DUAL SPACES AND ISOMORPHISMS OF SOME DIFFERENTIAL BANACH ∗-ALGEBRAS OF OPERATORS

Edward Kissin and Victor S. Shulman

The paper continues the study of differential Banach ∗-algebras \mathcal{A}_S and \mathcal{F}_S of operators associated with symmetric operators S on Hilbert spaces H. The algebra \mathcal{A}_S is the domain of the largest ∗-derivation δ_S of $B(H)$ implemented by S and the algebra \mathcal{F}_S is the closure of the set of all finite rank operators in \mathcal{A}_S with respect to the norm $\|A\| = \|A\| + \|\delta_S(A)\|$. When S is selfadjoint, \mathcal{F}_S is the domain of the largest ∗-derivation of the algebra $C(H)$ implemented by S. If S is bounded, $\mathcal{F}_S = C(H)$ and $\mathcal{A}_S = B(H)$, so \mathcal{A}_S is isometrically isomorphic to the second dual of \mathcal{F}_S. For unbounded selfadjoint operators S the paper establishes the full analogy with the bounded case: \mathcal{A}_S is isometrically isomorphic to the second dual of \mathcal{F}_S. The paper also classifies the algebras \mathcal{A}_S and \mathcal{F}_S up to isometrical ∗-isomorphism and obtains some partial results about bounded but not necessarily isometrical ∗-isomorphisms of the algebras \mathcal{F}_S.

1. Introduction and preliminaries.

Extensive development of non-commutative geometry requires elaborating of the theory of differential Banach ∗-algebras, that is, dense ∗-subalgebras of C^*-algebras whose properties in many respects are analogous to the properties of algebras of differentiable functions.

Blackadar and Cuntz [2] and the authors [12] introduced and studied various classes of differential Banach ∗-algebras; the most interesting class consists of D-algebras, that is, dense ∗-subalgebras \mathcal{A} of C^*-algebras $(\mathcal{U}, \|\cdot\|)$ which, in turn, are Banach ∗-algebras with respect to another norm $\|\cdot\|_1$ and the norms $\|\cdot\|$ and $\|\cdot\|_1$ on \mathcal{A} satisfy the inequality:

\[
\|xy\| \leq D(\|x\|_1\|y\| + \|x\|\|y\|), \quad \text{for} \quad x, y \in \mathcal{A},
\]

for some $D > 0$. This class contains, for example, the domains $D(\delta)$ of closed unbounded ∗-derivations δ of C^*-algebras \mathcal{U} where the norm $\|\cdot\|_1$ on $D(\delta)$ is defined, as usual, by the formula

\[
\|A\|_1 = \|A\| + \|\delta(A)\|, \quad \text{for} \quad A \in D(\delta).
\]
Much work has been done on the investigation of properties of the differential Banach *-algebras (see Blackadar and Cuntz [2] and Kissin and Shulman [12, 13]) and the algebras $D(\delta)$ in particular (see, for example, Bratteli and Robinson [3] and Sakai [16]).

In many cases closed *-derivations of C^*-algebras U of operators on Hilbert spaces are implemented by closed symmetric operators. In particular, Bratteli and Robinson [3] showed that if U contains the ideal of all compact operators then any closed *-derivation of U is implemented by a symmetric operator.

Any closed symmetric operator S on a Hilbert space H implements closed *-derivations of various C^*-algebras of operators on H. Among all these derivations there is the largest one - δ_S with domain $D(\delta_S)$ (which we denote by A_S) containing the domains of all derivations implemented by S:

$$A_S = \left\{ A \in B(H) : AD(S) \subseteq D(S), \ A^*D(S) \subseteq D(S) \quad \text{and} \quad (SA - AS)_{|D(S)} \quad \text{extends to a bounded operator} \quad A_S \right\},$$

and $\delta_S(A) = i \text{Closure} (SA - AS)$, for $A \in A_S$.

The closure of A_S with respect to the norm $\| \cdot \|$ in $B(H)$ is the enveloping C^*-algebra which we denote by U_S.

The algebra A_S is a unital Banach *-algebra with respect to the norm

$$\|A\|_S = \|A\| + \|A_S\|.$$

If S implements a *-derivation δ of a C^*-algebra U of operators on H then

$$D(\delta) \subseteq A_S, \quad U \subseteq U_S \quad \text{and} \quad \delta = \delta_S|U.$$

By $C(H)$ we denote the algebra of all compact operators on H. The *-algebras

$$K_S = A_S \cap C(H) \quad \text{and} \quad J_S = \left\{ A \in K_S : \delta_S(A) \in C(H) \right\}$$

are dense in $C(H)$ and are the domains of the largest closed *-derivations from $C(H)$ into $B(H)$ and $C(H)$, respectively, implemented by S.

By F_S we denote the closure with respect to the norm $\| \cdot \|_S$ of the subalgebra of all finite rank operators in A_S.

It was shown in [13] that $(K_S, \| \cdot \|_S)$ and $(J_S, \| \cdot \|_S)$ are semisimple Banach *-algebras, that $(F_S, \| \cdot \|_S)$ is a simple Banach *-algebra and

$$F_S \subseteq J_S \subseteq K_S \subseteq A_S.$$

Furthermore, F_S, J_S and K_S are closed two-sided ideals of $(A_S, \| \cdot \|_S)$ and F_S is contained in any closed two-sided ideal of $(A_S, \| \cdot \|_S)$. The relation between the ideals F_S, J_S and K_S and the question of how the properties of the operator S are reflected in the structure of K_S, J_S and F_S were investigated in [13]. In particular, it was established that $(K_S)^2 = (J_S)^2 = F_S$, for all
symmetric S, and that the ideals J_S and F_S have a bounded approximate identity if and only if S is selfadjoint. For selfadjoint S, it was also proved that $K_S \neq J_S = F_S$.

In spite of the fact that the structure of the algebras F_S, J_S, K_S, A_S and \mathcal{U}_S is comparatively simple, many important questions still remain open. In Section 2 we mainly study the structure of the algebras A_S and \mathcal{U}_S in the case when S is a selfadjoint operator. However, we also consider the case when S is a symmetric operator with at least one finite deficiency index and show that the algebras A_S and \mathcal{U}_S contain closed ideals of finite codimension.

If S is a bounded symmetric operator on H then $F_S = C(H)$ and $A_S = B(H)$, so A_S is isometrically isomorphic to the second dual of F_S. In Section 3 we investigate the structure of the dual and the second dual spaces of the algebras F_S for unbounded symmetric operators S. In the case when S is selfadjoint we establish the full analogy with the bounded case: The algebra A_S is isometrically isomorphic to the second dual of F_S.

In Section 4 we study the problem of classification of the algebras F_S and A_S up to *-isomorphism. For isometrical *-isomorphism this problem is completely solved in Theorem 4.4. For bounded but not necessarily isometrical *-isomorphism we obtain some interesting partial results in the case when S is selfadjoint.

2. Structure of the algebras A_S and the enveloping C^*-algebras \mathcal{U}_S.

The main purpose of this section is to study the structure of the algebras A_S and \mathcal{U}_S in the case when S is a selfadjoint operator. However, we start the section by considering the case when S is a symmetric operator with at least one finite deficiency index. Making use of the existence of a J-symmetric representation of A_S on the deficiency space of S, we will show that the algebras A_S and \mathcal{U}_S contain closed ideals of finite codimension.

Let S be symmetric, S^* be the adjoint operator, let $N_-(S)$ and $N_+(S)$ be the deficiency spaces of S and

$$n_{\pm}(S) = \dim (N_{\pm}(S))$$

be the deficiency indices of S. It is well known that $D(S^*)$ is a Hilbert space with respect to the scalar product

$$\langle x, y \rangle = (x, y) + (S^* x, S^* y), \quad \text{for } x, y \in D(S^*),$$

and it is the orthogonal sum of the closed subspaces $D(S), N_-(S)$ and $N_+(S)$:

$$D(S^*) = D(S)_{\langle + \rangle} N_-(S)_{\langle + \rangle} N_+(S).$$
Set \(N(S) = N_-(S) \cap N_+(S) \) and let \(Q \) be the projection on \(N(S) \) in \(D(S^\ast) \). It was shown in [7] and [8] that
\[
[x, y] = i(x, S^\ast y) - i(S^\ast x, y), \quad \text{for } x, y \in N(S),
\]
is an indefinite non-degenerate sesquilinear form on \(N(S) \), that
\[
\pi_S(A) = QA|_{N(S)}, \quad \text{for } A \in \mathcal{A}_S,
\]
is a bounded representation of \((\mathcal{A}_S, \| \cdot \|_S)\) on \(N(S) \) and that it is \(J \)-symmetric:
\[
[\pi_S(A)x, y] = [x, \pi_S(A^\ast)y], \quad \text{for } x, y \in N(S).
\]
A subspace \(L \) in \(N(S) \) is neutral if
\[
[x, y] = 0, \quad \text{for all } x, y \in L.
\]
The operator \(S \) is well-behaved if the representation \(\pi_S \) has no neutral invariant subspace.

Let \(\kappa_S = \min(n_-(S), n_+(S)) \) and assume that \(0 < \kappa_S < \infty \). It was proved in [10] that the representation \(\pi_S \) has a \(\kappa_S \)-dimensional subrepresentation \(\sigma \). Let \(\rho \) be an irreducible subrepresentation of \(\sigma \). It was shown in [11] that \(\rho \) is bounded with respect to the operator norm \(\| \cdot \| \) in \(\mathcal{A}_S \) and, therefore, extends to a bounded \(*\)-representation of the enveloping \(C^* \)-algebra \(\mathcal{U}_S \). If \(S \) is well-behaved, it follows from Theorem 28.13 [14] that \(K_S \subseteq \text{Ker}(\rho) \). This yields

Theorem 2.1. Let \(S \) be a symmetric unbounded operator and \(0 < \kappa_S < \infty \).

(i) There exists a closed two-sided ideal \(J \) in the Banach \(*\)-algebra \((\mathcal{A}_S, \| \cdot \|)\) such that the quotient algebra \(\mathcal{A}_S/J \) is isomorphic to the full matrix algebra \(M_n(\mathbb{C}) \) with \(0 < n \leq \kappa_S \).

(ii) The uniform closure \(\overline{J} \) of \(J \) in \(\mathcal{U}_S \) is a closed two-sided ideal and the quotient algebra \(\mathcal{U}_S/\overline{J} \) is isomorphic to the full matrix algebra \(M_n(\mathbb{C}) \).

(iii) If \(S \) is well-behaved then \(K_S \subseteq J \) and \(C(H) \subseteq \overline{J} \).

Example 2.2. Let \(H = L^2(0, 1) \) and \(S = i \frac{d}{dt} \) with domain \(D(S) \) consisting of all absolutely continuous functions \(h \) such that \(h' \in L^2(0, 1) \) and \(h(0) = h(1) = 0 \). Then \(S \) is a symmetric operator and \(n_-(S) = n_+(S) = 1 \).

It was proved in [9] that \(S \) is well-behaved. Therefore it follows from Theorem 2.1 that there exists a closed two-sided ideal \(J \) in \((\mathcal{A}_S, \| \cdot \|)\) containing \(K_S \) such that \(\dim(\mathcal{A}_S/J) = 1 \) and that the uniform closure of \(J \) in \(\mathcal{U}_S \) is an ideal of codimension 1.

Let \(S \) be the same as in Example 2.2 and let \(\text{Lip}(0, 1) \) be the algebra of all functions on \([0, 1]\) satisfying a Lipshitz condition: \(|g(t) - g(s)| \leq K_g|t - s|\) for some \(K_g > 0 \) and all \(t, s \in [0, 1] \). For \(g \in \text{Lip}(0, 1) \), denote by \(M_g \) the operator of multiplication by \(g \) on \(L^2(0, 1) \) and set \(\mathcal{B} = \{ M_g : g \in \text{Lip}(0, 1) \} \). Then \(M_g D(S) \subseteq D(S) \), \((M_g)^* D(S) = M_{\overline{g}} D(S) \subseteq D(S) \) and
SM_g - M_gS extends to the operator iM_g' which is bounded, since g' is essentially bounded on [0, 1]. Thus \(\mathcal{B} \subset \mathcal{A}_S \).

(The authors are grateful to the referee of the paper for pointing out an error in the definition of the algebra \(\mathcal{B} \) in the first version of the paper.)

Problem 2.3. Is \(\mathcal{A}_S = \mathcal{B} + \mathcal{K}_S \)?

The assumption that a symmetric operator \(S \) is selfadjoint makes the task of studying the structure of the algebras \(\mathcal{A}_S \) and \(\mathcal{U}_S \) easier. First of all, the structure of the ideals \(\mathcal{K}_S \), \(\mathcal{J}_S \) and \(\mathcal{F}_S \) is simpler. While for arbitrary symmetric operators \(S \) it is only known (see [13]) that \((\mathcal{K}_S)^2 = (\mathcal{J}_S)^2 = \mathcal{F}_S \), where the closure is taken with respect to the norm \(\| \cdot \|_S \), for selfadjoint operators \(S \) it was shown in [13] that \(\mathcal{F}_S = \mathcal{J}_S \neq \mathcal{K}_S \). Secondly, in the selfadjoint case we can employ the Spectral Theorem to establish the structure of \(\mathcal{A}_S \) and \(\mathcal{U}_S \).

Let

\[
S = \int_{-\infty}^{\infty} \lambda dE_S(\lambda)
\]

be the spectral decomposition of \(S \). For every integer \(n \), set

\[
P_S(n) = E_S(n+1) - E_S(n) \quad \text{and} \quad [S] = \sum_{-\infty}^{\infty} n P_S(n).
\]

Then \([S]\) is a selfadjoint operator, \(\text{Sp}([S]) \subseteq \mathbb{Z} \) and the operator \(S - [S] \) is bounded. Therefore it follows that

\[
\mathcal{A}_S = \mathcal{A}_{[S]}, \quad \mathcal{K}_S = \mathcal{K}_{[S]} \quad \text{and} \quad \mathcal{F}_S = \mathcal{F}_{[S]}
\]

and the norms \(\| \cdot \|_S \) and \(\| \cdot \|_{[S]} \) are equivalent on \(\mathcal{A}_S \). This reduces the problem of the description of the structure of the algebras \(\mathcal{A}_S \) and \(\mathcal{U}_S \) to the case when \(\text{Sp}(S) \subseteq \mathbb{Z} \).

We denote by \(\mathcal{S}_Z \) the set of all selfadjoint operators \(S \) on \(H \) such that \(\text{Sp}(S) \subseteq \mathbb{Z} \) and set

\[
H_S(n) = P_S(n)H, \quad \text{for} \quad n \in \text{Sp}(S).
\]

Then

\[
H = \sum_{n \in \text{Sp}(S)} \oplus H_S(n).
\]

We omit the proof of the following simple result.

Proposition 2.4. Let \(S, T \in \mathcal{S}_Z \). If there exists a one-to-one mapping \(\varphi \) from \(\text{Sp}(T) \) onto \(\text{Sp}(S) \) such that \(\dim(H_T(n)) = \dim(H_S(\varphi(n)), \text{ for } n \in \text{Sp}(T), \) and

\[
\sup_{n \in \text{Sp}(T)} |\varphi(n) - n| < \infty
\]

then there exists a unitary operator \(U \) such that \(\mathcal{A}_T = U \mathcal{A}_S U^* \).
Let $S \in \mathcal{S}_S$. Every operator A in $B(H)$ has a block-matrix form $A = (A_{ij})$, $i, j \in \text{Sp}(S)$, with respect to decomposition (2.3). We denote by \mathcal{D}_S the C^*-algebra of all block-diagonal operators $A = (A_{ij})$ in $B(H)$, that is, $A_{ij} = 0$ if $i \neq j$. By \mathcal{R} we denote the subalgebra of all operators $A = (A_{ij})$ in $B(H)$ with only finite number of non-zero entries A_{ij}. Then, clearly, $\mathcal{D}_S \subseteq A_S$ and $\mathcal{R}_S \subseteq A_S$.

Let $\overline{\mathcal{R}}_S$ be the closure of \mathcal{R}_S in $(A_S, \| \cdot \|_S)$ and let $C_S(H)$ be the uniform closure of \mathcal{R}_S in $B(H)$.

Lemma 2.5. $\mathcal{D}_S + C_S(H)$ is a C^*-subalgebra of \mathfrak{U}_S and $\mathcal{D}_S + \overline{\mathcal{R}}_S$ is a closed $*$-subalgebra of $(A_S, \| \cdot \|_S)$.

Proof. Let \mathcal{L} be the uniform closure of $\mathcal{D}_S + \mathcal{R}_S$ in $B(H)$. Then \mathcal{L} is a C^*-subalgebra of \mathfrak{U}_S. Since \mathcal{R}_S is a two-sided ideal of the algebra $\mathcal{D}_S + \mathcal{R}_S$, the C^*-algebra $C_S(H)$ is a two-sided ideal of \mathcal{L}. Therefore it follows from Corollary 1.8.4 [4] that $\mathcal{D}_S + C_S(H)$ is a C^*-algebra, so $\mathcal{L} = \mathcal{D}_S + C_S(H)$.

For $A \in B(H)$, set

$$\phi(A) = \sum_{n \in \text{Sp}(S)} P_S(n)AP_S(n) \quad \text{and} \quad \tilde{A} = A - \phi(A).$$

Then ϕ is a conditional expectation from $B(H)$ onto \mathcal{D}_S and

$$\|\phi(A)\| \leq \|A\| \quad \text{and} \quad \|\tilde{A}\| \leq 2\|A\|.$$

(2.4)

If $A \in A_S$ then $\tilde{A} \in A_S$ and $\text{Closure}(SA - AS) = \text{Closure}(S\tilde{A} - \tilde{A}S)$.

Assume that $\{A_n\}$ converge to A in A_S with respect to $\| \cdot \|_S$. Then

$$\|A - A_n\| \to 0 \quad \text{and} \quad \|\text{Closure}(S(A - A_n) - (A - A_n)S)\| \to 0, \quad \text{as} \quad n \to \infty,$$

and therefore, by (1.2) and (2.4),

$$\|\tilde{A} - \tilde{A}_n\|_S = \|\tilde{A} - \tilde{A}_n\| + \|\text{Closure}(S(\tilde{A} - \tilde{A}_n) - (\tilde{A} - \tilde{A}_n)S)\| \leq 2\|A - A_n\| + \|\text{Closure}(S(A - A_n) - (A - A_n)S)\| \to 0,$$

(2.5) as $n \to \infty$.

Hence \tilde{A}_n converge to \tilde{A} with respect to $\| \cdot \|_S$.

Suppose now that $B \in \overline{\mathcal{R}}_S$. Then there are $\{B_n\}$ in \mathcal{R}_S converging to B with respect to $\| \cdot \|_S$. It follows from (2.5) that \tilde{B}_n converge to \tilde{B} with respect to $\| \cdot \|_S$ and, since \tilde{B}_n belong to \mathcal{R}_S, we obtain that $\tilde{B} \in \overline{\mathcal{R}}_S$.

Finally, let $C_n = A_n + B_n$ converge to C in A_S with respect to $\| \cdot \|_S$ where $A_n \in \mathcal{D}_S$ and $B_n \in \overline{\mathcal{R}}_S$. Then $\tilde{C}_n = \tilde{B}_n$ and, by (2.5), \tilde{B}_n converge to \tilde{C} with respect to $\| \cdot \|_S$. Since, by the above argument, all \tilde{B}_n belong to $\overline{\mathcal{R}}_S$, the operator \tilde{C} also belong to $\overline{\mathcal{R}}_S$. Hence $C \in \mathcal{D}_S + \overline{\mathcal{R}}_S$ and $\mathcal{D}_S + \overline{\mathcal{R}}_S$ is a closed $*$-subalgebra of $(A_S, \| \cdot \|_S)$. □
Let \(S \in \mathcal{S}_Z \). We number the elements of \(\text{Sp}(S) \) in such a way that \(\text{Sp}(S) = \{n_i\}_{i \in I} \) is an increasing sequence,

\[
0 \leq n_i, \text{ for } 0 \leq i, \text{ and } 0 > n_i, \text{ for } 0 > i.
\]

Then \(|i| \leq |n_i|\) and, depending on \(S \), the set \(I \) is either the set \(\mathbb{Z} \) of all integers, or the set of all integers from \(-\infty \) to some \(m \), or from \(m \) to \(\infty \). We consider the case when \(I = \mathbb{Z} \). Two other cases can be considered similarly.

Set

\[
\rho_S(k) = \left(\inf_{i \in \mathbb{Z}} |n_{i+k} - n_i| \right)^{-1}, \quad \text{for } k \neq 0, \text{ and } \rho_S(0) = 0.
\]

Since \(\inf_{i \in \mathbb{Z}} |n_{i+k} - n_i| \geq |k| \),

\[
0 < \rho_S(k) \leq \frac{1}{|k|}, \quad \text{for } k \neq 0.
\]

Proposition 2.6. If

\[
\lim_{|i| \to \infty} (n_{i+1} - n_i) = \infty \quad (2.6)
\]

and

\[
\sum_{k \in \mathbb{Z}} \rho(k) \text{ converges} \quad (2.7)
\]

then \(\mathcal{U}_S = \mathcal{D}_S + C_S(H) \).

Proof. Let \(A = (A_{ij}) \in \mathcal{A}_S \), where \(A_{ij} \) are bounded operators from \(H_S(n_j) \) into \(H_S(n_i) \). Then the operator

\[
B = SA - AS = (B_{ij}), \quad \text{where } B_{ij} = (n_i - n_j)A_{ij},
\]

is bounded. Set \(b = \|B\|. \) Since \(\|B_{ij}\| \leq \|B\| \), for all \(i, j \in \mathbb{Z} \),

\[
\|A_{ij}\| \leq \frac{b}{|n_i - n_j|}, \quad \text{for } i \neq j. \quad (2.8)
\]

For \(k \in \mathbb{Z} \setminus \{0\} \) and \(m > 0 \), let

\[
G_{ij}^{km} = A_{ij}, \quad \text{if } j = i + k \text{ and } -m \leq i \leq m, \text{ and } G_{ij}^{km} = 0 \text{ otherwise.}
\]

Then the operator \(G^{km} = (G_{ij}^{km}) \) belongs to \(\mathcal{R}_S \). Taking into account (2.6) and (2.8), we obtain that the operators \(G^{km} \) converge uniformly in \(B(H) \) to a bounded operator \(G^k = (G_{ij}^k) \), as \(m \to \infty \), where

\[
G_{ij}^k = A_{ij}, \quad \text{if } j = i + k, \text{ and } G_{ij}^k = 0 \text{ otherwise.}
\]

Therefore \(G^k \in C_S(H) \) and, by (2.8),

\[
\|G^k\| = \sup_i \|A_{ii+k}\| \leq b\rho_S(k).
\]

It follows from (2.7) that the operator \(G = \sum_{k \in \mathbb{Z} \setminus \{0\}} G^k \) belongs to \(C_S(H) \). Since \(A - G \in \mathcal{D}_S \), we obtain that \(A \in \mathcal{D}_S + C_S(H) \), so that \(\mathcal{A}_S \subseteq \mathcal{D}_S + C_S(H) \). It follows from Lemma 2.5 that \(\mathcal{U}_S = \mathcal{D}_S + C_S(H) \). \(\square \)
Corollary 2.7. If there are $a > 0$, $c > 0$ and an integer N such that
\[c |i|^a \leq n_{i+1} - n_i \quad \text{for } N \leq |i| \]
then $\Delta_S = D_S + C_S(H)$.

Proof. Condition (2.6), clearly, holds. Let $k < 4N$. Then
\[
\rho_S(k)^{-1} = \inf_{i \in \mathbb{Z}} |n_{i+k} - n_i| = \inf_{i \in \mathbb{Z}} \sum_{p=1}^{k} (n_{i+p} - n_{i+p-1}) \geq c \sum_{m=N}^{\lfloor k/2 \rfloor} m^a \geq c \frac{(k^{a+1})}{a+1} - (N-1)^{a+1}) \\
\geq \frac{c}{a+1} \left(\frac{k}{4} \right)^{a+1}.
\]
Similarly, if $k < -2N$ then $\rho_S(k)^{-1} \geq \frac{c}{a+1} \left(\frac{|k|}{4} \right)^{a+1}$. Therefore condition (2.7) also holds and the result follows from Proposition 2.6. \qed

Suppose now that $\dim(H_S(n)) = 1$ for all $n \in \text{Sp}(S)$ and let $n_0 \in \text{Sp}(S)$. Set $K = H_S(n_0)$. Then there exists a Hilbert space \mathcal{H} with $\dim(\mathcal{H}) = 1$ such that the C^*-algebra $C_S(H)$ is isomorphic to the tensor product $B(K) \otimes C(\mathcal{H})$ where $C(\mathcal{H})$ is the C^*-algebra of all compact operators on \mathcal{H}. Choosing a basis $\{e_n\}_{n=1}^{\infty}$ in \mathcal{H}, we obtain that the algebra D_S is isomorphic to the von Neumann algebra tensor product $B(K) \otimes \mathcal{L}$ of $B(K)$ and the W^*-algebra \mathcal{L} of all operators on \mathcal{H} diagonal with respect to $\{e_n\}_{n=1}^{\infty}$. From this and from Proposition 2.6 we obtain the following result.

Corollary 2.8. Let $S \in \mathcal{S}_2$. If $\dim(H_S(n)) = 1$ for all $n \in \text{Sp}(S)$ and conditions (2.6) and (2.7) hold then there exist Hilbert spaces K and \mathcal{H} such that Δ_S is isomorphic to $B(K) \otimes \mathcal{L} + B(K) \otimes C(\mathcal{H})$, where \mathcal{L} is the W^*-algebra of all operators on \mathcal{H} diagonal with respect to some basis.

Assume now that $\dim(H_S(n)) < 1$ for all $n \in \text{Sp}(S)$. Then $C_S(H)$ coincides with the algebra $C(\mathcal{H})$ of all compact operators on \mathcal{H}. Taking into account the definition of the ideal K_S and applying Proposition 2.6 we obtain the following result.

Corollary 2.9. Let $S \in \mathcal{S}_2$ and $\dim(H_S(n)) < 1$ for all $n \in \text{Sp}(S)$. If conditions (2.6) and (2.7) hold then $\Delta_S = D_S + C_S(H)$ and $A_S = D_S + K_S$.

Example 2.10. Let $\{e_i\}_{i=-\infty}^{\infty}$ be an orthonormal basis in H and let
\[Se_i = \text{sgn} \,(i)|i|^{1+a} e_i, \quad \text{where } a > 0. \]
Then $S \in \mathcal{S}_2$ and $n_i = \text{sgn} \,(i)|i|^{1+a}$, so that
\[\lim_{|i| \to \infty} \frac{n_{i+1} - n_i}{\text{sgn} \,(i)|i|^{a}} = 1 + a. \]
Therefore, by Corollaries 2.7 and 2.9, \(\mathcal{U}_S = \mathcal{D}_S + C(H) \) and \(\mathcal{A}_S = \mathcal{D}_S + \mathcal{K}_S \) where \(\mathcal{D}_S \) is the algebra of all operators diagonal with respect to \(\{e_i\}_{i=-\infty}^{\infty} \). Thus the quotient algebra \(\mathcal{A}_S/\mathcal{K}_S \) is isomorphic to the commutative \(C^* \)-algebra \(\mathcal{D}_S/\mathcal{L} \) where \(\mathcal{L} \) is the algebra of all compact diagonal operators on \(H \).

Let \(\{e_i\}_{i=-\infty}^{\infty} \) be an orthonormal basis in \(H \) and let
\[
S e_i = i e_i \text{ and } U e_i = e_{i+1}, \text{ for all } i \in \mathbb{Z}.
\]
Then \(S \in \mathcal{S} \) and \(U \) is the shift operator. We have that
\[
UD(S) \subseteq D(S), \quad (SU-US)|_{D(S)} \text{ extends to } U,
\]
so that \(U \in \mathcal{A}_S \). Hence \(\mathcal{U}_S \) contains the \(C^* \)-algebra \(C(\mathcal{D}_S,U) \) generated by \(U \) and by the commutative algebra \(\mathcal{D}_S \) of all operators diagonal with respect to \(\{e_i\}_{i=-\infty}^{\infty} \).

Problem 2.11. Is \(\mathcal{U}_S = C(\mathcal{D}_S,U) \)?

3. Dual and second dual spaces of the algebras \(\mathcal{F}_S \).

Let \(S \) be a closed symmetric operator. Recall that \(\mathcal{F}_S \) is the closure with respect to the norm \(\| \cdot \|_S \) (see (1.2)) of the subalgebra of all finite rank operators in \(\mathcal{A}_S \). If \(S \) is a bounded symmetric operator on \(H \), it follows that \(\mathcal{F}_S = C(H) \) and \(\mathcal{A}_S = B(H) \), so that \(\mathcal{A}_S \) is isometrically isomorphic to the second dual of \(\mathcal{F}_S \). In this section we study the structure of the dual and the second dual spaces of the algebra \(\mathcal{F}_S \) for unbounded symmetric operators \(S \). In the case when \(S \) is selfadjoint we establish the full analogy with the bounded case: The algebra \(\mathcal{A}_S \) is isometrically isomorphic to the second dual of \(\mathcal{F}_S \).

By \(T(H) \) we denote the Banach \(* \)-algebra of trace class operators on \(H \) with the norm
\[
|A| = \sum_{i=1}^{\infty} s_i(A) = \text{Tr} \left((A^*A)^{1/2} \right),
\]
where \(\{s_i(A)\}_{i=1}^{\infty} \) is the set of all eigenvalues of the positive compact operator \((A^*A)^{1/2} \).

It is well known that \(T(H) \) can be identified with the dual space of the algebra \(C(H) \): For any \(T \in T(H) \),
\[
F_T(A) = \text{Tr}(AT), \quad A \in C(H),
\]
is a bounded linear functional on \(C(H) \) and \(\|F_T\| = |T| \); and that \(B(H) \) can be identified with the dual space of \(T(H) \): For any \(B \in B(H) \),
\[
\theta_B(T) = \text{Tr}(BT), \quad T \in T(H),
\]
is a bounded linear functional on \(T(H) \) and \(\|	heta\| = \|B\| \).
Set \(\hat{B}(H) = B(H) \oplus B(H) \) and \(\hat{C}(H) = C(H) \oplus C(H) \). Then \(\hat{B}(H) \) and \(\hat{C}(H) \) are Banach spaces with the norm
\[
\|A \oplus B\| = \|A\| + \|B\|.
\]
Set \(\hat{T}(H) = T(H) \oplus T(H) \). It is a Banach space with the norm
\[
|R \oplus T| = \max(|R|, |T|), \quad T, R \in T(H),
\]
and it can be identified with the dual space of \(\hat{C}(H) \): For \(R, T \in T(H) \),
\[
(3.1) \quad F_{R \oplus T}(A \oplus B) = \text{Tr}(AR) + \text{Tr}(BT), \quad A \oplus B \in \hat{C}(H),
\]
is a bounded linear functional on \(\hat{C}(H) \) and \(\|F_{R \oplus T}\| = |R \oplus T| \). Similarly, \(\hat{B}(H) \) can be identified with the dual space of \(\hat{T}(H) \): For \(A, B \in B(H) \),
\[
(3.2) \quad \theta_{A \oplus B}(R \oplus T) = \text{Tr}(AR) + \text{Tr}(BT), \quad R \oplus T \in \hat{T}(H),
\]
is a bounded linear functional on \(\hat{T}(H) \) and \(\|\theta_{A \oplus B}\| = \|A \oplus B\| \).

Set
\[
\hat{A}_S = \{A \oplus A_S : A \in A_S\} \quad \text{and} \quad \hat{F}_S = \{A \oplus A_S : A \in F_S\},
\]
where \(A_S = \text{Closure}(SA - AS) \). Then \((A_S, \| \cdot \|_S) \) and \((\hat{A}_S, \| \cdot \|) \) and \((F_S, \| \cdot \|) \) are isometrically isomorphic, since
\[
\|A\|_S = \|A\| + \|A_S\| = \|A \oplus A_S\|.
\]
Therefore \(\hat{A}_S \) is a closed subspace of \(\hat{B}(H) \) and \(\hat{F}_S \) is a closed subspace of \(\hat{C}(H) \), since \(A \in F_S \) implies \(A_S \in C(H) \).

Set
\[
\mathcal{S}_S = \left\{ T \in T(H) : TD(S) \subseteq D(S^*), T^*D(S) \subseteq D(S^*) \right\}
\]
and the operator
\[
(S^*T - TS)|_{D(S)} \text{ extends to a bounded trace class operator } T\}
\]
is a linear subspace in \(\hat{T}(H) \). For \(T \in \mathcal{S}_S \) and \(z, u \in D(S) \),
\[
-(T^*S)z = -(z, Tsu) = -(z, (S^*T - TS)u) = ((S^*T - T^*S)z, u),
\]
so that
\[
(3.3) \quad -(T^*S)|_{D(S)} = (S^*T^* - T^*S)|_{D(S)} = (T^*)S|_{D(S)}.
\]
Therefore \(T^* \in \mathcal{S}_S \).

For \(x, y \in H \), the rank one operator \(x \otimes y \) on \(H \) is defined by the formula
\[
(3.4) \quad (x \otimes y)z = (z, x)y.
\]
It is easy to check that
\begin{equation}
\|x \otimes y\| = \|x\| \|y\|,
\end{equation}
\begin{equation}
(x \otimes y)^* = y \otimes x, \ (x \otimes y)(u \otimes v) = (v,x)(u \otimes y),
\end{equation}
\begin{equation}
R(x \otimes y) = x \otimes Ry, \text{ and } (x \otimes y)R \text{ extends to } (R^*x) \otimes y,
\end{equation}
if R is a densely defined operator, $y \in D(R)$ and $x \in D(R^*)$. Let $\{e_j\}_{j=1}^\infty$ be a basis in H. Then
\begin{equation}
\text{Tr}(x \otimes y) = \sum_{j=1}^\infty ((x \otimes y)e_j, e_j) = \sum_{j=1}^\infty (e_j, x)(y, e_j)
\end{equation}
\begin{equation}
= \left(y, \sum_{j=1}^\infty (x, e_j)e_j \right) = (y, x).
\end{equation}

Let $x, y \in D(S^*)$ and $T = x \otimes y$. By (3.4) and (3.5),
\begin{equation}
Tz = (z, x)y \in D(S^*) \quad T^*z = (y \otimes x)z = (z, y)x \in D(S^*), \text{ for } z \in H,
\end{equation}
and
\begin{equation}
T_S = S^*T - TS = x \otimes S^*y - (S^*x) \otimes y \in T(H),
\end{equation}
so that $T \in \mathfrak{F}_S$. By Φ_S we denote the set of all linear combinations of the operators $x \otimes y$, for $x, y \in D(S^*)$. Clearly, $\Phi \subset \mathfrak{F}_S$ and
\begin{equation}
\mathfrak{F}_S = \{T_S \oplus T : T \in \Phi_S\}
\end{equation}
is a linear subspace of \mathfrak{F}_S. Let X^* be the dual space of a Banach space X and Y be a linear subspace of X. The annihilator
\begin{equation}
Y^\perp = \{F \in X^* : F(y) = 0, \text{ for all } y \in Y\}
\end{equation}
of Y in X^* is a closed subspace of X^* and from the general theory of Banach spaces (see [5] II.4.18 and [15] III, Problem 30) we have the following lemma.

Lemma 3.1. The dual space Y^* of a closed subspace Y of X is isometrically isomorphic to the quotient space X^*/Y^\perp and the second dual Y^{**} of Y is isometrically isomorphic to $Y^{** \perp}$ where
\begin{equation}
Y^{** \perp} = \{\theta \in X^{**} : \theta(F) = 0, \text{ for all } F \in Y^\perp\}.
\end{equation}

Since $\mathfrak{F}_S \subseteq \hat{C}(H)$, the annihilator $(\mathfrak{F}_S)\perp$ is a closed subspace of the dual space $\hat{C}(H)^* = \hat{T}(H)$ and, since $\Phi_S \subseteq \mathfrak{F}_S \subseteq \hat{T}(H)$, the annihilator $(\Phi_S)\perp$ is a closed subspace of the dual space $\hat{T}(H)^* = \hat{B}(H)$.

Theorem 3.2. (i) \mathfrak{F}_S is a closed subspace in $\hat{T}(H)$ and $(\mathfrak{F}_S)\perp = \mathfrak{F}_S$.
(ii) $(\mathfrak{F}_S)\perp \subseteq (\Phi_S)\perp = \{A \oplus A_S : A \in \mathcal{A}_S \text{ and } AD(S^*) \subseteq D(S)\} \subseteq \hat{\mathcal{A}}_S$.

Hence and \(x, y \in T \), therefore

\[
A_S = S(x \otimes y) - (x \otimes y)S = x \otimes Sy - (Sx) \otimes y,
\]
\[
A_ST = (x \otimes Sy)T - ((Sx) \otimes y)T = (T^*x) \otimes Sy - (T^*Sx) \otimes y,
\]
\[
AT_S = (x \otimes y)T_S = ((T_S)^*x) \otimes y = ((T^*S - S^*T^*)x) \otimes y.
\]

Therefore, by (3.1), (3.6) and (3.8),

\[
F_{T_S \oplus T}(A \oplus A_S) = \text{Tr}(AT_S) + \text{Tr}(A_ST)
= (y, (T^*S - S^*T^*)x) + (Sy, T^*x) - (y, T^*Sx) = 0.
\]

It follows from Lemma 3.1 [13] that any finite rank operator \(A \) in \(\mathcal{F}_S \) has the form \(A = \sum_{i=1}^n x_i \otimes y_i \) where \(x_i, y_i \in D(S) \). Hence \(F_{T_S \oplus T}(A \oplus A_S) = 0 \) for any finite rank operator \(A \in \mathcal{F}_S \). Since, by definition of \(\mathcal{F}_S \), finite rank operators are dense in \((\mathcal{F}_S, \| \cdot \|_S) \) and since \((\mathcal{F}_S, \| \cdot \|_S) \) and \((\hat{\mathcal{F}}_S, \| \cdot \|) \) are isometrically isomorphic, the operators \(A \oplus A_S \), where \(A \) are finite rank operators, are dense in \(\hat{\mathcal{F}}_S \). Since \(F_{T_S \oplus T} \) is continuous on \(\hat{\mathcal{C}}(H) \), \(F_{T_S \oplus T}(A \oplus A_S) = 0 \), for all \(A \in \mathcal{F}_S \). Therefore \(F_{T_S \oplus T} \in (\hat{\mathcal{F}}_S)^\perp \), so that \(\hat{\mathcal{F}}_S \subseteq (\hat{\mathcal{F}}_S)^\perp \).

Conversely, let \(R \oplus T \in (\hat{\mathcal{F}}_S)^\perp \subseteq \hat{T}(H) \) and let \(A = x \otimes y \in \mathcal{F}_S \), where \(x, y \in D(S) \). From (3.1), (3.5), (3.6) and (3.8) it follows that

\[
0 = F_{R \oplus T}(A \oplus A_S) = \text{Tr}(AR) + \text{Tr}(A_ST)
= \text{Tr}((R^*x) \otimes y) + \text{Tr}((T^*x) \otimes Sy - (T^*Sx) \otimes y)
= (y, R^*x) + (Sy, T^*x) - (y, T^*Sx).
\]

Hence

\[
(Sy, T^*x) = (y, (T^*S - R^*)x), \quad \text{for all } x, y \in D(S).
\]

Therefore \(T^*x \in D(S^*) \) and \(S^*T^*x = (T^*S - R^*)x \). Thus \(T^*D(S) \subseteq D(S^*) \) and

\[
(Sx, Ty) = (T^*Sx, y) = (S^*T^*x, y) + (R^*x, y) = (x, TSy) + (x, Ry).
\]

From this it follows that \(Ty \in D(S^*) \) and \(S^*Ty = TSy + Ry \). Hence

\[
TD(S) \subseteq D(S^*) \quad \text{and} \quad R|_{D(S)} = S^*T|_{D(S)} - TS|_{D(S)}.
\]

Therefore \(T \in \mathcal{I}_S \) and \(R = T_S \). Thus \((\hat{\mathcal{F}}_S)^\perp \subseteq \mathcal{I}_S \), so that \((\hat{\mathcal{F}}_S)^\perp = \mathcal{I}_S \) and

\[
\text{from this we also obtain that } \mathcal{I}_S \text{ is a closed subspace of } \hat{T}(H). \text{ Part (i) is proved.}
\]

Since \(\hat{\Phi}_S \subseteq \mathcal{I}_S \), we have \((\hat{\Phi}_S)^\perp \subseteq (\hat{\Phi}_S)^\perp \). Let now \(A \oplus A_S \in \hat{A}_S \) and \(AD(S^*) \subseteq D(S) \). It was shown in Lemma 3.1 [13] that

\[
A_S|_{D(S^*)} = (S^*A - AS^*)|_{D(S^*)}.
\]
For \(x, y \in D(S^*) \), the operator \(T = x \otimes y \) belongs to \(\Phi_S \) and, taking the above equality into account, we obtain from (3.5) and (3.7) that
\[
A_S T = x \otimes A_S y = x \otimes (S^* A - A S^*) y \quad \text{and}
\]
\[
A T_S = A (x \otimes S^* y - (S^* x) \otimes y) = x \otimes A S^* y - (S^* x) \otimes Ay.
\]
Therefore, by (3.2) and (3.6),
\[
\theta_{A \oplus A_S}(T_S \oplus T) = \text{Tr}(A T_S) + \text{Tr}(A_S T)
\]
\[
= (A S^* y, x) - (A y, S^* x) + (S^* A y, x) - (A S^* y, x)
\]
\[
= (S^* A y, x) - (A y, S^* x).
\]
Since \(AD(S^*) \subseteq D(S) \), it follows that \(S^* A y = S A y \) and \((A y, S^* x) = (S A y, x) \). Hence \(\theta_{A \oplus A_S}(T_S \oplus T) = 0 \) and, by linearity, it holds for all \(T \in \Phi_S \).

Therefore
\[
\{ A \oplus A_S : A \in A_S \quad \text{and} \quad AD(S^*) \subseteq D(S) \} \subseteq (\Phi_S)^{\perp}.
\]
Conversely, let \(A \oplus B \in (\Phi_S)^{\perp} \). Then, for every \(x, y \in D(S^*) \), \(T = x \otimes y \in \Phi_S \) and
\[
\theta_{A \oplus B}(T_S \oplus T) = \text{Tr}(A T_S) + \text{Tr}(B T) = 0.
\]
By (3.5), \(B T = x \otimes B y \) and, as above, \(A T_S = x \otimes A S^* y - (S^* x) \otimes Ay \). Hence, by (3.6),
\[
0 = (A S^* y, x) - (A y, S^* x) + (B y, x).
\]
Thus
\[
(A y, S^* x) = (A S^* y, x) + (B y, x), \quad \text{for all} \quad x, y \in D(S^*).
\]
Therefore \(A y \in D(S^{**}) \) and \(S^{**} A y = A S^* y + B y \). Since \(S \) is closed, \(S^{**} = S \) and we obtain that
\[
(3.10) \quad \text{AD}(S^*) \subseteq D(S) \quad \text{and} \quad B|_{D(S^*)} = (S A - A S^*)|_{D(S^*)}.
\]
Restricting (3.10) to \(D(S) \), we have
\[
\text{AD}(S) \subseteq D(S) \quad \text{and} \quad B|_{D(S)} = (S A - A S)|_{D(S)}.
\]
Making use of (3.10), we obtain that for \(z \in D(S) \) and \(u \in D(S^*) \),
\[
(A^* z, S^* u) = (z, A S^* u) = (z, S A u) - (z, B u) = (A^* S z, u) - (B^* z, u).
\]
Therefore \(A^* z \in D(S^{**}). \) Since \(S^{**} = S \), we have \(A^* D(S) \subseteq D(S) \). Thus \(A \in A_S \) and \(B = A_S \), so \(A \oplus B = A \oplus A_S \in \hat{A}_S \). Taking into account that \(AD(S^*) \subseteq D(S) \), we obtain that
\[
(\Phi_S)^{\perp} \subseteq \{ A \oplus A_S : A \in A_S \quad \text{and} \quad AD(S^*) \subseteq D(S) \}.
\]
Combining this with (3.9), we complete the proof of the theorem. \(\square \)

Since the Banach spaces \((F, \| \cdot \|) \) and \((\hat{F}, \| \cdot \|) \) and the Banach spaces \((A, \| \cdot \|) \) and \((\hat{A}, \| \cdot \|) \) are isometrically isomorphic and since \((\hat{F}, \| \cdot \|) \) is a closed subspace of \(\hat{C}(H) \), Lemma 3.1 and Theorem 3.2 yield:
Corollary 3.3. The dual space of the Banach *-algebra $(\mathcal{F}_S, \| \cdot \|_S)$ is isometrically isomorphic to the quotient space $\hat{T}(H)/\tilde{\mathcal{F}}_S$ and the second dual space of $(\mathcal{F}_S, \| \cdot \|_S)$ is isometrically isomorphic to a closed subspace of $(\mathcal{A}_S, \| \cdot \|_S)$.

The following example shows that if S is not selfadjoint then, generally speaking, $(\hat{\Phi}_S)^\perp \neq \hat{\mathcal{A}}_S$, so that $(\mathcal{F}_S)^{\perp\perp} \neq \hat{\mathcal{A}}_S$ and the second dual space of $(\mathcal{F}_S, \| \cdot \|_S)$ is isometrically isomorphic to a proper subspace of $(\mathcal{A}_S, \| \cdot \|_S)$.

Example 3.4. Let, as in Example 2.2, $H = L^2(0, 1)$ and the operator $S = \frac{d}{dt}$ with domain $D(S) = \{ h(t) : h, h' \in L^2(0, 1) \text{ and } h(0) = h(1) = 0 \}$. Then S is a symmetric operator, non-selfadjoint and

$$D(S^*) = \{ h(t) : h, h' \in L^2(0, 1) \}.$$

Let $g(t)$ be a differentiable function on $[0, 1]$ such that $g(0) \neq 0$ and let M_g be the bounded operator of multiplication by $g(t)$ on H. Then $M_g \in \mathcal{A}_S$. If $h(t) \in D(S^*)$ and $h(0) \neq 0$ then $(M_g h)(0) = g(0) h(0) \neq 0$, so that $M_g h \notin D(S)$. Thus $M_g \oplus (M_g)_S \notin \{ A \oplus \mathcal{A}_S : A \in \mathcal{A}_S \text{ and } AD(S^*) \subseteq D(S) \}$. Hence $(\hat{\Phi}_S)^\perp \neq \hat{\mathcal{A}}_S$.

Assume now that S is selfadjoint. Then $D(S^*) = D(S)$, $\mathcal{A}_S = T_S$, for $T \in \mathcal{A}_S$, and

$$\mathcal{A}_S = \{ T \in T(H) \cap \mathcal{A}_S : T_S \in T(H) \} \subseteq \mathcal{A}_S.$$

It is well known (see, for example, [5] and [6]) that the algebra $T(H)$ is a two-sided ideal of $B(H)$ and if $A \in B(H)$ and $B \in T(H)$ then

$$|AB| \leq \| A \| \| B \|, \quad |B^*| = |B| \quad \text{and} \quad \| B \| \leq |B|.$$

We consider now two equivalent norms on \mathcal{A}_S:

$$|T|_1 = |T| + |T_S| \quad \text{and} \quad |T|_2 = \max(|T|, |T_S|), \quad \text{for } T \in \mathcal{A}_S.$$

Since

$$T_S = T \quad \text{and} \quad |T|_2 = \max(|T|, |T_S|) = |T_S| \oplus T, \quad \text{for } T \in \mathcal{A}_S,$$

$$(\mathcal{A}_S, | \cdot |_2)$$ is isometrically isomorphic to \mathcal{A}_S.

Proposition 3.5. Let S be selfadjoint. Then:

(i) $\mathcal{A}_S \subset \mathcal{F}_S$ and $(\mathcal{A}_S, | \cdot |_2)$ is a two-sided Banach \mathcal{A}_S-module;

(ii) $(\mathcal{A}_S, | \cdot |_1)$ is a Banach *-algebra and a \mathcal{D}-subalgebra of $C(H)$ (see (1.1)) with $D = 1$.

Proof. It was shown in [13] that if S is selfadjoint then \mathcal{F}_S coincides with the algebra $\mathcal{J}_S = \{ A \in \mathcal{A}_S : A \text{ and } \mathcal{A}_S \text{ belong to } C(H) \}$. Since $\mathcal{A}_S \subset \mathcal{J}_S$, we obtain that $\mathcal{A}_S \subset \mathcal{F}_S$.

In Theorem 3.2(i) it was shown that \mathcal{A}_S is a closed subspace of $\hat{T}(H)$. Since $(\mathcal{A}_S, | \cdot |_2)$ is isometrically isomorphic to \mathcal{A}_S, it is a Banach space.
Since the norms $| \cdot |_1$ and $| \cdot |_2$ are equivalent, $(\mathfrak{T}_S, | \cdot |_1)$ is also a Banach space.

For $A, B \in \mathcal{A}_S$,
\[(AB)_S|_{D(S)} = (SAB - ABS)|_{D(S)} = [(SA - AS)B + A(SB - BS)]|_{D(S)} = (ASB + AB_S)|_{D(S)}, \]
so that
\[(AB)_S = ASB + AB_S. \]

Let $T \in \mathfrak{T}_S$ and $A \in \mathcal{A}_S$. Then $T, T_S \in T(H)$. Since $\mathfrak{T}_S \subset \mathcal{A}_S$ and $T(H)$ is a two-sided ideal of $B(H)$, it follows that $AT \in T(H) \cap \mathcal{A}_S$ and, by (3.12),
\[(AT)_S = AS T + AT_S \in T(H). \]
Therefore $AT \in \mathfrak{T}_S$. Making use of (3.11), we obtain that
\[|AT|_2 = \max(|AT|, |(AT)_S|) \leq \max(\|A\| |T|, \|A_S\| |T| + \|A\| |T_S|) \leq (\|A\| + \|A_S\|) \max(\|T\|, |T_S|) = \|A\| |s|^{\|T\|}_2. \]

Similarly, $TA \in \mathfrak{T}_S$ and $|TA|_2 \leq \|A\| |s|^{\|T\|}_2$. Thus $(\mathfrak{T}_S, | \cdot |_2)$ is a two-sided Banach \mathcal{A}_S-module. Part (i) is proved.

From (i) and from the fact that $\mathfrak{T}_S \subseteq \mathcal{A}_S$, we have that \mathfrak{T}_S is an algebra. We also have that $T^* \in \mathfrak{T}_S$ and, since $\mathfrak{T}_S = T_S$, it follows from (3.3) that $(T^*)_S = -(T_S)^* \in T(H)$. Taking this and (3.11) into account, we obtain that
\[|T^*|_1 = |T^*| + |(T^*)_S| = |T^*| + |-(T_S)^*| = |T| + |T_S| = |T|_1 \]
and
\[|TR|_1 = |TR| + |(TR)_S| = |TR| + |T_SR + TR_S| \leq \|T\| |R| + |T_S| |R| + \|T\| |R_S| \leq |T| |R| + |T_S| |R| + |T| |R_S| \leq |T|_1 |R|_1, \]
for $T, R \in \mathfrak{T}_S$. Hence $(\mathfrak{T}_S, | \cdot |_1)$ is a Banach *-algebra.

Clearly, \mathfrak{T}_S is dense in $C(H)$. For $T, R \in \mathfrak{T}_S$, it follows from (3.11) that
\[|TR|_1 = |TR| + |(TR)_S| = |TR| + |T_SR + TR_S| \leq \|T\| |R| + |T_S| |R| + \|T\| |R_S| \leq \|T\| (|R| + |R_S|) + (|T| + |T_S|) \|R\| = \|T\| |R|_1 + |T|_1 |R|_1. \]
Thus $(\mathfrak{T}_S, | \cdot |_1)$ is a D-subalgebra of $C(H)$ with the constant $D = 1$. \hfill \Box

If S is selfadjoint, it follows from Theorem 3.2 that $(\Phi_S)^\perp = \mathfrak{A}_S$ and
\[(\mathfrak{F}_S)^\perp = (\mathfrak{T}_S)^\perp \subseteq (\Phi_S)^\perp = \mathfrak{A}_S. \]
In order to prove that \((\mathcal{F}_S)^{\perp} = \hat{A}_S\) it suffices to show that \(\Phi_S\) is dense in \(\mathfrak{T}_S\). For this we need the following lemma which is a partial case of the general result obtained by Golberg and Krein \cite[Theorem 6.3]{6} for symmetrically normable ideals.

Lemma 3.6. Let \(T \in T(H)\) and let \(Q_n\) be finite rank projections which converge to \(1_H\) in the strong operator topology. Then

\[
|T - Q_nT| \to 0 \quad \text{and} \quad |T - TQ_n| \to 0, \quad \text{as} \quad n \to \infty.
\]

Proof. Let \(A = x \otimes y, x, y \in H\). By \((3.5)\), \(A^*A = \|y\|^2(x \otimes x)\) and the operator \((A^*A)^{1/2} = \frac{y}{\|y\|}(x \otimes x)\) has only one non-zero eigenvalue \(\lambda = \|x\| \|y\|\). Hence

\[
(3.13) \quad |x \otimes y| = |A| = \text{Tr}(A^*A)^{1/2} = \|x\| \|y\|.
\]

If \(T = \sum_{i=1}^k x_i \otimes y_i\) is a finite rank operator then, by \((3.5)\) and \((3.13)\),

\[
|T - Q_nT| = \left| \sum_{i=1}^k x_i \otimes (y_i - Q_ny_i) \right| \leq \sum_{i=1}^k |x \otimes (y_i - Q_ny_i)|
\]

\[
= \sum_{i=1}^k \|x_i\| \|y_i - Q_ny_i\| \to 0,
\]

as \(n \to \infty\). For any \(T \in T(H)\) and any \(\varepsilon > 0\), there is a finite rank operator \(T_\varepsilon\) such that \(|T - T_\varepsilon| < \varepsilon\). Making use of the inequality \((3.11)\), we obtain that

\[
|T - Q_nT| \leq |T - T_\varepsilon| + |T_\varepsilon - Q_nT_\varepsilon| + |Q_n(T - T_\varepsilon)|
\]

\[
\leq \varepsilon + |T_\varepsilon - Q_nT_\varepsilon| + \|Q_n\| |T - T_\varepsilon|
\]

\[
\leq 2\varepsilon + |T_\varepsilon - Q_nT_\varepsilon|.
\]

Since \(T_\varepsilon\) is a finite rank operator, by the above argument, there is \(n_\varepsilon\) such that \(|T_\varepsilon - Q_nT_\varepsilon| \leq \varepsilon\), for \(n > n_\varepsilon\). Hence \(|T - Q_nT| \leq 3\varepsilon\) and \(|T - Q_nT| \to 0\), as \(n \to \infty\). Similarly, one can prove that \(|T - TQ_n| \to 0\), as \(n \to \infty\). \(\Box\)

Proposition 3.7. Let \(S\) be selfadjoint. Then \(\Phi_S\) is dense in \((\mathfrak{T}_S, | \cdot |_1)\).

Proof. Let \([S]\) be the selfadjoint operator constructed in Section 2. Then \(D(S) = D([S])\), so that \(\Phi_S = \Phi_{[S]}\). Since \(B = S - [S]\) is a bounded operator, \(BT - TB \in T(H)\), for \(T \in T(H)\). Therefore, taking into account that

\[
(ST - TS)_{D(S)} = ([S][T - T[S]] + (BT - TB)_{D(S)})_{D(S)},
\]

we conclude that \(\mathfrak{T}_S = \mathfrak{T}_{[S]}\) and \(T_S = T_{[S]} + BT - TB\).

Making use of \((3.11)\), we obtain that for any \(T \in \mathfrak{T}_S\),

\[
|T| + |T_S| = |T| + |T_{[S]} + BT - TB|
\]

\[
\leq |T| + |T_{[S]}| + 2\|B\| |T|
\]

\[
\leq (1 + 2\|B\|) (|T| + |T_{[S]}|).
\]
Similarly, $|T| + |T[S]| \leq (1 + 2\|B\|)(|T| + |T[S]|)$. Thus the norms $| \cdot |_1$ generated by the operators S and $[S]$ on \mathfrak{F}_S are equivalent. Hence to obtain the proof we only have to show that $\Phi_{[S]}$ is dense in $(\mathfrak{F}[S], | \cdot |_1)$.

In every subspace $H_S(n)$ (see (2.2)) we choose an increasing sequence of finite-dimensional projections $\{Q^n\}_{n=1}^\infty$ converging to the projection $P_S(n)$ (see (2.1)) in the strong operator topology as $k \to \infty$. Set

$$Q^k = \sum_{n=-k}^{k} \oplus Q^k_n.$$

Then Q^k are finite-dimensional projections commuting with $[S]$. Hence $Q^k \in \Phi_{[S]}$. The projections Q^k converge to 1_H in the strong operator topology. Let $T \in \mathfrak{F}[S]$. Then $Q^n T \in \Phi_{[S]}$ and

Therefore $(Q^k T)[S] = Q^k T[S]$.

Since $T, T[S] \in T(H)$, we obtain from Lemma 3.6 that

$$|T - Q^k T| \to 0 \text{ and } |T[S] - (Q^k T)[S]| = |T[S] - Q^k T[S]| \to 0, \text{ as } k \to \infty.$$

Hence

$$|T - Q^k T|_1 = |T - Q^k T| + |T[S] - (Q^k T)[S]| \to 0$$

as $k \to \infty$, so that $\Phi_{[S]}$ is dense in $(\mathfrak{F}[S], | \cdot |_1)$.

\begin{corollary}
Let S be a selfadjoint operator. Then:

(i) the Banach *-algebra $(\mathfrak{F}_S, | \cdot |_1)$ is simple;
(ii) $(\mathfrak{F}_S)^\perp = (\Phi_S)^\perp = \mathcal{A}_S$;
(iii) the dual space of $(\mathfrak{F}_S, | \cdot |_2)$ is isometrically isomorphic to the quotient space $\overline{B(H)}/\mathcal{A}_S$.
\end{corollary}

\begin{proof}
Let I be a closed two-sided ideal of $(\mathfrak{F}_S, | \cdot |_1)$ and $0 \neq T \in I$. Since $D(S)$ is dense in H, there is $x \in D(S)$ such that $Tx \neq 0$. Since S is selfadjoint, it follows from the definition of \mathfrak{F}_S that $Tx \in D(S)$. From this and from the discussion before Lemma 3.1 we obtain that the rank one operators $y \otimes x$ and $Tx \otimes z$ belong to \mathfrak{F}_S for any $y, z \in D(S)$. By (3.5),

$$T(y \otimes x) = (y \otimes Tx) \in I \text{ and }$$(

$$Tx \otimes z)(y \otimes Tx) = \|Tx\|^2(y \otimes z) \in I.$$

Thus $y \otimes z \in I$ and, therefore, $\Phi_S \subseteq I$. Since I is closed, we obtain from Proposition 3.7 that $I = \mathfrak{F}_S$. Part (i) is proved.

Since the norms $| \cdot |_1$ and $| \cdot |_2$ are equivalent on \mathfrak{F}_S, it follows from Proposition 3.7 that Φ_S is dense in $(\mathfrak{F}_S, | \cdot |_2)$. Taking into account that $(\mathfrak{F}_S, | \cdot |_2)$ is isometrically isomorphic to the closed subspace \mathfrak{F}_S of $\overline{T(H)}$,
we obtain that the linear subspace Φ_S is dense in $\check{\Phi}_S$. From this and from Theorem 3.2(ii) we obtain $(\check{\Phi}_S)^\perp = (\Phi_S)^\perp = \check{A}_S$. Part (ii) is proved.

The dual space of $(\check{\Phi}_S, | \cdot |_2)$ is isometrically isomorphic to the dual space of the closed subspace $\check{\Phi}_S$ of $\check{T}(H)$. Since $\check{T}(H)^* = \check{B}(H)$, part (iii) follows from (ii) and from Lemma 3.1.\hfill \Box

Theorem 3.9. If S is a selfadjoint operator then $(\check{\Phi}_S)^{\perp\perp} = \check{A}_S$ and the second dual space of the algebra $(A, \| \cdot \|_S)$ is isometrically isomorphic to the algebra $(\check{A}_S, \| \cdot \|_S)$.

Proof. Combining Theorem 3.2(i) and Corollary 3.8(ii) yields $(\check{\Phi}_S)^{\perp\perp} = \check{A}_S$.

Therefore it follows from Lemma 3.1 that the second dual space of $(\check{\Phi}_S, \| \cdot \|)$ is isometrically isomorphic to $(\check{A}_S, \| \cdot \|)$. Taking into account that $(A, \| \cdot \|_S)$ isometrically isomorphic to $(\check{\Phi}_S, \| \cdot \|)$ and that $(\check{A}_S, \| \cdot \|_S)$ isometrically isomorphic to $(\check{A}_S, \| \cdot \|)$, we complete the proof. \hfill \Box

4. Isomorphism of the algebras F_S and A_S.

In this section we study the problem of classification of the algebras F_S and A_S up to *-isomorphism. For isometrical *-isomorphism this problem is completely solved in Theorem 4.4. As far as bounded but not necessarily isometrical *-isomorphism is concerned, we have obtained some partial results in Theorems 4.6 and 4.8 for the case when S is selfadjoint.

Banach *-algebras $(A, \| \cdot \|_A)$ and $(B, \| \cdot \|_B)$ are *-isomorphic if there is a bounded *-isomorphism φ from A onto B. They are isometrically *-isomorphic if, in addition, $\|\varphi(A)\|_B = \|A\|_A$, for $A \in A$.

Let $(A, \| \cdot \|_A)$ and $(B, \| \cdot \|_B)$ be Banach *-algebras of operators on Hilbert spaces H and \mathcal{H} (the norms $\| \cdot \|_A$ and $\| \cdot \|_B$ do not, generally speaking, coincide with the operator norms in $B(H)$ and $B(\mathcal{H})$) and let φ be a bounded *-isomorphism from A onto B. An isometry operator U from H into \mathcal{H} implements φ if

$$
\varphi(A) = UA^*U^*, \quad A \in A.
$$

Lemma 4.1. Let R and T be symmetric operators on \mathcal{H}, S be a symmetric operators on H, U be an isometry operator from \mathcal{H} onto H and $t \in \mathbb{R}$.

(i) If $F_R = F_T$ then the norms $\| \cdot \|_R$ and $\| \cdot \|_T$ on this algebra are equivalent, so that the Banach *-algebras $(F_R, \| \cdot \|_R)$ and $(F_T, \| \cdot \|_T)$ are *-isomorphic.

(ii) If $R = \pm T + t1_H$ then $F_R = F_T$ and the norms $\| \cdot \|_R$ and $\| \cdot \|_T$ coincide.

(iii) If $S = \lambda U T U^* + B$, where $0 \neq \lambda \in R$ and B is a bounded selfadjoint operator, then $A \rightarrow UAU^*$ is a bounded *-isomorphism from $(F_T, \| \cdot \|_T)$ onto $(F_S, \| \cdot \|_S)$. If $\lambda = \pm 1$ and $B = t1_H$ then $A \rightarrow UAU^*$ is an isometric *-isomorphism.
The same results hold for the algebras A_S.

Proof. By Proposition 3.2 [13], the algebras F_R and F_T are semisimple. Hence if $F_R = F_T$ then it follows from Johnson's uniqueness of norm theorem that the norms $\| \cdot \|_R$ and $\| \cdot \|_T$ on this algebra are equivalent. Therefore the identity mapping is a bounded *-isomorphism from $(F_R, \| \cdot \|_R)$ onto $(F_T, \| \cdot \|_T)$.

Let $R = x + t1_H$. Then $D(R) = D(T)$ and $A_T = A_R$ for any $A \in A_T$. Hence $\|A\|_R = \|A\|_T$ and $A_R = A_T$. The sets of finite rank operators in the algebras F_R and F_T coincide and, since these algebras are the closures of these sets with respect to the norm $\| \cdot \|_T$, we obtain that $F_S = F_T$.

If $S = \lambda UTU^* + B$ then $D(S) = UD(T)$ and, for $A \in A_T$,

$$ UA^*D(S) = UAD(T) \subseteq UD(T) = D(S) \quad \text{and} \quad SUAU^* - UAU^*S = \lambda U(TA - AT)U^* + (BA - AB), $$

so that $UA^* \in A_S$ and $(UA^*)_S = \lambda UA_TU^* + (BA - AB)$. Thus $A_S = U,A_TU^*$ and

$$ \|UA^*\|_S = \|UA^*\| + \|(UA^*)_S\| = \|A\| + \|\lambda UA_TU^* + (BA - AB)\| \leq \|A\| + \lambda \|A\| + 2\|B\| \|A\| \leq \max(\lambda, 1 + 2\|B\|) \|A\|_T, $$

so that $\psi(A) = UA^*$ is a bounded *-isomorphism from $(A_T, \| \cdot \|_T)$ onto $(A_S, \| \cdot \|_S)$. If A is a finite rank operator in A_T then UA^* is a finite rank operator in A_S. Therefore $F_S = \psi(F_T)$.

Let S be a symmetric operator with domain $D(S)$. It was shown in Lemma 3.1 [13] that a finite rank operator A belongs to F_S if and only if

$$ A = \sum_{i=1}^n x_i \otimes y_i, \quad \text{where} \quad x_i, y_i \in D(S). $$

Theorem 4.2. Let S and T be symmetric operators on H and H and let B and C be closed *-subalgebras of $(A_S, \| \cdot \|_S)$ and $(A_T, \| \cdot \|_T)$, respectively, such that $F_S \subseteq B$ and $F_T \subseteq C$. Let ψ be a bounded *-isomorphism from C onto B and let $\varphi = \psi|F_T$. Then:

1. φ is a bounded *-isomorphism of $(F_T, \| \cdot \|_T)$ onto $(F_S, \| \cdot \|_S)$;
2. there is an isometry operator U from H onto H implementing ψ:

$$ \psi(A) = UA^*, \quad \text{for} \quad A \in C, $$

and $D(S) = UD(T)$ and $F_{U^*TU} = F_S$.

Proof. For $x, y \in D(T)$, $x \neq 0$, $y \neq 0$, set $Y = \varphi(x \otimes y)$. If Y is not a rank one operator, there are $z, u \in D(S)$ such that $Yz \neq 0$, $Yu \neq 0$, and $Yz \notperp Yu$. Since $Y \in A_S$, we have that $Yz, Yu \in D(S)$, so that $Yz \otimes z \in F_S$ and $u \otimes Yu \in F_S$. By (3.5)

$$ (Yz \otimes z)(u \otimes Yu) = (Yu, Yz)(u \otimes z) = 0. $$

(4.2)
Thus \((z \otimes z)^* = z \otimes z \) and \(\varphi \) is a *-isomorphism, it follows from (3.5) that
\[
(\varphi^{-1}(z \otimes z)x) \otimes y = (x \otimes y) [\varphi^{-1}(z \otimes z)]^* = \varphi^{-1}(Y)\varphi^{-1}(z \otimes z) = \varphi^{-1}(z \otimes Yz) \neq 0.
\]
Thus \(\varphi^{-1}(z \otimes z)x \neq 0 \). Similarly, \(\varphi^{-1}(u \otimes u)x \neq 0 \). From this and from (3.5) and (4.2) it follows that
\[
0 = \varphi^{-1}((Yz \otimes z)(u \otimes Yu)) = \varphi^{-1}((z \otimes z)Y^*Y(u \otimes u)) = \varphi^{-1}(z \otimes z)\varphi^{-1}(Y^*)\varphi^{-1}(Y)\varphi^{-1}(u \otimes u)
= \varphi^{-1}(z \otimes z)(y \otimes x)(x \otimes y)\varphi^{-1}(u \otimes u) = \varphi^{-1}(z \otimes z) \|y\|^2(x \otimes x)\varphi^{-1}(u \otimes u)
= \|y\|^2([\varphi^{-1}(u \otimes u)x] \otimes [\varphi^{-1}(z \otimes z)x]) \neq 0.
\]
This contradiction shows that \(Y \) is a rank one operator. Hence \(Y \in \mathcal{F}_S \) and, by (4.1), \(\varphi \) maps all finite rank operators in \(\mathcal{F}_T \) into finite rank operators in \(\mathcal{F}_S \). Since \(\varphi \) is bounded \(\varphi(\mathcal{F}_T) \subseteq \mathcal{F}_S \). Similarly, \(\varphi^{-1}(\mathcal{F}_S) \subseteq \mathcal{F}_T \), so that \(\varphi \) is a bounded *-isomorphism from \(\mathcal{F}_T \) onto \(\mathcal{F} \). Part (i) is proved.

Fix \(x_0 \in D(T), \|x_0\| = 1 \). Since \(x_0 \otimes x_0 \) is a projection, \(\varphi(x_0 \otimes x_0) \) is a one-dimensional projection in \(\mathcal{F}_S \). By (4.1), we can choose \(\xi_0 \) in \(D(S), \|\xi_0\| = 1 \), such that \(\varphi(x_0 \otimes x_0) = \xi_0 \otimes \xi_0 \). Let \(y \in D(T) \). Making use of the equality \(x_0 \otimes y = (x_0 \otimes y)(x_0 \otimes x_0) \), we obtain that
\[
\varphi(x_0 \otimes y) = \varphi(x_0 \otimes y)\varphi(x_0 \otimes x_0)
= \varphi(x_0 \otimes y)(\xi_0 \otimes \xi_0) = \xi_0 \otimes \varphi(x_0 \otimes y)\xi_0.
\]
Since \(\varphi(x_0 \otimes y) \in \mathcal{F}_S \), it follows from (4.1) that \(\varphi(x_0 \otimes y)\xi_0 \) belongs to \(D(S) \).

Now \(U : y \in D(T) \rightarrow \varphi(x_0 \otimes y)\xi_0 \) is a linear mapping from \(D(T) \) into \(D(S) \) and \(\varphi(x_0 \otimes y) = \xi_0 \otimes Uy \). Then
\[
\varphi((y \otimes x_0)(x_0 \otimes y)) = \|y\|^2\varphi(x_0 \otimes x_0) = \|y\|^2(\xi_0 \otimes \xi_0)
= \varphi((x_0 \otimes y)^*)\varphi(x_0 \otimes y)
= (Uy \otimes \xi_0)(\xi_0 \otimes Uy) = \|Uy\|^2(\xi_0 \otimes \xi_0).
\]
Thus \(\|Uy\|^2 = \|y\|^2 \), for \(y \in D(T) \), and \(U \) extends to an isometry operator from \(\mathcal{H} \) into \(H \) which we also denote by \(U \). We have that, for \(x, y \in D(T), \)
\[
(4.3) \quad \varphi(x \otimes y) = \varphi((x_0 \otimes y)(x \otimes x_0)) = (\xi_0 \otimes Uy)(\xi_0 \otimes Ux)^*
= Ux \otimes Uy = U(x \otimes y)U^*.
\]

Similarly, there is an isometry operator \(V \) which maps \(D(S) \) into \(D(T) \) such that \(\varphi^{-1}(\xi \otimes \eta) = V\xi \otimes V\eta \), for \(\xi, \eta \in D(S) \). Hence
\[
\xi \otimes \eta = \varphi(\varphi^{-1}(\xi \otimes \eta)) = \varphi(V\xi \otimes V\eta) = UV\xi \otimes UV\eta.
\]
Thus \(UV\xi = \lambda(\xi)\xi \) where \(\lambda \) is a function on \(D(S) \) such that \(|\lambda(\xi)| = 1\). Hence \(UD(T) = D(S) \). Since \(D(S) \) is dense in \(H \) and \(U \) is an isometry operator, we have \(UH = H \).

Let \(A \in \mathcal{C} \) and set \(R = U^*\psi(A)U \). Then \(x \otimes y \in \mathcal{F}_T \), for any \(x, y \in D(T) \), and, since \(\mathcal{F}_T \) is an ideal of \(\mathcal{A}_T \), we have \(A(x \otimes y) = x \otimes Ay \in \mathcal{F}_T \). By (4.3),

\[
R(x \otimes y) = U^*\psi(A)U(x \otimes y) = U^*\psi(A)U(x \otimes y)U^*U = U^*\psi(A)\varphi(x \otimes y)U = U^*\psi(A(x \otimes y))U = U^*\varphi(x \otimes Ay)U = x \otimes Ay.
\]

Therefore \(R(x \otimes y) = x \otimes Ry = x \otimes Ay \), so that \(Ry = Ay \). Thus \(R = A \) and

\[
\psi(A) = UAU^*.
\]

The operator \(F = UTU^* \) is symmetric and \(D(F) = UD(T) = D(S) \). By Lemma 4.1, \(\mathcal{F}_F = U\mathcal{F}_T U^* \) and \(A \rightarrow UAU^* \) is an isometric \(*\)-isomorphism from \((\mathcal{F}_T, \| \cdot \|_T) \) onto \((\mathcal{F}_F, \| \cdot \|_F) \). Hence

\[
\varphi(U^*BU) = U(U^*BU)U^* = B, \quad \text{for } B \in \mathcal{F}_F,
\]

is a bounded \(*\)-isomorphism from \(\mathcal{F}_F \) onto \(\mathcal{F}_S \). Therefore \(\mathcal{F}_F = \mathcal{F}_S \).

It was shown in Theorem 3.4 [13] that the algebra \((\mathcal{F}_S, \| \cdot \|_S) \) has a bounded approximate identity if and only if \(S \) is selfadjoint. Making use of this and of Theorem 4.2, we obtain the following result.

Corollary 4.3. If the algebras \(\mathcal{F}_S \) and \(\mathcal{F}_T \) are \(*\)-isomorphic or the algebras \(\mathcal{A}_S \) and \(\mathcal{A}_T \) are \(*\)-isomorphic then the operators \(S \) and \(T \) are either selfadjoint or non-selfadjoint at the same time.

Apart from the sufficient conditions of Lemma 4.1 and the necessary conditions of Corollary 4.3 for two algebras \(\mathcal{F}_S \) and \(\mathcal{F}_T \) to be \(*\)-isomorphic we do not know any other sufficient or necessary condition in the case when \(S \) and \(T \) are arbitrary symmetric operators. Later, in Theorem 4.6 and Corollary 4.8 we consider a particular case when the operators \(S \) and \(T \) are selfadjoint.

It follows from Theorem 4.2 that if \(\mathcal{F}_S \) and \(\mathcal{F}_T \) are \(*\)-isomorphic, they are unitary isomorphic. This, however, does not necessarily imply that they are isometrically isomorphic. In the following theorem we obtain necessary and sufficient conditions for algebras \(\mathcal{F}_S \) and \(\mathcal{F}_T \) to be isometrically \(*\)-isomorphic.

Theorem 4.4. The algebras \((\mathcal{F}_S, \| \cdot \|_S) \) and \((\mathcal{F}_T, \| \cdot \|_T) \) are isometrically \(*\)-isomorphic if and only if there are \(\lambda \in \mathbb{R} \) and an isometry operator \(U \) such that \(S - \lambda 1_H = \pm UTU^* \). The same result holds for \((\mathcal{A}_S, \| \cdot \|_S) \) and \((\mathcal{A}_T, \| \cdot \|_T) \).

Proof. From Lemma 4.1 it follows that the conditions of the theorem are sufficient. From Theorem 4.2 it follows that if these conditions are necessary for the algebras \((\mathcal{F}_S, \| \cdot \|_S) \) and \((\mathcal{F}_T, \| \cdot \|_T) \) to be isometrically \(*\)-isomorphic, they are also necessary for the algebras \((\mathcal{A}_S, \| \cdot \|_S) \) and \((\mathcal{A}_T, \| \cdot \|_T) \).
Let φ be an isometric *-isomorphism from $(\mathcal{F}_T, \| \cdot \|_T)$ onto $(\mathcal{F}_S, \| \cdot \|_S)$ and let U be the isometry operator as in Theorem 4.2 which implements φ:

$$\varphi(A) = UAU^*, \quad \text{for } A \in \mathcal{F}_T.$$

Set $F = UU^*$. Then F is a symmetric operator on H, $D(S) = D(F) = UD(T)$ and $\mathcal{F}_S = \mathcal{F}_F$. Since φ is isometric, the norms $\| \cdot \|_S$ and $\| \cdot \|_F$ coincide.

We will show that there is $\lambda \in \mathbb{R}$ such that either $S - \lambda 1_H = F$ or $S - \lambda 1_H = -F$.

Step 1. Suppose that $z \in D(S)$ is not an eigenvector of S and $\|z\| = 1$. Set $s = (Sz, z), \quad t = (Fz, z), \quad R = S - s 1_H$ and $G = F - t 1_H$.

Since S an F are symmetric, $s, t \in \mathbb{R}$, the operators R and G are symmetric and

$$D(R) = D(G), \quad Rz \neq 0 \quad \text{and} \quad (Rz, z) = (Gz, z) = 0. \quad (4.4)$$

Set $D = D(R) = D(G)$. Since $\mathcal{F}_S = \mathcal{F}_F$ and the norms $\| \cdot \|_S$ and $\| \cdot \|_F$ coincide, it follows from Lemma 4.1 that $\mathcal{F}_R = \mathcal{F}_G$ and the norms $\| \cdot \|_R$ and $\| \cdot \|_G$ coincide.

Taking into account that R and G are symmetric, we obtain from (3.5) that

$$\|y \otimes x\|_R = \|y \otimes x\| + \|y \otimes Rx - (Ry) \otimes x\| = \|y \otimes x\|_G$$

$$= \|y \otimes x\| + \|y \otimes Gx - (Gy) \otimes x\|,$$

for $x, y \in D$. Therefore

$$\|y \otimes Rx - (Ry) \otimes x\| = \|y \otimes Gx - (Gy) \otimes x\|. \quad (4.5)$$

Represent the elements Rx and Gx in the form

$$Rx = \alpha(x)x + x_R \quad \text{and} \quad Gx = \beta(x)x + x_G,$$

where x_R and x_G are orthogonal to x. Then

$$\alpha(x)\|x\|^2 = (Rx, x) = (x, Rx) = \overline{\alpha(x)}\|x\|^2.$$

Thus $\alpha(x)$ is real, for $x \in D$. Therefore

$$x \otimes Rx - (Rx) \otimes x = \alpha(x)(x \otimes x) + x \otimes x_R - \alpha(x)(x \otimes x) - x_R \otimes x$$

$$= x \otimes x_R - x_R \otimes x.$$

Since x and x_R are orthogonal, any $u \in H$ can be represented in the form $u = \nu x + \tau x_R + \tilde{u}$, where $\nu, \tau \in \mathbb{C}$ and \tilde{u} is orthogonal to x and x_R. Therefore

$$\|u\| = |\nu|^2\|x\|^2 + |\tau|^2\|x\|^2 + \|\tilde{u}\|^2.$$
and, by (3.5),
\[
\|(x \otimes x_R + x_R \otimes x)u\|^2 = \|(u, x)x_R + (u, x_R)x\|^2
\]
\[
= \|\nu\|^2x_R^2 + \tau\|x_R\|^2x^2
\]
\[
= \|\nu\|^2\|x\|^4\|x_R\|^2 + \|\tau\|^2\|x_R\|^4\|x\|^2
\]
\[
= \|x\|^2\|x_R\|^2(\|\nu\|^2\|x\|^2 + \|\tau\|^2\|x_R\|^2).
\]
Consequently,
\[
\|x \otimes Rx - (Rx) \otimes x\|^2 = \|x \otimes x_R - x_R \otimes x\|^2 = \|x\|^2\|x_R\|^2.
\]
Similarly, \(\|x \otimes Gx - (Gx) \otimes x\|^2 = \|x\|^2\|x_G\|^2\) and it follows from (4.5) that
\[
\|x_R\| = \|x_G\|, \quad \text{for } x \in D.
\]
Therefore we obtain from (4.6) that for \(x \in D\)
\[
\|x\|^2\|Rx\|^2 - |(Rx, x)|^2 = \|x\|^2(\|\alpha(x)\|^2\|x\|^2 + \|x_R\|^2) - |\alpha(x)|^2\|x\|^4
\]
\[
= \|x\|^2\|x_R\|^2 = \|x\|^2\|x_G\|^2
\]
\[
= \|x\|^2\|Gx\|^2 - |(Gx, x)|^2.
\]
Hence
\[
(4.7) \quad \|x\|^2(|Rx|^2 - \|Gx\|^2) = |(Rx, x)|^2 - |(Gx, x)|^2.
\]
In particular, it follows from (4.4), (4.6) and (4.7) that
\[
(4.8) \quad Rz = z_R, \quad Gz = z_G \quad \text{and} \quad \|Rz\| = \|Gz\|.
\]
Step 2. Set \(D_\frac{1}{2} = \{y \in D : y \text{ is orthogonal to } z\}.\) Let \(y \in D_\frac{1}{2}\) and \(x = y + \mu z,\)
\(\mu \in \mathbb{C}.\) Then \(\|x\|^2 = \|y\|^2 + \|\mu z\|^2 = \|y\|^2 + |\mu|^2\) and, by (4.8),
\[
\|Rx\|^2 - \|Gx\|^2 = \|Ry\|^2 + \|\mu Rz\|^2 + 2\text{Re}[\mu (Rz, Ry)]
\]
\[
- \|Gy\|^2 - \|\mu Gz\|^2 - 2\text{Re}[\mu (Gz, Gy)]
\]
\[
= A + 2\text{Re}(\mu B),
\]
where
\[
A = \|Ry\|^2 - \|Gy\|^2 \quad \text{and} \quad B = (Rz, Ry) - (Gz, Gy).
\]
Since \(R\) is symmetric, it follows from (4.4) that
\[
(Rx, x) = (Ry, y) + (\mu Rz, y) + (Ry, \mu z) + (\mu Rz, \mu z)
\]
\[
= (Ry, y) + 2\text{Re}[\mu (Rz, y)].
\]
Similarly, \((Gx, x) = (Gy, y) + 2\text{Re}[\mu (Gz, y)].\)
Let \(\mu = re^{i\psi}.\) Substituting all this in (4.7), we obtain that
\[
(4.9) \quad (\|y\|^2 + r^2)[A + 2\text{Re}(e^{i\psi}B)]
\]
\[
= \{(Ry, y) + 2\text{Re}[e^{i\psi}(Rz, y)]\}^2 - \{(Gy, y) + 2\text{Re}[e^{i\psi}(Gz, y)]\}^2.
\]
Set
\[C = (R_y, y)\Re[e^{i\psi}(R_z, y)] - (G_y, y)\Re[e^{i\psi}(G_z, y)] \quad \text{and} \]
\[E = \{\Re[e^{i\psi}(R_z, y)]\}^2 - \{\Re[e^{i\psi}(G_z, y)]\}^2.\]
Since R and G are symmetric, (R_y, y) and (G_y, y) are real. Hence
\[C = \Re\{e^{i\psi}[(R_y, y)(R_z, y) - (G_y, y)(G_z, y)]\}.\]
Comparing the coefficients of the same powers of r in (4.9), we obtain that
\[\Re(e^{i\omega}B) = 0, \quad A = 4E \quad \text{and} \quad C = 0.\]
Taking into account that $\Re(e^{i\psi}K) = 0$, for $0 \leq \psi < 2\pi$, implies $K = 0$, we obtain that $C = 0$ implies
\[(4.10) \quad (R_y, y)(R_z, y) - (G_y, y)(G_z, y) = 0.\]
Set $(R_z, y) = ae^{ib}$ and $(G_z, y) = ce^{id}$. Then
\[E = a^2 \left[\Re(e^{i(\psi+\beta)})\right]^2 - c^2 \left[\Re(e^{i(\psi+\delta)})\right]^2 \]
\[= a^2 \cos^2(\psi + b) - c^2 \cos^2(\psi + d).\]
Since $A = 4E$ and since A does not depend on ψ, neither does E. Hence
\[a^2 = c^2 \quad \text{and} \quad d = b \quad \text{or} \quad d = b + \pi. \]
Since $a \geq 0$ and $c \geq 0$, $a = c$. Thus
\[(4.11) \quad (R_z, y) = \pm(G_z, y), \quad \text{for} \quad y \in D_Z^\perp.\]
Since D is dense in \mathcal{H}, D_Z^\perp is dense in the subspace $\{\mathbb{C}z\}^\perp$. Hence (4.11) holds for all $y \in \{\mathbb{C}z\}^\perp$. From (4.9) it follows that $R_z = z_R \in \{\mathbb{C}z\}^\perp$.
Substituting R_z for y in (4.11), we obtain $\|R_z\| = (R_z, R_z) = \pm(G_z, R_z)$. Let $G_z = \nu R_z + u$, where $\nu \in \mathbb{C}$ and u is orthogonal to R_z. Then
\[\|R_z\|^2 = \pm(G_z, R_z) = \pm\nu\|R_z\|^2.\]
Since $R_z \neq 0$ (see (4.4)), $\nu = \pm 1$. Taking (4.9) into account, we obtain
\[\|R_z\|^2 = \|G_z\|^2 = (\nu R_z + u, \nu R_z + u) \]
\[= |\nu|^2\|R_z\|^2 + \|u\|^2 = \|R_z\|^2 + \|u\|^2.\]
Hence $u = 0$ and either $R_z = G_z$ or $R_z = -G_z$.

Step 3. Let $R_z = G_z$. Set $W = R - G$. Then W is symmetric, $Wz = 0$ and it follows from (4.10) that
\[[(R_y, y) - (G_y, y)](R_z, y) = (W_y, y)(R_z, y) = 0, \quad \text{for} \quad y \in D_Z^\perp.\]
Any $x \in D$ can be represented in the form $x = y + \mu z$ where $\mu \in \mathbb{C}$ and $y \in D_Z^\perp$. Then $Wx = W_y$ and, since $(R_z, z) = 0$, we have $(R_z, x) = (R_z, y)$. Since $Wz = 0$,
\[(Wx, x)(R_z, x) = (W_y, y + \mu z)(R_z, y) \]
\[= [(W_y, y) + (y, \mu Wz)](R_z, y) = (W_y, y)(R_z, y) = 0.\]
Therefore

\[(4.12)\quad (Wx,x)(Rz,x) = 0, \quad \text{for } x \in D.\]

Let \(X = \{x \in H : (Rz,x) = 0\}\) be the orthogonal complement of the subspace \(\mathbb{C}Rz\) in \(H\). By (4.4), \(Rz \neq 0\), so \(X\) has codimension 1. Set \(D = \{x \in D : x \notin X\}\). Since \(D\) is dense in \(H\), \(D\) is also dense in \(H\). For \(x \in D\), we have \((Rz,x) \neq 0\). Hence, by (4.12),

\[(Wx,x) = 0.\]

If \(x, y \in D\), there is \(r > 0\) such that \(x + re^{iy}y \in D\), for all \(0 \leq \psi < 2\pi\). Taking into account that \(W\) is symmetric, we obtain that

\[
0 = (W(x + re^{iy}y), x + re^{iy}y) = (Wx,x) + 2r \text{Re}[e^{iy}(Wy, x)] + r^2(Wy, y) = 2r \text{Re}[e^{iy}(Wy, x)].
\]

Hence \((Wy,x) = 0\). Since \(D\) is dense in \(H\), we have \(Wy = 0\), for \(y \in D\).

Let \(u \in D \cap X\), so that \((Rz,u) = 0\). For \(y \in D\), \((Rz,y + u) = (Rz,y) \neq 0\). Hence \(y + u \in D\) and \(0 = W(y + u) = Wy + Wu = Wu\). Thus \(Wx = 0\), for all \(x \in D\), so that \(R = G\). Hence \(S - s1_H = F - t1_H\). Setting \(\lambda = s - t\), we obtain that

\[S - \lambda1_H = F = UTU^*.\]

Similarly, in the case when \(Rz = -Gz\) we obtain that \(S - \lambda1_H = -F = -UTU^*\) which concludes the proof of the theorem. \(\square\)

In the rest of this section we study conditions for the algebras \(\mathcal{F}_S\) and \(\mathcal{F}_T\) to be \(*\)-isomorphic but not necessarily isometrically \(*\)-isomorphic in the case when \(S\) and \(T\) are selfadjoint operators. Taking Theorem 4.2(ii) into account, we may assume, without loss of generality, that \(\mathcal{F}_S = \mathcal{F}_T\) and \(D(S) = D(T)\).

In Example 4.7 we show that the coincidence of the domains of selfadjoint operators \(S\) and \(T\) even in the case when \(\text{Sp}(S) \subseteq \mathbb{Z}\), \(\text{Sp}(T) \subseteq \mathbb{Z}\) and \(S\) and \(T\) have the same sets of eigenvectors is not sufficient for \(\mathcal{F}_S = \mathcal{F}_T\). In other words, the algebras \(\mathcal{F}_S\) and \(\mathcal{F}_T\) may be the closures of the same set of finite rank operators and, nevertheless, be non-isomorphic. Necessary and sufficient conditions for these algebras to be \(*\)-isomorphic will be obtained in Theorem 4.6.

Let \(\mathcal{H}\) be a Hilbert space with an orthogonal basis \(\{e_i\}_{i=-\infty}^{\infty}\). Every operator \(T\) in \(B(\mathcal{H})\) has a matrix representation \(T = (t_{ij})\), \(-\infty < i,j < \infty\), where \(t_{ij} = (Te_j,e_i)\). A matrix \(M = (m_{ij})\), \(-\infty < i,j < \infty\), is called a Schur multiplier, if, for any \(T = (t_{ij}) \in B(\mathcal{H})\), the matrix \(M \circ T = (m_{ij}t_{ij})\) belongs to \(B(\mathcal{H})\). Then \(T \rightarrow M \circ T\) is a bounded map of \(B(\mathcal{H})\) into itself; it will also be denoted by \(M\) and its norm by \(|M|_{B(\mathcal{H})}\).
Let $H = \sum_{i=-\infty}^{\infty} \oplus H_i$ be an orthogonal sum of Hilbert spaces H_i. Every operator A in $B(H)$ has a block-matrix representation $A = (A_{ij})$, $-\infty < i, j < \infty$, where A_{ij} are bounded operators from H_j into H_i.

Lemma 4.5. Let $M = (m_{ij})$ be a Schur multiplier on \mathcal{H}. It defines a bounded operator \mathcal{M} on $B(H)$ by the formula

$$\mathcal{M} \times A = (m_{ij} A_{ij}), \quad \text{where} \quad A = (A_{ij}) \in B(H),$$

and $|\mathcal{M}|_{B(H)} = |M|_{B(\mathcal{H})}$.

Proof. Let $G = \{g_j\}_{j=-\infty}^{\infty}$ and $F = \{f_j\}_{j=-\infty}^{\infty}$ be sequences of elements such that $g_j, f_j \in H_j$ and $\|g_j\| = \|f_j\| = 1$. For $A = (A_{ij}) \in B(H)$, let $T^{G,F}(A) = (a_{ij}^{GF}), -\infty < i, j < \infty$, be the matrix such that

$$a_{ij}^{GF} = (A_{ij}g_j, f_i) \in \mathbb{C}.$$

For $\alpha = \sum_{j=-\infty}^{\infty} \oplus \alpha_j e_j \in \mathcal{H}$ and $\beta = \sum_{j=-\infty}^{\infty} \oplus \beta_j e_j \in \mathcal{H}$, set

$$x_\alpha^G = \sum_{j=-\infty}^{\infty} \oplus \alpha_j g_j \quad \text{and} \quad y_\beta^F = \sum_{j=-\infty}^{\infty} \oplus \beta_j f_j.$$

Then $x_\alpha^G, y_\beta^F \in H, \|x_\alpha^G\| = \|\alpha\|, \|y_\beta^F\| = \|\beta\|$ and

$$(Ax_\alpha^G, y_\beta^F) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \alpha_j \beta_i (A_{ij} g_j, f_i) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \alpha_j \beta_i a_{ij}^{GF} = (T^{G,F}(A) \alpha, \beta).$$

Therefore $T^{G,F}(A) \in B(\mathcal{H})$ and

$$\|A\| = \sup_{\alpha, \beta, G, F} \left(\frac{\|Ax_\alpha^G, y_\beta^F\|}{\|x_\alpha^G\| \|y_\beta^F\|} \right) = \sup_{G, F} \left(\sup_{\alpha, \beta} \frac{|(T^{G,F}(A) \alpha, \beta)|}{\|\alpha\| \|\beta\|} \right) = \sup_{G, F} \|T^{G,F}(A)\|.$$

It follows from (4.13) that $T^{G,F}(\mathcal{M} \times A) = M \circ T^{G,F}(A)$. Since M is a Schur multiplier, $M \circ T^{G,F}(A) \in B(\mathcal{H})$ and, by (4.14),

$$\|\mathcal{M} \times A\| = \sup_{G, F} \|T^{G,F}(\mathcal{M} \times A)\| = \sup_{G, F} \|M \circ T^{G,F}(A)\| \leq \sup_{G, F} \|M|_{B(\mathcal{H})}\| T^{G,F}(A)\| = |M|_{B(\mathcal{H})} \sup_{G, F} \|T^{G,F}(A)\| = |M|_{B(\mathcal{H})} \|A\|. $$
Hence $|\mathcal{M}|_{B(H)} \leq |\mathcal{M}|_{B(\mathbb{H})}$. On the other hand, it is easy to see that $|\mathcal{M}|_{B(\mathbb{S})} \leq |\mathcal{M}|_{B(H)}$. Thus $|\mathcal{M}|_{B(H)} = |\mathcal{M}|_{B(\mathbb{S})}$.

Let S and T be selfadjoint operators on H and assume that $\text{Sp}(S) \subseteq \mathbb{Z}$, $\text{Sp}(T) \subseteq \mathbb{Z}$, and that

$$H = \sum_{i=-\infty}^{\infty} \oplus H_i \text{ where } S|_{H_i} = s_i 1_{H_i}, \ T|_{H_i} = t_i 1_{H_i},$$

$s_i \neq s_j$ and $t_i \neq t_j$ if $i \neq j$.

Set

$$M = (m_{ij}) \text{ where } m_{ij} = \frac{s_i - s_j}{t_i - t_j}, \text{ for } i \neq j, \text{ and } m_{ii} = 0, \text{ and}$$

$$N = (n_{ij}) \text{ where } n_{ij} = \frac{t_i - t_j}{s_i - s_j}, \text{ for } i \neq j, \text{ and } n_{ii} = 0.$$

Theorem 4.6. $\mathcal{F}_S = \mathcal{F}_T$ if and only if M and N are Schur multipliers.

Proof. In every H_i we choose a non-decreasing sequence of finite-dimensional projections $\{Q^p_i\}_{p=1}^\infty$ which converge to 1_{H_i} in the strong operator topology as $p \to \infty$. Set

$$Q_p = \sum_{i=-p}^{p} \oplus Q^p_i.$$

The finite-dimensional projections Q_p commute with S and T, belong to $\mathcal{F}_S \cap \mathcal{F}_T$ and converge to 1_H in the strong operator topology. Therefore $\|Q_p\|_S = \|Q_p\|_T = \|Q_p\| = 1$.

For any $A = (A_{ij}) \in \mathcal{A}_S \cap \mathcal{A}_T$,

$$A_S = SA - AS = (A^S_{ij}) \text{ and } A_T = TA - AT = (A^T_{ij}),$$

where $A^S_{ij} = (s_i - s_j)A_{ij}$ and $A^T_{ij} = (t_i - t_j)A_{ij}$. Set $B = A_T$. Then $A_S = \mathcal{M} \times B$.

(4.15) $\|A\|_S = \|A\| + \|A_S\| = \|A\| + \|\mathcal{M} \times B\|$ and

$$\|A\|_T = \|A\| + \|A_T\| = \|A\| + \|B\|.$$

We assume now that M and N are Schur multipliers and show that $\mathcal{F}_S = \mathcal{F}_T$. By Lemma 4.5 and (4.15),

(4.16) $\|A\|_S \leq \|A\| + \|M\|_B \|$

$$\leq \|A\| + \|M\| (\|A\|_T - \|A\|) \leq (\|M\| + 1)\|A\|_T.$$

Similarly,

(4.17) $\|A\|_T \leq (\|N\| + 1)\|A\|_S$.

Let $A \in \mathcal{F}_S$. Then $Q_pA \in \mathcal{F}_S$ and, since Q_p commute with S,

$$(Q_pA)_S = \text{Closure} (S Q_p A - Q_p A S) = \text{Closure} Q_p(S A - AS) = Q_pA_S.$$

Since A and A_S are compact and since Q_p converge to 1_H in the strong operator topology,

$$\|A - Q_pA\| \to 0 \text{ and } \|A_S - (Q_pA)_S\| = \|A_S - Q_pA_S\| \to 0, \text{ as } p \to \infty.$$
Hence \(\| A - Q_p A \|_S \to 0 \), so that \(\{ Q_p \} \) is a bounded approximate identity in \(\mathcal{F}_S \). Similarly, it is a bounded approximate identity in \(\mathcal{F}_T \).

Let \(A \in \mathcal{F}_S \). For any \(p \), \(Q_p T = Q_p T Q_p = T Q_p \) is a finite rank operator. Hence

\[
(Q_p A Q_p)_T = T(Q_p A Q_p) - (Q_p A Q_p)T = (T Q_p)A Q_p - Q_p A (Q_p T)
\]

is a finite rank operator. Therefore \(Q_p A Q_p \in \mathcal{F}_S \cap \mathcal{F}_T \) and, by (4.17),

\[
\| Q_{p+k} A Q_{p+k} - Q_p A Q_p \|_T \leq (|N| + 1)\| Q_{p+k} A Q_{p+k} - Q_p A Q_p \|_S.
\]

Since \(\{ Q_p \} \) is a bounded approximate identity in \(\mathcal{F}_S \), the operators \(Q_p A Q_p \) converge to \(A \) with respect to \(\| \cdot \|_S \). From the above inequality it follows that \(\{ Q_p A Q_p \} \) is a fundamental sequence with respect to \(\| \cdot \|_T \). Hence there is \(A_1 \in \mathcal{F}_T \) such that \(\| A_1 - Q_p A Q_p \|_T \to 0 \), as \(p \to \infty \). Since \(\| A - Q_p A Q_p \|_S \to 0 \) and \(\| A_1 - Q_p A Q_p \| \leq \| A_1 - Q_p A Q_p \| \to 0 \), as \(p \to \infty \), we obtain that \(A = A_1 \), so \(\mathcal{F}_S \subseteq \mathcal{F}_T \). Similarly, \(\mathcal{F}_T \subseteq \mathcal{F}_S \). Thus we conclude that \(\mathcal{F}_S = \mathcal{F}_T \).

Suppose now that \(\mathcal{F}_S = \mathcal{F}_T \). Choose elements \(e_i \in H_i \) such that \(\| e_i \| = 1 \) and let \(\mathfrak{H} \) be the subspace of \(H \) generated by all \(e_i \), \(-\infty < i < \infty \). Then \(\mathfrak{H} \) is invariant for \(S \) and \(T \), \(Se_i = s_i e_i \) and \(Te_i = t_i e_i \). By \(S_{\mathfrak{H}} \) and \(T_{\mathfrak{H}} \) we denote the restrictions of \(S \) and \(T \) to \(\mathfrak{H} \). Since \(\mathcal{F}_S = \mathcal{F}_T \),

\[
\mathcal{F}_{S_{\mathfrak{H}}} = \mathcal{F}_{T_{\mathfrak{H}}}.
\]

We shall show now that \(M \) and \(N \) are Schur multipliers on \(\mathfrak{H} \).

The function \(f(t) = i(\pi - t) \) on \([0, 2\pi] \) has Fourier coefficients \(c_0 = 0 \) and \(c_n = \frac{1}{n} \) for \(n = \pm 1, \pm 2, \ldots \). Let \(\mathcal{H} \) be a Hilbert space with an orthonormal basis \(\{ h_k \}_{k=\infty}^{\infty} \) and \(R = (r_{kl}) \), \(-\infty < k, l < \infty \), be a Toeplitz matrix such that \(r_{kk} = 0 \) and \(r_{kl} = c_{k-l} = \frac{1}{1-t_l}, \ k \neq l \). Then \(R \in B(\mathcal{H}) \) and it follows from Theorem 8.1 [1] that \(R \) is a Schur multiplier and \(|R| = \sup |f(t)| = \pi \).

Identifying \(e_i \in \mathfrak{H} \) with \(h_i \in \mathcal{H} \), we can consider \(\mathfrak{H} \) as a subspace of \(\mathcal{H} \). For \(\bar{B} = (b_{km}) \in B(\mathfrak{H}) \), where \(b_{km} = (Be_m, e_k) \), let \(\bar{B} = (\bar{b}_{ij}) \in B(\mathcal{H}) \) be such that \(\bar{B}|_{\mathfrak{H}} = B \) and \(\bar{B}|_{\mathfrak{H}^\perp} = 0 \). Then \(\| \bar{B} \| = \| B \| \),

\[
\bar{b}_{tk,t_m} = (\bar{B}h_{t_m}, h_{t_k}) = (Be_m, e_k) = b_{km}, \quad \text{and}
\]

\[
\bar{b}_{ij} = (\bar{B}h_j, h_i) = 0 \quad \text{if either} \quad i \neq t_k \text{ or } j \neq t_m.
\]

Since \(R \) is a Schur multiplier, the operator \(\bar{C} = (\bar{c}_{ij}) = R \circ \bar{B} \) belongs to \(B(\mathcal{H}) \), where

\[
\bar{c}_{tk,t_m} = r_{tk,t_m} \bar{b}_{tk,t_m} = (t_k - t_m)^{-1} b_{km}, \quad \text{if} \quad k \neq m, \quad \text{and}
\]

\[
\bar{c}_{ij} = 0 \quad \text{if either} \quad i \neq t_k \text{ or } j \neq t_m \quad \text{or} \quad i = j = t_k.
\]

Setting \(C = \bar{C}|_{\mathfrak{H}} \), we obtain that \(C = (c_{km}) \in B(\mathfrak{H}) \), where

\[
c_{km} = \bar{c}_{tk,t_m} = (t_k - t_m)^{-1} b_{km}, \quad \text{if} \quad k \neq m, \quad \text{and} \quad c_{kk} = 0,
\]
that \(\|C\| = \|B\|\) and that \(C = W \circ B \), where \(W = (w_{km}) \) is a matrix such that

\[
 w_{km} = (t_k - t_m)^{-1}, \quad k \neq m, \quad \text{and} \quad w_{kk} = 0.
\]

From this it follows that \(W \) is a Schur multiplier on \(\mathcal{F} \) and

\[
 \|W \circ B\| = \|C\| = \|\tilde{C}\| = \|R \circ \tilde{B}\| \leq |R| \|\tilde{B}\| = |R| \|B\|.
\]

Thus \(|W| \leq |R| = \pi \).

Let \(P_n \) be the orthoprojections in \(\mathcal{F} \) on the subspaces \(\sum_{j=-n}^n \mathbb{C} e_j \).
Then \(P_n \) are finite rank operators commuting with operators \(S_\mathcal{F} \) and \(T_\mathcal{F} \) and \(P_n S_\mathcal{F} \subseteq D(S_\mathcal{F}) \). Hence \(P_n \in \mathcal{F}_{S_\mathcal{F}} \). For every \(B \in \mathcal{B}(\mathcal{F}) \), \(P_n B P_n \) are finite rank operators preserving \(D(S_\mathcal{F}) \) and their adjoints \(P_n B^* P_n \) also preserve \(D(S_\mathcal{F}) \). Therefore

\[
 (4.18) \quad P_n B P_n \in \mathcal{F}_{S_\mathcal{F}}.
\]

Any \(B = (b_{km}) \in \mathcal{B}(\mathcal{F}) \) can be represented in the form \(B = B_d + B_0 \), where \(B_d \) is the diagonal operator such that \((B_d) = b_{kk} \). Then

\[
 (4.19) \quad \|B_d\| \leq \|B\| \quad \text{and} \quad \|B_0\| = \|B - B_d\| \leq 2\|B\|.
\]

We have that

\[
 (4.20) \quad M \circ (P_n B P_n) = P_n (M \circ B) P_n.
\]

Since \(m_{kk} = 0 \) in the matrix \(M = (m_{km}) \),

\[
 (4.21) \quad M \circ (P_n B P_n) = M \circ (P_n B_0 P_n).
\]

Set \(A = W \circ B \). Since \(W \) is a Schur multiplier, \(A \in \mathcal{B}(\mathcal{F}) \) and, by (4.18), \(P_n A P_n \in \mathcal{F}_{S_\mathcal{F}} \). It is easy to check that

\[
 (4.22) \quad P_n B_0 P_n = T_\mathcal{F}(P_n A P_n) - (P_n A P_n) T_\mathcal{F} = (P_n A P_n) T_\mathcal{F}, \quad \text{and} \quad M \circ (P_n B_0 P_n) = S_\mathcal{F}(P_n A P_n) - (P_n A P_n) S_\mathcal{F} = (P_n A P_n) S_\mathcal{F}.
\]

Since \(\mathcal{F}_{S_\mathcal{F}} = \mathcal{F}_{T_\mathcal{F}} \), it follows from Lemma 4.1(i) that the norms \(\| \cdot \|_{S_\mathcal{F}} \) and \(\| \cdot \|_{T_\mathcal{F}} \) are equivalent. Therefore there exists \(D > 0 \) such that

\[
 \|P_n A P_n\|_{S_\mathcal{F}} \leq D \|P_n A P_n\|_{T_\mathcal{F}}.
\]

Hence we obtain from (4.19), (4.21) and (4.22) that

\[
 \|M \circ (P_n B P_n)\| = \|M \circ (P_n B_0 P_n)\| = \|(P_n A P_n) S_\mathcal{F}\|
\]

\[
 \leq \|P_n A P_n\|_{S_\mathcal{F}} \leq D \|P_n A P_n\|_{T_\mathcal{F}}
\]

\[
 = D (\|P_n A P_n\| + \|(P_n A P_n) T_\mathcal{F}\|)
\]

\[
 \leq D (\|A\| + \|P_n B_0 P_n\|) \leq D (\|A\| + \|B_0\|)
\]

\[
 = D (\|W \circ B\| + \|B_0\|) \leq D (|R| \|B\| + 2\|B\|) = \rho.
\]

Thus all operators \(M \circ (P_n B P_n) \), \(1 \leq n < \infty \), lie in the ball \(B_\rho \) of \(B(\mathcal{F}) \) of radius \(\rho \). Compactness of \(B_\rho \) in the weak operator topology implies that the
sequence \(\{ M \circ (P_n BP_n) \}_{n=1}^{\infty} \) has a cluster point \(K \in B(\mathcal{S}) \). Therefore there is a subsequence \(\{ M \circ (P_{n_j} BP_{n_j}) \} \) such that for all \(e_k \) and \(e_m \),

\[
(K e_k, e_m) = \lim_{j \to \infty} (M \circ (P_{n_j} BP_{n_j}) e_k, e_m).
\]

If \(n_j \geq \max(|k|, |m|) \) then \(P_{n_j} e_k = e_k \) and \(P_{n_j} e_m = e_m \) and, by (4.20),

\[
(M \circ (P_{n_j} BP_{n_j}) e_k, e_m) = (P_{n_j} (M \circ B) P_{n_j} e_k, e_m) = (M \circ B e_k, e_m).
\]

Hence \((K e_k, e_m) = ((M \circ B) e_k, e_m) \), \(-\infty < k, m < \infty \). Thus \(K = M \circ B \), so \(M \) is a Schur multiplier. Similarly, we obtain that \(N \) is also a Schur multiplier.

\[\square\]

Example 4.7. Let

\[s_i = i \quad \text{and} \quad t_i = (-1)^i \]

in Theorem 4.6. If \(\mathcal{F}_S = \mathcal{F}_T \) then, by Theorem 4.6, \(M \) is a Schur multiplier and we have that \(|m_{ij}| \leq |M| \) for all \(i \) and \(j \). Let \(i = 2k \) and \(j = -2k + 1 \). Then \(s_i = t_i = 2k \) and \(s_j = -t_j = -2k + 1 \). Hence

\[
m_{ij} = \frac{s_i - s_j}{t_i - t_j} = 4k - 1 \to \infty, \quad \text{as} \quad k \to \infty.
\]

This shows that \(M \) is not a Schur multiplier and, therefore, \(\mathcal{F}_S \neq \mathcal{F}_T \).

Making use of Theorem 4.6, we obtain the following result of a more general character.

Theorem 4.8. Let \(S \) and \(T \) be selfadjoint operators on \(H \) and \(\mathcal{H} \) respectively. If there exists a bijection \(\varphi \) of \(\mathbb{Z} \) onto \(\mathbb{Z} \) such that

\[
\dim(\mathcal{H}_T(\varphi(i))) = \dim(H_S(i)), \quad \text{for all} \quad i \in \mathbb{Z},
\]

(see (2.2) for definition of \(\mathcal{H}_T(i) \) and \(H_S(i) \)) and if

\[
M = (m_{ij}) \quad \text{where} \quad m_{ij} = \frac{\varphi(i) - \varphi(j)}{i - j}, \quad \text{for} \; i \neq j, \; \text{and} \; m_{ij} = 0, \; \text{and}
\]

\[
N = (n_{ij}) \quad \text{where} \quad n_{ij} = \frac{i - j}{\varphi(i) - \varphi(j)}, \quad \text{for} \; i \neq j, \; \text{and} \; n_{ij} = 0
\]

are Schur multipliers then the algebras \(\mathcal{F}_S \) and \(\mathcal{F}_T \) are *-isomorphic.

Proof. Consider the operators \([S]\) and \([T]\) (see (2.1)) and the corresponding decompositions

\[
H = \sum_{i \in \mathbb{Z}} \oplus H_S(i) \quad \text{and} \quad \mathcal{H} = \sum_{i \in \mathbb{Z}} \oplus \mathcal{H}_T(i)
\]

where \(H_S(i) = P_S(i) H \) and \(\mathcal{H}_T(i) = P_T(i) \mathcal{H} \) (see (2.3)). The operators \(S - [S] \) and \(T - [T] \) are bounded, so \(\mathcal{F}_S = \mathcal{F}[S] \) and \(\mathcal{F}_T = \mathcal{F}[T] \).
Consider the selfadjoint operator R on H such that all subspaces $H_S(i)$ are invariant for R and $R|_{H_S(i)} = \varphi(i)1_{H_S(i)}$. Since M and N are Schur multipliers, it follows from Theorem 4.6 that $\mathcal{F}_R = \mathcal{F}_S$.

On the other hand, since $\dim(\mathcal{H}_T(\varphi(i))) = \dim(H_S(i))$, for all $i \in \mathbb{Z}$, there exists an isometry operator U from H onto \mathcal{H} which maps $H_S(i)$ onto $\mathcal{H}_T(\varphi(i))$. Then $U^*TUU = R$. By Lemma 4.1, the algebras \mathcal{F}_R and \mathcal{F}_T are *-isomorphic. Hence the algebras \mathcal{F}_S and \mathcal{F}_T are *-isomorphic. \square

References

Received December 10, 1997 and revised September 16, 1998.

University of North London
Great Britain
E-mail address: 11kissine@unl.ac.uk

Polytechnic Institute of Vologda
Vologda
Russia