x)|2|Φ′(x)| dx ≤ c

∫
R

(∫∫
Γx

|F ′(z)|2 dA(z)
)
|Φ′(x)| dx

where Γ(x) is a cone centered at x:

Γx = {(s, y) : |x− s| < ay} for some a fixed

and F is a holomorphic function on R+
2 vanishing at ∞ as before. The

constant c depends only on the opening of the cone and the A∞-constant.
By Fubini’s theorem the integral on right-hand side is equivalent to∫∫

R+
2

|F ′(z)|2σ(Iz) dx dy

where σ(Iz) =
∫
Iz
|Φ′(t)| dt and Iz is the interval on R centered at x and

length 2ay.
Since log Φ′ ∈ BMO,∣∣∣∣Py ∗ log |Φ′| − 1

|Iz|

∫
Iz

log |Φ′|
∣∣∣∣ ≤ c

with c depending on the BMO-constant of log |Φ′| [G].
On the other hand, Ω being a Smirnov domain implies that Py ∗ log |Φ′| =

log |Φ′(z)| and |Φ′| ∈ A∞ is equivalent to saying that

exp
(

1
|I|

∫
I
log |Φ′| dt

)
∼=

1
|I|

∫
I
|Φ′| dt

for any interval I ⊂ R.
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So,

|Φ′(z)| ∼=
1
|Iz|

∫
Iz

|Φ′(t)| dt = σ(Iz)/2ay.

Hence, there is a constant c such that∫
R
|F (x)|2|Φ′(x)| dx ≤ c

∫∫
R+

2

|F ′(z)|2|Φ′(z)|y dx dy.

Since this inequality holds on both sides of Γ, by changing variables and us-
ing Koebe’s distortion theorem we get the hypothesis of Theorem 2. There-
fore Γ is chord-arc. �

Next corollary involves quasiconformal mappings. The result we need to
use is the quasiconformal analogue of Koebe’s distortion theorem [A-G]:
Suppose that Ω and Ω′ are domains in R2 and that ρ : Ω → Ω′ is K-
quasiconformal with Jacobian Jρ. For each z ∈ Ω, define

aρ(z) =
1
|Bz|

∫∫
Bz

(Jρ(ζ))1/2 dζ dζ̄

where Bz is the disk of center z and radius δ(z). Then

δ(ρ(z)) ∼= aρ(z)δ(z).

Using this fact and a change of variables in (2) we get the following:

Corollary 2. Let Γ be a locally rectifiable quasicircle analytic at ∞ bound-
ing the domain Ω, and let ρ be a quasiconformal mapping that sends R+

2
onto Ω. Then Γ is a chord-arc curve if and only if∫

R
|F (x)|2J1/2

ρ (x) dx ∼=
∫∫

C
JF (z)aρ(z)y dx dy

for any quasiregular mapping F satisfying ∂̄F = µ∂F where µ is the dilata-
tion of ρ and F (z) = O

(
1
z

)
at ∞.
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Universitat Autònoma de Barcelona
08193 Bellaterra Barcelona
Spain
E-mail address: bruna@mat.uab.es
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