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ON KRONECKER PRODUCTS
OF COMPLEX REPRESENTATIONS

OF THE SYMMETRIC AND ALTERNATING GROUPS

C. Bessenrodt and A. Kleshchev

In this paper we study the homogeneous tensor products
of simple modules over symmetric and alternating groups.

1. Introduction.

Kronecker or inner tensor products of representations of symmetric groups
(and many other groups) have been studied for a long time. But even for the
symmetric groups no reasonable formula for decomposing Kronecker prod-
ucts of two irreducible complex representations into irreducible components
is available (cf. [7, 5]). An equivalent problem is to decompose the inner
product of the corresponding Schur functions into a linear combination of
Schur functions.

In recent years, a number of partial results have been obtained. For ex-
ample, the products of characters labelled by hook partitions or by two-row
partitions [3, 8] have been computed, and special constituents, in particular
of tensor squares, have been considered [10, 11, 12]. For general products,
Dvir [2] and Clausen-Meier [1] determined the largest part and the maximal
number of parts in a constituent of a product (this result is crucial in this
paper).

In general, Kronecker products of irreducible representations have very
many irreducible constituents (see e.g. [4, 2.9]). In this paper, we first con-
sider the simple question: ‘when is the Kronecker product of two irreducible
Sn-characters again irreducible?’ We prove that in fact such a product is
always reducible, and even inhomogeneous, except for the obvious excep-
tion where one of the characters is of degree 1. Then we turn to the same
question for the representations of the alternating group An. Here one can
easily construct examples of non-trivial irreducible tensor products (actu-
ally, we observed this first using calculations with the MAPLE packages SF
(by Stembridge) and ACE (by Veigneau et al.)). It turns out that the prob-
lem for An reduces to the classification of certain products of Sn-characters
with 2 constituents. So we classify in general the Kronecker products of
Sn-characters with 2 constituents, and even more generally, with two homo-
geneous components. We also obtain some partial results for products with
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202 C. BESSENRODT AND A. KLESHCHEV

4 homogeneous components and conjecture a complete classification of the
pairs (L1, L2) of irreducible complex Sn-representations such that L1 ⊗ L2

has at most 4 homogeneous components.

2. Preliminaries.

We denote by N the set {1, 2, . . . } of the natural numbers.
If G and H are two groups, L is a CG-module and M is a CH-module we

write L � M for the outer tensor product of L and M (which is a module
over G×H). If N is another CG-module we write L⊗N for the inner tensor
(or Kronecker) product of L and N (which is a G-module).

A CG-module is called homogeneous if it is isomorphic to a direct sum
of copies of one simple module. Every CG-module can be (uniquely) de-
composed into a direct sum of its homogeneous components. Similarly we
speak of the homogeneous characters and the homogeneous components of
the characters.

We use the notions and notation of the representation theory of Sn and
An and refer the reader to [4] for the most basic ones. In particular, we
write λ = (λ1, . . . , λk) ` n if λ is a partition of n; in this case we also write
|λ| for n. We often gather together equal parts of a partition and write, for
example, (52, 33) for (5, 5, 3, 3, 3). The partition conjugate to λ is denoted
by λ′. If λ = λ′ we say that λ is symmetric. We do not distinguish between
a partition λ and its Young diagram λ = {(i, j) ∈ N×N | j ≤ λi}. Elements
(i, j) ∈ N× N are called nodes. If λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ) are
two partitions we write λ∩µ for the partition (min(λ1, µ1),min(λ2, µ2), . . . )
whose Young diagram is just the intersection of those for λ and µ. A node
(i, λi) ∈ λ is called removable (for λ) if λi > λi+1. A node (i, λi+1) is called
addable (for λ) if i = 1 or i > 1 and λi < λi−1. We denote by

λA = λ \ {A} = (λ1, . . . , λi−1, λi − 1, λi+1, . . . )

a partition of n−1 obtained by removing a removable node A = (i, λi) from
λ. Similarly

λB = λ ∪ {B} = (λ1, . . . , λi−1, λi + 1, λi+1, . . . )

is a partition of n + 1 obtained by adding an addable node B = (i, λi + 1)
to λ.

We denote by
hij = hλij = λi − j + λ′j − i+ 1

the (i, j)-hook length. If a partition λ has r nodes on the main diagonal and
there are αi (resp., βi) nodes to the right of (resp., below) the node (i, i)
then we may write λ in the Frobenius notation (cf. [6]):

F (λ) =
(
α1 · · · αr
β1 · · · βr

)
.



KRONECKER PRODUCTS OF REPRESENTATIONS 203

If Hλ
∼= Sλ1 × Sλ2 × · · · < Sn is a Young subgroup we write Mλ for

the permutation module CSn⊗CHλ
1Hλ

. The Specht module Sλ is explicitly
defined as a submodule of Mλ (cf. [4]). The set {Sλ | λ ` n} is a com-
plete set of irreducible CSn-modules (up to isomorphism). We write [λ] (or
[λ1, λ2, . . . ]) for the character of Sλ. Thus, {[λ] | λ ` n} is a complete set of
the irreducible characters of Sn. It is well known that Sλ is self-dual. An-
other fact (to be used without comment) is that S(1n) is the 1-dimensional
sign representation and Sλ ⊗ S(1n) ∼= Sλ

′
. The standard inner product on

the class functions on a group (symmetric or alternating, depending on the
context) is denoted by 〈·, ·〉. If χ and ψ are two class functions we write χ ·ψ
for the function [g 7→ χ(g)ψ(g)]. The character of Sλ ⊗ Sµ is [λ] · [µ]. For
λ, µ, ν ` n we define the numbers d(µ, ν;λ) via

[µ] · [ν] =
∑
λ

d(µ, ν;λ)[λ].

If α = (α1, α2, . . . ) and β = (β1, β2, . . . ) are two partitions then we write
β ⊆ α if βi ≤ αi for all i. In this case we also consider the skew partition
α/β. We do not distinguish between α/β and its Young diagram, which is
the set of nodes α \ β.

If α/β is a skew Young diagram and A = (i, j) is some node we say A is
connected with α/β if at least one of the nodes (i ± 1, j), (i, j ± 1) belongs
to α/β. Otherwise A is disconnected from α/β.

If β ` m, γ ` n, α ` m+ n we write cαβγ for the corresponding Littlewood-
Richardson coefficient, which may be defined as the multiplicity of Sα in the
induced module

Sβ⊗̂Sγ := (Sβ � Sγ) ↑Sm+n

Sm×Sn
.

The character of this module will be denoted [β]⊗̂[γ]. The Littlewood-
Richardson rule [4, 6] gives a combinatorial description of the coefficients
cαβγ and will be repeatedly used in this paper. It says that cαβγ is the number
of semistandard tableaux of skew shape α/β and content γ, which give a
lattice permutation when the entries are read from right to left along the
rows starting from the top row.

Let α and β be two partitions. Then the skew character [α/β] is defined
to be the sum

[α/β] =
∑
γ

cαβγ [γ].

Note that [α/β] = 0 unless β ⊆ α.
The following four results will be used repeatedly.

Theorem 2.1 ([2, 1.6], [1, 1.1]). Let µ, ν be partitions of n. Then

max{λ1 | d(µ, ν;λ) 6= 0 for some λ = (λ1, λ2, . . . )} = |µ ∩ ν|
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and

max{m | d(µ, ν;λ) 6= 0 for some λ = (λ1 ≥ · · · ≥ λm > 0)} = |µ ∩ ν ′|.
Since the skew characters can in principle be decomposed into the irre-

ducible characters, the following theorem provides a recursive formula for
the coefficients d(µ, ν;λ).

Theorem 2.2 ([2, 2.3]). Let µ, ν and λ = (λ1, λ2, . . . ) be partitions of n,
and set λ̂ = (λ2, λ3, . . . ). Define

Y (λ) = {η | η ` n, ηi ≥ λi+1 ≥ ηi+1 for all i ≥ 1}.
Then

d(µ, ν;λ) =
∑
α`λ1

α⊆µ∩ν

〈[µ/α] · [ν/α], [λ̂]〉 −
∑

η∈Y (λ)
η 6=λ

η1≤|µ∩ν|

d(µ, ν; η).

Corollary 2.3 ([2, 2.4], [1, 2.1(d)]). Let µ, ν and λ = (λ1, λ2, . . . ) be par-
titions of n, and set λ̂ = (λ2, λ3, . . . ), γ = µ ∩ ν. Assume that λ1 = |µ ∩ ν|.
Then

d(µ, ν;λ) = 〈[µ/γ] · [ν/γ], [λ̂]〉.
Corollary 2.4 ([2, 2.4′]). Let µ and ν be partitions of n, and m = |µ∩ ν ′|.
Let λ be a partition of n with m non-zero parts. Define λ̄ = (λ1 − 1, λ2 −
1, . . . , λm − 1). Then

d(µ, ν;λ) = 〈[µ/(µ ∩ ν ′)] · [ν/(µ′ ∩ ν)], [λ̄]〉.

3. Homogenous Sn-products.

Lemma 3.1. Let α, β, a, b be positive integers. Then

min(α+ β + 1, a+ b+ 1) < min(α, a) + min(β, b) + min(α, b) + min(β, a).
(1)

Proof. We may assume that α ≤ β, a ≤ b and α + β ≤ a + b. So the left
hand side in (1) is α+ β + 1.

If β ≤ b, then the right hand side of (1) equals

min(α, a) + β + α+ min(β, a)

which is greater than α + β + 1 since all numbers in this expression are
positive integers.

If b < β, then the right hand side of (1) is

min(α, a) + b+ min(α, b) + a ≥ min(α, a) + min(α, b) + α+ β > α+ β + 1,

as claimed. �

Lemma 3.2. Let µ, ν be partitions of n, both different from (n) and (1n).
Then

min(hµ11, h
ν
11) < |µ ∩ ν|+ |µ ∩ ν ′| − 2.
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Proof. We write µ and ν in the Frobenius notation:

F (µ) =
(
α1 · · · αr
β1 · · · βr

)
, F (ν) =

(
a1 · · · as
b1 · · · bs

)
.

We may assume that r ≤ s. Then

hµ11 = α1 + β1 + 1, hν11 = a1 + b1 + 1,

|µ ∩ ν| = r +
r∑
i=1

(min(αi, ai) + min(βi, bi)),

|µ ∩ ν ′| = r +
r∑
i=1

(min(αi, bi) + min(βi, ai)).

Since r ≥ 1, it suffices to prove that

min(α1 + β1 + 1, a1 + b1 + 1)

< min(α1, a1) + min(β1, b1) + min(α1, b1) + min(β1, a1).

But this follows from Lemma 3.1 since our assumption on the partitions
ensures that α1, β1, a1, b1 > 0. �

Theorem 3.3. Let µ, ν be partitions of n, both different from (n) and (1n).
If [λ] is a constituent of [µ] · [ν], then hλ11 < |µ ∩ ν|+ |µ ∩ ν ′| − 1.

Proof. Put ` = |µ ∩ ν| + |µ ∩ ν ′| − 1. Take π to be an `-cycle in Sn. By
Lemma 3.2, either µ or ν does not have a hook of length `. Hence, by the
Murnaghan-Nakayama Rule [4, 2.4.7], either [µ](π) = 0 or [ν](π) = 0. So

([µ] · [ν])(π) = 0.(2)

By Theorem 2.1, any constituent [λ] of [µ] · [ν] satisfies

λ1 ≤ |µ ∩ ν| and λ′1 ≤ |µ ∩ ν ′|

where λ = (λ1, . . . ), λ′ = (λ′1, . . . ). So the maximal possible hook length in
λ is `. Moreover, λ contains a hook of length ` if and only if λ1 = |µ ∩ ν|
and λ′1 = |µ ∩ ν ′|, in which case this is the (1, 1)-hook whose leg length is
|µ ∩ ν ′| − 1. In this case, using the Murnaghan-Nakayama Rule again, we
get

[λ](π) = (−1)|µ∩ν
′|−1[λ \H11](1) 6= 0

where λ \ H11 is the partition obtained from λ by removing the (1, 1)-
hook H11. Hence for every constituent [λ] of [µ] · [ν] containing an `-hook we
get a contribution on π of the same sign, and so no cancellation can occur.
But this contradicts Equation (2). �

Theorem 3.4. Let µ, ν be partitions of n, both different from (n) and (1n).
Then [µ] · [ν] is not homogenous.
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Proof. By Theorem 2.1, [µ] · [ν] has a constituent [λ] with λ1 = |µ∩ν| and a
constituent [κ] with κ′1 = |µ∩ ν ′|. If λ = κ, then hλ11 = |µ∩ ν|+ |µ∩ ν ′| − 1,
which is impossible by Theorem 3.3. �

Corollary 3.5. A product [µ] · [ν] is irreducible if and only if at least one
of the two characters [µ], [ν] is of degree 1.

4. Kronecker products of Sn-representations with few
components.

The main result of this section is a description of the products of Sn-
representations with two homogeneous components. First we need to know
the product of any character with the character [n− 1, 1]:

Lemma 4.1. Let n ≥ 3 and µ be a partition of n. Then

[µ] · [n− 1, 1] =
∑
A

∑
B

[
(µA)B

]
− [µ]

where the first sum is over all removable nodes A for µ, and the second sum
runs over all addable nodes B for µA.

Proof. This follows from the isomorphisms M (n−1,1) ∼= S(n−1,1) ⊕ S(n) and
Sµ ⊗M (n−1,1) ∼= (Sµ ↓Sn−1) ↑Sn . �

Corollary 4.2. Let n ≥ 3 and µ be a partition of n. Then:
(i) [µ] · [n− 1, 1] has exactly one homogeneous component if and only if µ

is (n) or (1n).
(ii) [µ] · [n − 1, 1] has exactly two homogeneous components if and only if

µ is a rectangle (ab) for some a, b > 1. In this case we have

[ab] · [n− 1, 1] = [a+ 1, ab−2, a− 1] + [ab−1, a− 1, 1].

(iii) [µ] · [n− 1, 1] has exactly three homogeneous components if and only if
n = 3 and µ = (2, 1). In this case we have

[2, 1] · [2, 1] = [3] + [2, 1] + [13].

(iv) [µ] · [n− 1, 1] has exactly four homogeneous components if and only if
one of the following happens:

(a) n ≥ 4 and µ = (n− 1, 1) or (2, 1n−2);
(b) µ = (k + 1, k) or (2k, 1) for k ≥ 2.

We then have:
[n− 1, 1] · [n− 1, 1] = [n] + [n− 1, 1] + [n− 2, 2] + [n− 2, 12],

[k + 1, k] · [2k, 1] = [k + 2, k − 1] + [k + 1, k]

+[k + 1, k − 1, 1] + [k2, 1],

and the remaining products are obtained by conjugation.
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Proof. The “if” parts and the decompositions of the products follow from
Lemma 4.1.

We now prove the “only if” directions. We are going to use Lemma 4.1
again. First, observe that [µ] appears as a constituent in the product [µ]⊗
[n − 1, 1] unless µ is a rectangle. Also note that (µA)B = (µA′)B

′
for two

different pairs (A,B), (A′, B′) if and only if A = B and A′ = B′, in which
case (µA)B = (µA′)B

′
= µ.

A partition with r removable nodes has exactly r+1 addable nodes. So if
µ has at least 2 removable nodes, say A1 and A2, then µA1 and µA2 both have
at least 2 addable nodes, which gives 4 composition factors in the product
with the only common constituent [µ]. This proves the “only if” part of
(i) and (ii). If µ has at least 3 removable nodes, then a similar argument
shows that [µ] · [n − 1, 1] has at least 5 non-isomorphic constituents. So
we may assume that µ has exactly two removable nodes: A1 and A2. For
[µ] · [n− 1, 1] to have exactly 3 components, both µA1 and µA2 should have
only one removable node. This is only possible if n = 3 and µ = (2, 1).
Finally, for [µ] · [n− 1, 1] to have exactly 4 components, one of µA1 and µA2

should have only one removable node and the other one should have two.
This occurs exactly if µ or µ′ is (n− 1, 1), n ≥ 4, or (k + 1, k), k ≥ 2. �

Lemma 4.3. Let λ be a partition of n. Then the square [λ]2 has at most 4
homogeneous components if and only if one of the following holds:

(i) λ = (n) or (1n), when [λ]2 = [n];
(ii) n ≥ 4, λ = (n − 1, 1) or (2, 1n−2), when [λ]2 = [n] + [n − 1, 1] + [n −

2, 2] + [n− 2, 12];
(iii) n = 3, λ = (2, 1), when [λ]2 = [3] + [2, 1] + [13];
(iv) n = 4, λ = (22), when [λ]2 = [4] + [22] + [14];
(v) n = 6, λ = (32) or (23), when [λ]2 = [6] + [4, 2] + [3, 13] + [23].

Proof. The “if” part follows from Corollary 4.2 and [4, Tables I.I].
In the other direction, let [λ]2 have at most 4 homogeneous components.

We may assume that λ is not one of (n), (1n), (n− 1, 1), (2, 1n−2), and that
n > 8 since for n ≤ 8 the results hold by [4, Tables I.I].

Clearly [λ]2 always contains [n]. Furthermore, by [10, Lemmas 1-3] and
[12, 4.3] or by [11, 6.3], [λ]2 contains [n−2, 2], and unless λ is a rectangle, it
also contains [n−1, 1], [n−2, 12] and [n−3, 3]. So we only have to deal with
the case where λ = (ab) is a rectangle. We already know that [λ]2 has the
constituents [n] and [n − 2, 2]. If b > 2, then [λ]2 also has the constituent
[n − 3, 3] by [10, Lemma 3] or [11, 6.3]. If n > 12, then also [n − 4, 4]
occurs, see [10, Lemma 4]. Furthermore, by [11, 6.3], [n − 3, 13] appears
as a constituent. Hence we can restrict ourselves to the cases λ = (k, k) or
λ = (43).

Suppose λ = (k, k) (k ≥ 5). By Corollary 2.4, the components [µ] of
[k, k]2 with µ′1 = 4 = |λ ∩ λ′| are of the form (ρ1 + 1, ρ2 + 1, ρ3 + 1, ρ4 + 1),
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where [(ρ1, ρ2, ρ3, ρ4)], is a constituent of [k − 2, k − 2]2. By what we have
already proved, there are at least 3 such constituents. Thus [k, k]2 has at
least 5 components.

Now, let λ = (43). We already know that [λ]2 contains [12], [10, 2], [9, 3]
and [9, 13]. But it also contains some [µ] with µ′1 = 9 = |λ ∩ λ′|, thanks to
Theorem 2.1. Alternatively, one may calculate [43]2 on a computer and find
52 (!) homogeneous components. �

Lemma 4.4. Let µ, γ be partitions, γ ⊂ µ. Set I = {i | γi < µi}. Then the
following assertions are equivalent:

(i) [µ/γ] is homogeneous;
(ii) [µ/γ] is irreducible;
(iii) I = {j, j + 1, . . . , k} for some j ≤ k, and one of the following holds:

(a) γj = γj+1 = · · · = γk;
(b) µj = µj+1 = · · · = µk.
Moreover, in this case [µ/γ] = [α], where α is the partition with the
parts µi − γi, i ∈ I, sorted in the weakly decreasing order.

Proof. This follows from the Littlewood-Richardson Rule. �

Remark. The situations described in (iii)(a) and (iii)(b) above correspond
respectively to the pictures

γ
µ/γ

γ

µ/γ

Lemma 4.5. In the notation of Lemma 4.4 (and under the same assump-
tions), let A be a removable node of γ.

(1) If A is disconnected from µ/γ then

[µ/γA] =
∑
B

[
αB
]

where B runs over the addable nodes of α.
(2) Let A be connected with µ/γ.

In the case (iii)(a) we have

[µ/γA] =
∑
B 6=B0

[
αB
]
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where B runs over the addable nodes of α, except for the bottom addable
node B0.

In the case (iii)(b) we have

[µ/γA] =
[
αB
]

where B is an addable node of α.

Proof. Again, this follows by the Littlewood-Richardson Rule. �

The following two lemmas will be used in the proof of the main theorem
of this section.

Lemma 4.6. Let µ 6= ν be partitions of n, both different from (n), (1n),
(n− 1, 1) and (2, 1n−2). Put γ = µ ∩ ν, m = |γ|. Assume that ν/γ is a row
and that [µ/γ] is an irreducible character [α1, α2, . . . ]. Then [m,α1, α2, . . . ]
appears in [µ] · [ν]. Moreover if an Sn−m+1-character [θ1, θ2, . . . ] appears in∑

A removable for γ

[µ/γA] · [ν/γA]−
∑

B addable for α

[
αB
]

(3)

with a positive coefficient then [m− 1, θ1, θ2, . . . ] appears in [µ] · [ν].

Proof. We have [ν/γ] = [n−m]. So Theorem 2.1 and Corollary 2.3 yield:

〈[µ] · [ν], [m,α1, α2, . . . ]〉 = 1,(4)

and

if λ 6= (m,α1, α2, . . . ) and 〈[µ] · [ν], [λ]〉 6= 0 then λ1 < m.(5)

If λ is a partition of n with λ1 = m−1, then in the notation of Theorem 2.2,
we may write

{η ∈ Y (λ) | η 6= λ, η1 ≤ m}
= {(m,λ2, . . . , λi−1, λi − 1, λi+1, . . . ) | i ≥ 1, λi > λi+1}.

So (4) and (5) imply
∑

η∈Y (λ)
η 6=λ

η1≤m

d(µ, ν; η) = ε, where

ε =
{

1 if λ̂ = αB for some addable node B of α
0 otherwise.

(6)

Now, by Theorem 2.2, for a partition λ of n with λ1 = m− 1 we have

〈[µ] · [ν], [λ]〉 =
∑
A

〈[µ/γA] · [ν/γA], [λ̂]〉 − ε(7)

where the sum is over all removable nodes A of γ.
Let [θ] be a constituent of [µ/γA] · [ν/γA]. Then [θ] is a constituent of

[β] · [δ] with [β] a constituent of [µ/γA] and [δ] a constituent of [ν/γA]. It
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follows from the definition of skew characters that β ⊆ µ, δ ⊆ ν. Hence
β ∩ δ ⊆ µ ∩ ν = γ. In view of Theorem 2.1, this implies

θ1 ≤ |β ∩ δ| ≤ |µ ∩ ν| = m .

If θ1 = m, then β ∩ δ = γ, therefore β ⊇ γ and δ ⊇ γ. However, ν/γA is a
union of a row and a node, so either δ = (n −m + 1) or δ = (n −m, 1). If
δ = (n−m+1), then µ∩ν ⊆ δ implies µ∩ν = (m). But then either µ or ν is
(n), which contradicts the assumptions of the lemma. If δ = (n−m, 1), then
we conclude similarly that µ∩ ν = (m− 1, 1). Since neither µ nor ν is equal
to (n − 1, 1) or its conjugate and µ/γ should be connected by Lemma 4.4,
then the only possibilities are: ν = (m− 1, n−m+ 1), µ = (m− 1, 1n−m+1)
or ν = (n − 2, 12), µ = (n − 2, 2) (in the latter case n −m = 1). In both
cases m− 1 ≥ n−m+ 1, so θ1 ≤ m− 1 since θ is a partition of n−m+ 1.
This contradiction shows that we may assume that θ1 ≤ m − 1 for any [θ]
appearing in [µ/γA] · [ν/γA].

This, together with (7), shows that any Sn−m+1-character [θ1, θ2, . . . ] ap-
pearing in (3) gives rise to the character [m − 1, θ1, θ2, . . . ] appearing in
[µ] · [ν]. �

Lemma 4.7. Let µ 6= ν be partitions of n, both different from (n), (1n), (n−
1, 1), and (2, 1n−2). Put γ = µ ∩ ν. Assume that ν/γ is a row, [µ/γ] is
irreducible, and [µ] · [ν] has 2 homogeneous components.

If there exists a removable node A0 of γ, disconnected from ν/γ, then the
following condition holds:

(*) [µ/γA0 ] is 1-dimensional, µ/γ is connected with all removable nodes
of γ, ν/γ is connected with all removable nodes of γ except A0.

Proof. Let A0 be a removable node of γ disconnected from ν/γ, and put
m = |γ|. Since µ 6= ν, we have n−m > 0. Let α be the partition of n−m
defined by [µ/γ] = [α]. Note that [ν/γ] = [n−m].

By Lemma 4.6, it suffices to show that the expression (3) contains at least
two distinct irreducible characters unless the conditions (*) hold.

Since A0 is disconnected from ν/γ, we have by Lemma 4.5(1):

[ν/γA0 ] = [n−m+ 1] + [n−m, 1].(8)

In view of Lemmas 4.4 and 4.5, we have three cases to consider: (a) When
A0 is disconnected from µ/γ; (b) when A0 is connected with µ/γ and we are
in the case (iii)(a) of Lemma 4.4; (c) when A0 is connected with µ/γ and
we are in the case (iii)(b) of Lemma 4.4 (the cases (b) and (c) overlap when
µ/γ is a rectangle).

(a) In this case A0 is disconnected from µ/γ. Then, by Lemma 4.5(1), we
get

[µ/γA0 ] =
∑
B

[
αB
]
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where the sum runs over all addable nodes B of α. So (3) contains

([n−m+ 1] + [n−m, 1]) ·

(∑
B

[
αB
])
−
∑
B

[αB]

= [n−m, 1] ·

(∑
B

[
αB
])

.

If there is a non-linear character among the [αB], we are done by Corol-
lary 4.2(i). Otherwise α = (1), but even in this case the expression above
contains two different characters: [2] and [12]. This completes the case (a).

In particular, we now may assume that every removable node A of γ
disconnected from ν/γ is connected with µ/γ.

Note that [µ/γA0 ] contains [αB1 ] for some addable node B1, see Lem-
ma 4.5. So, in view of (8) and Lemma 4.1, [µ/γA0 ]·[ν/γA0 ] contains

∑
B[αB].

Hence any removable node A1 6= A0 of γ yields a positive contribution of
[µ/γA1 ] · [ν/γA1 ] to the expression (3). If A1 is disconnected from ν/γ then
[ν/γA1 ] = [n − m, 1] + [n − m + 1], and the product [µ/γA1 ] · [ν/γA1 ] is
not homogeneous. If A1 is connected with ν/γ but disconnected from µ/γ
then, by Lemma 4.5, [µ/γA1 ] is not irreducible and [ν/γA1 ] is [n −m, 1] or
[n − m + 1]. So the product [µ/γA1 ] · [ν/γA1 ] is not homogeneous again,
thanks to Lemmas 4.1 and 4.5. Thus we may always assume that:

(**) µ/γ is connected with all removable nodes of γ, and ν/γ is connected
with all removable nodes of γ different from A0.

(b) In this case Lemma 4.5 yields

[µ/γA0 ] =
∑
B 6=B0

[
αB
]

where the sum runs over all addable nodes B of α except for the bottom
one B0. Consider the constituent [µ/γA0 ] · [ν/γA0 ]−

∑
B[αB] of (3). By (8),

it is equal to

([n−m+ 1] + [n−m, 1]) ·

 ∑
B 6=B0

[
αB
]−∑

B

[
αB
]

(9)

= [n−m, 1] ·

 ∑
B 6=B0

[
αB
]− [αB0

]
.

Since α 6= ∅, it has at least 2 addable nodes. Let B1 be an addable node of
α, different from B0, and let r be the number of removable nodes of αB1 .
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Then, using Lemma 4.1, we can rewrite (9) as follows:

[n−m, 1] ·

[αB1
]
+

∑
B 6=B0,B1

[
αB
]− [αB0

]
= (r − 1)

[
αB1

]
+
[
αB0

]
+

∑
B 6=B0,B1

[
αB
]
+
∑
C,D

[(
αB1

)
C

D
]

+ [n−m, 1] ·

 ∑
B 6=B0,B1

[
αB
]− [αB0

]

= (r − 1)
[
αB1

]
+ ([n−m+ 1] + [n−m, 1]) ·

 ∑
B 6=B0,B1

[
αB
]

+
∑
C,D

[(
αB1

)
C

D
]

where the sum
∑
C,D

is over all removable nodes C of αB1 , different from B1,

and over all addable nodes D of (αB1)C , different from C.
If α is not a rectangle, then

∑
B 6=B0,B1

is non-empty, so our expression
involves at least two different irreducible characters. Let α be a rectangle.
If [α] is not of degree 1, then αB1 is not a rectangle, so r > 1, and thus our
expression involves [αB1 ]. Moreover, αB1 has a removable node C 6= B1, so
for an addable node D 6= C of (αB1)C we get the contribution [(αB1)C

D] 6=
[αB1 ]. Finally, let [α] = [µ/γ] be of degree 1. If [αB1 ] is not of degree 1,
then it is [2, 1(n−m−1)]. So for n −m ≥ 2, we have r = 2, and so [2, 1n−2]
and [3, 1n−3] appear in our expression. However, if n−m = 1, then [µ/γA0 ]
is of degree 1. So, in view of (**), all the conditions in (*) hold.

(c) In this case by Lemma 4.5 we have

[µ/γA0 ] =
[
αB1

]
for some addable node B1 of α. Then the constituent [µ/γA0 ] · [ν/γA0 ] −∑

B[αB] of (3) is

([n−m+ 1] + [n−m, 1]) ·
[
αB1

]
−
∑
B

[
αB
]

(10)

=
∑
C,D

[(
αB1

)
C

D
]
−
∑
B

[
αB
]

=
∑
B

[
αB
]
+

∑
C,D; C 6=B1

[(
αB1

)
C

D
]
−
∑
B

[
αB
]
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=
∑

C,D; C 6=B1

[(
αB1

)
C

D
]
.

In the last sum C runs through the removable nodes of αB1 , different from
B1, and D runs through the addable nodes of (αB1)C . So (10) has at least
two different irreducible constituents, unless it is empty. Hence we may
assume that αB1 is a rectangle. If [α] is of degree 1 then [αB1 ] = [µ/γA0 ]
is also of degree 1, and, in view of (**), we are in the exceptional case (*).
So we may assume that α = (ab−1, a − 1) for some a > 1, b > 1, and
αB1 = (ab). This together with Lemma 4.4 implies that γ has a removable
node A1, different from A0. We know that it must be connected with ν/γ
and µ/γ, thanks to (**). If there was a third removable node of γ, A2

say, then again by (**), both A1 and A2 would be connected with both
ν/γ and µ/γ. But this is impossible since γ = µ ∩ ν. So we may assume
that γ has exactly two removable nodes. Now, by Lemma 4.5(2), we have
[µ/γA1 ] = [αB2 ] with B2 the top or the bottom, but not the middle, addable
node of α, and [ν/γA1 ] is either [n−m, 1] or [n−m+1]. The corresponding
pictures are:

ν/γ

µ/γ

A1

A0

ν/γ

µ/γ

A1

A0

In the first case, [αB2 ] · [n−m, 1] contributes at least two constituents by
Theorem 3.4. In the second case ν = (n− 1, 1). �

Theorem 4.8. Let µ, ν be partitions of n. Then [µ] · [ν] has exactly two
homogenous components if and only if one of the partitions µ, ν is a rectangle
(ab) with a, b > 1, and the other is (n− 1, 1) or (2, 1n−2). In these cases we
have:

[n− 1, 1] · [ab] = [a+ 1, ab−2, a− 1] + [ab−1, a− 1, 1],

[2, 1n−2] · [ab] = [b+ 1, ba−2, b− 1] + [ba−1, b− 1, 1].

Proof. The “if” part is proved in Corollary 4.2 (note that S(2,1n−2) ∼=
S(n−1,1) ⊗ sign). To prove the “only if” part, assume that

[µ] · [ν] = x[κ] + y[λ] for some x, y ∈ N ,

with κ > λ in the lexicographic order. Clearly, µ, ν 6∈ {(n), (1n)}. If µ or
ν is (n − 1, 1) or (2, 1n−2) the result follows from Corollary 4.2. Assume
µ, ν 6∈ {(n− 1, 1), (2, 1n−2)}. By Theorems 2.1 and 3.3, we have

κ1 = |µ ∩ ν|, λ′1 = |µ ∩ ν ′| and λ1 < |µ ∩ ν| = κ1.
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By Lemma 4.3, µ 6= ν, and hence κ1 < n. Put γ = µ ∩ ν, m = |γ|. By
Corollary 2.3, we must have

[µ/γ] · [ν/γ] = x[κ̂]

where κ̂ = (κ2, κ3, . . . ). So, in view of Theorem 3.4, one of the following
happens:

(i) x = 1 and one of the characters [µ/γ], [ν/γ] is of degree 1, while the
other is irreducible;

(ii) one of the characters [µ/γ], [ν/γ] is equal to [κ̂], the other is of the
form z[n−m]+w[1n−m] with some z, w ∈ N, and κ̂ = κ̂′. By the Littlewood-
Richardson rule, a skew character contains both [n − m] and [1n−m] only
if its diagram is a set of disconnected nodes. So we must have n −m = 2,
since otherwise such a skew character has more than 2 constituents. But
there is no symmetric partition of 2, i.e. κ̂ 6= κ̂′. This contradiction allows
us to assume that we are in the case (i).

Without loss of generality, suppose that [ν/γ] is of degree 1 and [µ/γ] =
[α] is irreducible. Then the shape of ν/γ is a row or a column. Passing, if
necessary, from µ, ν to µ′, ν ′, we may assume that ν/γ is a row. Now, by
Lemma 4.7 we may assume that one of the following holds:

(a) ν/γ is connected with every removable node of γ.
(b) There exists a removable node A0 of γ disconnected from ν/γ, [µ/γ]

and [µ/γA0 ] are of degree 1, µ/γ is connected with every removable
node of γ, and ν/γ is connected with every removable node of γ dif-
ferent from A0.

Case (a). In this case ν must be a rectangle, and γ must have a removable
node A0 such that [ν/γA0 ] = (n−m, 1) for otherwise ν = (n).

ν/γ

γ

A0

Let us first assume that µ/γ is disconnected from A0. Then, in view of
Lemmas 4.5(1) and 4.1, the expression (3) contains

[ν/γA0 ] · [µ/γA0 ]−
∑
B

[
αB
]

(11)

= [n−m, 1] ·

(∑
B

[
αB
])
−
∑
B

[
αB
]

=
∑
B

∑
C

∑
D

[(
αB
)
C

D
]
− 2

∑
B

[
αB
]
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=
∑
B

(rB − 2)
[
αB
]
+
∑
B

∑
C

∑
D 6=C

[(
αB
)
C

D
]

where B runs over the addable nodes of α, C runs over the removable nodes
of αB (for the respective node B), D runs over the addable nodes of (αB)C
and rB denotes the number of removable nodes of αB.

If α has at least 3 addable nodes, say B0, B1, B2, then we have the
following contribution to the expression above:

(rB0 − 2)
[
αB0

]
+
[
αB1

]
+
[
αB2

]
+ (rB1 − 2)

[
αB1

]
+
[
αB0

]
+
[
αB2

]
+(rB2 − 2)

[
αB2

]
+
[
αB0

]
+
[
αB1

]
= rB0

[
αB0

]
+ rB1

[
αB1

]
+ rB2

[
αB2

]
.

By Lemma 4.6, this yields 3 irreducible components in [µ] · [ν].
So α has exactly two addable nodes, say B0, B1, i.e. α is a rectangle.

Then we have the following contribution to the expression (11):

(rB0 − 2)
[
αB0

]
+
[
αB1

]
+ (rB1 − 2)

[
αB1

]
+
[
αB0

]
.

If α is not a row or a column then both rB0 , rB1 are at least 2, and in view
of Lemma 4.6, we get two irreducible constituents for [µ] · [ν], both different
from [κ]. Let α be a row or a column. Assume that α is a row, the column
case being similar. Then (11) equals [n−m, 1]+[n−m−1, 2]+[n−m−1, 12]
if n −m > 2, and [2, 1] + [13] if n −m = 2. By Lemma 4.6, this yields at
least two constituents in [µ] · [ν] different from [κ]. Finally, let n −m = 1.
Then (11) equals 0. Note that γ must have a removable node A1 6= A0, since
otherwise ν = (1n). If µ/γ is disconnected from A1, then

[µ/γA1 ] · [ν/γA1 ] = [2] + [12],

and we are done by Lemma 4.6. If µ/γ is connected with A1, then µ =
(2k, 12), ν = (2k+1) (and k > 1 since µ is not of the form (2, 1n−2)). Then
the expression (3) equals [12]. So, by Lemma 4.6, [n−1, 1] and [n−2, 12] are
constituents of [µ] · [ν]. But |µ∩ ν ′| = 4, so there also must be a constituent
with 4 non-zero rows, thanks to Theorem 2.1.

This completes the consideration of the case where [µ/γ] is disconnected
from A0.

Let µ/γ be connected with A0. Then, in view of Lemmas 4.4 and 4.5(2),
we have

[µ/γA0 ] =
∑
B 6=B0

[
αB
]

where B0 is the bottom addable node of α. Let B1 be the top addable node
of α. Then we get a contribution to (3) from the following expression:

[ν/γA0 ] · [µ/γA0 ]−
∑
B

[
αB
]

(12)
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= [n−m, 1] ·
∑
B 6=B0

[
αB
]
−
∑
B

[
αB
]

=
∑
B 6=B0

∑
C

∑
D

[(
αB
)
C

D
]
−
∑
B 6=B0

[
αB
]
−
∑
B

[
αB
]

=
∑
C 6=B1

∑
D

[(
αB1

)
C

D
]

+
∑

B 6=B0,B1

∑
C

∑
D

[(
αB
)
C

D
]
−
∑
B 6=B0

[
αB
]

where B runs through the addable nodes of α, C runs through the removable
nodes of αB (for the respective node B) and D runs through the addable
nodes of (αB)C .

If α has a third addable node, say B2, then αB1 is not a rectangle, and
hence there exists a node C1 6= B1 which is removable from αB1 . This shows
that the first sum in (12) contains [αB1 ]. Moreover, the second sum in (12)
contains

∑
D[αD], and so both [αB0 ] and [αB1 ] are constituents of (12). Now

we can apply Lemma 4.6.
If B0 and B1 are the only addable nodes of α, then α is a rectangle. Let

C1 be the corner node of α.
If α is not a row, then αB1 also has the removable node C1. In this case,

(12) is ∑
D

[(
αB1

)
C1

D
]
−
[
αB1

]
which gives at least two contributions, except in the case where α = (12)
when (12) equals [3]. If γ has a further removable node A1, then this leads
to a further contribution [2, 1] to (3). But if γ is a rectangle, then µ = (23)
and ν = (32), and we can apply Lemma 4.3.

If α is a row then γ must have a removable node A1 6= A0, since otherwise
µ = (n). Note that (12) equals −[n−m+1]. Also [ν/γA1 ]·[µ/γA1 ] = [n−m+
1] + [n−m, 1]. By Lemma 4.6, the product [µ] · [ν] contains [m,n−m] and
[m−1, n−m, 1]. Note that our assumptions yield µ = (k+n−m, k−n+m),
ν = (k, k) with k−n+m ≥ 2. But in this case |µ∩ ν ′| ≥ 4. So Theorem 2.1
implies that [µ] · [ν] has a constituent with 4 rows.
Case (b). Since [µ] is not of degree 1, the assumption [µ/γ] and [µ/γA0 ]
are of degree 1 implies that γ must have a removable node A1 6= A0. By
assumption, A1 is connected with both µ/γ and ν/γ, and since [µ/γ] is of
degree 1, A1 and A0 are the only removable nodes of γ.

Since [µ/γA0 ] is 1-dimensional, we conclude from Lemmas 4.4 and 4.5 that
[µ/γA1 ] = [n−m, 1] or the conjugate. So if n−m > 1 and [ν/γA1 ] = [n−m, 1]
then (3) equals [n − m, 1] · [n − m, 1] or the conjugate. Now we apply
Corollary 4.2 and Lemma 4.6. Otherwise µ = (k, k), ν = (k + n − m, k −
n + m) or µ = (2k), ν = (2k−1, 12). But these cases have already been
considered. �
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Thus we have classified all pairs µ, ν such that [µ] · [ν] has at most 2
homogeneous components. The “if-parts” of the following conjecture are
proved in Corollary 4.2 and Lemma 4.3.

Conjecture.

(i) [µ] · [ν] has 3 homogeneous components if and only if n = 3 and µ =
ν = (2, 1) or n = 4 and µ = ν = (2, 2).

(ii) [µ]·[ν] has 4 homogeneous components if and only if one of the following
happens:

(a) n ≥ 4 and µ, ν ∈ {(n− 1, 1), (2, 1n−2)};
(b) n = 2k+1 for some k ≥ 2, and one of µ, ν is in {(2k, 1), (2, 12k−1)}

while the other one is in {(k + 1, k), (2k, 1)};
(c) n = 6 and µ, ν ∈ {(23), (32)}.

The following theorem proves the conjecture in the special case when both
µ and ν are symmetric.

Theorem 4.9. Let µ and ν be symmetric partitions of n. Then [µ] · [ν] has
at most 4 homogeneous components if and only if one of the following holds:

(i) n = 1;
(ii) n = 3, µ = ν = (2, 1), when [µ]2 = [3] + [2, 1] + [13];
(iii) n = 4, µ = ν = (22), when [µ]2 = [4] + [22] + [14].

Proof. Let γ = µ∩ν, m = |γ|. Then γ is a symmetric partition, and at least
one of the skew diagrams µ/γ, ν/γ has no box on the main diagonal. Say it
is µ/γ. Because of the symmetry, we can then write µ/γ as a disjoint union
α ∪ α′, where α and α′ are some skew shapes which are conjugate to each
other. In particular, n−m is even. By [6, (5.7)],

[µ/γ] = [α]⊗̂[α′].

If every constituent of [α]⊗̂[α′] belongs to M = {[n − m], [1n−m], [n −
m − 1, 1], [2, 1n−m−2]} then by the Littlewood-Richardson Rule, every con-
stituent of [α] and [α′] would have to belong to {[(n−m)/2], [1(n−m)/2], [(n−
m)/2− 1, 1], [2, 1(n−m)/2−2]} . But even then, if n−m ≥ 6, the Littlewood-
Richardson Rule implies that there are components of [α]⊗̂[α′] not in M .

Assume first that n −m ≥ 6. Then, by the Littlewood-Richardson Rule
again, [ν/γ] contains a constituent not in M . Now Theorems 3.4 and 4.8 im-
ply that [µ/γ]·[ν/γ] contains at least three different irreducible constituents,
say [ρ̂1], [ρ̂2], [ρ̂3]. Then [µ] · [ν] contains the corresponding constituents [ρ1],
[ρ2], [ρ3], thanks to Corollary 2.3. Since µ and ν are symmetric, [µ] · [ν] also
contains the conjugate constituents [ρ′1], [ρ′2], [ρ′3]. Now, by Theorem 3.3
no constituent can have at the same time the maximal length and width
among all the constituents. Hence [ρi] 6= [ρ′j ] for all i, j. Thus we have
found 6 different irreducible constituents.
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The case n − m = 0 follows from Lemma 4.3. So we may now assume
that n−m = 2 or 4. Note that in the first case n > 7 since for n ≤ 7 there
is only one symmetric partition, and in the second case n > 8, since the
intersection of the two different symmetric partitions for n = 8 is a partition
of 6. Then by the Littlewood-Richardson Rule and Corollary 2.3, we know
that [µ] · [ν] has the constituents [n − 2, 2], [n − 2, 12] and their conjugates
if n −m = 2, and it has the constituents [n − 4, 3, 1] and [n − 4, 2, 12] and
their conjugates if n −m = 4. By the remark above, n is sufficiently large
in both cases so that the four constituents are all different.

Assume that these are all the constituents of [µ] · [ν]. Consider the case
n−m = 4. We compute the character values on (n− 1)-cycles and (n− 2)-
cycles. Since |γ| = n − 4, we know that min(hµ11, h

ν
11) < n − 2. Hence

on an (n − 1)-cycle zn−1 and an (n − 2)-cycle zn−2 in Sn we have by the
Murnaghan-Nakayama rule:

[µ](zn−1) · [ν](zn−1) = 0 = [µ](zn−2) · [ν](zn−2).

On the other hand, if n is even, then

[n− 4, 2, 12](zn−1) = −1 = [4, 2, 1n−6](zn−1)

and

[n− 4, 3, 1](zn−1) = 0 = [3, 22, 1n−7](zn−1)

gives a contradiction. If n is odd, then similarly

[n− 4, 2, 12](zn−2) = 0 = [4, 2, 1n−6](zn−2)

and

[n− 4, 3, 1](zn−2) = 1 = [3, 22, 1n−7](zn−2)

gives a contradiction. The case n −m = 2 is considered similarly using zn
and zn−1. �

5. Homogeneous Kronecker products of An-representations.

We first recall the classification of the complex irreducibleAn-representations
(cf. [4, 2.5]). If µ is a non-symmetric partition of n then the restrictions
Sµ ↓An and Sµ

′ ↓An are irreducible and isomorphic to each other. We denote
the corresponding irreducible An-module by Tµ or Tµ

′
. Thus Tµ ∼= Tµ

′
for

µ 6= µ′. On the other hand, if µ = µ′ then Sµ ↓An splits into a direct sum
of two non-isomorphic An-modules, say Tµ+ and Tµ−. Moreover, the modules
Tµ+ and Tµ−, as µ runs over all symmetric partitions of n, together with the
modules Tµ, as µ runs over a system of representatives of the pairs {µ, µ′}
for the non-symmetric partitions µ of n, form a complete system of the non-
isomorphic irreducible An-modules. It is well known that Tµ± is obtained
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from Tµ∓ by twisting with an automorphism of An, which comes from a con-
jugation by an element g ∈ Sn \ An. The character of Tµ(±) will be denoted
by {µ}(±).

Lemma 5.1. Let µ, ν be non-symmetric partitions of n, both different from
(n) and (1n). Then Tµ ⊗ T ν is homogeneous if and only if Sµ ⊗ Sν ∼=
xSλ ⊕ y Sλ′ for some λ 6= λ′, x, y ∈ N.

Proof. This follows from the definition of the modules Tµ and Theorem 3.4.
�

Lemma 5.2. Let µ, ν be partitions of n, both different from (n), (1n). As-
sume that µ 6= µ′, ν = ν ′. Then Tµ ⊗ T ν± is homogeneous if and only if
Sµ ⊗ Sν ∼= xSλ ⊕ y Sλ′ for some λ 6= λ′, x, y ∈ N.

Proof. The “if-part” is clear.
If Tµ ⊗ T ν+ ∼= xT λ± for some λ = λ′, then, conjugating by g ∈ Sn \An, we

get Tµ ⊗ T ν− ∼= xT λ∓. So

Tµ ⊗ (T ν+ ⊕ T ν−) ∼= x(T λ+ ⊕ T λ−).

The lift to Sn gives Sµ ⊗ Sν ∼= xSλ, which is impossible by Theorem 3.4.
If Tµ⊗T ν+ ∼= xT λ for some λ 6= λ′, then as above we have Tµ⊗T ν− ∼= xT λ,

so the lift to Sn gives Sµ ⊗ Sν ∼= y Sλ ⊕ z Sλ′ (with y + z = x). �

Lemma 5.3. Let ν be a symmetric partition of n, and let φ, ψ be irreducible
An-characters both different from {ν}+ and {ν}−. Then

〈ψ · {ν}+, φ〉 = 〈ψ · {ν}−, φ〉.

Proof. By [4, 2.5.13], we have

〈ψ · {ν}±, φ〉 =
1
|An|

∑
g∈An

ψ(g){ν}±(g)φ(g)

=
1
|An|

 ∑
g∈An\(C+

ν ∪C−ν )

ψ(g){ν}±(g)φ(g)

+
∑
g∈C+

ν

ψ(g)
1
2

εν ±√εν∏
i

hνii

φ(g)

+
∑
g∈C−ν

ψ(g)
1
2

εν ∓√εν∏
i

hνii

φ(g)


where εν = (−1)(n−k)/2 and C±ν denote the two conjugacy classes in An
which consist of elements of cycle type (hν11, . . . , h

ν
kk). Since ψ, φ correspond
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to partitions different from ν, each of them takes the same value on C+
ν and

C−ν , so the last expression is the same for {ν}+ and {ν}−. �

Lemma 5.4. Let ν be a symmetric partition of n and let ψ be an irreducible
An-character different from {ν}+ and {ν}−. Then

〈ψ · {ν}+, {ν}+〉 = 〈ψ · {ν}−, {ν}−〉 and

〈ψ · {ν}+, {ν}−〉 = 〈ψ · {ν}−, {ν}+〉.

Proof. We compute the scalar products using [4, 2.5.13] as in the previous
proof, and use the facts that {ν}+(g) = {ν}−(g) for any g ∈ An \ (C+

ν ∪C−ν )
and ψ(g) = ψ(h) for any g, h ∈ C+

ν ∪ C−ν . �

From the previous two results we deduce:

Proposition 5.5. Let µ, ν be symmetric partitions of n, µ 6= ν. Then
{µ}+ · {ν}+ is homogeneous if and only if {µ}+ · {ν}− is homogeneous.

Now we can classify the homogeneous Kronecker products of irreducible
An-characters. Note that if n > 4 then the only 1-dimensional character is
the trivial one. For n = 3 and 4 there are two more 1-dimensional characters
in each case: {2, 1}± and {22}±.

Theorem 5.6. Let φ, ψ be irreducible An-characters both of degrees greater
than 1. Then φ ·ψ is homogeneous if and only if n = a2 for some a > 2 and
one of the characters is {n − 1, 1}, while the other is {aa}+ or {aa}−. In
the exceptional case:

{n− 1, 1} · {aa}± = {a+ 1, aa−2, a− 1}.

Proof. The “if-part” follows from Corollary 4.2(ii).
Let φ and ψ correspond to partitions µ and ν, respectively. If µ and ν

are both non-symmetric, then by Lemma 5.1 and Theorem 4.8 the tensor
product Tµ ⊗ T ν is not homogeneous. If one of the partitions µ, ν is sym-
metric and the other is not, use Lemma 5.2 and Theorem 4.8. So we may
assume that µ and ν are both symmetric. If µ 6= ν, then by Lemmas 5.3,
5.4 and 5.5, if one of the four products {µ}± · {ν}± is homogeneous then
the product [µ] · [ν] has at most two homogeneous components, contradict-
ing Theorems 3.4 and 4.8. Indeed, consider for example the case where
{µ}− · {ν}− is homogeneous. Since {λ}± is obtained from {λ}∓ by conju-
gating with an element g ∈ Sn \ An, we conclude that {µ}+ · {ν}+ is also
homogeneous. Moreover, if {µ}− · {ν}− = x{λ} then {µ}+ · {ν}+ = x{λ},
and if {µ}− · {ν}− = x{κ}± then {µ}+ · {ν}+ = x{κ}∓. By Proposition 5.5,
we also have that {µ}± · {ν}∓ are homogeneous. Moreover, Lemmas 5.3, 5.4
imply {µ}± · {ν}∓ = {λ} or {κ}± or∓. Thus [µ] · [ν] is x[λ] + y[λ′] or x[κ].

Now let µ = ν be symmetric. We have to consider three cases: {µ}± ·{µ}±
and {µ}+ · {µ}−. Using conjugation with g ∈ Sn \An, we can eliminate one
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of them, and work only with {µ}+ · {µ}+ and {µ}+ · {µ}−. Let us consider
the first case (the second one is similar). So let {µ}+ · {µ}+ = xψ for some
irreducible An-character ψ.

If the dual character {µ}∗+ is equal to {µ}+, then

〈{n}, {µ}+ · {µ}+〉 = 〈{µ}+, {µ}+〉 = 1,

so we deduce {µ}+·{µ}+ = {n}, which is impossible as {µ} is not of degree 1.
If {µ}∗+ = {µ}−, then

〈{n}, {µ}+ · {µ}+〉 = 〈{µ}−, {µ}+〉 = 0

and
〈{n− 1, 1}, {µ}+ · {µ}+〉 = 〈{n}+ {n− 1, 1}, {µ}+ · {µ}+〉

= 〈{n− 1} ↑An , {µ}+ · {µ}+〉
= 〈{µ}− ↓An−1 , {µ}+ ↓An−1〉.

Consider the case where µ is not a square. Then, by the Branching Rule,
both restrictions in the last expression contain some {λ} where λ is a non-
symmetric partition of n−1. So the scalar product above is non-zero, whence
{µ}+ · {µ}+ = x{n− 1, 1}. Take z ∈ An of cycle type (n− 2, 2), if n is even
and of cycle type (n−2, 1, 1), if n is odd. As µ is symmetric it does not have
a hook of length n− 2. Hence by [4, 2.5.13] and the Murnaghan-Nakayama
Rule we have

{µ}+(z){µ}+(z) = 0 .
On the other hand, x{n − 1, 1}(z) = ±x 6= 0, when n is odd or even,
respectively. This is a contradiction.

It remains to deal with the case where {µ}∗+ = {µ}− and µ is a square.
Consider

〈{n− 2} ↑An , {µ}+ · {µ}+〉 = 〈{µ}− ↓An−2 , {µ}+ ↓An−2〉.
By the Branching Rule, the last scalar product is non-zero. But

{n− 2} ↑An= {n}+ 2{n− 1, 1}+ {n− 2, 2}+ {n− 2, 12},
and the product {µ}+ · {µ}+ can not be of the form x{n} or x{n− 1, 1} by
the same arguments as before. So we may assume that

{µ}+ · {µ}+ = x{n− 2, 2} or {µ}+ · {µ}+ = x{n− 2, 12}.
In the first case, we evaluate both sides on an element of cycle type

(n− 2, 12) if n is odd, and on an element of cycle type (n− 1, 1) if n is even.
Then the left hand side gives zero whereas the right hand side is ±x, giving
a contradiction.

In the second case, we evaluate both sides on an element of cycle type
(n) if n is odd, and on an element of cycle type (n− 3, 13) if n is even. This
gives zero on the left hand side and ±x on the right hand side. �
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Note added in proof.
After this paper had been accepted we learned of the paper of I. Zisser

“Irreducible products of characters in An”, Israel J. Math., 84 (1993), 147-
151. The main result of the Zisser’s paper is that An has a pair of non-linear
characters, whose product is irreducible, if and only if n is a perfect square.
Even though Zisser does not classify all such pairs (which is done in our pa-
per), he does prove that one of the characters must correspond to the square
diagram. Moreover, he also proves that the product of two non-linear Sn-
characters is never irreducible, using his previous results on decomposing the
squares of irreducible characters. However, we believe that the short direct
proof of the more general fact that such a product is never homogeneous
given in Section 3 of our paper (Theorem 3.4) might be useful. Generally,
our approach allows us to consider more general questions concerning few
homogeneous components rather than few irreducible components.
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L2 ESTIMATES ON CHORD-ARC CURVES

Joaquim Bruna and Maŕıa J. González

We characterize those domains in the plane whose bound-
ary is a chord arc curve in terms of some L2 integrals, which
are mainly a version of Green’s theorem. As a consequence of
this we obtain a “converse” to a theorem due to Laurentiev
that states that for such domains harmonic measure and arc
length are A∞ equivalent.

Let Γ be a locally rectifiable Jordan curve in the plane that passes through
∞, and let Ω+, Ω− be the two domains bounded by Γ.

Given a function f defined on Γ, its Cauchy integral

Cf(z) =
∫

Γ

f(ζ)
ζ − z

dζ, z /∈ Γ

defines an analytic function off Γ.
If C+f , C−f denote the restrictions of Cf to Ω+ and Ω−, and if f+, f−

denote their boundary values, then

f±(z) = ±1
2
f(z) +

1
2πi

P.V.
∫

Γ

f(ζ)
ζ − z

dζ, z ∈ Γ.

G. David has shown in [D] that the Cauchy integral is bounded in L2(Γ)
if and only if Γ is regular, that is, there exists a constant C such that for all
z0 ∈ C and all R > 0, the arclength of B(z0, R) ∩ Γ is at most CR, where
B(z0, R) denotes the ball centered at z0 and radius R.

Several proofs have been given of the boundedness of the Cauchy integral
under stronger hypothesis on Γ. We shall concentrate on the first proof
presented in [C-J-S] which is based on complex variables methods. They
show the result for Lipschitz graphs, i.e.,

Γ = {x+ iA(x) : x ∈ R} with A′ ∈ L∞.

By following their argument very closely one can notice that the theorem is
a consequence of the fact that for any F holomorphic in Ω± that decays to
zero at ∞, the following two integrals are equivalent:∫∫

Ω±

|F ′(z)|2δ(z) dx dy ∼=
∫

Γ
|F |2 ds

where δ(z) = dist(z,Γ).
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It is a well known result, [J-K], that such an equivalence holds if Γ is
a chord-arc curve (the length of the arc is comparable to the chord). The
main purpose of this paper is to show that the chord-arc condition is also
necessary for the equivalence to hold.

To avoid problems at ∞, we will assume that the curves Γ and the func-
tions F are analytic at ∞. In particular F (z) = O

(
1
z

)
at ∞. Note that if Γ

is the real line and Ω is the upper half plane, the equivalence of the integrals
is just Green’s theorem applied to the functions u(z) = |F (z)|2 and v(z) = y
in the domain ΩR = {z ∈ R+

2 ; |z| ≤ R} [G, p. 236]. Since F (z) = O
(

1
z

)
the

terms involving the line integral on {z = Reiθ; 0 < θ < π} will tend to 0 as
R tends to ∞.

Before stating the results we need to recall a few definitions:

A function ϕ ∈ L1
loc(R) lies in BMO(R) if

sup
I

1
|I|

∫
I
|ϕ− ϕI | dt = ‖ϕ‖∗ <∞

where I ⊂ R is any bounded interval and ϕI = 1
|I|
∫
I ϕdt. The space

BMOA(R) denotes the space of holomorphic functions in the upper half
plane that are Poisson integrals of functions in BMO(R).

A positive measure µ defined on the upper half plane is called a Carleson
measure if there is a constant N(µ) such that

µ(Q) ≤ N(µ)l(Q)

for all cubes
Q = {x0 < x < x0 + l(Q), 0 < y < l(Q)}.

There is a close connection between BMO functions and Carleson measures:
A function ϕ ∈ BMO(R) if and only if |∇ϕ(z)|2y dx dy is a Carleson measure
where ϕ(z) denotes the harmonic extension of ϕ. See [G, p. 240].

We are ready now to state the results:

Theorem 1. Let Γ be a locally rectifiable Jordan curve analytic at ∞ and
let Ω be a domain bounded by Γ.

Denote by Φ the conformal mapping from R+
2 onto Ω with Φ(∞) = ∞.

Then log Φ′ ∈ BMOA(R) if and only if there is a constant c, depending only
on the BMO constant, such that∫∫

Ω
|F ′|2δ(z) dx dy ≤ c

∫
Γ
|F |2 ds(1)

for any F holomorphic in Ω with F (z) = O
(

1
z

)
at ∞.

Note that the boundary values of Φ′ are defined a.e. on R because of our
assumptions on Γ.
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Theorem 2. Let Γ be a locally rectifiable Jordan curve bounding the do-
mains Ω+, Ω−. Suppose there exists a constant c such that∫

Γ
|F |2 ds ≤ c

∫∫
Ω+

|F ′|2δ(z) dx dy(2)

and ∫
Γ
|G|2 ds ≤ c

∫∫
Ω−

|G′|2δ(z) dx dy

for any holomorphic function F (G) on Ω+(Ω−) vanishing at ∞. Then Γ is
a chord-arc curve.

As we mentioned before its converse is also true. Also note that if (2)
holds then (1) holds, that is because if Ω is bounded by a chord-arc curve,
log Φ′ ∈ BMOA(R).

It will become clear from the proof of the theorem that (2) can be replaced
by ∫

Γ
|ϕ|2 ds ∼=

∫∫
C
|(Cϕ)′|2δ(z) dx dy

where ϕ = χI for any arc I ⊂ Γ.
It is also interesting to see what happens if we consider functions of the

form F (z) = 1
|z−w| , w /∈ Γ. Then the result is the following:

Theorem 3. Let Γ be a locally rectifiable curve, then Γ is regular if and
only if there exist constants c1, c2 such that

c1
1

δ(w)
≤
∫

Γ

|dz|
|z − w|2

≤ c2
1

δ(w)
, for all w /∈ Γ.(3)

The proofs of these theorems are contained in Section 1. Further remarks
and corollaries will be given in Section 2. Finally we would like to thank,
M. Melnikov for suggesting some questions and for many helpful conversa-
tions, and the referee for his comments which improved the presentation of
this paper.

1. Proofs of the Theorems.

Proof of Theorem 1. First note that by changing variables and by using
Koebe’s distortion theorem, (1) is equivalent to∫∫

R+
2

|f ′|2|Φ′|y dx dy ≤ c
∫

R
|f |2|Φ′| dx(4)

where f is a holomorphic function on R+
2 with f(z) = O

(
1
z

)
at ∞.

Consider now g = f(Φ′)1/2. Then applying Green’s Theorem as in the
remark of the introduction, we get∫

R
|g|2 dx = 4

∫∫
R+

2

|g′|2y dx dy.
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Since f ′(Φ′)1/2 = g′ − 1
2g

Φ′′

Φ′∫∫
R+

2

|f ′|2|Φ′|y dx dy =
∫∫

R+
2

∣∣∣∣g′ − 1
2
g
Φ′′

Φ′

∣∣∣∣2 y dx dy
≤ 2

∫∫
R+

2

(
|g′|2 +

1
4
|g|2

∣∣∣∣Φ′′

Φ′

∣∣∣∣2
)
y dx dy

≤ 1
2

(∫
R
|g|2 dx+

∫∫
R+

2

|g|2 |Φ
′′|2

|Φ′|2
y dx dy

)
.

By the remark at the end of the introduction if log Φ′ ∈ BMOA(R), then
|Φ′′|2
|Φ′| y is a Carleson measure and (4) holds.

On the other hand, if (4) holds then∫∫
R+

2

|g|2
∣∣∣∣Φ′′

Φ′

∣∣∣∣2 y dx dy = 4
∫∫

R+
2

|g′ − (f ′)2Φ′|2y dx dy ≤ 4c
∫

R
|g|2 dx

which is equivalent to |Φ′′|2
|Φ′|2 y being a Carleson measure ([G, p. 33]). �

Proof of Theorem 2. Let I be an arc on Γ with length l(I) and endpoints α,
β.

Set f = χI and consider the functions C±f(z) defined in the introduction.
Since f = f+ − f−, (2) implies∫

Γ
|f |2 ds ≤ c

(∫∫
Ω+

|(C+f)′|2δ(z) dx dy +
∫∫

Ω−

|(C−f)′|2δ(z) dx dy
)

= c

∫∫
C\Γ
|(Cf)′|2δ(z) dx dy

that is

l(I) ≤ C
∫∫

C\Γ
δ(z)

∣∣∣∣∫
I

dζ

(ζ − z)2

∣∣∣∣ dx dy.
Let ζ(s), s ∈ [a, b] be a parameterization of I by arclength, then∫

I

dζ

(ζ − z)2
=
∫ b

a

ζ ′(s)
(ζ(s)− z)2

ds =
1

ζ(a)− z
− 1
ζ(b)− z

=
β − α

(α− z)(β − z)
.

Therefore

l(I) ≤ |β − α|2
∫∫

C\Γ

δ(z)
|z − α|2|z − β|2

dx dy.

It only remains to estimate the last integral. To do so we split it into three
integrals. Let B1 be the ball centered at α with radius |β−α|

2 and let B2 be
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the corresponding one centered at β. Then∫∫
B1

δ(z)
|z − α|2|z − β|2

dx dy ≤ 4
|β − α|2

∫∫
B1

dx dy

|z − α|
=

c

|β − α|
.

By a similar argument one can show that the same estimate holds on B2

and outside B1 ∪B2. Therefore

l(I) ≤ c|β − α|.

�

Proof of Theorem 3. Suppose first that Γ is a regular curve. Fix a point
w /∈ Γ, choose z0 ∈ Γ such that δ(w) = |w − z0| and consider the ball B
centered at z0 with radius 2δ(w). So:∫

Γ

|dz|
|z − w|2

=
∫

Γ∩B

|dz|
|z − w|2

+
∫

Γ\B

|dz|
|z − w|2

.

If z ∈ Γ ∩B, then |z − w| ∼= δ(w). Also, since Γ is regular l(Γ ∩B) ∼= δ(w).
Therefore, trivially ∫

Γ∩B

|dz|
|z − w|2

∼=
1

δ(w)
.

On the other hand ∫
Γ\B

|dz|
|z − w|2

=
∞∑
k=1

∫
Ak

|dz|
|z − w|2

where Ak = {z ∈ Γ : 2kδ(w) ≤ |z − z0| ≤ 2k+1δ(w)}.
If z ∈ Ak, |z − w| ∼= 2kδ(w). Since l(Ak) ∼= 2kδ(w) we get∫

Γ\B

|dz|
|z − w|2

∼=
1

δ(w)

which proves the first part of the theorem.

Suppose now that (3) holds. Choose any r > 0 and any point z0 ∈ C
and consider the ball B centered at z0 of radius r. Let A be the annulus
A = {2r < |z − z0| < 3r} and let w ∈ A be a point with the property that

δ(w) = sup
z∈A

δ(z).

We claim that there is a constant c depending only on c1, c2 such that
δ(w) ≥ cr. Assuming the claim let us finish the proof of the theorem:

l(Γ ∩B)
r2

≤
∫

Γ∩B

|dz|
|z − w|2

≤
∫

Γ

|dz|
|z − w|2

∼=
1

δ(w)
≤ c

r
.
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Therefore l(Γ∩B) ≤ cr, i.e. Γ is regular. To prove the claim consider a grid
on A of size δ(w). Then, because of the choice of w, any square of the grid
contains points of Γ. So, letting N ∼= r/δ(w), we have

c2
δ(w)

≥
∫

Γ

|dz|
|z − w|2

≥
N∑
k=1

∫
{z∈Γ:

kδ(w)<|z−w|<(k+1)δ(w)}

|dz|
|z − w|2

≥ c
N∑
k=1

1
kδ(w)

∼=
c

δ(w)
log r/δ(w).

Therefore r/δ(w) ≤ c which proves the claim. �

Note that the same result holds if we replace 1
|z−w|2 by 1

|z−w|α for any
α > 1. Then instead of (3) we get∫

Γ

|dz|
|z − w|α

∼= (δ(w))−α+1.

The proof is the same.

2. Further remarks.

Let w(x) > 0 be locally integrable on R.
Set w(E) =

∫
E w(x) dx, and let |E| denote the Lebesgue measure of E.

We say that w is an A∞ weight if for every ε > 0, there is a δ > 0 such that
if I is any interval and E ⊆ I, then

|E|
|I|

< δ ⇒ w(E)
w(I)

< ε.

If ω is an A∞ weight, then logw ∈ BMO. For a proof of this fact and some
related ones see [S].

As before, given an unbounded simply connected domain Ω other than
the plane itself, Φ will denote the conformal mapping from R+

2 onto Ω fixing
∞.

There is a theorem due to Laurentiev which states that if Ω is a domain
bounded by a chord-arc curve, then arc-length and harmonic measure on
∂Ω are A∞-equivalent. That is, |Φ′| is an A∞-weight.

A version of a converse is given in [J-K]. Before stating it we need some
more definitions.

A Jordan curve Γ that passes through ∞ is called a quasi-circle if it
satisfies the three-point condition, that is there is a constant c such that for
any three points z1, z2 ∈ Γ and z3 on the arc joining z1 and z2, |z1 − z3| ≤
c|z1 − z2|. Obviously a chord-arc curve is a quasicircle.
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A domain is called a Smirnov domain if log |Φ′(z)| is represented by
its Poisson integral. In particular domains bounded by regular curves are
Smirnov [Z].

Theorem 4 ([J-K]). Suppose Ω is a Smirnov domain, ∂Ω is a quasicircle
and harmonic measure is A∞-equivalent to arc length. Then ∂Ω is a chord-
arc curve.

Note that its converse is also true.
Using Theorem 2 we give another “converse” to Laurentiev’s theorem

which is very similar to [J-K].

Corollary 1. Suppose that the two sides of a curve Γ are Smirnov domains
and that on each domain harmonic measure is A∞-equivalent to arc-length.
Then Γ is a chord-arc curve.

As before note that its converse is also true.

Proof. Let Ω be one of the sides of Γ and let Φ : R+
2 → Ω be its conformal

mapping, Φ(∞) =∞. We are assuming that |Φ′| is an A∞ weight, therefore
[G-W],∫

R
|F (x)|2|Φ′(x)| dx ≤ c

∫
R

(∫∫
Γx

|F ′(z)|2 dA(z)
)
|Φ′(x)| dx

where Γ(x) is a cone centered at x:

Γx = {(s, y) : |x− s| < ay} for some a fixed

and F is a holomorphic function on R+
2 vanishing at ∞ as before. The

constant c depends only on the opening of the cone and the A∞-constant.
By Fubini’s theorem the integral on right-hand side is equivalent to∫∫

R+
2

|F ′(z)|2σ(Iz) dx dy

where σ(Iz) =
∫
Iz
|Φ′(t)| dt and Iz is the interval on R centered at x and

length 2ay.
Since log Φ′ ∈ BMO,∣∣∣∣Py ∗ log |Φ′| − 1

|Iz|

∫
Iz

log |Φ′|
∣∣∣∣ ≤ c

with c depending on the BMO-constant of log |Φ′| [G].
On the other hand, Ω being a Smirnov domain implies that Py ∗ log |Φ′| =

log |Φ′(z)| and |Φ′| ∈ A∞ is equivalent to saying that

exp
(

1
|I|

∫
I
log |Φ′| dt

)
∼=

1
|I|

∫
I
|Φ′| dt

for any interval I ⊂ R.
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So,

|Φ′(z)| ∼=
1
|Iz|

∫
Iz

|Φ′(t)| dt = σ(Iz)/2ay.

Hence, there is a constant c such that∫
R
|F (x)|2|Φ′(x)| dx ≤ c

∫∫
R+

2

|F ′(z)|2|Φ′(z)|y dx dy.

Since this inequality holds on both sides of Γ, by changing variables and us-
ing Koebe’s distortion theorem we get the hypothesis of Theorem 2. There-
fore Γ is chord-arc. �

Next corollary involves quasiconformal mappings. The result we need to
use is the quasiconformal analogue of Koebe’s distortion theorem [A-G]:
Suppose that Ω and Ω′ are domains in R2 and that ρ : Ω → Ω′ is K-
quasiconformal with Jacobian Jρ. For each z ∈ Ω, define

aρ(z) =
1
|Bz|

∫∫
Bz

(Jρ(ζ))1/2 dζ dζ̄

where Bz is the disk of center z and radius δ(z). Then

δ(ρ(z)) ∼= aρ(z)δ(z).

Using this fact and a change of variables in (2) we get the following:

Corollary 2. Let Γ be a locally rectifiable quasicircle analytic at ∞ bound-
ing the domain Ω, and let ρ be a quasiconformal mapping that sends R+

2
onto Ω. Then Γ is a chord-arc curve if and only if∫

R
|F (x)|2J1/2

ρ (x) dx ∼=
∫∫

C
JF (z)aρ(z)y dx dy

for any quasiregular mapping F satisfying ∂̄F = µ∂F where µ is the dilata-
tion of ρ and F (z) = O

(
1
z

)
at ∞.

References

[A-G] K. Astala and F.W. Gehring, Quasiconformal analogues of theorems of Koebe and
Hardy-Littlewood, Michigan Math. J., 32 (1985), 99-107.

[C-J-S] R.R. Coifman, P.W. Jones and S. Semmes, Two elementary proofs of the L2 bound-
edness of Cauchy integrals on Lipschitz curves, J. Amer. Math. Soc., 2 (1989),
553-564.
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ENTROPY OF CUNTZ’S CANONICAL ENDOMORPHISM

Marie Choda

Let {Si}n
i=1 be generators of the Cuntz algebra On and let Φ

be the *-endomorphism of On defined by Φ(x) =
∑n

i=1 SixS∗
i .

Then both of Connes–Narnhofer–Thirring’s entropy hφ(Φ)
and Voiculescu’s topological entropy ht(Φ) are log n, where
φ is the unique log n-KMS state of On. Also Longo’s canon-
ical endomorphism for N ⊂ M have the same entropy log n,
where the inclusion N ⊂ M comes from On .

1. Introduction.

Connes-Stφrmer entropy H(·) extended the entropy invariant of Kolmogo-
rov-Sinai to trace preserving automorphisms of finite von Neumann algebras
([CS]). Replacing a finite trace to an invariant state φ, Connes-Narnhofer-
Thirring entropy hφ(·) is defined for automorphisms of C∗-algebras as a
generalization of H(·) ([CNT]). These entropies depend on an invariant
state under a given automorphism.

The first typical interesting example to compute the entropy is the Berno-
ulli shift βn on the infinite product space of n-point sets.

In the context of operator algebras (von Neumann algebras or C∗-alge-
bras), the non-commutative Bernoulli shift αn takes the place of the the
Bernoulli shift βn. It is the shift automorphism on the infinite tensor product
A =

⊗∞
i=−∞Ai (where Ai is the n×n-matrix algebra) and H(αn) = log n =

hτ (αn) ([CS], [CNT]), where τ is the unique tracial state of A.
Ler γ be an aperiodic automorphism of an algebra B. Then there exists an

implimenting unitary operator u for γ in the crossed product M = B oγ Z .
The inner automorphism Adu, (Adu(x) = uxu∗) of M is an extension of γ
to M. In general, the entropy of γ is less than the entropy of Adu. Stφrmer
[S] asked if the equality between the entropies of γ and Adu holds.

Voiculescu [V] defined topological entropy ht(·) for automorphisms of
nuclear C∗-algebras (cf. [Hu], [T]), which does not depend on any state
but is based on approximations. As an application, he showed that his
topological entropy satisfies the equality for the Bernoulli shift βn, so that
Connes-Narnhofer-Thirring entropy does too.

In this paper, we show the equality for both of the automorphism αn and
the unital *-endomorphism of the type of the non-commutative Bernoulli
shift.
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In §3, we denote only the fact that

H(Adu) = hτ (Adu) = ht(Adu) = log n,

where τ is the unique tracial state of the reduced crossed product Aoαn Z .
These are proved by similar method as in §4 and §5.

The definition of Connes-Stφrmer entropy is available to trace preserving
*-endomorphisms on finite von Neumann algebras. Similarly, we can apply
the definition of Connes-Narnhofer-Thirring entropy to unital and state pre-
serving *-endomorphisms of C∗-algebras, and also Voiculescu’s topological
entropy to unital *-endomorphisms of nuclear C∗-algebras. We apply here,
in particular, to the unital *-endomorphism which is an extension of the
*-endomorphism coming from the non-commutative Bernoulli shift αn as
follows.

If we restrict our algebra A to the half side infinite C∗-tensor product (or
von Neumann tensor product) B =

⊗∞
i=0Ai of matrix algebras, then the

restriction of αn to B defines a unit preserving *-endomorphism σn of B,
which is canonical in the sense of [Ch2, Ch3]. Then we have the extension
algebra 〈B, σn〉 of B by σn ([Ch2, Ch3]). In the case of C∗ algebras,
〈B, σn〉 is the crossed product B oρ N of B by the corner endomorphism
ρ in [R, I2], which is defined by σn using the canonical property of σn.
Further, the canonical extension σ̂n (in the sense of [Ch2, Ch3]) of σn
to 〈B, σn〉 is obtained. The *-endomorphism σ̂n of 〈B, σn〉 is defined by a
modification of the automorphism Adu of A oαn Z and has the property
like the canonical extension in the sense of [I1, HS]. In the case of C∗-
algebras, the extension algebra 〈B, σn〉 is the Cuntz algebra On and σ̂n
is nothing but Cuntz’s canonical inner endomorphism Φ of On defined by
Φ(x) =

∑n
i=1 SixS

∗
i , (x ∈ On) for generators {S1, . . . , Sn} of On. In the case

of von Neumann algebras, 〈B, σn〉 is the unique injective type III1/n factor
and σ̂n is Longo’s canonical endomorphism for the subfactor of 〈B, σn〉,
which appears naturally in the construction of the extension algebra 〈B, σn〉
by the canonical *-endomorphism σn ([Ch3]).

In §4, we show that

ht(Φ) = log n = ht(σn).

Applying to Connes-Narnhofer-Thirring’s entropy hφ(·) relative to the uni-
que log n-KMS state φ of On, we have

hφ(Φ) = log n = hφ(σn).

This relation implies the same relation for Longo’s canonical endomorphism.
Thus the canonical extension of the non-commutative Bernoulli shift has the
same entropy with the original one in the case of *-endomorphisms too.

The author thanks F. Hiai for his interest in this work and encouragement
during the preparation.
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2. Preliminaries.

2.1. Let H0 be a Hilbert space of dimension n <∞. Put Hi = H0, i ∈ Z .
For two integers i and j with i < j, we put

H[i,j] = Hi ⊗Hi+1 ⊗ · · · ⊗Hj .

Let {δ(i) : i = 1, ..., n} be an orthonormal basis of H0. The emmbedding
H[i,j] ↪→ H[i−1,j+1] is given by ξ ∈ H[i,j] → δ(1) ⊗ ξ ⊗ δ(1) ∈ H[i−1,j+1]. We
denote by Hi the inductive limit of {H[i,i+j] : j = 0, 1, ...} and by H the
inductive limit of the incleasing sequence {Hi : i = 0,−1, ...}.

Given k, l ∈ Z k < l, let

Wn
[k,l] = {µ = (µk, . . . , µl) : µi ∈ {1, . . . , n}, (k ≤ i ≤ l)}.

Let µ ∈Wn
[k,l] and ν ∈Wn

[l+1,m]. We put

µ · ν = (µk, . . . , µl, νl+1, . . . , νm).

Further, let

Wn
0 = {0}, Wn

[0,∞] = ∪∞k=0W
n
[0,k] and Wn

∞ = ∪∞k=0W
n
[−k,k].

The shift α : i ∈ Z→ i+1 induces the mapping on Wn
∞, which we denote

by the same notation α.
For µ ∈Wn

[k,l], we put

δ(µ) = δ(µk)⊗ · · · ⊗ δ(µl) ∈ H[k,l].

Then {δ(µ) : µ ∈Wn
[k,l]} is an orthonormal basis in H[k,l].

Let A0 = B(H0) and {e(i, j) : i, j = 1, ..., n} be the matrix unit of A0

with respect to the orthonormal basis {δ(i) : i = 1, ..., n}. We denote the
trace (1/n)Tr of A0 by τ0. Put Ai = A0, (i ∈ Z) and τi = τ0. For two integers
i < j, let

A[i,j] = Ai ⊗Ai+1 ⊗ · · · ⊗Aj .
For µ, ν ∈Wn

[k,l], we put

e(µ, ν) = e(µk, νk)⊗ · · · ⊗ e(µl, νl) ∈ A[k,l].

Then {e(µ, ν) : µ, ν ∈Wn
[k,l]} is a matrix units of A[k,l].

2.2. We apply the entropy of Connes-Narnhofer-Thirring and Voiculescu’s
topological entropy to both of automorphisms and unital *-endomorphisms
on C∗-algebras. To fix notations, we recall the definition of the topological
entropy. Let B be a nuclear C∗-algebra with unity. Let CAP (B) be triples
(ρ, η, C), where C is a finite dimensional C∗-algebra, and ρ : B → C and
η : C → B are unital completely positive maps. Let Ω be the set of finite
subsets of B. For an ω ∈ Ω, put

rcp(ω; δ) = inf{rank C : (ρ, η, C) ∈ CAP (B), ‖η · ρ(a)− a‖ < δ, a ∈ B},
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where rank C means the dimension of a maximal abelian self-adjoint subal-
gebra of C. For a unital *-endomorphism β of B, put

ht(β, ω ; δ) = lim N→∞
1
N

log rcp
(
ω ∪ β(ω) ∪ · · · ∪ βN−1(ω); δ

)
and

ht(β, ω) = sup
δ>0

ht(β, ω; δ).

Then the topological entropy ht(β) of β is defined by

ht(β) = sup
ω∈Ω

ht(β, ω).

Assume that there exists an increasing sequence (ωj)j∈N of finite subsets of
B such that the linear span of ∪j∈N ωj is dense in B. Even in the case of
*-endomorphisms which are not automorphisms, by the obvious analogoues
of [V, Proposition 4.3], ht(·) is obtained as the following form which we use
later:

ht(β) = sup
j∈N

ht(β, ωj).

Let φ be a state of B with φ · β = φ. The essential relation between ht(β)
and Connes-Narnhofer-Thirring entropy hφ(β) is by [V, Proposition 4.6]

hφ(β) ≤ ht(β).

3. Entropy of Adu for non-commutative Bernoulli shift.

In this section, we only state results without proof. We remark that these
are proved by similar methods as in §4 and §5.

3.1. Let n(2 ≤ n < ∞) be an integer. Let Ai, τi(i ∈ Z) be as in §2.1
and let A be the infinite C∗-tensor product A =

⊗
i∈ZAi. We denote the

unique tracial state of A by τ. The non-commutative Bernoulli shift αn is
the automorphism of the C∗-algebra A induced by the shift α : i(∈ Z) →
i+ 1. Let u be the implimenting unitary in the reduced C∗-crossed product
A oαn Z for αn. Let E be the conditional expectation of A oαn Z onto A
with E(uj) = 0, (j 6= 0). Then τ · E is a tracial state of A oαn Z which is
invariant under Adu. We denote by the same notation αn the extension of
αn to the hyperfinite II1 factor

⊗
i∈Z(Ai, τi) oαn Z .

Theorem 3.2. Under the above notations,

ht(αn) = ht(Adu) = hτ ·E(Adu) = hτ (αn) = log n = H(αn) = H(Adu).
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4. Entropy of Cuntz’s canonical endomorphism.

In this section, we apply the definition of Connes-Narnhofer-Thirring en-
tropy and Voiculescu’s topological entropy for unital *-endomorphisms of
nuclear C∗-algebras. All facts for automorphisms, which we need here, work
for unital *-endomorphisms by the analogues of definitions and proofs in
[CNT] and [V].

Let n (2 ≤ n < ∞) be an integer. Given n isometries {Si} on a Hilbert
space such that

∑n
i=1 SiS

∗
i = 1, Cuntz defined the Cuntz algebra On as

the C∗-algebra generated by {Si}i ([Cu1]). So called Cuntz’s canonical
endomorphism Φ of On is defined by

Φ(x) =
n∑
i=1

SixS
∗
i , (x ∈ On).

The On has exactly one log n-KMS state φ ([OP]). In this section we com-
pute Voiculescu’s topological entropy of Φ and Connes-Narnhofer-Thiring’s
entropy hφ(Φ). Applying to the factor generated by πφ(On), we get the
entropy of Longo’s canonical endomorphism.

4.1. To compute the entropy of Φ, we recall some of the representation for
the Cuntz algebra On as a crossed product in [Cu1], (cf., [Ch2, I2, P, R]).
Let Ai, τi, (i ∈ Z) and e(i, j), (i, j ∈ N) be the same as in §2.1. For a j ∈ Z,
Aj is given as the infinite tensor product:

Aj =
∞⊗
i=j

Ai.

Define embeddings

Aj ↪→ Aj−1 ↪→ Aj−2 ↪→ · · ·
by x ∈ Aj → ej−1(1, 1)⊗x ∈ Aj−1, where ej−1(i, l) is a copy of e(i, l) inAj−1.
The inductive limit of this sequence is denoted by A. Since the embedding
Aj ↪→ Aj−1 and the embedding Hi ↪→ Hi−1 in §2.1 are compatible, we can
consider A acting faithfully on H.

The automorphism σ of A is induced by the shift α : i(∈ Z)→ i+ 1.
Then the crossed product Aoσ Z acts faithfully on the Hilbert space

K =
∑
i∈Z

⊕
uiH,

where u is the implimenting unitary in A oσ Z for the automorphism σ of
A. Let p be the unit of A0 ⊂ Aoσ Z and put

w = up.

We remark ujp = wj .
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Then Cuntz algebra On is reresented as p(A oσ Z)p, which is the C∗

subalgebra C∗(A0, w) of (A oσ Z) generated by {A0, w}. There exists a
conditional expectation E of C∗(A0, w) onto A0 with E(wj) = 0 for all
j = 1, 2, . . . . The unique tracial state τ of A0 is extended to the state φ of
C∗(A0, w) by φ = τ ·E. Then φ is the unique log n-KMS state of C∗(A0, w)
([OP]).

4.2. Since
σj(p)(H) = Hj , j ∈ Z,

the algebra p(Aoσ Z)p is acting faithfully on

pK =
∑
i∈Z

⊕
uiH−i.

The restriction σ|A0 of σ to A0 is the one sided non commutative Bernoulli
shift. Cuntz’s canonical inner endomorphism Φ of On is nothing but the
extension of σ|A0 to the Cuntz algebra C∗(A0, w) which maps

a→ σ(a), (a ∈ A0), and w → vw,

where

v =
n∑
j=1

e((j, 1), (1, j)) ∈ A[0,1],

([Cu2], cf. [Ch2]).

4.3. Let k,m ∈ N . We define

K(k,m) =
k∑

l=−k

⊕
ulH[−l,−l+m]

and we denote the orthogonal projection of K onto K(k,m) by Q(k,m).
The set {ujδ(µ) : −k ≤ j ≤ k, µ ∈ Wn

[−j,−j+m]} is an orthonomal basis of
K(k,m). We denote by E((j, µ), (l, ν)) the partial isometry in B(K(k,m))
such that

E((j, µ), (l, ν)) : ulδ(ν)→ ujδ(µ),
(
µ ∈Wn

[−j,−j+m], ν ∈W
n
[−l,−l+m]

)
.

Then the set

E(k,m)

=
{
E((j, µ), (l, ν)) : −k ≤ j, l ≤ k, µ ∈Wn

[−j,−j+m], ν ∈W
n
[−l,−l+m]

}
is a matrix units of B(K(k,m)).
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4.4. Let k,m ∈ N . We define the completely positive unital linear map

ϕk,m : p(Aoσ Z)p→ B(K(k,m))

by
ϕk,m(x) = Q(k,m)xQ(k,m)|K(k,m), x ∈ p(Aoσ Z)p.

We remark that if e(µ, ν)wj 6= 0 for ν in Wn
[0,b], (b ≥ j), then

ν = (1, . . . , 1, νj , . . . , νb) and δ(ν) ∈ H[j,b].

For two integers a and b with a < b, we let

ωa,b =
{
e(µ, ν)wj : 0 ≤ j ≤ a and µ, ν ∈Wn

[0,b]

}
.

Let e(µ, ν)wj ∈ ωa,b for a, b ∈ N, (a < b) and e(µ, ν)wj 6= 0. Since
σ−l(p)δ(µ) = δ(µ) for ulδ(µ) ∈K(k,m), we have that if k ≥ a and m ≥ b
then

ϕk,m(e(µ, ν)wj) =
k−j∑
l=−k

E((j + l, α−(j+l)(µ) · βl), (l, α−(j+l)(ν) · γl)),

where

βl = (1, . . . , 1) ∈Wn
[−(j+l)+b+1,−(j+l)+m],

γl = (1, . . . , 1) ∈Wn
[−l+b+1,−l+m].

We remark that
δ(α−(j+l)(ν)) ∈ H[−l,−l+b+1],

so that E((j + l, α−(j+l)(µ) · βl), (l, α−(j+l)(ν) · γl)) ∈ E(k,m).

4.5. We define the linear map

ψk,m : B(K(k,m))→ p(Aoσ Z)p

by

ψk,m(E((j, µ), (l, ν))) =
1

2k + 1
puje(µ, ν)u∗lp,

for E((j, µ), (l, ν)) ∈ E(k,m).
Let Tj , (j ∈ Z) be the unitary operator on K defined by

Tj(uiδ(µ)) = ui+jδ(α−j(µ)), i ∈ Z, µ ∈Wn
∞.

Then we have

w − lim
r→ω

r∑
i=−r

TiE((j, µ), (l, ν))T ∗i = uje(µ, ν)u∗l
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for any E((j, µ), (l, ν)) ∈ B(K(k,m)). Here ω is a nontrivial ultrafilter on
N . Hence ψk,m is a unital completely positive map from B(K(k,m)) to
p(Aoσ Z)p. Since ujp = wj , we have

ψk,m · ϕk,m(e(µ, ν)wj) =
2k − j + 1

2k + 1
e(µ, ν)wj ,

for all e(µ, ν)wj ∈ ωa,b, a ≤ k and b ≤ m.

Theorem 4.6. Let Φ be Cuntz’s canonical inner endomorphism of On.
Then

ht(Φ) = log n.

Proof. Let e(µ, ν)wj ∈ ωa,b. Then we have, for a ≤ k and b ≤ m, by §4.5

‖ψk,m · ϕk,m(e(µ, ν)wj)− e(µ, ν)wj‖ =
j

2k + 1
‖e(µ, ν)wj‖ ≤ a

2k + 1
and we have for an i ∈ N

Φi(e(µ, ν)wj) = σi(e(µ, ν))
n∑
s=1

e(βs, γs)wj

=
n∑
s=1

e(β̄s · αi(µ), γs · νj)wj .

Here

βs = (1, . . . , 1, s
i−1
, 1, . . . , 1) ∈Wn

[0,j+i−1],

γs = (1, . . . , 1, s) ∈Wn
[0,j+i−1]

and

β̄s = (1, . . . , 1, s
i−1

) ∈Wn
[0,i−1], νj = (νj+i, . . . , νb) ∈Wn

[j+i,b+i].

Hence for k ≥ a and m ≥ b+ i we have

‖ψk,m · ϕk,m(Φi(e(µ, ν)wj))− Φi(e(µ, ν)wj)‖ ≤ an

2k + 1
.

Therefore, we have for N ∈ N

rcp

(
N⋃
i=0

Φi

(
ωa,b ∪ (ωa,b)∗ :

an

2k + 1

))
≤ rank B(K(k,N + b+ 1))

= (2k + 1)nN+b+1,

where (ωa,b)∗ = {x∗;x ∈ ωa,b}. This implies that for all integers a, b with
a < b,

ht

(
Φ, ωa,b ∪ (ωa,b)∗;

an

2k + 1

)
≤ lim N→∞

1
N

log
(
(2k + 1)nN+b+1

)
= log n.
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Increasing k, we have ht(Φ, ωa,b ∪ (ωa,b)∗) ≤ log n, for all a, b ∈ N with
a < b. Put ωa = ωa,2a ∪ (ωa,2a)∗, for a ∈ N . Then the set {ωa : a ∈ N} is
an increasing sequence of finite subsets of p(A oσ Z)p and the linear span
of
⋃
{ωa : a ∈ N} is dense in p(Aoσ Z)p. Hence

ht(Φ) = sup
a∈N

ht(Φ, ωa) ≤ log n.

On the other hand, the restriction Φ|A0 of Φ to A0 is σ|A0 = αn|A0 and
hτ (αn|A0) = hτ (αn) = log n. Since there exists a conditional expectation of
On onto A0 and τ · αn|A0 = τ,

log n = hτ (αn|A0) ≤ ht(Φ|A0) ≤ ht(Φ) ≤ log n

by the version for unital *-endomorphisms of [V, Proposition 4.4]. There-
fore, ht(Φ) = log n. �

Corollary 4.7. Let φ be the unique log n-KMS state of On. Then

hφ(Φ) = log n.

Proof. Let τ be the unique tracial state of A0 and E be the conditional
expectation of p(A oσ Z)p onto A0, then φ = τ · E. Hence φ · Φ = φ. This
relation implies, by the endomorphism version of [V, Proppsition 4.6],

log n = hτ (σ|A0) ≤ hφ(Φ) ≤ ht(Φ) = log n.

Therefore hφ(Φ) = log n. �

5. Entropy of Longo’s canonical endomorphism.

In this section we apply the result in §4 to Longo’s canonical endomorphism.
We use the same notations as in §4.

5.1. Let τi be the tracial state of Ai, for i ∈ N and let

Ã =
∞⊗
i=0,

(Ai, τi).

The Ã has the canonical trace
⊗∞

i=0, τi, which we denote by τ. The shift σ|A0

is extended to the *-endomorphism γ of the hyperfinite II1 factor Ã. The
γ is canonical in the sense of [Ch3]. Hence we have the extension algebra
M̃ = 〈Ã, σ〉, which is the injective type III1/n factor generated by Ã and an
isometry W. Then γ is extended to the canonical *-endomorphism Γ of M̃
and

Γ(a) = γ(a), a ∈ Ã, and Γ(W ) = πφ(vW ).

The Γ is Longo’s canonical endomorphism for the inclusion Ñ ⊂ M̃ [Ch3,
Theorem 6.10]. Here the subfactor Ñ is obtained naturally in the step of
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constructing M̃. The factor M̃ is the von Neumann algebra generated by
πφ(〈A0, σ|A0〉) and the C∗-algebra 〈A0, σ|A0〉 is On. Hence Γ is the extension
of Φ to M̃. Since Φ is φ-preserving, as an application of 4.7 Corollary, we
have the following by [CNT, Theorem VII.2]:

Corollary 5.2. Let M be the von Neumann algera generated by πφ(On)
and let Γ be the extension of Cuntz’s canonical endomorphism Φ of On to
M. Then Γ is Longo’s canonical endomorphism and

hφ(Γ) = log n.
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GENERALIZED SOLENOIDS AND C*-ALGEBRAS

Valentin Deaconu

We present the continuous graph approach for some gener-
alizations of the Cuntz-Krieger algebras. These algebras are
simple, nuclear, and purely infinite, with rich K-theory. They
are tied with the dynamics of a shift on an infinite path space.
Interesting examples occur when the vertex spaces are unions
of tori, and the shift is not necessarily expansive. We also
show how the algebra of a continuous graph could be thought
as a Pimsner algebra.

Introduction.

Recent papers are dealing with different generalizations of the Cuntz-Krieger
algebras OA (see [Pi], [P1], [D2], [AR], etc). The exact relationship be-
tween these approaches remains to be explored, but certainly there are over-
laps. In [Pi], the author considers a Hilbert bimodule H over a C*-algebra,
and creation operators on a corresponding Fock space. These operators
generate the Toeplitz algebra TH and, taking a quotient of this, one obtains
the algebra OH . If the Hilbert bimodule is projective and finitely gener-
ated over an abelian, finite dimensional C*-algebra, then one recovers the
algebras OA.

In [P1], the starting point is a Smale space (a compact metric space
endowed with an expansive homeomorphism with canonical coordinates),
on which one defines the stable and unstable equivalence relations. The
associated C*-algebras have natural shift automorphisms, and the crossed
products are the so called Ruelle algebras. These are strongly Morita equiv-
alent to particular Cuntz-Krieger algebras if the Smale space is a topological
Markov shift.

Our point of view is to start with a continuous oriented graph (or di-
agram) E, to consider the space of one-sided infinite paths (obtained by
concatenation of edges in E), and to associate a groupoid (à la Renault) us-
ing the unilateral shift on this path space. The C*-algebra of this groupoid
plays the role of a continuous version of the Cuntz-Krieger algebras, since
these could be obtained by the same construction from a finite graph de-
fined by a 0-1 matrix. In many cases, this groupoid algebra is simple, purely
infinite, with computable K-theory. This approach offers more freedom for
constructing easy, concrete examples, with prescribed K-theory. It should
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be mentioned that C*-algebras associated with discrete graphs were studied
in [KPRR], [KPR], [KP]. See also the survey [K2].

The continuous graph approach is very similar to the point of view of
polymorphisms or correspondences, introduced earlier in a measure theoret-
ical context by Vershik and Arzumanian (see [AR] for a precise definition
and references).

Even though our groupoid algebras could be obtained also by using the
Pimsner approach, with a right choice of the Hilbert bimodule, we feel that
the present point of view has certain advantages, beeing tied with the dy-
namics of a shift. For example, even in a case where this shift is not ex-
pansive, so the space of two-sided infinite paths has no obvious Smale space
structure, we will prove that the corresponding algebra is simple and purely
infinite.

In the particular case when the vertex space is a disjoint union of tori, we
call the corresponding space of paths a generalized solenoid, and we obtain
results similar to those of Brenken (see [B]). It is interesting to notice how
these fairly complicated dynamical systems appear in a natural way from
embeddings of toral algebras.

Acknowledgements. Thanks are due to several people who helped me
while this paper was growing, especially Paul Muhly, Alex Kumjian, Jean
Renault, Jack Spielberg, Berndt Brenken, Ian Putnam.

1. Continuous graphs and dynamical systems.

Definition 1.1. By a continuous graph we mean a closed subset

E ⊂ V × {1, 2, ...,m} × V,
where V is a compact metric space. The elements of V are called vertices,
and the elements of E are called edges. The set {1, 2, ...,m} is used to label
different edges between the same pair of vertices. The graph is oriented
when for each edge e = (v, k, w) we specify the origin o(e) = v and the
terminus t(e) = w.

In this paper we consider dynamical systems (X+, σ+), (X,σ) built from
a continuous oriented graph E. The space X+ is the space of one-sided
infinite paths,

X+ = {(xi, ki)∞i=0 | (xi, ki, xi+1) ∈ E, i ≥ 0},
and σ+ : X+ → X+ is the unilateral shift,

σ+(xi, ki)p = (xp+1, kp+1).

The space X is the space of two-sided infinite paths, and σ is the bilateral
shift. The dynamical system (X+, σ+) unifies in a natural way the notion of
a continuous map T : V → V , a (finitely-generated) semigroup or group of
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continuous transformations S : V → V and the (unilateral) Markov shifts
(when V is a finite set and E is defined by a 0-1 matrix)(see [F]). For
example, if T : V → V is a continuous map, we can take E = Γ(T ), the
graph of T (in this case m = 1, and we omit it). Then X+ is homeomorphic
to V , and σ+ is conjugated to T .

Proposition 1.2. The dynamical system (X,σ) could be obtained from
(X+, σ+) by the usual inverse limit process by which one associates a homeo-
morphism to a continuous onto map.

Proof. Indeed, let

X̃ =

{
(ξn) ∈

∞∏
1

X+ | σ+(ξn+1) = ξn

}
.

We have π : X̃ → X+, π(ξ1ξ2...) = ξ1, and σ̃+ : X̃ → X̃, σ̃+(ξ1ξ2...) =
(σ+(ξ1)ξ1ξ2...), such that σ+π = πσ̃+. Since

X+ =

{
(en) ∈

∞∏
1

E | t(en) = o(en+1)

}
,

X̃ ⊂
∞∏
1

∞∏
1

E could be identified with X, the space of two-sided infinite

paths, and σ̃+ with the bilateral shift σ. �

Definition 1.3. For each continuous oriented graph E we define its dual
(or opposite) graph Ê by

Ê = {(x, k, y) | (y, k, x) ∈ E}.

This way we get dynamical systems (X̂+, σ̂+), (X̂, σ̂), where X̂+, X̂ are
constructed from Ê, and σ̂+, σ̂ are the unilateral and bilateral shift, re-
spectively. Of course, the systems (X,σ) and (X̂, σ̂−1) are conjugated. But
(X+, σ+) and (X̂+, σ̂+) could be very different.

Example 1.4. Take V = T, the unit circle, and E the graph of the map
z 7→ z2,

E = {(z, z2) | z ∈ T}.

Then X+ = T, σ+(z) = z2, and X̂+ is a solenoid,

X̂+ = {(z1, z2, ..., ) | zn ∈ T, z2
n+1 = zn, n ≥ 1},

σ̂+(z1, z2, ...) = (z2, z3, ...).

Note that if V has a group structure and E ⊂ V × V is a subgroup,
then X+ and X have also natural group structures, with componentwise
multiplication.
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2. The C*-algebra of a continuous graph.

In the case the two projections o, t : E → V, o(x, k, y) = x and t(x, k, y) = y
are onto local homeomorphisms, we can associate to the graph E a C*-
algebra C∗(E), using the Renault groupoid of the dynamical system (X+,
σ+). The space X+ is endowed with a metric defining the product topology.
If δ denotes the metric on V , then one can take

d((xi, ki), (x′i, k
′
i)) =

∑
i≥0

δ(xi, x′i)+ | ki − k′i |
2i

as a metric on X+. Similarly, we obtain a metric on X.
The unilateral shift σ+ is a local homeomorphism, and we consider the

following locally compact r-discrete groupoid:

Γ = Γ(X+, σ+)

= {(x, n, y) ∈ X+ × Z×X+ | ∃k, l ≥ 0, n = k − l, σk+(x) = σl+(y)}.
The range map, the source map, and the operations are given as follows:

r(x, n, y) = x, s(x, n, y) = y,

(x, n, y)(y, p, z) = (x, n+ p, z), (x, n, y)−1 = (y,−n, x).
The unit space of Γ is X+, if we identify (x, 0, x) with x. A basis of open
sets for Γ is given by

Z(U, V, k, l) = {(x, k − l, (σl+ |V )−1 ◦ σk+(x)), x ∈ U},
where U and V are open subsets of X+, and k, l are such that σk+ |U and
σl+ |V are homeomorphisms with the same open range.

Definition 2.1. Given a continuous oriented graph E with the maps o, t
onto local homeomorphisms, we define its C*-algebra C∗(E) to be C∗(Γ), the
C*-algebra of the Renault groupoid associated with the dynamical system
(X+, σ+).

To understand the structure of C∗(E), consider the homomorphism c :
Γ → Z, c(x, n, y) = n, and let’s denote by R∞ the subgroupoid c−1(0). If
we denote by B the C∗-algebra of the equivalence relation R∞, the local
homeomorphism σ+ induces a *-endomorphism α of B by the formula

α(f)(x, y) =
1√

p(σ+(x))p(σ+(y))
f(σ+(x), σ+(y)), f ∈ Cc(R∞),

where for x ∈ X+, p(x) is the number of paths z such that σ+(z) = x.
Moreover, assuming that σ+ is not one-to-one, α is induced by a non unitary
isometry v, in the sense that α(f) = vfv∗, where

v(x, n, y) =

{
(p(σ+(x)))−1/2, if n = 1 and y = σ+(x)
0, otherwise.
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Indeed, v∗v = 1, and

vv∗(x, n, y) =

{
p(σ+(x))−1 if σ+(x) = σ+(y)
0, otherwise.

Thus, α is a proper corner endomorphism of B, and C∗(E) is isomorphic to
the crossed product B ×α N (see [R1]).

In order to compute the K-theory of C∗(E), we can use the exact sequence

K0(C∗(R∞)) id−α0−−−→ K0(C∗(R∞)) i0−−−→ K0(C∗(E))

∂1

x y∂0
K1(C∗(E)) i1←−−− K1(C∗(R∞)) id−α1←−−− K1(C∗(R∞))

where i : C∗(R∞)→ C∗(E) is the inclusion map.
If on E we consider the equivalence relation R defined by t: two edges

(x, k, y) and (x′, k′, y′) are equivalent iff y = y′, then the C*-algebra C∗(R)
is a continuous trace algebra with spectrum V , and there is a canonical
embedding

Φ : C(V )→ C∗(R),

Φ(f)((x, k, y), (x′, k′, y)) =

{
f(x), if x = x′ and k = k′

0, otherwise.

Using the same method as in the Main Result of [D2], we get:

Theorem 2.2. If Φ0 and Φ1 are the maps induced on K-theory by the em-
bedding Φ : C(V ) → C∗(R), and if the K-theory groups K0(V ) and K1(V )
are free and finitely generated, then

K0(C∗(E)) = ker(id− Φ1)⊕K0(V )/(id− Φ0)K0(V ),

K1(C∗(E)) = ker(id− Φ0)⊕K1(V )/(id− Φ1)K1(V ).

Using this theorem, we can get interesting examples of simple purely
infinite C*-algebras with prescribed K-theory groups. In particular, in the
next example, we construct C*-algebras An with K0(An) = 0 and K1(An) =
Zn.

Example 2.3. Let V = V1∪V2, where Vi, i = 1, 2 are copies of the unit circle,
and

E = {(v, w) ∈ V1 × V1 | v = w2} ∪ {(v, w) ∈ V1 × V2 | v = w} ∪
{(v, w) ∈ V2 × V1 | v = w} ∪
{(v, k, w) ∈ V2 × {1, 2, ..., n+ 2} × V2 | w = vn}.

Then

Φ : C(V1)⊕ C(V2) −→ C(V1)⊗M2 ⊕ C(V2)⊗Mn(n+2)+1,
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Φ(f ⊕ g) =
(
σ2f 0
0 σ1g

)
⊕


σ1f 0 0 0
0 σ̂ng 0 0

0 0
. . . 0

0 0 0 σ̂ng

 .

Here σkf(z) = f(zk), and σ̂k is the k-times around embedding (the homo-
morphism compatible with the covering z → zk). There are n+ 2 copies of
σ̂ng in the definition of Φ. Note that

Φ0 =
(

1 1
1 n(n+ 2)

)
, Φ1 =

(
2 1
1 n+ 2

)
.

It follows that

ker(id− Φ0) = 0, Z2/(id− Φ0)Z2 = 0,

ker(id− Φ1) = 0, Z2/(id− Φ1)Z2 = Zn,

therefore the corresponding C*-algebra C∗(E) has K0 = 0, K1 = Zn. One
can check that every orbit with respect to the equivalence relation R∞ is
dense, therefore C∗(R∞) and C∗(E) are simple. The latter algebra is purely
infinite because it appears as a crossed product of an inductive limit of circle
algebras by an endomorphism that does not preserve any trace (see Theorem
2.1 in [R2]).

Definition 2.4. Recall that σ+ : X+ → X+ is (positive) expansive if there
is a constant c > 0 such that x 6= y implies d(σn+(x), σn+(y)) ≥ c for some
integer n ≥ 0. An element x ∈ X+ is eventually periodic if there are two
integers p 6= q with σp+(x) = σq+(x).

In [De], Proposition 4.2, it is proved that if σ+ is expansive and the
eventually periodic points form a dense set with empty interior, then C∗(Γ),
and therefore C∗(E), is nuclear, purely infinite, and belongs to the bootstrap
class N .

Note that in the above hypotheses, the groupoid Γ = Γ(X+, σ+) is es-
sentially free, i.e. the set of points in the unit space with trivial isotropy is
dense.

We will see in the last section that even for non-expansive σ+, the C*-
algebra C∗(E) could be purely infinite. Of course, it can not be finite as
long as the endomorphism α is induced by a non unitary isometry v. If σ+

is minimal (i.e. each orbit with respect to the equivalence relation R∞ is
dense), then this C*-algebra is also simple.

Remark 2.5. When σ+ is expansive, there are other C*-algebras associated
with the continuous graph E. According to [AR], in this case, the space
X of two-sided infinite paths has a Smale space structure, and one may
consider the stable equivalence relation:

Rs = {(x, y) ∈ X ×X | d(σn(x), σn(y))→ 0 as n→ +∞}.
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Then C∗(Rs) is strongly Morita equivalent to C∗(R∞), and its Ruelle algebra
C∗(Rs)×Z is strongly Morita equivalent to C∗(E) (see [AR], Theorem 4.5).

Another C*-algebra which could be associated with the continuous graph
E is the crossed product C(X)×σ Z.

3. The connection with the Pimsner algebras OH .

In this paragraph, we recall the Pimsner construction from [Pi], and we
show how the C*-algebra of a continuous graph could be thought as OH ,
for a particular Hilbert bimodule H. To a pair (H,A), where H is a (right)
Hilbert module over a C*-algebra A, and A acts to the left on H via a
∗-homomorphism ϕ : A → L(H), Pimsner constructs a C*-algebra OH ,
which generalizes both the crossed products by Z and the Cuntz-Krieger
algebras. The algebra OH is a quotient of the generalized Toeplitz algebra
TH , generated by the creation operators Tξ, ξ ∈ H on the Fock space H+ =
∞⊕
n=0

H⊗n. Here H⊗0 = A, and for n ≥ 1, H⊗n denotes the n-th tensor

power of H, balanced via the map ϕ. By definition, Tξa = ξa, for a ∈ A,
and Tξ(ξ1 ⊗ ...⊗ ξn) = ξ ⊗ ξ1 ⊗ ...⊗ ξn, for ξ1 ⊗ ...⊗ ξn ∈ H⊗n.

To give another description of the algebra OH , Pimsner considers a new
pair (H∞,FH), where FH is the C*-algebra generated by all the compact
operators K(H⊗n), n ≥ 0 in lim

−→
L(H⊗n), and H∞ = H ⊗ FH . The advan-

tage is that H∞ becomes an FH −FH bimodule, such that the adjoint H∗
∞

is also an FH − FH bimodule. The C*-algebra OH is represented on the
two-sided Fock space

H∞ =
⊕
n∈Z

H⊗n
∞ ,

where for n < 0,H⊗n
∞ means (H∗

∞)⊗−n. In fact, it is isomorphic to the
C*-algebra generated by the multiplication operators Mξ ∈ L(H∞), where
ξ ∈ H∞, and Mξω = ξ ⊗ ω.

Given a continuous graph E such that the origin and terminus maps
E → V are onto local homeomorphisms, let A = C(V ), and let H = C(E)
(as a vector space), with the structure of Hilbert A-module given by

(ξf)(e) = ξ(e)f(t(e)), ξ ∈ H, f ∈ A, e ∈ E,

〈ξ, η〉(v) :=
∑
t(e)=v

ξ(e)η(e), v ∈ V, ξ, η ∈ H.
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In other words, the inner product is given by 〈ξ, η〉 = P (ξ̄η), where P :
C(E)→ C(V ) is the conditional expectation

(Pξ)(v) =
∑
t(e)=v

ξ(e).

The left module structure is given by

ϕ : A→ L(H), (ϕ(f)ξ)(e) = f(o(e))ξ(e) f ∈ A, ξ ∈ H.
Note that indeed ϕ(f) is in L(H), having the adjoint ϕ(f̄), f ∈ A.

To prove that OH with this choice of A,H and ϕ is isomorphic to C∗(E),
let’s identify the C*-algebra FH in this case.

Note that H⊗ϕH is a quotient of C(E)⊗C(E), where we identify ξf ⊗η
with ξ ⊗ ϕ(f)η for any ξ, η ∈ H and any f ∈ A. Therefore H ⊗ϕ H could
be identified as a vector space with the continuous functions on the set

{(e1, e2) ∈ E × E | t(e1) = o(e2)}.
This set will be denoted by X2, and is precisely the set of paths of length 2.
In a similar way, H⊗n is identified (as a vector space) with C(Xn), where
Xn is the set of paths of length n. The Hilbert A-module structure on H⊗n

for n ≥ 2 is given by

(ξf)(x) = ξ(x)f(tn(x)), x ∈ Xn

where tn : Xn → V, tn(e1e2...en) = t(en), and by

〈ξ, η〉n = Pn(ξ̄η).

Here Pn is the conditional expectation

Pn : C(Xn)→ C(V ), Pn(ξ)(v) =
∑

tn(x)=v

ξ(x).

Proposition 3.1. The C*-algebra K(H) is isomorphic with C∗(R), where

R = {(e1, e2) ∈ E × E | t(e1) = t(e2)}
is the equivalence relation associated with the map t. The map ϕ : A→ L(H)
could be identified with the embedding Φ : C(V ) → C∗(R), defined before
Theorem 2.2. Moreover, K(H⊗n) ' C∗(Rn), where

Rn = {(x, y) ∈ Xn ×Xn | tn(x) = tn(y)}
is the equivalence relation associated with tn.

Proof. Taking into account the fact that o and t are local homeomorphisms,
we have L(H) = K(H), since H is algebraically finitely generated.

Now K(H) = H ⊗ H∗, the tensor product balanced over A, where H∗

is the adjoint of H. Since ξf ⊗ η∗ = ξ ⊗ fη∗, it follows that, as a set,
K(H) = C(R). The multiplication of compact operators turns out to be
the convolution product on C(R), therefore, as C*-algebras, K(H) = C∗(R).

�



GENERALIZED SOLENOIDS AND C*-ALGEBRAS 255

Corollary 3.2. We have FH = lim
−→

C∗(Rn). Therefore, FH is isomorphic

to the algebra C∗(R∞).

Proof. Note that for n ≥ 1, the inclusion φn : C∗(Rn)→ C∗(Rn+1),

(φn)(f)(x1...xn+1, y1...yn+1) =

{
f(x1...xn, y1...yn) if xn+1 = yn+1

0, otherwise

is just the map K(H⊗n)→ K(H⊗n+1), T 7→ T ⊗ I. Here R1=R. �

In order to establish an isomorphism between C∗(Γ) and OH , we show
that they appear as the C∗-algebras associated to isomorphic Fell bundles
over the group Z. This point of view was suggested by Abadie, Eilers and
Exel in [AEE]. The definition of a Fell bundle and of the associated C∗-
algebra is taken from [K1].

To the pair (H∞,FH), we can associate the Fell bundle B, where Bn :=
H⊗n
∞ , n ∈ Z. The multiplication is given by the tensor product, identifying

H∗
∞ ⊗H∞ with FH and H∞ ⊗H∗

∞ with the ideal F1
H of FH , generated by

K(H⊗n) with n ≥ 1. But F1
H is equal to FH in our case. The involution is

obvious. Then

L2(B) = H∞ =
⊕
n∈Z

H⊗n
∞ .

Since H∞ is generated by FH and H∞, it follows that the C∗-algebra gen-
erated by the operators Mξ is isomorphic to C∗(B). Hence, OH ' C∗(B).

For the groupoid Γ and l ∈ Z, take

Γl := {(x, k, y) ∈ Γ | k = l} = {(x, y) ∈ X ×X | xn = yn+l for large n},

and Dl = Cc(Γ−l) (closure in C∗(Γ)). This way, we obtain a Z-grading
on C∗(Γ), and it is easy to see that this C*-algebra could be recovered as
C∗(D). But

D0 = C∗(R∞) ' FH = B0,

and

D1 = Cc(Γ−1) ' H ⊗A FH = H∞ = B1.

We get

Proposition 3.3. With the above choice of A,H and ϕ, the C*-algebras
C∗(E) and OH are isomorphic.
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4. Generalized solenoids.

A solenoid is a compact connected abelian group of finite dimension. For
example, if T is the unit circle,

T(m) = {z ∈ TZ | zmk = zk+1, k ∈ Z}

is such a group, for any integer m > 1. The bilateral shift σ on T(m),
σ(z)p = zp+1 is a homeomorphism, and in many respects it is an analogue
of the Bernoulli shift. In [B], Brenken considered the dynamical system
(G0, σ) for G0 the connected component of the identity of the group

G = {z ∈ (Td)Z | Fzk = Mzk+1, k ∈ Z},

where M,F are surjective endomorphisms of the d-torus, given by matrices
M,F ∈Md(Z) with nonzero determinant. (Note that the case d = 1,M =
1, F = m corresponds to the above example T(m).) The space G0 has
a natural local product structure, being a principal bundle over Td with
fiber the Cantor set. Moreover, it has a Smale space structure, and the
author identifies the C∗-algebras associated with the stable and unstable
equivalence relations.

Definition 4.1. By a generalized solenoid we mean the space X of two-
sided infinite paths with edges in the graph E described bellow. Let V =
Td

1 t ... t Td
N be the disjoint union of N copies of the d-dimensional torus

Td , and let L = (l(i, j))i,j be an N × N matrix with positive integer
entries (the ”incidence” matrix of the graph). We require that in the ma-
trix L each row and each column has at least a nonzero entry. For each
pair (i, j) with l(i, j) ≥ 1, consider a family of closed, connected subgroups
Gij1 , G

ij
2 , ..., G

ij
l(i,j) of Td

i ×Td
j , not necessarily distinct, such that all the pro-

jections on Td
i and Td

j are surjective. For the pairs (i, j) with l(i, j) = 0,
this family is empty by definition. We take E to be the disjoint union of
all the groups Gijk , 1 ≤ i, j ≤ N, 1 ≤ k ≤ l(i, j), with obvious origin and
terminus maps.

It is known (see [KS]) that there are families of d×d nonsingular matrices
with integer entries,

Aij = {Aij1 , ..., A
ij
l(i,j)}, Bij = {Bij

1 , ..., B
ij
l(i,j)}.

such that

Gijl = {(z, w) ∈ Td
i ×Td

j | A
ij
l z = Bij

l w}.

The matrices Aijk , B
ij
k are not necessarily distinct. Note that a generalized

solenoidX has no longer a group structure, and the dynamical system (X,σ)
is an analogue of the Matkov shift.
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Example 4.2. Let d = 2, N = 2,

A11
1 =

(
3 1
1 1

)
, B11

1 =
(
−1 0
2 3

)
, A12

1 =
(

1 0
0 2

)
, B12

1 =
(

3 0
1 1

)
,

A12
2 =

(
2 1
0 1

)
, B12

2 =
(
−1 1
1 0

)
,

A22
1 =

(
1 0
0 1

)
, B22

1 =
(

2 0
0 1

)
, A22

2 =
(

1 0
0 1

)
, B22

2 =
(

1 0
0 1

)
.

The space of edges is

{((z, w), 1, (t, u)) ∈ T2
1 × {1} ×T2

1 | z3w = t−1, zw = t2u3} ∪

{((z, w), 1, (t, u)) ∈ T2
1 × {1} ×T2

2 | z = t3, w2 = tu} ∪

{((z, w), 2, (t, u)) ∈ T2
1 × {2} ×T2

2 | z2w = t−1u,w = t} ∪

{((z, w), 1, (t, u)) ∈ T2
2 × {1} ×T2

2 | z = t2, w = u} ∪

{((z, w), 2, (t, u)) ∈ T2
2 × {2} ×T2

2 | z = t, w = u}.
The corresponding embedding C(V )→ C∗(R) of toral algebras is

Φ : C(T2)⊕ C(T2)→ C(T2)⊗M3 ⊕ C(T2)⊗M7,

Φ(f ⊕ g) = Φ11(f)⊕
(

Φ12(f) 0
0 Φ22(g)

)
,

where

Φ11(f) = σ̂B11
1
◦ σA11

1
(f),Φ12(f) =

(
σ̂B12

1
◦ σA12

1
(f) 0

0 σ̂B12
2
◦ σA12

2
(f)

)
,

and

Φ22(g) =
(
σ̂B22

1
◦ σA22

1
(g) 0

0 σ̂B22
2
◦ σA22

2
(g)

)
.

Here σA : C(T2) → C(T2) denotes the ∗-homomorphism induced by the
covering A, defined by (σAf)(z) = f(Az), and σ̂A : C(T2) → C(T2) ⊗
M| detA| is the homomorphism compatible with A, in the sense that σ̂A ◦
σA(f) = f ⊗ I| detA|.

Remark 4.3. Given a generalized solenoid X, let’s denote by K the space
of two-sided infinite paths in the discrete graph with N vertices, where from
the vertex i to the vertex j there are l(i, j) edges. On the Cantor set K
consider the Markov shift τ . Note that there is a natural map ρ : X → K,
ρ((xn, kn)n∈Z) = (kn)n∈Z. Moreover, ρσ = τρ. Therefore, (X,σ) is in fact
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an extension of a Markov shift (K, τ). In the above example, the incidence
matrix L is

L =
(

1 2
0 2

)
.

Note that the fiber of ρ has a group structure, therefore X could be seen
as a group bundle over the Cantor set K. The groups are in fact solenoids
if they are connected.

The space X is also fibered over V = Td
1 t ... tTd

N by the map π : X →
V, π((xn, kn)n∈Z) = x0. The fibers of π are totally disconnected, since the
set {xn ∈ V | π((xn, kn)n∈Z) = x0} is finite for each fixed x0 ∈ V and
n ∈ Z.

The following example arose in a discussion with Jack Spielberg.

Example 4.4. Let V = T, the unit circle, and

E = {(z, 1, z2) | z ∈ V } ∪ {(z3, 2, z) | z ∈ V }.

Then

X = {(zn, kn) ∈ (V × {1, 2})Z | kn = 1⇒
zn+1 = z2

n, kn = 2⇒ z3
n+1 = zn}.

We will show that σ : X → X, σ(zn, kn)p = (zp+1, kp+1) is not expansive,
therefore the space (X,σ) has not a Smale space structure.

It suffices to show that for any ε > 0, we can find two distinct sequences
(zn, kn) and (wn, kn) such that δ(zn, wn) ≥ ε for all n ∈ Z. Fix z0, w0 ∈ V .
The idea is that, taking in a certain order squares, cubes, square roots and
cubic roots, the corresponding vertices remain close together. We can choose
two sequences of integers (an)n≥1, (bn)n≥1 such that

lim
n→∞

2a1+...+an

3b1+...+bn
= 1.

Consider the symmetric sequence (kn)n∈Z described as

... 2...2︸︷︷︸
b2

1...1︸︷︷︸
a2

2...2︸︷︷︸
b1

1...1︸︷︷︸
a1

1̄...1︸︷︷︸
a1

2...2︸︷︷︸
b1

1...1︸︷︷︸
a2

2...2︸︷︷︸
b2

...,

where the bar indicates k0. Given ε > 0, we can choose z0 and w0 sufficiently
close together (but distinct), and zn and wn in a consistent way (when we
take square or cubic roots) such that δ(zn, wn) ≥ ε. It follows that

d(σp(zn, kn), σp(wn, kn)) ≥ ε ∀p ∈ Z,

and the shift is not expansive.
Nevertheless, the orbits with respect to R∞ are dense in X+, and there is

no shift invariant trace, therefore the C*-algebra C∗(E) is simple and purely
infinite.
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Note that in this example, the dynamical system (X+, σ+) is an extension
of the Bernoulli shift ({1, 2}N, τ). The fibers of the map ρ : X+ → {1, 2}N
are circles over the sequences which contain only a finite numbers of 2’s, and
solenoids over the sequences containing infinitely many 2’s.

It is interesting to notice that C∗(E) and C∗(Ê) are both simple, purely
infinite, with K-theory

K0(C∗(E)) = K1(C∗(Ê)) = Z2, K1(C∗(E)) = K0(C∗(Ê)) = Z3.

In [P1] it is proved that the Ruelle algebra associated to the graph of the
map z 7→ zp on the unit circle is isomorphic to the one obtained from the
dual graph. Whether this is true for more general graphs is an open question.
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NONHYPERBOLIC DEHN FILLINGS ON HYPERBOLIC
3-MANIFOLDS

Mario Eudave-Muñoz and Ying-Qing Wu

In this paper we will give three infinite families of exam-
ples of nonhyperbolic Dehn fillings on hyperbolic manifolds.
A manifold in the first family admits two Dehn fillings of dis-
tance two apart, one of which is toroidal and annular, and the
other is reducible and ∂-reducible. A manifold in the second
family has boundary consisting of two tori, and admits two
reducible Dehn fillings. A manifold in the third family admits
a toroidal filling and a reducible filling with distance 3 apart.
These examples establish the virtual bounds for distances be-
tween certain types of nonhyperbolic Dehn fillings.

1. Introduction.

Given a slope r on a torus boundary component T0 of a 3-manifold M ,
the Dehn filling of M along the slope r, denoted by M(r), is the man-
ifold obtained by gluing a solid torus V to M along ∂V and T0 so that
r bounds a meridian disk on V . A manifold is simple if it is irreducible,
∂-irreducible, atoroidal, and anannular. Thus a simple manifold is either
hyperbolic, or a small Seifert fiber space, or it would be a counter exam-
ple to the Geometrization Conjecture. In particular, if M(r) has nonempty
toroidal boundary, then it is simple if and only if it is hyperbolic [Th]. A
Dehn filling M(r) is of type S (resp. D, T , A) if M(r) contains an essential
S2 (resp. D2, T 2, A2), so it is reducible (resp. ∂-reducible, toroidal, annu-
lar). The bound ∆(X,Y ) is the least nonnegative number n such that if
M is a hyperbolic manifold which admits two Dehn fillings M(r1),M(r2) of
type X,Y , respectively, then ∆(r1, r2) ≤ n. The bounds ∆(X,Y ) have been
established, via the work of many people, for all the 10 possible choices of
(X,Y ); see [GW2] for more details.

In some cases, the upper bound of ∆(X,Y ) is reached only by a few
manifolds. For example, it was shown in [GW1] that if M(r1) is annular
and M(r2) is toroidal, then ∆(r1, r2) ≤ 3 unless M is one of three special
manifolds, for which ∆(r1, r2) is 4 or 5; moreover, there are infinitely many
manifolds which admit two such Dehn fillings with ∆(r1, r2) = 3. Thus
∆(A, T ) = 5, but the “virtual bound” to be defined below is 3. Similarly
for ∆(T, T ), see [Go]. The main results of this paper are the following.
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Theorem 0.1. There are infinitely many hyperbolic manifolds M which
admit two nonhyperbolic Dehn fillings M(r1) and M(r2), such that M(r1) is
toroidal and annular, M(r2) is reducible and ∂-reducible, and ∆(r1, r2) = 2.

Theorem 0.2. There are infinitely many hyperbolic manifolds M with two
torus boundary components, each of which admits two reducible Dehn fillings
M(r1),M(r2), with ∆(r1, r2) = 1.

Theorem 0.3. There are infinitely many hyperbolic manifolds M which
admit two nonhyperbolic Dehn fillings M(r1) and M(r2), such that M(r1)
is reducible, M(r2) is toroidal, and ∆(r1, r2) = 3.

These theorems follow immediately from Theorems 2.6, 3.6 and 4.2 below.
Very few examples as in the theorems were known before. The only known
example satisfying the conditions in Theorem 0.1 was found by Hayashi and
Motegi [HM], and the only known example as in Theorem 0.2 was the one
given by Gordon and Litherland [GLi].

Similar to ∆(X,Y ), we define the virtual bound ∆v(X,Y ) of distances
between type X and type Y Dehn fillings to be the maximal integer n such
that there are infinitely many hyperbolic manifolds M which admit two
Dehn fillings M(r1),M(r2) of type X,Y respectively, with ∆(r1, r2) = n.
If no such infinite family exist, define ∆v(X,Y ) = 0. Thus ∆v(X,Y ) ≤
∆(X,Y ). The above theorems and some known results determine the virtual
bounds of distances between certain types of nonhyperbolic Dehn fillings.
The following is a table of ∆v(X,Y ).

Y
X DSAT

D

S

A

T

2

2

2

3

3

5

3--5

1 

0 1

Table 1.1. Virtual bound ∆v(X,Y ).
As we can see, except for ∆v(A,A), all the other ∆(X,Y ) have been

completely determined. In the table, ∆v(T, T ) is determined by Gordon
[Go], ∆v(T,A) by Gordon and Wu [GW1]. The upper bounds of the other
entries in Table 1.1 are the same as that in [GW2], and the lower bounds of
them are determined by Theorem 0.1 for ∆v(D,T ), ∆v(D,A), and ∆v(S,A);
by Theorem 0.3 for ∆v(S, T ); by Gabai [Ga] and Berge [Be] for ∆v(D,D);
by Gordon and Wu [GW1] for ∆v(A,A); and by Gordon and Litherland
[GLi] for ∆v(S, S). Theorem 0.2 gives a stronger result about type S-S
fillings, namely the manifolds can be chosen to have an extra torus boundary
components. Also, it provides infinitely many examples of two essential



NONHYPERBOLIC DEHN FILLINGS 263

planar surfaces in 3-manifolds with distinct boundary slopes, one of which
has unbounded number of boundary components.

We would like to thank Cameron Gordon and John Luecke for some in-
teresting discussion on this topic.

2. Toroidal/annular fillings and reducible/∂-reducible fillings.

In this section we prove Theorem 2.6, which shows that there are infinitely
many hyperbolic manifolds which admit two Dehn fillings of distance two
apart, one of which is toroidal and annular, and the other is reducible and
∂-reducible. Let Y = S2×I. Consider the tangles ξp in Y as shown in Figure
2.1, where a rectangle labeled by an integer n denotes a rational tangle of
slope 1/n; in other words, it contains two vertical strings with n left hand
half twists.

2p
−2

p

k = k  half twist......

Figure 2.1.

Let ξp(r) be the tangle obtained by filling the inside sphere S0 of Y with
a rational tangle of slope r. The tangles ξp(r) are drawn in Figure 2.2(a)-
(d) for r = ∞, 0,−1,−1/2, respectively. From the pictures we have the
following lemma. We use ξ(r, s) to denote a Montesinos tangle consisting of
two rational tangles associated to the rational numbers r and s respectively.
See [Wu2] or [Mo1, Co] for more details about Montesinos tangles and
algebraic tangles.

Lemma 2.1. (1) ξp(∞) is the connected sum of a trivial tangle and a
Hopf link.

(2) ξp(0) is the Montesinos tangle ξ[ 1
2p−1 ,

−1
2p+1 ].

(3) ξp(−1) is the Montesinos tangle ξ[ 1
2p+1 ,

−1
2p−1 ].

(4) ξp(−1
2 ) is an algebraic tangle obtained by summing a Montesinos tangle

ξ[ 1
2p ,

−1
2p ] with a rational tangle ξ[12 ]. It is not a Montesinos tangle.
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2p
−2

p

2p
−2

p

2p

−2p

= =
2p

−2
p

2p

−2p

=

(a) (b)

2p
−2

p

=

(d)

2p

−2p

(c)

Figure 2.2.
Let Mp be the double branched covering of Y with branch set the tangle

ξp. Then Mp is a compact orientable 3-manifold with boundary consisting
of two tori T0 and T1, where T0 is the lift of the inside sphere S0. The
∞ and 0 slopes on S0 lift to a meridian-longitude pair on T0, with respect
to which the Dehn filling manifold Mp(r) is the double covering of the 3-
ball branched along the tangle ξp(r). See [Mo2] for more details. Denote
by Q(r, s) the double branched cover of a Montesinos tangle ξ[1r ,

1
s ]. Note

that when |r|, |s| > 1, Q(r, s) is a Seifert fiber space with orbifold D(r, s),
which by definition is a disk with two cone points of angle 2π/|r| and 2π/|s|.
Denote by C(r, s) the cable space of type (r, s), that is, the exterior of a
knot K in a solid torus V which is parallel to a curve on ∂V representing
rl + sm in H1(∂V ), where (m, l) is a meridian-longitude pair of ∂V . The
above facts and Lemma 2.1 lead to the following lemma.

Lemma 2.2. Suppose p ≥ 2. The manifolds Mp have the following proper-
ties.

(1) Mp(∞) is the connected sum of a solid torus and the projective space
RP 3;

(2) Mp(0) = Q(2p− 1,−2p− 1);
(3) Mp(−1) = Q(2p+ 1,−2p+ 1);
(4) Mp(−1/2) is a non Seifert fibered graph manifold containing a unique

essential torus T , cutting it into a cable space C(2, 1) and a Seifert
fiber space Q(2p,−2p).

Proof. (1) follows from the fact that the double branched cover of the Hopf
link is RP 3, and connected sum of links and tangles downstairs corresponds
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to connected sum of manifolds upstairs. (2) and (3) follow from the definition
of Q(r, s).

To prove (4), notice that the Conway sphere in ξp(−1/2) cutting off the
tangle ξ(2p,−2p) lifts to an essential torus T upstairs, which cuts Mp(−1/2)
into Q(2p,−2p) and C(2, 1). Since ξp(−1/2) is not a Montesinos tangle, the
fibers on the two sides of T do not match. Seifert fibration on C(2, 1) is
unique, and since p ≥ 2, the Seifert fibration on Q(2p,−2p) is also unique
[Ja, Theorem IV.18]. Therefore, Mp(−1/2) is not a Seifert fiber space, so
T is the Jaco-Shalen-Johannson decomposing torus because each side of it
is a Seifert fiber space. Since each of C(2, 1) and Q(2p,−2p) are atoroidal,
T is the unique essential torus in Mp(−1/2). �

Note that when p = 1, Mp(0) and Mp(−1) are solid tori. Also, Mp(−1/2)
is a Seifert fiber space with orbifold a Mobiüs band with a cone point of
angle π/2, so the conclusion of (4) is not true for p = 1. Thus the argument
below will fail in this case. Actually, one can see that ξ1 contains a nontrivial
Conway sphere, so the manifold M1 is toroidal.

In the following, we will assume M = Mp and p ≥ 2, and show that M
is hyperbolic. Since M has toroidal boundary, by [Th] we need only show
that M is irreducible, ∂-irreducible, non Seifert fibered, and atoroidal.

Lemma 2.3. If p ≥ 2, then M is irreducible, ∂-irreducible, and non Seifert
fibered.

Proof. If M is reducible, let S be a reducing sphere. S is separating, other-
wise it would be a reducing sphere in all M(r), contradicting Lemma 2.2(2).
Let W,W ′ be the two components of M cut along S, with W the one con-
taining T0. Let Ŵ ′ be W ′ with S capped off by a 3-ball. Since M(0) is the
Seifert fiber space Q(2p− 1,−2p− 1), which is irreducible, W (0) must be a
3-ball, so Ŵ ′ = M(0) = Q(2p− 1,−2p− 1). But then we have

M(∞) = Ŵ ′#Ŵ (∞) = Q(2p− 1,−2p− 1)#Ŵ (∞) 6= (S1 ×D2)#RP 3,

which is a contradiction. Therefore M is irreducible.
If M is ∂-reducible, then after ∂-compression one of the Ti becomes a

sphere separating the two components of ∂M , hence is a reducing sphere,
contradicting the above conclusion.

If M is Seifert fibered, then M(r) is Seifert fibered for all but at most one
r, for which M(r) is reducible. Since M(−1/2) is irreducible and is not a
Seifert fiber space, this is not possible. �

Lemma 2.4. Suppose T is an essential separating torus in an irreducible 3-
manifold M , and suppose it is compressible in M(r1),M(r2) with ∆(r1, r2) ≥
2, where ri are slopes on T0 ⊂ ∂M . Then T and T0 bound a cable space in
M , with cabling slope r0 satisfying ∆(r0, ri) = 1, i = 1, 2.
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Proof. Cut M along T and let X be the component containing T0. Then T
is compressible in X(ri) and ∆(r1, r2) ≥ 2, so by [Wu1, Theorem 1] there is
an essential annulus A in X with one boundary on T and the other on T0,
with slope r0, say. Since T is essential in M , it is not parallel to T0, so by
[CGLS, Theorem 2.4.3] T is compressible in X(r) only if ∆(r0, r) ≤ 1. We
must have ∆(r0, ri) = 1, because if r0 = r1 then we would have ∆(r0, r2) =
∆(r1, r2) = 2, a contradiction. Now the manifold X(ri) is homeomorphic
to the manifold Y obtained by cutting X along A, so the torus component
of ∂Y corresponding to T under the homeomorphism is compressible in Y .
Since M is irreducible, this implies that Y is a solid torus. It follows that
X is a cable space with cabling slope r0. �

Lemma 2.5. M is atoroidal.

Proof. Assuming the contrary, let T be an essential torus in M . Then T
must be separating, otherwise M(r) would contain a nonseparating torus or,
if T becomes compressible in M(r), a nonseparating sphere, for all r, which
contradicts Lemma 2.2(1).

Let W,W ′ be the two components of M cut along T , with W the one con-
taining T0. Since M contains no nonseparating essential torus, by the Haken
finiteness theorem (cf. [Ja, Page 49]), we may choose T to be outermost in
the sense that W ′ contains no essential torus.

Claim. T is compressible in M(−1/2).

Recall from Lemma 2.2(4) that M(−1/2) has a unique essential torus T ′.
So if T is incompressible in M(−1/2) then either it is boundary parallel or
it is isotopic to T ′. The first case is impossible, because then M(−1/2) =
W (−1/2) ∪W ′ = (T × I) ∪W ′ ∼= W ′, so T ′ would be an essential torus in
W ′, contradicting the choice of T . Therefore T must be isotopic to T ′ in
M(−1/2). It follows that either W ′ = C(2, 1), or W ′ = Q(2p,−2p).

Since M(0) is atoroidal, either T is boundary parallel in M(0) or it is
compressible in M(0). In the first case we would have Q(2p− 1,−2p− 1) =
M(0) = W ′ = C(2, 1) or Q(2p,−2p), which is absurd. In the second case
let D be a compressing disk of T in W (0), and let Ŵ ′ be the manifold
obtained by capping off the sphere boundary component of W ′∪N(D) with
a 3-ball. Then Ŵ ′ is a summand of M(0) = Q(2p − 1,−2p − 1), so either
Ŵ ′ = Q(2p− 1,−2p− 1) or Ŵ ′ = S3. However, this is impossible whether
W ′ = C(2, 1) or W ′ = Q(2p,−2p) because Ŵ ′ is obtained from W ′ by Dehn
filling on T along certain slope, and it is easily seen that when p ≥ 2 none of
the Dehn fillings on such W ′ could produce Q(2p− 1,−2p− 1) or S3. This
completes the proof of the claim.

SinceM(∞) contains no incompressible torus, T is compressible inM(∞).
By the claim above, T is also compressible inM(−1/2). Since ∆(∞,−1/2) =
2, it follows from Lemma 2.4 that W is a cable space C(p, q) with cabling
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slope r0 satisfying ∆(r0,∞) = ∆(r0,−1/2) = 1. Solving these equalities,
we have r0 = 0 or −1. Now we have W (r0) = L(p, q)#(S1 ×D2), so M(r0)
should have a lens space summand. On the other hand, we have shown that
r0 = 0 or −1, and in either case by Lemma 2.2 M(r0) is a prime mani-
fold with torus boundary. This contradiction completes the proof that M is
atoroidal. �

Theorem 2.6. The manifolds Mp, p ≥ 2, are mutually distinct hyperbolic
manifolds, each admitting two nonhyperbolic Dehn fillings M(r1) and M(r2),
such that M(r1) is toroidal and annular, M(r2) is reducible and ∂-reducible,
and ∆(r1, r2) = 2.

Proof. Consider the manifold Mp which is the double cover of Y = S2 × I
branched along the tangle ξp in Figure 2.1. By Lemmas 2.3 and 2.5, Mp are
hyperbolic for all p ≥ 2. By Lemma 2.2, Mp(∞) is reducible and ∂-reducible,
and Mp(−1/2) is the union of C(2, 1) and Q(2p,−2p) along a torus, hence
is toroidal and annular because there is an essential annulus in C(2, 1) with
both boundary components on the outside torus T1. Since ∆(∞,−1/2) = 2,
Mp satisfy all the conditions of the theorem. It remains to show that Mp

and Mq are non homeomorphic when p, q ≥ 2 and p 6= q.
Let T0 (resp. T ′0) be the torus of ∂Mp (resp. ∂Mq) on which the Dehn

fillings are performed. Let (m, l) (resp. (m′, l′)) be the meridian-longitude
pair on T (resp. T ′) chosen as in Lemma 2.2. Let f : Mp → Mq be a
homeomorphism.

2p
−2

p

S

2p
−2p

(a) (b)

0S1 S1 S0

Figure 2.3.

There is a homeomorphism of Y interchanging the two sphere boundary
components, and leaving ξp invariant, which induces a self homeomorphism
of Mp interchanging the two boundary components. This can be seen by
redrawing the tangle in Figure 2.1 as in Figure 2.3(a), where the sphere S0

represents the inside sphere in Figure 2.1, and S1 the outside sphere. After
an isotopy the picture becomes that in Figure 2.3(b). (Note that the isotopy
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have changed the position of the endpoints of the tangle on the spheres, but
that does not matter.) Now blow up the sphere S0, we get the same picture
as that in Figure 2.1, with S0 and S1 interchanged. Thus without loss of
generality we may assume that f maps T0 to T ′0.

Since Mp(∞) is ∂-reducible, by [Sch] Mp(r) is irreducible for all r 6=∞.
Hence the reducing slope ∞ is unique, so f must send m to m′. Assume
f(l) = l′ + km′. Because of uniqueness of Seifert fibration, neither of Mp(0)
or Mp(−1) is homeomorphic to Mq(0) or Mq(−1) when p, q ≥ 2 and p 6= q.
Hence k 6= 0,±1. Now f sends the slope −1/2 to (2k − 1)/2, so both
Mq(−1/2) and Mq((2k−1)/2) are toroidal. We have ∆(−1/2, (2k−1)/2) =
|4k| ≥ 8. On the other hand, by [Go], this happens only if Mq is the Figure 8
knot complement or the Whitehead sister link complement. Since Mq have
two boundary components, this is impossible. �

3. Manifolds admitting two reducible Dehn fillings.

In this section we will show that there are infinitely many hyperbolic man-
ifolds with two torus boundary components, each admitting two reducible
Dehn fillings. Consider the tangles ξp in Y = S2 × I as shown in Figure
3.1, where, as in Figure 2.1, a rectangle labeled by an integer n denotes a
rational tangle of slope 1/n.

2p−2p

Figure 3.1.

As in Section 2, we denote byMp the double branched cover of Y branched
along ξp, and by ξp(r) the tangle obtained by filling the inside sphere S0 with
a rational tangle of slope r. Then the Dehn filling manifold Mp(r) is the
double cover of Y branched along ξp(r). The tangles ξp(∞) and ξp(0) are
drawn in Figure 3.2(a)–(b). We can see that ξp(∞) is the connected sum of
ξ(1/2,−1/2) and a Hopf link, while ξp(0) is the connected sum of a Mon-
tesinos tangle ξ(1/2p,−1/2p) and a Hopf link. Recall that Q(r, s) denotes
the Seifert fiber space which double branch covers the tangle ξ(1/r, 1/s),
and the double branched cover of a Hopf link is the projective space RP 3.
Therefore we have the following lemma.
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= =

(a) (b)

2p
−2
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2p
−2

p

2p

−2p

Figure 3.2.

Lemma 3.1. The manifolds Mp, p 6= 0, have the following properties.
(1) Mp(∞) = Q(2,−2)#RP 3;
(2) Mp(0) = Q(2p,−2p)#RP 3.

Thus each Mp admits two reducible Dehn fillings. In what follows, we
will assume M = Mp, and p ≥ 2. We need to show that M is hyperbolic.
Let T0 be the component of ∂M on which the Dehn fillings are performed.
Thus T0 covers the inside sphere S0 in Figure 3.1. Let T1 be the component
of ∂M covering the outside sphere S1.

Lemma 3.2. M is irreducible.

Proof. Assuming the contrary, let S be a reducing sphere of M . Clearly
S is separating, otherwise M(0) would contain a nonseparating reducing
sphere, contradicting Lemma 3.1. Let W,W ′ be the components of M cut
along S, with W the one containing T0. Denote by Ŵ the manifold W with
the sphere boundary capped off by a 3-ball. Similarly for Ŵ ′. Then Ŵ ′

is a summand of both M(0) and M(∞), so by Lemma 3.1 we must have
Ŵ ′ = RP 3. This also shows that the reducing sphere in M is unique up to
isotopy, because if S and S′ bound different punctured RP 3, then tubing
them together would give a sphere which does not bound a punctured RP 3.

Let ρ be the involution of M which induces the branched covering. Since
the reducing sphere S is unique up to isotopy, by the equivariant sphere
theorem [MSY], it can be chosen to be invariant under the involution ρ,
hence it double branch covers a sphere S′ in the manifold Y downstairs,
which must cut off a 3-ball B because one side of S is W ′, which does not
contain the preimage of S0 or S1. Extending the involution ρ|S trivially
over a 3-ball D, we get a double branched cover Ŵ ′ → S3 = B ∪D′, with
branch set L the union of ξ′ = ξp ∩ B and a trivial arc in the attached
3-ball D′, which is the image of D under the branched covering map. Since
Ŵ ′ = RP 3 = L(2, 1), the link L is the 2-bridge link associated to the number
1/2, which is the Hopf link. Therefore, ξ′ = ξp∩B is a tangle in B consisting
of an unknotted arc and a trivial circle C around it.

We want to shown that no such pair (B, ξ′) exists in (Y, ξp). Assuming
the contrary, then (B, ξ′) would remain the same after filling the sphere
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boundaries S0, S1 of Y with any rational tangles. The tangle ξp has two
circle components C1, C2, where C1 denotes the one on the left in Figure
3.1. The circle component C of ξ′ must be one of the Ci. However, after
filling both Si with 0-tangle, C2 has linking number p ≥ 2 with one of the
components of the resulting link, while after filling S0 with 1-tangle and S1

with∞-tangle the circle C1 has linking number 2 with one of the components
of the resulting link, either case contradicting the fact that C bounds a disk
in B intersecting the resulting link only once. �

Lemma 3.3. M is ∂-irreducible, and is not a Seifert fiber space.

Proof. Since ∂M consists of two tori, M being ∂-reducible would imply that
it is reducible, which would contradict Lemma 3.2. If M is Seifert fibered
(with two torus boundary components), then M(r) would be reducible for
at most one r, which would contradict Lemma 3.1. �

Lemma 3.4. Let X be an irreducible and ∂-irreducible 3-manifold. If both
X(r1) and X(r2) are reducible and ∂-reducible, then r1 = r2.

Proof. Let T0 be the Dehn filling component of ∂X. Assume r1 6= r2. Since
X(r1) is ∂-reducible and X(r2) is reducible, by Scharlemann’s theorem [Sch,
Theorem 6.1], r2 is a cabling slope, so there is an essential annulus A2 in X
with boundary two copies of r2 of opposite orientations. Similarly, we have
an essential annulus A1 in X with boundary consisting of two copies of r1 of
opposite orientations. Isotope A1 to intersect A2 essentially. Then A1 ∩A2

consists of essential arcs on Ai, running from one boundary component to
the other. By the parity rule on [CGLS, Page 279], if an arc component of
A1∩A2 connects two components of ∂A1 which have opposite orientations on
T0, then it must connect two components of ∂A2 with the same orientation
on T0. This is a contradiction because the two boundary components of
each Ai have opposite orientations on T0. �

Lemma 3.5. M is atoroidal.

Proof. Consider an essential torus T inM . Clearly T is separating, otherwise
M(0) would contain a nonseparating torus or sphere, which would contradict
Lemma 3.1. Let W,W ′ be the two components of M cut along T , where W
contains T0. Note that T cannot be boundary parallel in M(0) or M(∞),
otherwise W ′, and hence M , would be reducible, which would contradict
Lemma 3.2. Hence T is compressible in both W (0) and W (∞) because by
Lemma 3.1 they are atoroidal. After compression, T becomes a sphere in
W (0) and W (∞), so if W contained T1, then both W (0) and W (∞) would
also be reducible, which is impossible by Lemma 3.4. Hence we conclude
that any essential torus in M must separate the two boundary components
of M .

Let ρ : M → M be the involution which induces the branch covering,
and let X be the fixed point set of ρ. Then X covers the tangle ξp in the
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manifold Y downstairs. Since ξp contains four arcs running from S0 to S1,
X has four arcs running from T0 to T1, hence each essential torus T intersect
X at least four times.

By the equivariant torus theorem [MS, Theorem 8.6], there is a set of
essential tori T in M such that ρ(T ) = T . Let T be a component of T . Since
X intersects T in at least four points, we must have ρ(T ) = T . Calculating
the Euler number of T/ρ, we see that X cannot intersect T in more than
four points. Hence T intersects X exactly four times, and S = T/ρ is a
sphere in Y which intersects each of the four arc components of ξp exactly
once, and is disjoint from the circle components of ξp. Since the two circle
components of ξp have linking number 1, they must lie on the same side of
S.

Let Y1, Y2 be the two components of Y cut along S, with Y1 the one
disjoint from the circle components of ξp. Let W1,W2 be the components
of M cut along T , with Wi covering Yi. Consider the tangle ξ′p consisting
of the arc components of ξp. Let M ′ be the double cover of Y branched
along ξ′p, let T ′ be the torus in M ′ that covers S, and let W ′

i be the part
of M ′ that covers Yi. It can be seen from Figure 3.1 that ξ′p is isotopic to
four straight arcs running from S0 to S1; hence M ′ = T 2 × I. Since T ′ is a
torus separating the two components of ∂M ′, it is isotopic to a horizontal
torus T 2 × x, so each W ′

i is also homeomorphic to T 2 × I. Now we have
ξp ∩ Y1 = ξ′p ∩ Y1, therefore W1, as the double cover of Y1 branched along
ξp∩Y1, is the same as W ′

1, hence is a product T 2×I. But then T is boundary
parallel, contradicting the assumption that T is an essential torus in M . �

Theorem 3.6. The manifolds Mp, p ≥ 2, are distinct hyperbolic manifolds,
each admitting two reducible Dehn fillings M(r1),M(r2) with ∆(r1, r2) = 1.

Proof. We have shown in Lemmas 3.1-3.5 that Mp are hyperbolic manifolds
admitting two reducible Dehn fillings Mp(0) and Mp(∞), so it remains to
show that the manifolds are all different.

Suppose f : Mp → Mq is a homeomorphism, p > q ≥ 2. As in the proof
of Theorem 2.6, it is easy to see that there is a self homeomorphism of Mp

interchanging the two boundary components, hence we may assume that f
maps T0 to T ′0, where T ′0 and T ′1 are the boundary tori of Mq, with T ′0 the
one covering the inside sphere.

By [GLu1], Mi admits at most three reducible Dehn fillings, with mutual
distance 1. Since Mp(0) = Q(2p,−2p)#RP 3 is homeomorphic to neither
Mq(0) nor Mq(∞), f maps the slope 0 to another reducing slope of Mq,
which must be ±1 because it has distance 1 from 0 and ∞. Thus the only
reducible Dehn filling of Mq homeomorphic to Mp(∞) is Mq(∞), so f sends
the ∞ slope on T0 to ∞ on T ′0. Similarly, it sends the ∞ slope on T1 to ∞
on T ′1. Denote by Mp(r, s) the manifold obtained by r filling on T0 and s
filling on T1. Then we have Mp(0,∞) = Mq(±1,∞).
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The manifold Mk(r, s) is a double cover of ξk(r, s), which is obtained from
ξk by filling the inside sphere with a rational tangle of slope r and the outside
sphere with one of slope s. One can check that ξp(0,∞) is the split union
of a Hopf link and a trivial knot, while ξq(±1,∞) is the connected sum of a
Hopf link and a 2-bridge link associated to the rational number ±1

4 . Thus
Mp(0,∞) = S1 × S2#RP 3, and Mq(±1,∞) = L(4,±1)#RP 3. Since these
two manifolds are not homeomorphic, this is a contradiction. �

4. Reducible and toroidal fillings.

In this section we show that there are infinitely many hyperbolic manifolds
which admit a reducible filling and a toroidal filling of distance 3 apart.
Consider the tangles ξp (p ≥ 3) in Y , as shown in Figure 4.1(a), where Y is
the 3-ball obtained by deleting the interior of the 3-ball B in the figure from
S3. As before, let ξ(r) be the union of (Y, ξp) with a rational tangle of slope
r, and let Mp(r) be the double branched cover of S3 branched along ξp(r).

(a) (b) (c)
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(d) (e)

=

(f)

= =
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p p

p

−p−2

p

B

Figure 4.1.
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Lemma 4.1. The manifold Mp admits the following Dehn fillings.

(1) Mp(∞) is a non Seifert fibered, irreducible, toroidal manifold;
(2) Mp(0) is a lens space L((p− 1)(p+ 3) + 1, p+ 3);
(3) Mp(1) and Mp(1/2) are small Seifert fibered manifolds, but not lens

spaces;
(4) Mp(1/3) = L(3, 1)#L(2, 1).

Proof. The tangles ξ(∞), ξ(0), ξ(1), ξ(1/2), ξ(1/3) are shown in Figure
4.1(b)-(f), respectively. We can see that ξ(∞) is the union of ξ[12 ,

1
−(p+2) ]

and ξ[12 ,
1
p ], and is not a Montesinos link; ξ(0) is a 2-bridge link associated

to the rational number 1/((p− 1)+1/(p+3)) = (p+3)/((p+3)(p− 1)+1);
ξ(1) and ξ(1/2) are Montesinos links consisting of three rational tangles; and
ξ(1/3) is the connected sum of a trefoil knot and a Hopf link. The result now
follows by taking the double cover of S3 branched along the corresponding
links. Note that p ≥ 3 guarantees that the Seifert fibrations on the two sides
of the essential torus in Mp(∞) are unique, which can be used to show that
Mp(∞) is not a Seifert fiber space. See the proof of Lemma 2.2. �

Theorem 4.2. The manifolds M = Mp, p ≥ 3, are mutually distinct hy-
perbolic manifolds, each admitting two Dehn fillings M(r1) and M(r2), such
that M(r1) is reducible, M(r2) is toroidal, and ∆(r1, r2) = 3.

Proof. Let r1 = 1/3, and r2 = ∞. Then ∆(r1, r2) = 3, and by Lemma
4.1, M(r1) is reducible, M(r2) is toroidal. We need to show that Mp are
hyperbolic and mutually distinct.
M is irreducible, otherwise a closed summand would survive after all

Dehn fillings; but since M(0) and M(1) are non homeomorphic prime man-
ifolds, this is impossible. M is not a Seifert fiber space because two Dehn
fillings M(∞) and M(1/3) are non Seifert fibered. These imply that M
is ∂-irreducible. To prove M is hyperbolic, it remains to show that M is
atoroidal.

If T is an essential torus in M , then it is compressible in M(0), M(1),
M(1/2) and M(1/3). Since M(0) is irreducible, T must be separating. Let
W,W ′ be the components of M cut along T , with W the one containing T0.
Since ∆(1, 1/3) = 2, by Lemma 2.4, W is a cable space C(r, s), with cabling
slope r0 satisfying ∆(r0, 1) = ∆(r0, 1/3) = 1. Solving these equalities, we
have r0 = 0 or 1/2; but since M(r0) contains a lens space L(r, s), we must
have r0 = 0.

Let δ0 and δ1 be the slopes on T which bound disks in W (0) and W (1/3),
respectively. Since 0 is the cabling slope, we have ∆(δ0, δ1) = |r| > 1. Now
W (0) is the connected sum of a solid torus and L(r, s), while W (1/3) is a
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solid torus, so we have

M(0) = L(r, s)#W ′(δ0),

M(1/3) = W ′(δ1).

Comparing the first equation with Lemma 4.1(2), we see that W ′ is the exte-
rior of a knot in S3 with δ0 the meridional slope. But then since ∆(δ0, δ1) >
1, by [GLu2] the manifold M(1/3) would be irreducible, which would con-
tradict Lemma 4.1(4). This completes the proof that M is atoroidal, and
hence hyperbolic.

It remains to show that the manifolds Mp are mutually distinct. As-
sume there is a homeomorphism f : Mp

∼= Mq, p > q ≥ 3. Let (m, l)
and (m′, l′) be the meridian-longitude pair of Mp and Mq, respectively. By
[CGLS], [GLu1] and [BZ, Theorem 0.1], a hyperbolic manifold admits a
total of at most three reducible or cyclic Dehn fillings, with mutual distance
1. Thus two of the four slopes 0, 1/3, f(0), f(1/3) on ∂Mq must be the same.
But since Mp(0) is not homeomorphic to Mq(0) or Mq(1/3), we must have
f(1/3) = 1/3, and f(0) is of distance 1 from 0 and 1/3, so f(0) = 1/2 or
1/4. The first is impossible because Mq(1/2) is not a lens space. Hence
f(0) = 1/4. Now f(m) = f((m + 3l) − 3l) = (m′ + 3l′) ± 3(m′ + 4l′), and
we have ∆(m′, f(m)) ≥ 9. Since both m′ and f(m) are toroidal Dehn filling
slopes on ∂Mq, this contradicts [Go]. �
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TEST WORDS, GENERIC ELEMENTS AND ALMOST
PRIMITIVITY

B. Fine, G. Rosenberger, D. Spellman, and M. Stille

A test element in a group G is an element g with the prop-
erty that if f(g) = g for an endomorphism f of G to G then
f must be an automorphism. A test element in a free group
is called a test word. Nielsen gave the first example of a test
word by showing that in the free group on x, y the commutator
[x, y] satisfies this property. T. Turner recently characterized
test words as those elements of a free group contained in no
proper retract. Since free factors are retracts, test words are
therefore very strong forms of non-primitive elements. In this
paper we give some new examples of test words and exam-
ine the relationship between test elements and several other
concepts, in particular generic elements and almost-primitive
elements (APE’s). In particular we show that an almost prim-
itive element which lies in a certain type of verbal subgroup
must be a test word. Further using a theorem of Rosenberger
on equations in free products we prove a result on APE’s,
generic elements and test words in certain free products of
free groups. Finally we examine test elements in non-free
groups and introduce the concept of the test rank of a group.

1. Introduction.

A test element in a group G is an element g with the property that if
f(g) = g for an endomorphism f ofG toG then f must be an automorphism.
A test element in a free group is called a test word. Nielsen [N] gave the
first non-trivial example of a test word by showing that in the free group
on x, y the commutator [x, y] satisfies this property. T. Turner [T] recently
characterized test words as those elements of a free group which do not lie
in any proper retract. Using this characterization he was able to give several
straightforward criteria to determine if a given element of a free group is a
test word. Using these criteria, Comerford [C] proved that it is effectively
decidable whether elements of free groups are test words. Since free factors
are retracts, Turner’s result implies that no test word can fall in a proper free
factor. Therefore being a test word is a very strong form of non-primitivity.

In this paper we consider relationships between test words and two related
concepts — almost primitive elements (APE’s) and generic elements.
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We give the formal definitions in the next section where we also prove that
an almost primitive element of a free group which lies in a certain type of
verbal subgroup must be a test word (Theorem 1). This is quite surprising
given the strong non-primitivity of test words. In Section 3 we use a the-
orem of Rosenberger [R1] on equations in free products to prove a result
on APE’s, generic elements and test words in certain free products of free
groups. In Section 4, using Nielsen transformations, we produce a set of
generic elements in the free group of rank two. Using the theorem of Rosen-
berger mentioned above, these examples can be extended to finding generic
elements in higher rank free groups. Finally in Section 5 we give some
straightforward results on extensions of these concepts to arbitrary non-free
groups. As pointed out by Turner the characterization of test elements in
general is more subtle and difficult than in the free group case.

We note that a few of the results appear in the Diplomarbeit of N. Iser-
mann [I] however the proofs given here are somewhat different.

2. Test Words, Almost Primitive Elements and Generic
Elements.

A test element in a group G is an element g with the property that if
f(g) = g for an endomorphism f ofG toG then f must be an automorphism.
A test element in a free group is called a test word. Nielsen [N] gave the
first non-trivial example of a test word by showing that in the free group
on x, y the commutator [x, y] satisfies this property. Other examples of test
words have been given by Zieschang [Z1, Z2], Rosenberger [R1, R2, R3]
Kalia and Rosenberger [K-R], Hill and Pride [H-P] and Durnev [D]. Gupta
and Shpilrain [G-S] have studied the question as to whether the commutator
[x, y] is a test element in various quotients of the free group on x, y.

Recall that a subgroup H of a group G is a retract if there exists a
homomorphism f : G → H which is the identity on H. Clearly in a free
group F any free factor is a retract. However there do exist retracts in
free groups which are not free factors. Recently T. Turner [T] characterized
test words as those elements of a free group which do not lie in any proper
retract. Using this characterization he was able to give several straightfor-
ward criteria to determine if a given element of a free group is a test word.
Using these criteria, Comerford [C] proved that it is effectively decidable
whether elements of free groups are test words. Since free factors are re-
tracts, Turner’s result implies that no test word can fall in a proper free
factor. Therefore being a test word is a very strong form of non-primitivity.
Shpilrain [S1, S2] defined the rank of an element w in a free group F as the
smallest rank of a free factor containing w. Clearly in a free group of rank
n a test word has maximal rank n. Shpilrain conjectured that the converse
was also true but Turner gave an example showing this to be false. However
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Turner also proved that Shpilrain’s conjecture is true if only test words for
monomorphisms are considered.

As a direct consequence of the characterization Turner obtains the fol-
lowing result [T, Example 5] which shows that there is a fairly extensive
collection of test words in a free group of rank two.

Proposition 1 ([T]). In a free group of rank two any non-trivial element
of the commutator subgroup is a test word.

Proof. Let F be a free group of rank two and suppose H is a proper retract.
Then the rank of H must be one and hence H is abelian. Suppose g ∈ F ′ the
commutator subgroup of F . If g ∈ H then there exists an endomorphism
f : F → H which is the identity on H. Therefore f(g) = g. But f(g) = 1
if f is any homomorphism of F into an abelian group. Therefore g = 1. It
follows that no non-trivial element of F ′ can lie in any proper retract and
therefore by Turner’s characterization must be a test word. �

An almost primitive element - (APE) - is an element of a free group F
which is not primitive in F but which is primitive in any proper subgroup of
F containing it. This can be extended to arbitrary groups in the following
manner. An element g ∈ G is primitive in G if g generates an infinite
cyclic free factor of G, that is g has infinite order and G = 〈g〉 ?G1 for some
G1 ⊂ G. g is then an APE if it is not primitive in G but primitive in any
proper subgroup containing it. Rosenberger [R1] proved that in the free
group F = F (xi, yi, zj); 1 ≤ i ≤ m, 1 ≤ j ≤ n, of rank 2m+ n the element

[x1, y1]...[xm, ym]zp11 . . . zpn
n

where the pi are not necessarily distinct primes, is an APE in F . Rosen-
berger [R1] proved, in a different setting that if A,B are arbitrary groups
containing APE’s a, b respectively, then the product ab is either primitive
or an APE in the free product A?B. This was reproved by Brunner, Burns
and Oates-Williams [B-B-O] who also prove the more difficult result that
if a and b are tame APE’s in groups A,B respectively then their product
normally is a tame APE in A?B. An APE w in a group G ia a tame APE
if whenever wα ∈ H ⊂ G with α ≥ 1 minimal, then either wα is primitive in
H or the index [G : H] is α. It follows easily that [a1, b1] . . . [ag, bg], g ≥ 1,
is a tame APE in the free group on a1, b1 . . . ag, bg, (see [R3]). We note that
Brunner, Burns and Oates-Williams give a more technical definition of a
tame APE.

Let U be a variety defined by a set of laws V. (We refer to the book of H.
Neumann [Ne] for relevant terminology.) For a group G we let V(G) denote
the verbal subgroup of G defined by V. An element g ∈ G is U-generic in
G if g ∈ V(G) and whenever H is a group, f : H → G a homomorphism and
w = f(u) for some u ∈ V(H) it follows that f is surjective. Equivalently
g ∈ G is U-generic in G if g ∈ V(G) ⊂ G but g /∈ V(K) for every proper
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subgroup K of G [St]. An element is generic if it is U-generic for some
variety U . Let Un be the variety defined by the set of laws Vn = {[x, y], zn}.
For n = 0 we have Un = A the abelian variety. Stallings [St] and Dold
[Do] have given sufficient conditions for an element of a free group to be
Un-generic. Using this it can be shown that xn1x

n
2 . . . x

n
m is Un-generic in the

free group on x1, . . . , xm for all n ≥ 2 and if m is even [x1, x2], . . . [xm−1, xm]
is Un-generic in the free group on x1, . . . , xm for n = 0 and for all n ≥ 2.
These facts are also consequences of a result of Rosenberger [R2, R3].

Comerford [C] points out that if G is Hopfian, which is the case if G is
free, then being generic implies being a test word. Thus for free groups we
have

generic −→ test word .

Comerford also shows that there is no converse. In particular he shows that
in a free group of rank 3 on x, y, z the word w = x2[y2, z] is a test word but
is not generic. We can also show that in general, generic does not imply
APE. Suppose F = F (x, y) is the free group of rank two on x, y and let
w = x4y4. Then w is U4-generic but w is not an APE since w ∈ 〈x2, y2〉 and
is not primitive in this subgroup while this subgroup is not all of F .

Further, in general it is not true that being an APE implies being a test
word. Again let F = F (x, y) and let w = x2yx−1y−1. Brunner, Burns
and Oates-Williams, after a private communication with G. Rosenberger,
show that w is an APE. However Turner shows that w is not a test word.
Since generic elements are test words in a Hopfian group this example shows
further that APE does not imply generic in general. This is really to be
expected since test words are strongly non-primitive. However our first
result shows that many APE’s are indeed generic and therefore test words.

Recall that a variety U defined by the set of laws V is a non-trivial variety
if it consists of more than just the trivial group. In this case V(F ) 6= F for
any free group F .

Theorem 1. Let F be a free group and B a non-trivial variety defined by
the set of laws V. Let w ∈ V(F ). If w is an APE then w is B-generic. In
particular w is a test word.

Proof. Let w ∈ V(F ) be an APE and let φ : H → F be a homomorphism
with φ(u) = w for some u ∈ V(H). As in the statement of the theorem,
V is the set of laws defining the non-trivial variety B. Let K be a proper
subgroup of F . If w /∈ K then clearly w /∈ V(K). If w ∈ K then since w is an
APE, w is primitive in K since K is a proper subgroup of F . Further since
B is a non-trivial variety and K is free we have that K 6= V(K). It follows
then from the primitivity of w in K that w /∈ V(K). Therefore w ∈ V(F )
and for any proper subgroup K of F we have w /∈ V(K) and hence w is
B-generic. Since free groups are Hopfian, w must then be a test word. �
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In particular let F (n) be the subgroup of the free group F generated by
all commutators and n-th powers, n ≥ 2 or n = 0, that is F (n) = Vn(F ).
Then:

Corollary 1. Let w ∈ F (n) with n ≥ 2 or n = 0. If w is an APE then w
is Un-generic and w is a test word.

3. APE’s in Certain Free Products of Free Groups.

In this section we give a result on APE’s, generic elements and test words
on certain free products of free groups. The result depends on the following
theorem of Rosenberger [R1].

Theorem 2 ([R1]). Let G = H1 ? · · ·Hn, n ≥ 2, be the free product of
groups H1, . . . , Hn. Let aj ∈ Hj , aj 6= 1, and let p be the number of aj
which are proper powers in Hj, (1 ≤ j ≤ n). Let {x1, . . . , xm} ⊂ G, m ≥ 1,
and let H be the subgroup of G generated by x1, . . . , xm. If a = a1...an ∈ H
then one of the following cases holds:

(1) There is a Nielsen transformation from {x1, . . . , xm} to a system {y1,
. . . , ym} with y1 = a1 · · · an.

(2) It is m ≥ 2n− p, and there is a Nielsen transformation from {x1, . . . ,
xm} to a system {y1, . . . , ym} with yi ∈ Hj , 1 ≤ j ≤ n, 1 ≤ i ≤ 2n−p;
and moreover aj can be written as a word in those yk, 1 ≤ k ≤ m,
which are contained in Hj,1 ≤ j ≤ n.

Proof. Here we give a more detailed proof than in [R1]. This is done in
order to explain more extensively the concept of semistable letters and the
blockwise description of letters in a product of generators.

We regard G as the free product G = H1 ? · · · ? Hn together with the
length L and an order with respect to this factorization. We refer to the
papers [Z3] and [F-R-S] for the terminology and properties related to the
length L and Nielsen cancellation methods in such free products. Consider
the sets of elements {x1, . . . , xm} and {a1, . . . , an} as in the statement of
the theorem. We may assume that {x1, . . . , xm} is Nielsen reduced. For
this system we then have an equation

(1)
q∏

k=1

xεkνk
= a1 · · · an

where εk = ±1, εk = εk+1 if νk = νk+1.
Among the equations as in (1) there is one for which q is minimal and

let us assume that this is the case in Equation (1). Further we may also
assume that each xi 6= 1 and that each xi occurs in (1). If some xi occurs
only once in (1) as either xi or x−1

i then case (1) of the theorem holds. That
is {x1, . . . , xm} can be carried by a Nielsen transformation to a system
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{y1, . . . , ym} with y1 = a1 . . . an. If this is not the case we will show that
there is no λ ∈ {1, . . . ,m} such that always

L(xενxλx
η
µ) > L(xν)− L(xλ) + L(xµ)

for ν, µ ∈ {1, . . . ,m}, ε, η = ±1 and ν 6= λ 6= µ or ν = λ 6= µ, ε = 1 or
ν 6= λ = µ, η = 1 or ν = λ = µ, ε = η = 1. It follows then that for
λ ∈ {1, . . . ,m} there is always some ν, µ ∈ {1, . . . ,m} such that

L(xενxλx
η
µ) ≤ L(xν)− L(xλ) + L(xµ)

for ε, η = ±1 and ν 6= λ 6= µ or ν = λ 6= µ, ε = 1 or ν 6= λ = µ, η = 1 or
ν = λ = µ, ε = η = 1. This means that each xλ is conjugate to some element
of some Hs and hence necessarily either we return to case (1) or case (2)
holds proving the theorem.

We may assume that each xi either occurs twice in Equation (1) with the
same exponent ε = ±1 or occurs in (1) exactly once with exponent +1 and
once with exponent −1. In either case we always have

L(xεkνk
· · ·xεhνh

) ≥ L(xεlνl
)

for 1 ≤ k ≤ l ≤ h ≤ q and

L(xεkνk
x
εk+1
νk+1x

εk+2
νk+2) ≥ L(xνk

)− L(xνk+1
) + L(xνk+2

)

for 1 ≤ k ≤ q − 2.
Assume that there is a λ ∈ {1, . . . ,m} such that always

L(xενxλx
η
µ) > L(xν)− L(xλ) + L(xµ)

for ν, µ ∈ {1, . . . ,m}, ε, η = ±1 and ν 6= λ 6= µ or ν = λ 6= µ, ε = 1 or
ν 6= λ = µ, η = 1 or ν = λ = µ, ε = η = 1. Suppose in particular that
λ = νk. We write ui = xεiνi

, 1 ≤ i ≤ q. Let

ui = li1 · · · limi
kirimi

· · · ri1
be the symmetric normal form of ui (see [Z3] and [F-R-S]). We call

li1 , . . . , limi
, ki, rimi

, . . . , ri1

the places of ui. For brevity we write vi for a place of ui. In the following
we write

z ≡ z1 · · · zp
to stand for the equality of the elements= together with the fact that

L(z) = L(z1) + · · ·+ L(zp).

Given the xλ above and its places, there is an at, 1 ≤ t ≤ n, such that
one of the following holds:

(a) uk ≡ pkvkqk and at = vkbt where vk ∈ Ht \ {1} is a place of uk
and bt = 1 or 1 6= bt ∈ Ht and uk+1 · · ·uk+l ≡ q−1

k btqk for some l with
1 ≤ l ≤ q − k;
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(b) uk ≡ pkvkqk and at = btvk where vk ∈ Ht \ {1} is a place of uk
and bt = 1 or 1 6= bt ∈ Ht and uk−l · · ·uk−1 ≡ pkbtp

−1
k for some l with

1 ≤ l ≤ k − 1;
(c) uk ≡ pkvkqk , uk+l+1 ≡ q−1

k vk+l+1qk+l+1 and at = vkbtvk+l+1 where
0 ≤ l ≤ q − k − 1, vk ∈ Ht \ {1} is a place of uk,vk+l+1 ∈ Ht \ {1} is a place
of uk+l+1 and bt = 1 or 1 6= bt ∈ Ht and uk+1 · · ·uk+l ≡ q−1

k btqk for some l
with 1 ≤ l ≤ q − k − 1;

(d) uk ≡ pkvkqk , uk−l−1 ≡ pk−l−1vk−l−1p
−1
k and at = vk−l−1btvk where

0 ≤ l ≤ k − 2, vk ∈ Ht \ {1} is a place of uk, vk−l−1 ∈ Ht \ {1} is a place
of uk−l−1 and bt = 1 or 1 6= bt ∈ Ht and uk−l · · ·uk−1 ≡ pkbtp

−1
k for some l

with 1 ≤ l ≤ k − 2.
Note that if uk+1 . . . uk+l ≡ q−1

k btqk or uk−l . . . uk−1 ≡ pkbtp
−1
k , bt 6= 1,

respectively then each ui occurring in this product is conjugate to an element
of Ht.

To see all this assume that there is an at with 1 ≤ t ≤ n for whose
formation some ui, 1 ≤ i < k, and some uj , k < j ≤ q, contribute. Then
uk−1 cancels the whole leading half of uk and uk+1 cancels the whole rear
half of uk and the kernel of uk has a share in the formation of at. But then
L(uk−1ukuk+1) ≤ L(uk−1)− L(uk) + L(uk+1) giving a contradiction.

Now suppose we have the blockwise description of at above and we assume
as before that xλ = xνk

occurs twice in Equation (1). Then νk = νh for some
h, 1 ≤ h ≤ q, with k 6= h. Without loss of generality let k < h and recall that
all the at, 1 ≤ t ≤ n, are all different from different factors. If εh = εk then
the leading half of xλ = xνh

= xνk
is inverse to the rear half of xλ = xνk

,
that is xνk

is conjugate to an element of some factor Hs with 1 ≤ s ≤ n.
But then

L(x3
νk

) ≤ L(xνk
) = L(xνk

)− L(xνk
) + L(xνk

)

which gives a contradiction.
Now let εh = −εk. Then we have the following situation:
uk ≡ pkvkqk, uh = uk+l+1 = u−1

k ≡ q−1
k v−1

k p−1
k , uk+1 · · ·uk+l ≡ q−1

k btqk
with vk, bt ∈ Ht \ {1} for some t, 1 ≤ t ≤ n and some l, 1 ≤ l ≤ q − k − 1.
We may choose vk in such a way that |L(pk) − L(qk)| ≤ 1. Assume that
pk 6= 1. Since the at are all different from different factors, pk or p−1

k must
be cancelled completely in Equation (1) by a ui with i < k or i >= h
respectively, which is not conjugate to an element of some factor. For such
an element ui we always have (see [F-R-S])

L(uεluiu
η
j ) > L(ul)− L(ui) + L(uj)

for l, j ∈ {1, . . . , q}, ε, η = ±1 and l 6= i 6= j or l = i 6= j, ε = 1 or
l 6= i = j, η = 1 or l = i = j, ε = η = 1. We have i < k or i > h
so an inductive argument gives a contradiction because of the blockwise
description of the at.
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Therefore we have pk = 1. This gives qk 6= 1, L(qk) = 1 since uk is not
conjugate to an element of some factor. But then uk+1 = q−1

k dtqk for some
dt ∈ Ht\{1}, u := ukuk+1u

−1
k = vkdtv

−1
k and L(u) = 1 < L(uk+1) = 3 which

contradicts the fact that {x1, . . . , xm} is Nielsen reduced. Hence xλ = xνk

occurs only once in Equation (1) contradicting the assumption that each xi
occurs twice in Equation (1). Therefore there is no λ such that always

L(xενxλx
η
µ) > L(xν)− L(xλ) + L(xµ)

for ν, µ ∈ {1, . . . ,m}, ε, η = ±1 and ν 6= λ 6= µ or ν = λ 6= µ, ε = 1 or
ν 6= λ = µ, η = 1 or ν = λ = µ, ε = η = 1. As described before this
statement completes the theorem. �

We note the following. Suppose {x1, . . . , xm} ⊂ G = H1 ? · · · ? Hn,
m ≥ 1, n ≥ 2, is a Nielsen reduced system as above with xi 6= 1 for all i.
Let λ ∈ {1, . . . ,m} be such that always

L(xενxλx
η
µ) > L(xν)− L(xλ) + L(xµ)

for ν, µ ∈ {1, . . . ,m}, ε, η = ±1 and ν 6= λ 6= µ or ν = λ 6= µ, ε = 1 or
ν 6= λ = µ, η = 1 or ν = λ = µ, ε = η = 1. Let w = ai1 · · · air ∈ G, r ≥ 1, be
given in normal form and let w ∈ H = 〈x1, . . . , xm〉. Let

w =
q∏

k=1

xεkνk

εk = ±1, εk = εk+1 if νk = νk+1 with q minimal. Assume that xλ occurs in
this equation, for instance suppose xεkλ = xεkνk

=: uk. Then there is an aij
related to uk = xελ which is described via the block relation to a place vk of
uk as in the proof of the theorem. Such a vk is called a semistable letter
of uk. The advantage of a semistable letter is that it can be influenced in
such an equation as above, only from one side.

Using the theorem we obtain the following result on APE’s in free prod-
ucts of free groups.

Theorem 3. Let F be a finitely generated free group with basis B. Let
B1, . . . , Bn, n ≥ 2, be pairwise disjoint, non-empty subsets of B and let Fj
be the subgroup of F generated by Bj, 1 ≤ j ≤ n. Let aj ∈ Fj with aj 6= 1,
1 ≤ j ≤ n and let a = a1 . . . an. Then:

(1) If each aj is an APE in Fj then a is an APE in F .
(2) Let U a non-trivial variety defined by the set of laws V.

(a) Let aj ∈ V(Fj). If each aj is U-generic in Fj then a ∈ V(F ) and a
is U-generic in F .

(b) Let a ∈ V(F ). If a is U-generic in F then each aj ∈ V(Fj) and
each aj is U-generic in Fj.

(3)(a) Let aj ∈ F qj F ′j, q = 0 or q = 2, for each j, 1 ≤ j ≤ n. If each aj is
a test word in Fj then a is a test word in F .
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(b) Let a ∈ F qF ′, q = 0 or q = 2. If a is a test word in F then each aj
is a test word in Fj.

Proof. (1) Let aj ∈ Fj with aj 6= 1, 1 ≤ j ≤ n, and let a = a1 · · · an.
Then a cannot be primitive in F because in that case at least one aj has
to be primitive in Fj contradicting that each aj is an APE. Let K be a
proper subgroup of F with a ∈ K. From Theorem 2, a is primitive in K
or without loss of generality, we may assume that K has a finite basis X
which is the disjoint union of n subsets Xj of Fj such that aj ∈ Kj ⊂ Fj
for each j, 1 ≤ j ≤ n, where Kj is the subgroup generated by Xj . We
consider this latter situation. If Kj = Fj for each j then K = 〈K1, . . . ,Kn〉
= 〈F1, . . . , Fn〉 = F contradicting the fact that K 6= F . Hence Kj is a
proper subgroup of Fj for at least one j. Suppose K1 ⊂ F1,K1 6= F1. Then
a1 is primitive in K1 since a1 is an APE in F1 and hence a = a1 · · · an is
primitive in K. This completes part (1).

(2)(a) Let each aj be U-generic in Fj . Since each aj ∈ V(Fj) we have
a ∈ V(F ). Let φ : H → F be a homomorphism with φ(u) = a for some
u ∈ V(H). Without loss of generality assume H to be finitely generated. a
cannot be primitive in K = φ(H) because U is non-trivial. Let A be a finite
generating system for H. Then X = φ(A) is a finite generating system for
K. We apply Theorem 2 and the fact that a Nielsen transformation from
X to a system Y defines an epimorphism from K onto K. Hence without
loss of generality we assume that X is the disjoint union of n subsets Xj

of Fj such that aj ∈ Kj ⊂ Fj for each j with 1 ≤ j ≤ n where Kj is the
subgroup generated by Xj . Let Hj = φ−1(Kj) for each j. Then φj = φ|Hj

defines a homomorphism φj : Hj → Fj with aj = φj(uj), 1 ≤ j ≤ n, for
some uj ∈ V(Hj). Since each aj is U-generic, φj is an epimorphism for each
j. Therefore φ is an epimorphism completing part (2)(a).

(2)(b) Certainly each aj ∈ V(Fj) if a ∈ V(F ). For each j let φj : Hj → Fj
be a homomorphsim from some group Hj such that φ(uj) = aj for some
uj ∈ V(Hj). Let H = H1 ? · · · ? Hn and let φ : H → F be the induced
homomorphism with φ|Hj

= φj . Then φ(u1 . . . un) = φ(a1 · · · an) = φ(a) and
u1 . . . un ∈ V(H). Since a is U-generic, φ is an epimorphism. Hence each φj
is an epimorphism and therefore each aj is U-generic. This completes part
(2)(b).

(3)(a) For a group G we let GqG′,q = 0 or q ≥ 2, denote the subgroup of
G generated by the q-th powers and the commutators in G.

Let each aj be a testword in Fj and suppose each aj ∈ F qj F ′j , q = 0 or
q ≥ 2. Then a ∈ F qF ′, q = 0 or q ≥ 2. Let φ : F → F be an endomorphism
with φ(a) = a. Let K = φ(F ). Since a ∈ F qF ′ we also have a ∈ KqK ′, q = 0
or q ≥ 2. Hence a is not primitive in K and we must show that K = F .

Let X = φ(B). We show first that X is a basis for K. From Theorem 2,
X can be carried by a Nielsen transformation, relative to a = a1 · · · an into
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a free basis Y of K which contains a subset Z which is the disjoint union of
n subsets Zj of Fj such that aj ∈ Kj ⊂ Fj for each j, 1 ≤ j ≤ n, where Kj

is the subgroup generated by Zj . Since each aj is a testword in Fj we must
have |Zj | = |Bj | for each j and hence |Z| = |B|. This gives

|Z| ≤ |Y | ≤ |X| ≤ |B| = |Z|
and hence Y = Z and X is a basis of K. Now the Nielsen transformation
from X to the above system Y defines an automorphsim α of K. Hence we
may already assume that X = Y = Z because of the free product decompo-
sition F = F1 ? · · · ? Fn and the description of a as a = a1 · · · an. Starting,
with a permutation of B, if necessary, we obtain this way an endomorphism
ψ : F → F such that ψj = ψ|Fj

defines an endomorphism ψj : Fj → Fj
with ψj(aj) = aj for 1 ≤ j ≤ n. Since each aj is a testword in Fj we have
that each ψj is an automorphism of Fj . Hence by combination, ψ is an
automorphism of F . Therefore by construction, φ is also an automorphism
of F and it follows that a is a testword in F .

(3)(b) Since a ∈ F qF ′, q = 0 or q ≥ 2, we have aj ∈ F qj F
′
j , q = 0 or

q ≥ 2. For each j let φj : Fj → Fj be an endomorphsim with φj(aj) = aj .
Then φ : F → F with φ|Fj

= φj defines an endomorphism φ : F → F with
φ(a) = φ(a1 · · · an) = a1 · · · an = a. Since a is a testword in F , φ is an
automorphism of F . Hence each φj is an automorphism of Fj and therefore
each aj is a testword in Fj . This completes the theorem. �

Corollary 2. Let F = 〈x1, y1, . . . , xg, yg; 〉, g ≥ 1. Let aj = aj(xj , yj) 6= 1
for j = 1, . . . , g and let both xj and yj occur in the freely reduced expression
of aj. Let |aj |xj be the total exponent sum of xj in aj and let |aj |yj be the
total exponent of yj in aj. Let Fj be the subgroup generated by xj and yj.

(1) Let each aj be not a proper power in Fj. Then a is a testword in F if
and only if gcd(|aj |xj , |aj |yj ) 6= 1 for each j.

(2) Let a be an element of the commutator subgroup of F and suppose a
is a product a = a1a2 · · · ag where each aj is a non-trivial element of
the commutator subgroup in Fj. Then a is a testword.

Proof. This follows directly from Theorem 3 and Example 4 in Turner’s
paper [T]. �

4. A Class of Generic Elements.

In this section we give a class of examples of generic elements.

Theorem 4. Let F be a free group on a, b and let X = 〈x1, . . . , xk〉, k ≥ 1
be a finitely generated subgroup of F . Suppose that X contains the element
[an, bm] for positive integers n,m. Then {x1, . . . , xk} can be carried by a
Nielsen transformation into a free basis {y1, . . . , yp}, 1 ≤ p ≤ k, for X for
which one of the following cases occurs.
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(1) y1 = [an, bm] is a primitive element of X;
(2) y1 = aα, 1 ≤ α ≤ n, α|n and

y2 = bβ, 1 ≤ β ≤ m,β|m;
(3) y1 = aα, 1 ≤ α ≤ n, α|n and

y2 = bmaβb−m, 1 ≤ β ≤ n, β|n;
(4) y1 = bα, 1 ≤ α < m,α|m and

y2 = anbβa−n, 1 ≤ β ≤ m,β|m;
(5) y1 = aα, 1 ≤ α ≤ n, α|n and

y2 = bmaβ, 1 ≤ β < α;
(6) y1 = bα, 1 ≤ α ≤ m,α|m and

y2 = anbβ, 1 ≤ β < α;
(7) y1 = anbm, y2 = aα, 1 ≤ α ≤ 2n, α|2n and

y3 = bβ, 1 ≤ β ≤ 2m,β|2m.

Proof. The proof follows the general outline of the proof of Theorem 2.
Regard F as the free product F = 〈a〉 ? 〈b〉 together with the length L and
order with respect to this factorization. We may assume {x1, . . . , xk} is
Nielsen reduced with xi 6= 1 for all i. Further we may assume from the
start that there is no Nielsen transformation from {x1, . . . , xk} to a system
{y1, . . . , yk} with [an, bm] ∈ 〈y1, . . . , yk−1〉, that is k is minimal with respect
to this property.

As in the proof of Theorem 2, for this system we then have an equation

(2)
q∏

k=1

xεkνk
= [an, bm]

where εk = ±1, εk = εk+1 if νk = νk+1.
Among the equations as in (2) there is one for which q is minimal and let

us assume that this is the case in Equation (2). Further we may also assume
that each xi 6= 1 and that each xi occurs in (2). If some xi occurs only once
in (2) as either xi or x−1

i then case (1) of the theorem holds. Therefore for
the rest of the proof we assume that case (1) does not hold.

Hence each xi either occurs twice in Equation (2) with the same exponent
ε = ±1 or occurs in (2) exactly once with exponent +1 and once with
exponent −1. In either case we always have

L
(
xεkνk
· · ·xεhνh

)
≥ L

(
xεlνl

)
for 1 ≤ k ≤ l ≤ h ≤ q and

L
(
xεkνk

x
εk+1
νk+1x

εk+2
νk+2

)
≥ L(xνk

)− L(xνk+1
) + L(xνk+2

)

for 1 ≤ k ≤ q − 2. Especially, we have L(xi) ≤ 4 for all i. Since we
have only two cyclic factors and since {x1, . . . , xk} is Nielsen reduced, for
each xi, which is not conjugate to a power of a or b, we have at least two
places which are semistable letters for this xi. This excludes the possibility
L(xi) = 4. The blockwise decription as in the proof of Theorem 2, together
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with L([an, bm]) = 4 gives that there is at most one xi which is not conjugate
to a power of a or b, and which occurs in (2) exactly twice with the same
exponent or exactly once with exponent +1 and once with exponent −1.
Also, if there is such an xi it must have length two.

Now suppose first there is an xi which is not conjugate to a power of
a or b, and which occurs in (2) exactly once with exponent +1 and once
with exponent −1. Suppose that xi = aα1bβ1 . Then, since L([an, bm]) = 4
the other xj are powers of a or b. Recall that if we have, for instance,
powers aα1 , . . . , aαp , p ≥ 2, then there is a Nielsen transformation from
{aα1 , . . . , aαp} to {aγ , 1, . . . , 1} with γ = gcd(α1, . . . , αp). Hence by the
minimality of k, it follows that no two of the xi are powers of a and no two
of the xi are powers of b. A typical possible situation to consider is now,
after some renumbering,

xα0
1 x2x

β0
3 x

−1
2 xα2

1 xβ2
3 = aγ1α0aα1bβ1bγ2β0b−β1a−α1aγ1α2bγ2β2

= anbma−nb−m

with α0 6= 0 6= α2. Then, necessarily γ1α0 +α1 = n, γ2β0 = m, γ1α2−α1 =
−n and γ2β2 = −m. In particular we have α0 = −α2 and via a Nielsen
transformation we may replace x2 by xα0

1 x2 = aγ1α0aα1bβ1 = anbβ. But
this contradicts the minimality of k. Therefore the above possible situation
reduces to, again after some renumbering, to the situation

x1 = anbβ1 , x2 = bγ2 and x1x
β0
2 x

−1
1 x−β0

2 = [an, bm]

because β0 = −β2. We may reduce β1 to a β with 1 ≤ β < γ2 via a Nielsen
transformation and obtain case (6) in the theorem.

An analogous case by case consideration gives that we obtain either case
(5) or case (6) if there is an xi which is not conjugate to a power of a or
b and which occurs in (2) exactly once with exponent +1 and once with
exponent −1. If each xi is conjugate to a power of a or b we obtain cases
(2), (3) or (4) since again no two of the xi are powers of a and no two of the
xi are powers of b.

Finally suppose that one xi is not conjugate to a power of a or b and
occurs twice with the same exponent. Without loss of generality assume
this exponent to be +1. Because of L([an, bm]) = 4 and the blockwise
description as given in the proof of Theorem 2, this xi occurs exactly twice
and has length 2 and recall that no other xl occurs which is not a power
of a or b. Let xi = aγbδ, γ 6= 0, δ 6= 0. Then after renumbering we get an
equation

xα1
1 x2x

β1
3 x

α2
1 x2x

β2
3 = [an, bm]

with x1 = aγ1 , x3 = bδ1 , x2 = aγbδ. We may assume that γ1 ≥ 1 and δ1 ≥ 1.
We have necessarily

γ1α1 + γ = n, δ1β1 + δ = m, γ1α2 + γ = −n and δ1β2 + δ = −m.
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Then γ1|2n and δ1|2m, and 1 ≤ γ1 ≤ 2n, 1 ≤ δ1 ≤ 2m. If we replace x2

by y2 = xα1
1 x2x

β1
3 this defines a Nielsen transformation and we obtain an

equation
y2x

α2−α1
1 y2x

β2−β1
3 = [an, bm]

with y2 = anbm, x1 = aγ1 , 1 ≤ γ1 ≤ 2n, γ1|2n and x3 = bδ1 , 1 ≤ δ1 ≤
2m, δ1|2m. Since our system is Nielsen reduced we have that γ1 does not
divide n and δ1 does not divide m. This gives case (7).

The case xi = bδaγ , δ 6= 0, γ 6= 0, cannot occur since the exponent is +1
and [an, bm] starts with a power of a and ends with a power of b. �

Using the theorem we first obtain the following corollaries. The first is
due to Comerford and Edmonds [C-E] and the second due to Turner [T].

Corollary 3. Let F be the free group on x, y and let [x1, x2] = [xn, ym],
n,m ≥ 1. Then {x1, x2} is Nielsen equivalent to a pair {y1, y2} with either
y1 = xn and y2 = ymxα, 0 ≤ α < n or y1 = ym and y2 = xnyβ, 1 ≤ β < m.

Corollary 4. The element [xn, ym] is a test word in the free group of rank
two on x, y for any n,m ≥ 1.

Recall that Un is the variety generated by the laws Vn = {[x, y], zn}, n =
0 or n ≥ 2. We let Ln be the variety generated by the laws Wn =
{[xn, yn]}, n ≥ 1. We then obtain the following class of generic elements.

Corollary 5. Let F be a free group of rank 2 on x, y. Then [xn, yn] is
Ln-generic in F but for n ≥ 2 it is not Un-generic in F .

Corollary 6. Let F be a free group of rank 2 on x, y. Then the element
[xn, ym], n,m ≥ 1, is an APE if and only if n = m = 1.

Recall that in general it is not true that being an APE implies being a
test word. As mentioned earlier if F = F (x, y) and w = x2yx−1y−1 then w
is an APE but is not a test word. Since generic elements are test words this
example shows further that APE does not imply generic in general. However
using the same techniques as in Theorem 4 we can generalize the fact that
the element w above is an APE to obtain further examples of APE’s and
testwords.

Theorem 5. Let F = 〈a, b; 〉 and let X = 〈x1, . . . , xk〉 ⊂ F , k ≥ 1. Sup-
pose anba−1b−1 ∈ X,n ≥ 2. Then there is a Nielsen transformation from
{x1, . . . , xk} to a basis {y1, . . . , yp}, 1 ≤ p ≤ k, of X such that one of the
following cases holds:

(1) y1 = anba−1b−1 or
(2) y1 = a, y2 = b.

From this theorem and Theorem 1 we get the following corollary.

Corollary 7. Let F = 〈a, b; 〉. Then
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(1) anba−1b−1, n ≥ 2, is an APE;
(2) anba−1b−1, n ≥ 3, is Un−1-generic;
(3) anba−1b−1, n ≥ 3, is a testword in F ;
(4) a2ba−1b−1 is not a testword in F .

Proof of Theorem 5. The proof follows the same outline as the proof of The-
orem 4. Assume that {x1, . . . , xk} is Nielsen reduced and k is minimal in the
sense that {x1, . . . , xk} is not Nielsen equivalent to a system {y1, . . . , yk}
with anba−1b−1 ∈ 〈y1, . . . , yk−1〉. Assume further that each xi occurs at
least twice in the freely reduced equation expressing anba−1b−1 in terms of
x1, . . . , xk. Assume that case (1) does not hold and assume that there is
one xi which is not conjugate to a power of a or b. Suppose first that this
xi occurs twice with the same exponent, without loss of generality say +1.
As in the proof of Theorem 4, it follows from L(anba−1b−1) = 4, the fact
that the system is Nielsen reduced and the blockwise description that this
xi occurs exactly twice, has length 2, and no other xl occurs which is not
a power of a or b. Let xi = aγbδ, α 6= 0 6= δ. As in Theorem 4, xi = bδaγ

cannot occur. Then after renumbering we obtain an equation

xα1
1 x2x

β1
3 x

α2
1 x2x

β2
3 = anba−1b−1

with x1 = aγ1 , x3 = bδ1 , x2 = aγbδ. We may assume that 1 ≤ δ1, 1 ≤ γ1,
1 ≤ γ < γ1 and 1 ≤ δ < δ1. Then necessarily δ+β1δ1 = 1 and δ+β2δ1 = −1.
Hence δ1 = 1 or 2. Since the system is Nielsen reduced δ1 6= 1 and hence
δ1 = 2. Then δ = 1 and hence β1 = 0 and β2 = −1. Thus we have
xα1

1 x2x
α2
1 x2x

−1
3 = anba−1b−1 contradicting the assumption that case (1)

does not hold. It follows therefore that this xi occurs exactly once with
exponent +1 and once with exponent −1. Then as in the proof of Theorem
4 we must consider equations of the form

xα1
1 x2x

β1
3 x

−1
2 xα2

1 xβ2
3 = anba−1b−1

with x1 = aγ1 , x3 = bδ1 , x2 = aγbδ and 0 6= γ, 0 6= δ. Without loss of
generality let 1 ≤ γ1, 1 ≤ δ1, (γ1 = 0 or δ1 = 0 cannot occur since n ≥ 2).
Then necessarily δ1β1 = 1 and hence δ1 = 1. But this contradicts the fact
that the system is Nielsen reduced since we can replace x2 by x2x

−δ
3 =

aγbδb−δ = aγ . The other possibilities are analogous. If each xi is conjugate
to a power of a or b then case (2) certainly holds if case (1) does not. This
completes the proof of the theorem. �

The corollary now follows easily. If w = anba−1b−1 is in any proper
subgroup of F then condition (2) of the theorem cannot hold and hence
condition (1) must hold, that is w is primitive. Therefore w is an APE. If
n ≥ 3 then w ∈ Vn−1(F ) where Vn is the set of laws Vn = {[x, y], zn}. As
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before if Un is the variety defined by this set of laws, then Un is an non-
trivial variety and it follows that w is an APE and that w is Un−1-generic
and hence a testword. Finally part (4) comes from Turner [T].

5. A Result on Varieties and Primitive Elements.

The following result relates when the laws determined by a single element
generate a trivial variety and being in a retract.

Theorem 6. Let F be the free group on x1, . . . , xn with n ≥ 2 and let w
be a freely reduced non-empty word in the generators of F which does not
define a proper power of F . Then if the law w = 1 determines the trivial
variety (consisting only of trivial groups) then w is a primitive in a retract
of F .

Proof. Notice first that if B is a non-trivial variety then since B is closed
under subgroup formation it must contain non-trivial cyclic groups. Hence
the intersection of B with the abelian variety A is not the trivial variety.

Now let V be the variety determined by the law w = 1. Let E stand for
the trivial variety. Then V = E is equivalent to the following two conditions
being simultaneously satsified:

(1) w /∈ [F, F ] = F ′ and
(2) If ei is the exponent sum in w of xi, i = 1, . . . , n, then gcd (e1, . . . , en)

= 1.
To see this suppose that (1) and (2) are satisfied by w. Since w ≡ xe11 · · ·
xen
n (mod[F, F ]) (1) is equivalent to (e1, . . . , en) 6= (0, . . . , 0). Let m1, . . . ,
mn be integers such that m1e2 + · · ·+mnen = 1. Let G be an abelian group
lying in V. Then G must satisfy the law xe11 · · ·xen

n = 1. Let x ∈ G. Let
xi = xmi . Then from the law xm1e1+···+mnen = x = 1. Therefore G is trivial.
Hence V contains no non-trivial abelian groups and therefore it follows from
the remark above that V is itself trivial.

Conversely suppose V is trivial. We show that conditions (1) and (2)
must hold. Suppose (1) does not hold so that w ∈ [F, F ]. Let c1, . . . , cn be
arbitrary integers. Then the infinite cyclic group A = 〈a; 〉 lies in V since
w(ac1 , . . . , acn) ∈ [A,A] = 1. This contradicts the triviality of V so therefore
(1) must hold.

Now suppose w /∈ [F, F ] but (2) is violated. Suppose gcd (e1, . . . , en) =
d > 1. Then the finite cyclic group B = 〈b; bd = 1〉 lies in V since for any
integers c1, . . . , cn,

w(bc1 , . . . , bcn) = (bc1)e1 · · · (bcn)en = bc1e1+···+cnen = 1

and d|c1e1 + · · · + cnen. Since d > 1, B is non-trivial contradiciting the
triviality of V so therefore (2) must also hold.

Now suppose w satisfies (1) and (2) and m1, . . . ,mn are integers such
that m1e1 + · · · + mnen = 1. Consider the map F → 〈w〉 given by x1 →
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wm1 , . . . , xn → wmn . Suppose w = xk1i1 · · ·x
kl
il

where each kj is a non-zero
integer with ij 6= ij+1 for j = 1, . . . , l − 1. Then under the above map

w → wmi1
k1+···+mil

kl = w
m1

P
ij=1 kj+···+mn

P
ij=n kj

= wm1e1=···+mnen = w.

It follows that F → 〈w〉 is a retraction and clearly w is primitive in 〈w〉. �

The above proof depended on the fact that if A is the abelian variety and
E is the trivial variety then B ∩ A = E implies that B = E . The next result
completely characterizes the varieties such as A with this property. Recall
that a variety V has exponent n if it satisfies the law Xn = 1. If V has no
finite exponent it has infinite exponent.

Theorem 7. Let V be a variety. Then V has the property that B ∩ V = E
implies that B = E for an arbitrary variety B if and only if V has infinite
exponent.

Proof. Suppose V has infinite exponent. Therefore V contains infinite cyclic
groups and since it is closed under the formation of quotients it contains
cyclic groups of all possible finite orders. Since any non-trivial variety must
contain cyclic groups of some order it follows that V will intersect non-
trivially with any non-trivial variety.

Conversely suppose V has the stated property. If V has finite exponent
n let m be an integer relatively prime to n and let V1 be a variety of finite
exponent m. Since V satisfies the law Xn = 1 and V1 satisfies the law
Xm = 1 and (m,n) = 1 it follows that their intersection satisfies the law
X = 1. Hence only trivial groups are in their intersection. But V1 is non-
trivial contradicting the stated property. Therefore V must have infinite
exponent. �

6. Extensions to Arbitrary Groups.

As pointed out by Turner the characterization and determination of test
elements in arbitrary non-free groups is much more subtle and complicated
than in free groups. First we show that there can exist test elements in
non-free groups. The fact that [x, y] is a test word in the free group of
rank two on x, y followed from the following method of Nielsen: if u, v are
elements of the free group of rank two on x, y and [x, y] = [u, v] then the
set {u, v} is Nielsen equivalent to the set {x±1, y±1}. Exactly the same type
of Nielsen transformation arguments can be applied in the free product of
two cyclic groups ( not excluding finite) provided that we allow an extended
Nielsen transformation which replaces a generator x by xd where xd is also
a generator of 〈x〉. In particular in a free product of cyclic groups with basis
x, y the commutator is a test element.
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Theorem 8. Let G = 〈x, y : xp = yq = 1〉 ∼= Zp ? Zq be the free product of
two finite cyclic groups. Then the commutator [x, y] is a test element.

Much of the development on almost primitive elements and generic el-
ements can be translated to more general situations. Let U be a variety
defined by the set of laws V and G a group. Then we say that U is efficient
for G if V(H) 6= H for any non-trivial subgroup of G. Recall that an ele-
ment g ∈ G is primitive if G = 〈g〉 ?G1 with G1 6= G and g of infinite order.
We then get the following.

Lemma 1. Let g be primitive in G. Then g /∈ V(g) for any non-trivial set
of laws V unless V(G) = G.

Proof. If g is primitive in G and H is any group then any map g into H can
be extended to a homomorphism G → H. Let H be a V-group. Then any
g1 ∈ V(G) goes to the identity. Therefore g /∈ V(G) unless V(G) = G. �

From this we can extend Theorem 1 almost exactly.

Theorem 9. Let U be a variety defined by the laws V and suppose U is
efficient for G. Let g ∈ V(G). Then if g is an APE in G it follows that g is
U-generic. Further if G is Hopfian then g is a test element.

Proof. The proof is almost identical to the proof of Theorem 1. Suppose
g ∈ V(G). Let K ⊂ G be a proper subgroup. If g /∈ K then g /∈ V(K). If
g ∈ K then V(K) 6= K since U is efficient for G. Since g is an APE it is
primitive in K and hence from Lemma 1 g /∈ V(K). Therefore g is U-generic.
If G is Hopfian then as before generic elements are test elements. �

As an example consider the Modular group M = Z2 ?Z3 the free product
of a cyclic group of order two and a cyclic group of order three. Let M =
〈x, y;x2 = y3 = 1〉 and let g = [x, y]. Now [x, y] = xyxy2 so the same proof
as in the free group case shows that any Nielsen transformation will map
this to a cyclic rewrite up to conjugation and exponent ±1. It follows than
that g is an APE. The abelian variety A is M -efficient so from Theorem 9,
g is A-generic. Since M is Hopfian this gives another proof that g is a test
element.

The following straightforward propositions give some additional results.

Proposition 2. Let F be a free group. w ∈ F is a test word if and only
if whenever f : F → F is an endomorphism with f(w) = w1 with w1

Whitehead related to w then f is an automorphism.
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Proof. Suppose w ∈ F is a test word and suppose f : F → F is an endo-
morphism with f(w) = w1 with w1 Whitehead related to w. Then there
is an automorphism α : F → F with α(w1) = w. Then f1 = αf is an
endomorphism of F with f1(w) = w. Since w is a testword it follows that
f1 is an automorphism. Therefore f = α−1f1 is also an automorphism. The
converse is clear. �

Proposition 3. Let w be a test word in the free group F and let N be a
normal subgroup of F . Suppose that whenever w ≡ w1(N) it follows that
there is a w2 ∈ w1N which is Whitehead related to w. Let p : F → F/N
be the natural projection and let g = p(w). Then g is a test element in
G = F/N .

Proof. Let φ : G → G be an endomorphism with φ(g) = g. Relative to
a fixed generating system of G, φ can be lifted to an endomorphism φ? of
the free group F . Let w1 = φ?(w). Since φ(g) = g it follows that p(w) =
p(w1) and hence w ≡ w1(N). From the condition we may assume that w is
Whitehead related to w1 and hence from Proposition 1 it follows that φ? is
an automorphism of the free group and therefore φ is an automorphism of
G. �

7. The Test Rank of a Group.

If g is a test element of a group G then it is straightforward to see that this is
equivalent to the fact that if f(g) = α(g) for some endomorphism f of G and
some automorphism α of G then f must also be an automorphism. A test
set in a group G consists of a set of elements {gi} with the property that if
f is an endomorphism of G and f(gi) = α(gi) for some automorphism α of
G and for all i then f must also be an automorphism. Any set of generators
for G is a test set and if G posses a test element then this is a singleton test
set. The test rank of a group is the minimal size of a test set. Clearly the
test rank of any finitely generated group is finite and bounded above by the
rank and below by 1. Further the test rank of any free group of finite rank
is 1 since these contain test elements. For a free abelian group of rank n the
test rank is precisely n.

Lemma 2. If G = Zn, n ≥ 1 is a free abelian group of rank n then its test
rank is n.

Proof. Let G = Z × Z be a free abelian group of rank 2. We show that
G contains no test element. The proof in the general case that a set of k
elements in a free abelian group of rank n with k < n cannot be a test set
is analogous.
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Let x, y be a basis for G. We will write the group additively. Suppose
g = mx+ ny with m,n integers is a test element. We will show that there
exists a non-invertible endomorphism of G which fixes g. Any mapping

x→ ax+ by

y → cx+ dy

determines an endomorphism of G to G. This homomorphism will be in-
vertible and hence an automorphsim only if ad − bc = ±1. Suppose under
this homomorphism g → g. We thus have

mx+ ny → m(ax+ by) + n(cx+ dy) = g = mx+ ny.

Considering a, b, c, d as integral unknowns we are then led to the sytem of
two equations in four unknowns

ma+ nc = m

mb+ nd = n.

This has infinitely many integral solution with c dependent on a and b
dependent on d. Choosing one such solution such that ad − bc 6= ±1 gives
the desired homomorphism. �

Thus free abelian groups have maximal test rank while free groups of
finite rank have minimal test rank. For given integers n and k with k < n
there always exist groups of rank n and test rank k.

Lemma 3. Given integers n and k with k < n there exist a group of rank
n and test rank k.

Proof. Let Gm stand for a free abelian group of rank m and Fd stand for a
free group of rank d. Then the group G = Fd×Gm has rank m+ d and test
rank m + 1. Given arbitrary n and k < n choose m, d so that m + 1 = k
and m+ d = n. The group G then has the desired property. �

We close with two questions on test rank.
(1) Given a finite presentation for a group G and given knowledge of the

rank can one determine the test rank?
(2) Can one give an example of a group G with rank n and test rank

1 < k < n other than those of the type in the proof of Lemma 3 - that is
not of the form Fd ×Gm.
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LINEARLY UNRELATED SEQUENCES

Jaroslav Hančl

The paper deals with the so-called linearly unrelated se-
quences. The criterion and the application for irrational se-
quences and series is included too.

1. Introduction.

There are not many new results concerning the linear independence of num-
bers. Exceptions in the last decade are, e.g., the result of Sorokin [8] which
proves the linear independence of logarithmus of special rational numbers,
or that of Bezivin [2] which proves linear independence of roots of special
functional equations.

The algebraic independence of numbers can be considered as a general-
ization of linear independence. One can find many results of this nature.
For instance, in [4] Bundschuh proves that if the special series of rational
numbers converges to infinity very fast then they are algebraically indepen-
dent. In [7] I prove a similar result for continued fractions. In that paper
the so-called continued fractional algebraic independence of sequences was
also defined.

If we consider irrationality as a special case of linear independence then we
can obtain many results. For instance, in [1] Apery proves the irrationality of
ζ(3) and in [3] Borwein proves the irrationality of the sum

∑∞
n=1 1/(qn+ r),

where q and r are integers such that q > 1 and r 6= 0.
In 1975 Erdös defined the so-called irrationality of sequences in [5] (we

will consider a generalization of this definition in Section 3) and in the same
paper he proves the irrationality of the sequence {22n}. In 1993 in [6] I
proved:

Theorem. Let {rn}∞n=1 be a nondecreasing sequence of positive real num-
bers such that limn→∞ rn =∞, let B be a positive integer, and let {an}∞n=1,
{bn}∞n=1 be sequences of positive integers such that

bn+1 ≤ rBn

and

an ≥ r2
n

n
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holds for every large n. Then the series

A =
∞∑
n=1

bn/an

and the sequence {an/bn}∞n=1 are irrational.

2. Linearly Unrelated Sequences.

Definition 2.1. Let {ai,n}∞n=1 (i = 1, . . . ,K) be sequences of positive real
numbers. If for every sequence {cn}∞n=1 of positive integers the numbers∑∞

n=1 1/(a1,ncn), . . . ,
∑∞

n=1 1/(aK,ncn), and 1 are linearly independent,
then the sequences {ai,n}∞n=1 (i = 1, . . . ,K) are linearly unrelated.

Theorem 2.1. Let {ai,n}∞n=1, {bi,n}∞n=1 (i = 1, . . . ,K − 1) be sequences of
positive integers and ε > 0 such that

a1,n+1

a1,n
≥ 2K

n−1
, a1,n|a1,n+1 (a1,n divides a1,n+1)(1)

bi,n < 2K
n−(

√
2+ε)

√
n
, i = 1, . . . ,K − 1(2)

lim
n→∞

ai,nbj,n
bi,naj,n

= 0, for all j, i ∈ {1, . . . ,K − 1}, i > j(3)

ai,n2−K
n−(

√
2+ε)

√
n
< a1,n < ai,n2K

n−(
√

2+ε)
√

n
, i = 1, . . . ,K − 1(4)

hold for every sufficiently large natural number n. Then the sequences
{ai,n/bi,n}∞n=1 (i = 1, . . . ,K − 1) are linearly unrelated.

Proof. We will prove that for every sequence {cn}∞n=1 of positive integers
and for every (K − 1)-tuple of integers α1, . . . , αK−1 (not all equal to zero)
the sum

A =
K−1∑
j=1

αj

∞∑
n=1

bj,n
aj,ncn

is an irrational number. Suppose that A is a rational number. Let R be a
maximal index such that αR 6= 0. Then we have

A =
K−1∑
j=1

αj

∞∑
n=1

bj,n
aj,ncn

=
∞∑
n=1

R∑
j=1

αj
bj,n
aj,ncn

=
∞∑
n=1

bR,n
aR,ncn

R−1∑
j=1

αj
bj,naR,n
aj,nbR,n

+ αR

 .

Because of (3), there is a natural number N such that for every n ≥ N the
number

R−1∑
j=1

αj
bj,naR,n
aj,nbR,n

+ αR



LINEARLY UNRELATED SEQUENCES 301

and the number αR have the same sign. Without loss of generality we may
assume αR > 0 and (1)-(4) hold for every n ≥ N . Thus, there are positive
integers p and q such that

B =
p

q
=

∞∑
n=N

R∑
j=1

αj
bj,n
aj,ncn

.

We reorder the sequences {aj,ncn}∞n=N to obtain the sequences {cj,n}∞n=N
(j = 1, . . . , R) so that c1,N ≤ c1,N+1 ≤ c1,N+2 ≤ .... Thus, there is a map
φ:{n ≥ N} → {n ≥ N}, such that c1,n = a1,φ(n)cφ(n) for n ≥ N . It follows
that

B =
p

q
=

∞∑
n=N

R∑
j=1

αj
dj,n
cj,n

,(5)

where dj,n = bj,φ(n) for every j = 1, . . . ,K − 1, n = N,N + 1, . . . . We will
consider two cases.

1. First we assume that

lim sup
n→∞

c
1/Kn

1,n = 2V .(6)

Then (1), (6), and the definition of the sequence {c1,n}∞n=1 imply that

V > 0.

Also, (6) implies that for every δ > 0 there is a n(δ) such that for every
j > n(δ)

c1,j < 2(V+δ)Kj
,(7)

and there are infinitely many M such that

c1,M > 2(V−δ)KM
.(8)

From c1,n = a1,φ(n)cφ(n) ≤ 2(V+δ)Kn
, we get a1,φ(n) ≤ 2(V+δ)Kn

. Now,
condition (1) gives

a1,φ(n) ≥ a1,12
Kφ(n)−1−1

K−1 ≥ 2
Kφ(n)−1−1

K−1 .

Thus, Kφ(n)−1 ≤ 1 + (K − 1)(V + δ)Kn for all sufficiently large n. Hence,

φ(n)− 1 ≤ n+
log(V + δ) + log(K − 1) + log

(
1 + 1

(K−1)(V+δ)Kn

)
logK

,

and, φ(n) ≤ n + log(V+δ)
logK + 2 for n sufficiently large. From the latter in-

equality, it follows from the fact that x → x − (
√

2 + ε)
√
x is increasing

that

dj,n < 2K
n+γ−(

√
2+ε)

√
n
, j = 1, . . . , R,(9)
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holds for every n ≥ N1, where γ = log(V+δ)
logK + 2. For the same reason, and

with the help of (4), we also obtain that

cj,n2−K
n+γ−(

√
2+ε)

√
n
< c1,n < cj,n2K

n+γ−(
√

2+ε)
√

n
, j = 1, . . . , R(10)

holds for every n ≥ N2. Now, (9) and (10) imply that

∞∑
n=M

R∑
j=1

αj
dj,n
cj,n
≤

∞∑
n=M

2K
n+γ−(

√
2+ε)

√
n+3

c1,n
(11)

for every sufficiently large M . Let h ∈ N such that γ + 1 ≥ h > γ. Now we
will prove

TM =
∞∑

n=M

2K
n+γ−(

√
2+ε)

√
n+3

c1,n
≤ 2K

M+β−(
√

2+ε)
√

M+4

c1,M
(12)

for every sufficiently large M where β = γ+h. Also (1) yields a1,n ≥ 2K
n−2

.
Thus c1,n ≥ 2K

n−2
. From this and (7) we have

TM =
∞∑

n=M

2K
n+γ−(

√
2+ε)

√
n+3

c1,n

=
M+h∑
n=M

2K
n+γ−(

√
2+ε)

√
n+3

c1,n
+

∞∑
n=M+h+1

2K
n+γ−(

√
2+ε)

√
n+3

c1,n

≤ (h+ 1)
2K

M+γ−(
√

2+ε)
√

M+3+h

c1,M
+

∞∑
n=M+h+1

2K
n+γ−(

√
2+ε)

√
n+3

c1,n

because c1,M+j ≥ c1,M for j ≥ 0, and

∞∑
n=M+h+1

2K
n+γ−(

√
2+ε)

√
n+3

c1,n
≤

∞∑
n=M+h+1

2K
n+γ−(

√
2+ε)

√
n+3

2Kn−2

≤ 2
2K

M+γ−(
√

2+ε)
√

M+3+h

2KM+h−1 .

So

TM ≤ (h+ 1)
2K

M+γ−(
√

2+ε)
√

M+3+h

c1,M
+ 2

2K
M+γ−(

√
2+ε)

√
M+3+h

2KM+h−1 .

Now the inequality is proven if(
2K

M+γ−(
√

2+ε)
√

M+h+4 − (h+ 1)2K
M+γ−(

√
2+ε)

√
M+3+h

)
2K

M+h−1

≥ c1,M2K
M+γ−(

√
2+ε)

√
M+3+h+1
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which is true for M large by the choice of h, and the fact c1,j ≤ 2(V+δ)Kj

for all large j. The proof of inequality (12) is finished. It follows from (11)
and (12) that

∞∑
n=M

R∑
j=1

αj
dj,n
cj,n
≤ 2K

M+β−(
√

2+ε)
√

M+4

c1,M
(13)

for every sufficiently large natural number M . Hence, we have

B =
p

q
=

∞∑
n=N

R∑
j=1

αj
dj,n
cj,n

=
M−1∑
n=N

R∑
j=1

αj
dj,n
cj,n

+
∞∑

n=M

R∑
j=1

αj
dj,n
cj,n

.

Thus

p.lcm(c1,N , . . . , cR,N , c1,N+1, . . . , cR,N+1, . . . , c1,M−1, . . . , cR,M−1)

= q.lcm(c1,N , . . . , cR,M−1)
M−1∑
n=N

R∑
j=1

αj
dj,n
cj,n

+ q.lcm(c1,N , . . . , cR,M−1)
∞∑

n=M

R∑
j=1

αj
dj,n
cj,n

,

where lcm(x1, . . . , xn) denotes the least common multiple of numbers x1, ...,
xn. Thus, the number

C = q.lcm(c1,N , . . . , cR,M−1)
∞∑

n=M

R∑
j=1

αj
dj,n
cj,n

is a positive integer. From this and (13) we obtain

C = q.lcm(c1,N , . . . , cR,M−1)
∞∑

n=M

R∑
j=1

αj
dj,n
cj,n

(14)

≤
lcm(c1,N , . . . , cR,M−1)

c1,M
2K

M+β+4−(
√

2+ε)
√

M
=

D

c1,M

for every sufficiently large natural number M . From (1) and the definition
of the sequence {c1,n}∞n=1 we have

D = lcm(c1,N , . . . , cR,M−1)2K
M+β+4−(

√
2+ε)

√
M

≤

(
M−2∏
n=N

2K
n−2

)−1
M−1∏
n=N

R∏
j=1

cj,n

 2K
M+β+4−(

√
2+ε)

√
M
.
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From this, (7), (10), and the fact β = γ + h we obtain

D ≤ 2
−1

K−1
(KM−3−KN )

M−1∏
n=N

R∏
j=1

2(V+δ)Kn
2K

n+β+2−(
√

2+ε)
√

n


· 2KM+β+4−(

√
2+ε)

√
M
S(N1, N2, δ),

where S(N1, N2, δ) does not depend on M . It follows that

D ≤ 2−
(KM−3−KN )

K−1 S(N1, N2, δ)

(
M−1∏
n=N

2R(V+δ)Kn
2RK

n+β+2−(
√

2+ε)
√

n

)
· 2KM+β+4−(

√
2+ε)

√
M

≤ 2−
KM−3−KN

K−1 S(N1, N2, δ)2
R(V+δ)KM−KN

K−1 2K
M+β+5−(

√
2+ε)

√
M+log M

≤ 2−
KM−3−KN

K−1 s(N1, N2, δ)2(V+δ)KM
2K

M+β+5−(
√

2+ε)
√

M+log M
.

Hence,
D ≤ 2(V+δ−K−4)KM

for every sufficiently large M . This, (8), and (14) imply that

C =
D

c1,M
≤ 2(V+δ−K−4)KM

.2−(V−δ)KM
= 2(2δ−K−4)KM

for infinitely many natural numbers M . But this is impossible for a suffi-
ciently small δ and a sufficiently large M .

2. Secondly, let us assume that

lim sup
n→∞

c
1/Kn

1,n =∞.(15)

Let Q be a sufficiently large positive integer. Let the number of c1,n such
that c1,n < 2K

Q
be Z. (The definition of the sequence {c1,n}∞n=N and (1)

imply that Z − 1 < Q.) Let g(X,Y ) be the number of c1,n satisfying c1,n ∈
[2K

Y
, 2K

X
) and put f(X,Y ) = X − g(X,Y ). Then (15) yields

lim sup
X→∞

f(X,Y ) =∞(16)

and

f(X + 1, Y )− f(X,Y ) ≤ 1.(17)

Because of (16) and (17) there is a least positive integer P such that

g(P,Q) = P −Q− Z − 2.(18)

It follows that for every S (Q ≤ S < P )

g(P, S) ≤ P − S − 1.(19)
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(Otherwise g(S,Q) = g(P,Q) − g(P, S) ≤ P − Q − Z − 2 − (P − S) =
S − Q − Z − 2 and the number P would not be the least.) Now (18) and
(19) imply that for every j = 0, 1, . . . , P −Q− Z − 3,

c1,P−Q−3−j+N ≤ 2K
P−j−1

.

Thus, ∏
c1,j<2KP

c1,j =
P−Q−3+N∏

j=N

c1,j =
N+Z−1∏
j=N

c1,j

P−Q−3+N∏
j=N+Z

c1,j(20)

< 2ZK
Q
P−Q−3+N∏
j=N+Z

2K
Q+j−N+2

= 2ZK
Q
2

1
K−1

(KP−KQ+Z+2) ≤ 2
1

K−1
KP

.

Now we define a sequence {Sn}∞n=0 by induction in the following way. Let
us put S0 = P . Suppose that we have S0, S1, . . . , Sk−1. Because of (16) and
(17) there is a least positive integer Sk such that

g(Sk, Sk−1) = Sk − Sk−1 − 1.(21)

Similarly (21) implies that for every S (Sk−1 ≤ S ≤ Sk)
g(Sk, S) ≤ Sk − S − 1.(22)

The last inequality implies that for every j = 1, . . . , Sk − Sk−1 − 1

c1,N+Sk−1−Q−2−k+j ≤ 2K
Sk−1+j

.

Hence, it follows that∏
c1,j∈(2K

Sk−1 ,2KSk )

c1,j =
Sk−Sk−1−1∏

j=1

c1,N+Sk−1−Q−2−k+j(23)

≤
Sk−Sk−1−1∏

j=1

2K
Sk−1+j

= 2
1

K−1
(KSk−KSk−1+1).

Now we will prove that there are infinitely many positive integers T ≥ P
such that

lcm(c1,j , c1,j < 2K
T
) ≤ 2

1
K−1

(KT−KT−(
√

2+ ε
4 )
√

T )(24)

and ∏
c1,j<2KT

c1,j ≤ 2
1

K−1
KT

.(25)

To prove this, we will consider three cases.
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2.1. First, let us assume that

Sk − Sk−1 <
√

2Sk(26)

for infinitely many numbers k. Then (20), (23), and (26) yield

∏
c1,j<2KSk

c1,j =

 ∏
c1,j<2KP

c1,j


 k∏
i=1

∏
c1,j∈[2K

Si−1 ,2KSi )

c1,j


≤ 2

1
K−1

KP

.
k∏
i=1

2
1

K−1
(KSi−KSi−1+1)

= 2
1

K−1
(KS0+KS1−KS0+1+···+KSk−KSk−1+1)

≤ 2
1

K−1
(KSk−KSk−1 ) < 2

1
K−1

(KSk−KSk−
√

2Sk ).

Thus (24) and (25) hold under condition (26).
2.2. Secondly, let us assume that for every positive integer k

Sk − Sk−1 ≥
√

2Sk.

It follows that

Sk −
√

2Sk − Sk−1 ≥ 0.

Thus,

Sk ≥

(
1√
2

+

√
1
2

+ Sk−1

)2

= 1 + Sk−1 +
√

1 + 2Sk−1.(27)

Now, by mathematical induction we prove that

Sk ≥
1
2
k2.(28)

For k = 0 (28) holds. Suppose that (28) holds for k− 1. Then (27) and (28)
imply

Sk ≥ 1 + Sk−1 +
√

1 + 2Sk−1

≥ 1 +
1
2
(k − 1)2 +

√
1 + 2

1
2
(k − 1)2

> 1 +
1
2
k2 − k +

1
2

+ (k − 1) >
1
2
k2.
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From (18) and (21) the number of c1,j such that c1,j < 2K
Sk is equal to

g(Sk, 0) = Z + g(S0, Q) +
k∑
j=1

g(Sj , Sj−1)(29)

= Z + P −Q− Z − 2 +
k∑
j=1

(Sj − Sj−1 − 1)

= P −Q− 2 + Sk − S0 − k = Sk − k −Q− 2.

Now, (28) and (29) imply that

g(Sk, 0) = Sk − k −Q− 2(30)

≥ Sk −
√

2Sk −Q− 2 ≥ Sk −
(√

2 +
ε

2

)√
Sk + 2

for every sufficiently large k. Also (20), (23), and (30) yield

∏
c1,j<2KSk

c1,j =
∏

c1,j<2KP

c1,j

k∏
i=1

∏
c1,j∈[2K

Si−1 ,2KSi )

c1,j

≤ 2
1

K−1
KP

k∏
i=1

2
1

K−1
(KSi−KSi−1+1)

= 2
1

K−1
(KP +

Pk
i=1(KSi−KSi−1+1)) ≤ 2

1
K−1

KSk

for every sufficiently large k. From this, (1), (30), and the definition of the
sequence {c1,n}∞n=N it follows that

lcm(c1,j , c1,j < 2K
Sk ) ≤ 2

−1
K−1

(Kg(Sk,0)−1−KN ).
∏

c1,j<2KSk

c1,j

≤ 2
1

K−1
(KSk−KSk−(

√
2+ ε

3 )
√

Sk )

for every sufficiently large k.
2.3. Third, let us assume that Sk−Sk−1 ≤

√
2Sk, and Sj −Sj−1 ≥

√
2Sj

for every j > k. Let us put P ′ = Sk = S′0, and S′j = Sk+j . We now proceed
as in the second case with {S′j}∞j=0 in place of {Sj}∞j=0. Thus (24) and (25)
hold. Now let T be a positive integer such that (24) and (25) hold. Then
we obtain from (5) that

B.q.lcm(c1,N , . . . , c1,N+g(T,0)−1, c2N , . . . , cR,N+g(T,0)−1)

= q.lcm(c1,N , . . . , cR,N+g(T,0)−1)
∞∑
n=N

R∑
j=1

αj
dj,n
cj,n

.
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Thus, there is a positive integer E such that

E = q.lcm(c1,N , . . . , cR,N+g(T,0)−1)
∞∑

n=N+g(T,0)

R∑
j=1

αj
dj,n
cj,n

.(31)

From (1), (4), the definition of the sequence {c1,n}∞n=N , (18), (21), (24), and
(25) it follows that for infinitely many sufficiently large T

lcm(c1,N , . . . , cR,N+g(T,0)−1)(32)

≤ lcm(c1,N , . . . , c1,N+g(T,0)−1)

N+g(T,0)−1∏
j=N

c1,j2K
T+2−(

√
2+ε)

√
T

K−2

= lcm(c1,j , c1,j < 2K
T
)

 ∏
c1,j<2KT

c1,j2K
T+2−(

√
2+ε)

√
T


K−2

≤ 2
1

K−1

“
KT−KT−(

√
2+ ε

4 )
√

T
” (

2
1

K−1
KT

2TK
T+2−(

√
2+ε)

√
T
)K−2

= 2K
T− 1

K−1
KT−(

√
2+ ε

4 )
√

T +T (K−2)KT+2−(
√

2+ε)
√

T

≤ 2K
T−KT−(

√
2+ ε

3 )
√

T

.

On the other hand (1), (2), (4), the definition of the sequence {c1,n}∞n=N ,
(18), and (21) imply that

∞∑
n=N+g(T,0)

R∑
j=1

αj
dj,n
cj,n
≤
T.K.maxj=1,... ,R |αj |.2K

T+2−(
√

2+ε)
√

T

2KT(33)

≤ 2K
T−(

√
2+ ε

2 )
√

T−KT

for all sufficienly large T . Finally (31)-(33) imply that

E ≤ q.2KT−KT−(
√

2+ ε
3 )
√

T

2K
T−(

√
2+ ε

2 )
√

T−KT

= q.2K
T−(

√
2+ ε

2 )
√

T−KT−(
√

2+ ε
3 )
√

T

for infinitely many natural numbers T . But this is impossible for a positive
integer E and a sufficiently large T . �

Example 1. Let aj,n = 2K
n
, bj,n = (j + n)! (j = 1, 2, . . . ,K − 1). Then the

sequences {aj,n/bj,n}∞n=1 are linearly unrelated.

3. Irrational Sequences.
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Definition 3.1. Let {An}∞n=1 be a sequence of positive real numbers. If for
every sequence {cn}∞n=1 of positive integers the series

∞∑
n=1

1
Ancn

is irrational, then the sequence {An}∞n=1 is irrational. If {An}∞n=1 is not an
irrational sequence, then it is a rational sequence.

Theorem 3.1. Let ε > 0, and let {an}∞n=1 and {bn}∞n=1 be two sequences of
positive integers such that

an ≥ 22n

and

bn ≤ 22n−(
√

2+ε)
√

n
.

Then the sequence
{Qn

i=1 ai

bn

}∞
n=1

is irrational and the series
∑∞

n=1
bnQn

i=1 ai
is

irrational too.

This theorem is an immediate consequence of Theorem 2.1. It is enough
to put K = 2.

Example 2. The sequences {22n−n2}∞n=1, {22n
/n}∞n=1, and {22n−n}∞n=1 are

irrational sequences.

Open Problem. Is the sequence
{

2[2n(1− 1
n

)]
}∞
n=1

irrational or not? ([x]

denotes the greatest integer less than or equal x.)

Remark. Let us put in Theorem 3.1 an = 22n
and bn = 1 for every natural

number n. Then we obtain the very famous result of Erdös (see [5]) which
states that the sequence {22n}∞n=1 is irrational.

From the last theorem we also obtain the following criterion for the so-
called Cantor sequences.

Theorem 3.2. Let ε > 0 and let {bn}∞n=1 be a sequence of positive integers
such that

bn ≤ 22n−(
√

2+ε)
√

n
.

Let us put

an =

2
n

 
1− 1

n
log2

 
n

log2 n
n +1

!! .
Then the sequence {an!

bn
}∞n=1 is irrational.
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This theorem is an immediate consequence of Theorem 3.1.

Example 3. The sequences
{

2[n(1− 1√
n

)]!
}∞
n=1

and
{

2[n(1− 1√
n

)]!/n!
}∞
n=1

are
irrational.

Thank you very much to reviewer and to Professor Carter for their cor-
rection of this paper.
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LOOP SPACES OF H-SPACES WITH FINITELY
GENERATED COHOMOLOGY

Yusuke Kawamoto

Suppose X is a simply connected mod p H-space such that
the mod p cohomology H∗(ΩX) is a finitely generated algebra.
We show that the loop space ΩX is homotopy equivalent to a
finite product of Eilenberg-MacLane spaces K(Z, 1), K(Z, 2)
and K(Z/pi, 1) for i ≥ 1. This is a generalization of the result
due to Lin, in which the same result was proved under the
assumption that X is an Ap-space.

1. Introduction.

Let p be an odd prime. We assume that all spaces are completed at p in
the sense of Bousfield-Kan [2], and the cohomologies are taken with Z/p-
coefficients unless otherwise specified. In this paper, we investigate the
homotopy type for the loop space of anH-space whose cohomology is finitely
generated as an algebra. In the case of the cohomology is finite dimensional,
there is the following theorem due to Aguadé-Smith:

Theorem 1.1 ([1]). If X is a simply connected mod p H-space such that
H∗(ΩX) is finite dimensional, then ΩX has the homotopy type of a torus.

The above theorem is known as the mod p torus theorem, and some gen-
eralizations of Theorem 1.1 are investigated by Hemmi [8] and McGibbon
[15]. Hemmi showed that a connected finite quasi Cp-space has the homo-
topy type of a torus, where a quasi Cp-space is defined as an H-space which
has certain higher homotopy associativity and commutativity (see [8, Def.
2.1]).

Our main result is stated as follows:

Theorem A. If X is a simply connected mod p H-space such that H∗(ΩX)
is finitely generated as an algebra, then ΩX is homotopy equivalent to a
finite product of Eilenberg-MacLane spaces K(Z, 1), K(Z, 2) and K(Z/pi, 1)
for i ≥ 1.

Theorem A generalizes Theorem 1.1 since K(Z, 2) and K(Z/pi, 1) for
i ≥ 1 do not have the finite cohomology. Our theorem also generalizes a
result of Lin [12] who has shown Theorem A under the assumption that X
is an Ap-space in the sense of Stasheff [19]. We owe much to the results
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in [12] and [13] (see §2). From the result of Hemmi, it may be possible to
generalize our result to the case of quasi Cp-spaces instead of loop spaces on
H-spaces.

For p = 2, there is the following more general result due to Slack and
Broto-Crespo:

Theorem 1.2 ([18, Cor. 0.2], [3, Cor. 1.5]). If X is a connected homotopy
commutative mod 2 H-space such that the mod 2 cohomology H∗(X) is
finitely generated as an algebra, then X is homotopy equivalent to a finite
product of Eilenberg-MacLane spaces K(Z, 1), K(Z, 2) and K(Z/2i, 1) for
i ≥ 1.

We remark that for the odd prime case, the corresponding result of The-
orem 1.2 does not hold. In fact, Iriye-Kono [9] have shown that for an
odd prime p, any mod p H-space possesses a multiplication which is homo-
topy commutative. Moreover, one may guess that a homotopy commutative
mod p loop space which has the finitely generated cohomology is homotopy
equivalent to a product of Eilenberg-MacLane spaces. However, we note that
Sp(2) for p = 3 and S3 for p ≥ 5 are counterexamples (see [14, Thm. 2]).

In the proof of Theorem A, we use a technique for H-fibrations introduced
by Broto-Crespo [3]. Their observation was concentrated on the mod 2 case,
and some parts of their proof have generalizations to the odd prime cases
with simple modifications (see Proposition 3.3 and Proposition 3.6). We
combine these results with the computations in §2 for the cohomology of
ΩX to establish a proof of Theorem A (see §4).

Now we provide an outline of the proof of Theorem A so that the reader
has an overview of the ideas and strategy.

For a mod p H-space X satisfying the assumption, we consider the three-
connected cover X̃. Then we have a fibration

ΩX̃ −→ ΩX −→ K,

where K is a finite product of Eilenberg-MacLane spaces of degrees 1 and
2. We see that H∗(ΩX̃) is free commutative, finitely generated as an alge-
bra which has generators in degrees 2p, 2p+ 1, 2p2 and 2p2 + 1 with certain
Steenrod relations induced from H∗(ΩX) (see Proposition 2.3). For a gen-
erator x of degree 2p, using the Lannes theory, we construct an H-map
φ : BZ/p → ΩX̃ such that φ∗(x) = ωp, where ω ∈ H2(BZ/p) denotes the
generator. We construct an H-fibration

BZ/p φ−→ ΩX̃ −→ E1,

where E1 is an H-space given by the Borel construction for φ. By repeating
this construction, we have a sequence of H-spaces and H-maps

ΩX̃ −→ E1 −→ E2 −→ · · · ,
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and if we set Y = lim−→ sEs, then the three-connected cover Y 〈3〉 ' ΩX̃, and
the cohomology H∗(Y ) is related to H∗(ΩX̃) in that H∗(Y ) has an addi-
tional three dimensional generator and one less 2p-dimensional generators
(see Proposition 4.1). Applying this procedure a finite number of times, we
obtain a mod p H-space Z such that Z〈3〉 ' ΩX̃ and the cohomology H∗(Z)
has no 2p-dimensional generator.

By using the same methods, we can knock off the 2p2-dimensional gener-
ators, and thus we obtain a mod p H-space W such that W 〈3〉 ' ΩX̃ and
the cohomology H∗(W ) is an exterior algebra with generators in degrees 3
and 2p+ 1 (see Proposition 4.8).

By the localization theory due to Dror Farjoun and Neisendorfer, we can
show that W is also the loop space on an H-space, and so W is contractible
by Theorem 1.1. This implies that ΩX̃ is also contractible and therefore
ΩX ' K. The ideas and strategy come from [3].

This paper is organized as follows: In §2, we prove Theorem A using
Theorem 1.1, Proposition 2.6 and results for the localization theory due to
Dror Farjoun [6] and Neisendorfer [17]. Here Proposition 2.6 is the key to
the proof of Theorem A, and we postpone the proof until §4. In §3, we
recall the Lannes theory and show some properties for H-fibrations. In §4,
we prove Proposition 2.6 using the results of §3.

The author would like to thank Prof. Y. Hemmi, Prof. K. Ishiguro and
Prof. M. Imaoka for their many helpful suggestions and conversations. We
also appreciate the referee for many useful comments.

2. Proof of Theorem A.

In this section we prove Theorem A. Thus, throughout this section, the
space X is always assumed to satisfy the hypothesis of Theorem A. First,
we recall the following result due to Lin:

Theorem 2.1 ([12, Thm. A]). H∗(ΩX) is free commutative, primitively
generated on generators in degrees 1, 2, 2p, 2p+ 1, 2p2 and 2p2 + 1.

Remark 2.2. Lin has proved that if X is a simply connected mod p H-
space such that H∗(ΩX) is finitely generated as an algebra, then H∗(ΩX)
is primitively generated on generators in degrees 1, 2, 2p, 2p + 1, 2p2 and
2p2 + 1, and under the assumption that H∗(X) is associative, H∗(ΩX) is
free commutative. We note that his proof does not use this assumption to
show that H∗(ΩX) is primitively generated (see [12, Cor. 2.2, Thm. 2.3]).
But we see that the last statement also holds without this assumption. In
fact, since ΩX is homotopy associative, homotopy commutativeH-space and
H∗(ΩX) is primitively generated, by a theorem of Browder [4, Thm. 8.15],
H∗(ΩX) is free commutative.



314 YUSUKE KAWAMOTO

By [12, Cor. 1.2, Thm. 2.1], H∗(X) is generated by odd degree generators
in degrees 2pj + 1 for some j ≥ 0 and even degree generators in degrees 2,
2pj + 2 for some j ≥ 1. We choose the basis of H2(X) and H3(X) as
B2 = {xj0}∪{xj1}∪ · · · ∪ {xjr} and B3 = {β1(xj1)}∪ · · · ∪ {βr(xjr)}∪{yk},
respectively, where xj0 are the mod p reductions of the integral classes and
βs denotes the s-th Bockstein operation. We define a generalized Eilenberg-
MacLane space K as

K =
∏
{xj0

}

K(Z, 2)×
∏
{xj1

}

K(Z/p, 2)× · · · ×
∏
{xjr}

K(Z/pr, 2)×
∏
{yk}

K(Z, 3).

Let f : X → K be an H-map which represents the generators of the integral
cohomology of dimension 2 and 3, and X̃ denote the homotopy fiber of
f . Then, X̃ is an H-space and 2p-connected. By the spectral sequence
argument, we see that H∗(ΩX̃) is finitely generated as an algebra, and so
X̃ satisfies the same conditions as X.

Now we define an algebra A as

A = Z/p[x1, . . . , xm, y1, . . . , yn]⊗ Λ(z1, . . . , zm+n, w1, . . . , wn),

where |xi| = 2p for 1 ≤ i ≤ m, |yj | = 2p2 for 1 ≤ j ≤ n, |zk| = 2p + 1 for
1 ≤ k ≤ m+ n, and |wl| = 2p2 + 1 for 1 ≤ l ≤ n.

Then we can prove the following proposition:

Proposition 2.3. H∗(ΩX̃) ∼= A as algebras, and the following operations
act on H∗(ΩX̃):{

β(xi) = zi for 1 ≤ i ≤ m,
β(yj) = Pp(zm+j) = wj for 1 ≤ j ≤ n.

(2.4)

For a mod p H-space Y , we denote the primitive and indecomposable
modules of the Hopf algebra H∗(Y ) by PH∗(Y ) and QH∗(Y ), respectively.
We need the following fact for the proof of Proposition 2.3.

Lemma 2.5 ([16, Thm. 4.21]). If Y is a connected mod p H-space, then
there is the following exact sequence:

0→ P (ξH∗(Y ))→ PH∗(Y )→ QH∗(Y ),

where ξ : H∗(Y )→ H∗(Y ) is a map defined as ξ(x) = xp.

Proof of Proposition 2.3. By Theorem 2.1, H∗(ΩX̃) is free commutative,
and has generators xi, yj , zk and wl with |xi| = 2p, |yj | = 2p2, |zk| = 2p+ 1
and |wl| = 2p2 +1 for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ q and 1 ≤ l ≤ r, where
generators are primitive.

Since β(xi) ∈ PH2p+1(ΩX̃) for 1 ≤ i ≤ m, we see that β(xi) ∈
QH2p+1(ΩX̃) by Lemma 2.5. By [13, Cor. E], we have that β(xi) 6= 0,
and if i1 6= i2, then β(xi1) 6= β(xi2). Thus, we can set β(xi) = zi for
1 ≤ i ≤ m. Similarly, we can set β(yj) = wj for 1 ≤ j ≤ n.



LOOP SPACES OF H-SPACES 315

Since the suspension map σ∗ : QH2p2+2(X̃) → PH2p2+1(ΩX̃) is an epi-
morphism, and β : QH2p2+1(X̃)→ QH2p2+2(X̃) is also an epimorphism by
[12, Thm. 1.10], we have that wl ∈ βPH2p2(ΩX̃) for 1 ≤ l ≤ r. Thus, we
have that wl ∈ βQH2p2(ΩX̃) by Lemma 2.5, which implies that r = n.

Using [12, Thm. 1.9], the similar arguments show that wl ∈
PpQH2p+1(ΩX̃) for 1 ≤ l ≤ n. We can assume that Pp(zm+l) = wl for
1 ≤ l ≤ n since Pp(zk) = P1βPp−1(xk) + βPp(xk) = 0 for 1 ≤ k ≤ m.

If we set

Pp(zm+n+1) =
n∑
l=1

σlwl

for σl ∈ Z/p, then for

ζ = zm+n+1 −
n∑
l=1

σlzm+l,

we have that Pp(ζ) = 0. Since σ∗ : QH2p+2(X̃) → PH2p+1(ΩX̃) is an
epimorphism, ζ = σ∗(µ) for some µ ∈ QH2p+2(X̃). Since σ∗(Pp(µ)) =
Pp(ζ) = 0, by [10, Thm. B], there exists ν ∈ QH2p+1(X̃) such that Pp(µ) =
βPp(ν) inQH2p2+2(X̃). Applying the Adem relation Ppβ = P1βPp−1+βPp
to ν, we have that Pp(µ) = Pp(β(ν)), which implies that µ = β(ν) by [12,
Thm. 1.9]. Then, ζ = σ∗(µ) = β(σ∗(ν)) ∈ βQH2p(ΩX̃) by Lemma 2.5,
which implies that

ζ =
m∑
k=1

τkzk

for τk ∈ Z/p. Therefore, we have that

zm+n+1 =
m∑
k=1

τkzk +
n∑
l=1

σlzm+l,

which implies that q = m+ n. This completes the proof. �

The following proposition is crucial for our study, which will be proved in
§4 using the Lannes theory.

Proposition 2.6. If Y is a mod p H-space with H∗(Y ) ∼= A as algebras,
and the operations (2.4) act on H∗(Y ), then there is a simply connected
mod p finite H-space W such that Y ' W 〈3〉, where W 〈3〉 is the three-
connected cover of W .

Using Proposition 2.6, we can prove Theorem A as follows:

Proof of Theorem A. By Proposition 2.3 and Proposition 2.6, there exists
a simply connected mod p finite H-space W such that ΩX̃ ' W 〈3〉. Let
Lg denote the localization functor with respect to a map g constructed by
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Dror Farjoun [6]. For the constant map c : BZ/p→ ∗, Lc(ΩX̃) 'W by the
results due to Neisendorfer [17, Thm. 0.1]. Since Lc(ΩX̃) ' ΩLΣc(X̃) by
[6, Thm. 3.A.1], and LΣc preserves the H-structure, we see that the space
W is the loop space of an H-space. By Theorem 1.1, W is contractible, and
so ΩX̃ 'W 〈3〉 is also contractible. Therefore, ΩX ' ΩK, and we have the
required conclusion. This completes the proof of Theorem A. �

3. Lannes T -functor and H-fibrations.

In this section we recall some results concerning the Lannes theory and the
H-fibrations, which will be used in the next section.

Let K denote the category of unstable Ap-algebras. The objects of K are
called K-algebras. It is known that H∗(X) is a K-algebra for any space X.

The Lannes T -functor T : K → K is a left adjoint of the functor
H∗(BZ/p)⊗−, that is, there is the adjoint isomorphism HomK(T (A), B) ∼=
HomK(A,H∗(BZ/p)⊗B) for K-algebras A and B.

For a K-map f : A → H∗(BZ/p), its adjoint restricts to a K-map
T (A)0 → Z/p, where T (A)0 is the subalgebra of T (A) of elements of de-
gree 0. The connected component of T (A) corresponding to f is defined by
Tf (A) = T (A)⊗T (A)0 Z/p, and there is the natural K-map εf : A→ Tf (A).

The evaluation map e : BZ/p × Map(BZ/p,X) → X induces a K-
map e∗, and taking the adjoint of this yields a K-map λ : T (H∗(X)) →
H∗(Map(BZ/p,X)). On the component level, for a map φ : BZ/p → X,
there is a K-map λφ∗ : Tφ∗(H∗(X))→ H∗(Map(BZ/p,X)φ). The composite
λφ∗εφ∗ is induced by the evaluation at the base point eφ : Map(BZ/p,X)φ →
X. The following theorem is due to Lannes:

Theorem 3.1 ([11, Thm. 3.2.1]). Let X be a space and φ : BZ/p→ X be a
map. If Tφ∗(H∗(X))1 = 0, then λφ∗ : Tφ∗(H∗(X)) → H∗(Map(BZ/p,X)φ)
is an isomorphism.

For the cohomology of an H-space, Dwyer-Wilkerson have proved the
following:

Proposition 3.2 ([7, Thm. 3.2, Lemma 4.5]). If X is a mod p H-space
with finitely generated cohomology and f : H∗(X) → H∗(BZ/p) is a K-
map, then εf : H∗(X)→ Tf (H∗(X)) is an isomorphism.

Recently, an important theory of H-fibrations using the Lannes theory
was introduced by Broto-Crespo [3]. Their observation was concentrated on
the mod 2 case. However, we also have the corresponding results for the
odd prime case.

Proposition 3.3. Let X be a mod p H-space with finitely generated co-
homology, and φ : BZ/p → X be an H-map with H∗(BZ/p) is finitely
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generated H∗(X)-module induced by φ∗. If

BZ/p φ−→ X
ψ−→ Y

is a principal fibration, then Y is an H-space and ψ is an H-map.

Lemma 3.4. Let c : BZ/p × BZ/p → Y denote the constant map, where
Y comes from Proposition 3.3. Then the base point evaluation map ec :
Map(BZ/p×BZ/p, Y )c → Y is a homotopy equivalence.

Proof. We have the following commutative diagram of fibrations:

Map(BZ/p×BZ/p,BZ/p)S
ec−−−→ BZ/py yφ

Map(BZ/p×BZ/p,X)c
ec−−−→ Xy yψ

Map(BZ/p×BZ/p, Y )c
ec−−−→ Y,

where S = {g : BZ/p × BZ/p → BZ/p | φg ' c} and ec denote the base
point evaluation maps.

SinceX has the finitely generated cohomology, ec :Map(BZ/p×BZ/p,X)c
→ X is a homotopy equivalence by [7, Thm. 3.2]. It is known that
H∗(BZ/p) ∼= Λ(θ)⊗ Z/p[ω] with β(θ) = ω. For a map g : BZ/p×BZ/p→
BZ/p with φg ' c, there exists some n ≥ 1 so that g∗(ω)n = g∗(ωn) = 0
since H∗(BZ/p) is finitely generated H∗(X)-module induced by φ∗ and
g∗φ∗ = 0, which implies that g∗(ω) = 0. If we put g∗(θ) = a1θ1 + a2θ2
for a1, a2 ∈ Z/p, then g∗(ω) = β(g∗(θ)) = a1ω1 + a2ω2 = 0, and we must
have a1 = a2 = 0, which implies that g∗(θ) = 0. By a result of Lannes [11,
Thm. 3.1.1], we obtain that g ' c.

Then we have that S = {c}, and thus ec : Map(BZ/p×BZ/p,BZ/p)S →
BZ/p is a homotopy equivalence. Using the five lemma, ec : Map(BZ/p ×
BZ/p, Y )c → Y is a homotopy equivalence, and thus we have the required
conclusion. �

For the proof of Proposition 3.3, we need the following fact which is known
as the Zabrodsky lemma:

Lemma 3.5 ([21, Lemma 3.1]). Let

F
i−→ E

p−→ B

be a principal fibration, and Y be a space which satisfies that ec : Map(F, Y )c
→ Y is a homotopy equivalence. Then the induced map Map(B, Y ) →
Map(E, Y )S is a homotopy equivalence, where S = {g : E → Y | gi ' c}.

Now we can prove Proposition 3.3 as follows:
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Proof of Proposition 3.3. By Lemma 3.4, the evaluation map ec :
Map(BZ/p × BZ/p, Y )c → Y is a homotopy equivalence. Then, applying
Lemma 3.5 to a principal fibration

BZ/p×BZ/p φ×φ−→ X ×X ψ×ψ−→ Y × Y,
we have that Map(Y × Y, Y ) ' Map(X ×X,Y )S , where S = {g : X ×X →
Y | g(φ× φ) ' c}. If we denote the multiplication of the H-space X as µX ,
then there is a map µY : Y × Y → Y so that ψµX ' µY (ψ × ψ). Using
Lemma 3.5 again, we see that the map µY gives an H-structure on Y . This
completes the proof. �

Proposition 3.6. Suppose that there is an H-fibration

BZ/p φi−→ Xi
ψi−→ Xi+1(3.7)

for i ≥ 0, and we put Y = lim−→ iXi. If H∗(Y ) is finitely generated as an
algebra, then the space Y has an H-structure.

Proof. We set µ = lim−→ iµi : Y ×Y → Y for the multiplication µi : Xi×Xi →
Xi of the H-space Xi. Let ιj : Y → Y × Y denote the inclusion map on the
j-th factor for j = 1, 2. If we show that µιj ' 1Y for j = 1, 2, then we have
the required conclusion.

We denote the inclusion map as κi : Xi → Y for i ≥ 0. Since µi is a
multiplication for i ≥ 0, we have that µιjκi ' κiµiι

i
j ' κi, where ιij : Xi →

Xi ×Xi denotes the inclusion map on the j-th factor for j = 1, 2. By [20,
Prop. 4], the obstruction to construct a homotopy between µιj and 1Y lies
in

lim←− i
kπk(Map(Xi, Y )κi)(3.8)

for k ≥ 1. Since H∗(Y ) is a finitely generated algebra, Map(BZ/p, Y )c ' Y
by [7, Thm. 3.2]. Then, applying Lemma 3.5 to the fibration (3.7), we have
that Map(Xi, Y )κi ' Map(Xi+1, Y )κi+1 for i ≥ 0, and so the obstruction
group (3.8) vanishes. This completes the proof. �

Now we introduce a result which is useful to compute the Serre spectral
sequence for an H-fibration, which will be used in §4. Let X and Y be
H-spaces and

X −→ Y −→ B2Z/p
be an H-fibration. We consider the Serre spectral sequence for the fibration
whose E2-term is given as

E∗,∗2 = H∗(B2Z/p)⊗H∗(X).(3.9)

Then we see that the spectral sequence has a differential Hopf algebra struc-
ture, and for r ≥ 2, if we put Ar = E∗,0r and Br = E0,∗

r , then they have Hopf
algebra structures induced from the E2-term.
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Proposition 3.10. (1) If dr(Br) 6= 0, then the transgression τ : Br−1
r →

P r(Ar) is non-trivial.
(2) For x ∈ Bq

r , dr(x) ∈ P r(Ar) ⊗ Bq−r+1
r , where Pn(Ar) denotes the

primitive module of Anr .

We need the following lemma to show Proposition 3.10:

Lemma 3.11. (1) For r ≥ 2, the Er-term is given as

E∗,∗r
∼= Ar ⊗Br ⊗ Λ(α1, . . . , αk),

where αi ∈ Esi,ti
r with si < r and |αi| = 2mi + 1 with p|mi for 1 ≤ i ≤ k.

(2) If x ∈ P 2s(Ar) with 2s ≥ r, then x has the infinite height.

Proof. We show (1) and (2) by induction. For r = 2, by (3.9) and since
H∗(B2Z/p) is free commutative, the results (1) and (2) hold. We assume
that the results (1) and (2) have already shown for the Er-term.

By a result of Browder [5, Thm. 5.8], the Er+1-term is described as

E∗,∗r+1
∼= Ar+1 ⊗Br+1 ⊗ Λ(α1, . . . , αk, β1, . . . , βl),

where αi are elements stated in the lemma, βj ∈ E
sj ,tj
r+1 with tj < r − 1 and

|βj | = 2nj − 1 with p|nj for 1 ≤ j ≤ l. From the proof of [5, Thm. 5.8],
we see that βj = {xj · dr(xj)p−1} for some xj ∈ E∗,∗r with dr(xj) ∈ P (Ar).
But by assumption, dr(xj) has the infinite height, and so the element of the
form βj cannot occur, which shows (1).

For a non-trivial element x ∈ P 2s(Ar+1) with 2s ≥ r+ 1, we assume that
xp

k
= 0 for some k ≥ 1, and obtain a contradiction from this assumption.

By inductive hypothesis, xp
k 6= 0 ∈ Ar, and then there exists an element

y ∈ E∗,∗r so that dr(y) = xp
k
. By the form of the Er-term, we have either

a generator z ∈ Br−1
r with dr(z) = xp

k1 for some k1 ≤ k or a generator
α ∈ E∗,∗r with dr(α) = xp

k2 for some k2 ≤ k. On the one hand, if dr(z) =
xp

k1 , then |xpk1 | = r < |x|, which causes a contradiction. On the other
hand, if dr(α) = xp

k2 , then |xpk2 | = 2m+ 2 for some m ≥ 1 with p|m. This
shows that k2 = 0, and so {x} = 0 in the Er+1-term, which also causes a
contradiction. This completes the proof. �

Now we can prove Proposition 3.10 as follows:

Proof of Proposition 3.10. First we show (1). By assumption, there is an
element x ∈ Bq

r so that dr(x) 6= 0. We can assume that if y ∈ Bq̄
r with

q̄ < q, then dr(y) = 0. If we set that

∆(x) = x⊗ 1 + 1⊗ x+
∑
i

x̄i ⊗ ¯̄xi,

then ∆(dr(x))=dr(∆(x))=dr(x)⊗1+1⊗dr(x), and so dr(x)∈P (Er,q−r+1
r ).

By Lemma 3.11, the primitive elements of E∗,∗r consist of P (Ar), P (Br) and
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αi ∈ Es,tr with s < r, and then we have that q = r − 1 and dr(x) ∈ P r(Ar).
This implies the required conclusion.

Next to show (2), let x ∈ Bq
r . By Lemma 3.11, we can set that

dr(x) =
∑
i≥1

ai · bi ∈ Er,q−r+1
r ,

where ai ∈ Ar ⊗Λ(α1, . . . , αk), bi ∈ Br with |ai|+ |bi| = q+ 1 for i ≥ 1. We
can assume that the elements bi are linearly independent for i ≥ 1. Then
we have that

∆(dr(x)) =
∑
i

∆(ai)∆(bi)

=
∑
i

ai ⊗ 1 + 1⊗ ai +
∑
j

āi,j ⊗ ¯̄ai,j


·

(
bi ⊗ 1 + 1⊗ bi +

∑
k

b̄i,k ⊗ ¯̄bi,k

)
,

where 0 < |āi,j |, |¯̄ai,j | < |ai| and 0 < |b̄i,k|, |¯̄bi,k| < |bi|. On the other hand,
we obtain that

∆(dr(x)) = dr(∆(x)) ∈
⊕
s+t=q

(Er,s−r+1
r ⊗Bt

r)⊕ (Bs
r ⊗ Er,t−r+1

r ).

For the dimensional reason, we see that
∑

i,j āi,jbi ⊗ ¯̄ai,j = 0, which implies
that

∑
j āi,j ⊗ ¯̄ai,j = 0 for i ≥ 1 since bi are linearly independent. This

implies that

ai ∈ P (Ar ⊗ Λ(α1, . . . , αk)) = P (Ar)⊕ {α1, . . . , αk},
and then ai ∈ P r(Ar) for i ≥ 1. Thus we can conclude that dr(x) ∈
P r(Ar)⊗Bq−r+1

r . This completes the proof. �

Remark 3.12. We note that by Proposition 3.10, for r ≥ 2, if either
P r(Ar) = 0 or Qr−1(Br) = 0, then dr(Br) = 0.

4. Proof of Proposition 2.6.

In this section we prove Proposition 2.6, and thus we assume that Y is a mod
p H-space such that H∗(Y ) ∼= A, and the operations (2.4) act on H∗(Y ).

For 1 ≤ t ≤ m+ 1, we set an algebra Kt as

Kt = Z/p[xt, . . . , xm, y1, . . . , yn]

⊗ Λ(v1, . . . , vt−1, zt, . . . , zm+n, w1, . . . , wn)

with xi, yj , zk and wl are as in A, |vq| = 3 for 1 ≤ q ≤ t− 1. First, we prove
the following proposition:
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Proposition 4.1. For 1 ≤ t ≤ m + 1, there is a mod p H-space Yt such
that Yt〈3〉 ' Y and H∗(Yt) ∼= Kt with the following operations:

β(xi) = zi for t ≤ i ≤ m,
β(yj) = wj for 1 ≤ j ≤ n,
Pp(zm+l) = wl + δl for 1 ≤ l ≤ n,

where δl is some decomposable element of Kt for 1 ≤ l ≤ n.

For 1 ≤ t ≤ m, we set an algebra Ct as

Ct = Z/p[u, xt+1, . . . , xm, y1, . . . , yn]

⊗ Λ(v1, . . . , vt, zt+1, . . . , zm+n, w1, . . . , wn)

with xi, yj , zk, wl and vq for 1 ≤ q ≤ t− 1 are as in Kt, |u| = 2 and |vt| = 3.
An algebra A is said to be a K-Hopf algebra if A is a K-algebra and

has a Hopf algebra structure compatible with the K-structure, namely the
diagonal map of A becomes a K-map. It is known that for an H-space X,
H∗(X) is a K-Hopf algebra. We see that if Kt and Ct have K-Hopf algebra
structures, then for the dimensional reason, vq is primitive for 1 ≤ q ≤ t.

Lemma 4.2. Suppose that the algebras Kt and Ct are K-Hopf algebras with
the following operations:

β(u) = λvt for λ = 0 or 1,
β(xi) = zi for t ≤ i ≤ m,
β(yj) = wj for 1 ≤ j ≤ n,
Pp(zm+l) = wl + δl for 1 ≤ l ≤ n,

(4.3)

where δl is some decomposable element of Kt for 1 ≤ l ≤ n. Then the
following hold:

(1) There is a map of K-Hopf algebra f : Kt → H∗(BZ/p) such that
f(xt) = ωp and f = 0 on the other generators of Kt, where H∗(BZ/p) ∼=
Λ(θ)⊗ Z/p[ω] with β(θ) = ω.

(2) There is a map of K-Hopf algebra g : Ct → H∗(BZ/p) such that
g(u) = ω and g = 0 on the other generators of Ct.

Proof. We show only (2), since (1) is proved by similar arguments.
Let I denote the ideal of Ct generated by odd degree generators. For the

dimensional reason, we see that I is a Hopf ideal of Ct. We show that I is
closed under the action of Ap.

For the dimensional reason, Pa(I) ⊂ I for a ≥ 1, and using the relation
ββ = 0, we have that β(zk) = β(wl) = 0 for t + 1 ≤ k ≤ m and 1 ≤ l ≤ n.
Thus, it sufficies to show that β(vq), β(zk) ∈ I for 1 ≤ q ≤ t and m + 1 ≤
k ≤ m + n. We see that β(vq) is primitive since vq is primitive, and so
β(vq) = 0 since P 4(Ct) = 0.
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For the dimensional reason, we can put

β(zk) = κup+1 +
m∑

i=t+1

ρiuxi mod I

for κ, ρi ∈ Z/p.
If λ = 1, then using the relation ββ(zk) = 0, κ = ρi = 0 for t+1 ≤ i ≤ m,

which implies that β(zk) ∈ I.
When λ = 0, using the relation ββ(zk) = 0, we have that β(zk) = κup+1

mod I. For the dimensional reason, we have that β(zk) is primitive since
β(u) = β(vq) = 0, which implies that κ = 0, and so β(zk) ∈ I.

From the above considerations, Ct/I is a K-Hopf algebra, and the quotient
map π : Ct → Ct/I becomes a map of K-Hopf algebra. Since Ct/I is a
polynomial algebra, there is a monomorphism of K-Hopf algebra σ : Ct/I →
H∗(BV ) by [1], where V is a (m+ n− t+ 1)-dimensional vector space over
Z/p. It is known thatH∗(BV ) ∼= Λ(θ1, . . . θm+n−t+1)⊗Z/p[ω1, . . . ωm+n−t+1]
with β(θk) = ωk for 1 ≤ k ≤ m+ n− t+ 1.

Taking a suitable basis of V , and by the argument of [1], we can assume
that σ(u) = ω1, σ(xi) = ωpi−t+1 for t + 1 ≤ i ≤ m, and σ(yj) = ωp

2

m+j−t+1

for 1 ≤ j ≤ n. If we define a map g = (Bi)∗σπ, where i : Z/p → V is
the inclusion on the first factor, then g is a map of K-Hopf algebra which
satisfies the required properties. This completes the proof. �

Proof of Proposition 4.1. We proceed by an induction on t. For t = 1, if we
put Y1 = Y , then Y 〈3〉 ' Y since Y is 3-connected, and by assumption,
H∗(Y ) ∼= A ∼= K1 with the operations (2.4). Now we assume that there
exists an H-space Yt with the required properties.

From now on, we construct an H-space Yt+1 satisfying the required prop-
erties. For the map f of Lemma 4.2, a result of Lannes [11, Thm. 3.1.1]
implies that there is a map φ : BZ/p→ Yt such that φ∗ = f . We see that the
evaluation map eφ : Map(BZ/p, Yt)φ → Yt becomes a homotopy equivalence
by Theorem 3.1 and Proposition 3.2. Let ι : BZ/p → Map(BZ/p, Yt)φ be
the adjoint of φµ, where µ is the multiplication of an H-structure of BZ/p.
Then we have the following commutative diagram of fibrations:

BZ/p BZ/p −−−→ EBZ/p −−−→ B2Z/p

φ

y ι

y y ∥∥∥
Yt

eφ←−−−
'

Map(BZ/p, Yt)φ
κ−−−→ E1

ζ−−−→ B2Z/p,

(4.4)

where E1 = EBZ/p×BZ/p Map(BZ/p, Yt)φ denotes the Borel construction.
Since f is a map of K-Hopf algebra, φ is an H-map, and so the bottom

fibration becomes an H-fibration by Proposition 3.3. The E2-term of the
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Serre spectral sequence for this fibration is given as

E∗,∗2 = H∗(B2Z/p)⊗H∗(Yt)

for H∗(B2Z/p) ∼= Z/p[η, βP∆iβ(η) | i ≥ 0] ⊗ Λ(β(η),P∆iβ(η) | i ≥ 0),
where P∆i = Ppi · · · P1 and η denotes the fundamental class. Now we use
the notations from Proposition 3.10.

For the dimensional reason and by Remark 3.12, we have that E∗,∗2p+1
∼=

E∗,∗2 . The generator xi is transgressive for t ≤ i ≤ m, and then by using the
naturality of the diagram (4.4), and by Proposition 3.10, we obtain that

d2p+1(xi) =

{
P1β(η) for i = t,
0 for t+ 1 ≤ i ≤ m.

(4.5)

By the Kudo transgression theorem, there are the following differentials:{
d2pk+1+1(x

pk

t ) = P∆kβ(η) for k ≥ 1,

d2pk(p−1)+1(P∆k−1β(η)⊗ xp
k−1(p−1)
t ) = βP∆kβ(η) for k ≥ 1.

(4.6)

In particular, we see that

d2p(p−1)+1(P1β(η)⊗ xp−1
t ) = βP∆1β(η)(4.7)

in the E2p(p−1)+1-term. Since H1(Yt) = 0, d2p+1(zk) = 0 for 1 ≤ k ≤ m+ n.
If d2p+1(yj) 6= 0, then we can replace the generator yj so that d2p+1(yj) = 0
for 1 ≤ j ≤ n. In fact, by Proposition 3.10, we can write

d2p+1(yj) = P1β(η)⊗
p−1∑
s=0

bsx
s
t ,

where bs are polynomials of generators of H∗(Yt) other than xt for 0 ≤ s ≤
p− 1. If we put ȳj as

ȳj = yj −
p−2∑
s=0

1
s+ 1

bsx
s+1
t ,

then by (4.5), d2p+1(ȳj) = P1β(η)⊗ bp−1x
p−1
t , and applying the differential

d2p(p−1)+1 to {P1β(η)⊗ bp−1x
p−1
t } = 0 in the E2p(p−1)+1-term, we have that

{βP∆1β(η) ⊗ bp−1} = 0. This implies that bp−1 = 0, and so d2p+1(ȳj) = 0.
Similarly, we can replace the generators wl so that d2p+1(wl) = 0 for 1 ≤
l ≤ n. Then the E2p+2-term of the spectral sequence is given as

E∗,∗2p+2
∼= A2p+2 ⊗B2p+2 ⊗ Λ(P1β(η)⊗ xp−1

t ),

where A2p+2
∼= A2p+1/(P1β(η)) and B2p+2 is generated by the generators

of B2p+1 other than xt.
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By (4.5), we have that

d2p+2(zk) =

{
βP1β(η) for k = t,
0 for t+ 1 ≤ k ≤ m,

and for m + 1 ≤ k ≤ m + n, if d2p+2(zk) 6= 0, then by Proposition 3.10,
d2p+2(zk) = akβP1β(η) for some ak ∈ Z/p. If we set z̄k = zk − akzt, then
d2p+2(z̄k) = 0. If d2p+2(yj) 6= 0, then by Proposition 3.10, we can write that

d2p+2(yj) = βP1β(η)⊗ (b0 + b1zt),

where bs are polynomials of generators of B2p+2 other than zt for s = 0, 1.
If we set ȳj = yj − b0zt, then d2p+2(ȳj) = βP1β(η) ⊗ b1zt, and applying
d2p+2 to d2p+2(ȳj), we have that (βP1β(η))2 ⊗ b1 = 0, which implies that
b1 = 0, and so d2p+2(ȳj) = 0. By the same arguments, we can replace the
generators wl so that d2p+2(wl) = 0 for 1 ≤ l ≤ n. Then we obtain that

E∗,∗2p+3
∼= A2p+3 ⊗B2p+3 ⊗ Λ(P1β(η)⊗ xp−1

t ),

where A2p+3
∼= A2p+2/(βP1β(η)) and B2p+3 is generated by the generators

of B2p+2 other than zt. For the dimensional reason and by Remark 3.12,
E∗,∗2p(p−1)+1

∼= E∗,∗2p+3, and by (4.7), E∗,∗2p(p−1)+2
∼= A2p(p−1)+2 ⊗ B2p(p−1)+2,

where A2p(p−1)+2
∼= A2p(p−1)+1/(βP∆1β(η)) and B2p(p−1)+2

∼= B2p(p−1)+1.
Furthermore, for the dimensional reason and by Remark 3.12, E∗,∗

2p2+1
∼=

E∗,∗2p(p−1)+2, and so we conclude that

E∗,∗
2p2+1

∼= A2p2+1 ⊗B2p2+1

for

A2p2+1
∼= H∗(B2Z/p)/(βP1β(η),P1β(η))

and

B2p2+1
∼= Z/p[xpt , xt+1, . . . , xm, y1, . . . , yn]

⊗ Λ(v1, . . . , vt−1, zt+1, . . . , zm+n, w1, . . . , wn).

By iterating this process, we can compute the spectral sequence. In par-
ticular, the differentials are completely determined by (4.6), and so we have
that for k ≥ 1,

E∗,∗
2pk+1

∼= A2pk+1 ⊗B2pk+1,

where

A2pk+1
∼= H∗(B2Z/p)/

(
βP∆jβ(η),P∆jβ(η) | 0 ≤ j ≤ k − 2

)
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and

B2pk+1
∼= Z/p

[
xp

k−1

t , xt+1, . . . , xm, y1, . . . , yn

]
⊗ Λ(v1, . . . , vt−1, zt+1, . . . , zm+n, w1, . . . , wn).

This implies that H∗(E1) ∼= Ct as algebras, where u and vt represent the
generators η and β(η) in H∗(B2Z/p). Since

κ∗(xi) = xi for t+ 1 ≤ i ≤ m,
κ∗(yj) = yj for 1 ≤ j ≤ n,
κ∗(zk) = zk for t+ 1 ≤ k ≤ m,
κ∗(zk) = zk − akzt for m+ 1 ≤ k ≤ m+ n, ak ∈ Z/p,
κ∗(wl) = wl for 1 ≤ l ≤ n

up to decomposable elements and Pp(zt) = 0, we can take the generators of
H∗(E1) satisfying the condition (4.3) with λ = 1.

Next we apply same arguments to the H-space E1. For the map g of
Lemma 4.2, a result of Lannes [11, Thm. 3.1.1] implies that there is a
map ψ1 : BZ/p → E1 such that ψ∗1 = g. The evaluation map eψ1 :
Map(BZ/p,E1)ψ1 → E1 is a homotopy equivalence by Theorem 3.1 and
Proposition 3.2. Let ι1 : BZ/p → Map(BZ/p,E1)ψ1 be the adjoint of ψ1µ.
Then, we have the following H-fibration by the same construction as above:

E1
'←− Map(BZ/p,E1)ψ1

κ1−→ E2 −→ B2Z/p,

where E2 = (Map(BZ/p,E1)ψ1)hBZ/p denotes the Borel construction. Com-
puting the spectral sequence for this fibration as above, we conclude that
H∗(E2) ∼= Ct with the operations (4.3) with λ = 0.

Iterating this process, we have the following sequence of H-spaces and
H-maps:

Yt
κ−→ E1

κ1−→ E2
κ2−→ · · ·

satisfying H∗(Yt) ∼= Kt, H∗(Es) ∼= Ct with the operations (4.3) with λ = 1
for s = 1 and λ = 0 for s > 1, κ∗s(u) = 0 and

κ∗s : H∗(Es+1)/(u) −→ H∗(Es)/(u)

is an isomorphism for s ≥ 1.
If we set Yt+1 = lim−→ sEs, then there is the Milnor exact sequence

0→ lim←−
1
sH

∗+1(Es)→ H∗(Yt+1)→ lim←− sH
∗(Es)→ 0.

Since lim←−
1
sH

∗+1(Es) = 0 by the Mittag-Leffler condition, we have that
H∗(Yt+1) ∼= lim←− sH

∗(Es) ∼= Kt+1, and by Proposition 3.6, we see that
Yt+1 has an H-structure. Let F be the homotopy fiber of the composite
E1 → Yt+1, then H∗(F ) ∼= H∗(K(Z, 2)) by the spectral sequence argument,
and this implies that F ' K(Z, 2). By the cohomology, E1 is homotopy
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equivalent to the homotopy fiber of [p]vt : Yt+1 → K(Z, 3). Therefore, we
have the following commutative diagram of fibrations:

Yt
κ−−−→ E1

ζ−−−→ B2Z/p∥∥∥ y y
Yt+1〈vt〉 −−−→ Yt+1

vt−−−→ K(Z, 3)y y[p]vt

y[p]

∗ −−−→ K(Z, 3) K(Z, 3),

which implies that Yt ' Yt+1〈vt〉, where Yt+1〈vt〉 denotes the homotopy fiber
of the map vt : Yt+1 → K(Z, 3). By the induction hypothesis, Yt〈3〉 ' Y ,
and so we have that Yt+1〈3〉 ' (Yt+1〈vt〉)〈3〉 ' Y . This completes the
proof. �

Next, for 1 ≤ t ≤ n+ 1, we set an algebra Lt as

Lt = Z/p[yt, . . . , yn]
⊗ Λ(v1, . . . , vm+t−1, zm+t, . . . , zm+n, c1, . . . , ct−1, wt, . . . , wn)

with yj , zk and wl are as in A, |vq| = 3 for 1 ≤ q ≤ m+t−1, and |cr| = 2p+1
for 1 ≤ r ≤ t− 1. Then we have the following proposition:

Proposition 4.8. For 1 ≤ t ≤ n+1, there is a mod p H-space Zt such that
Zt〈3〉 ' Y and H∗(Zt) ∼= Lt with the following operations:

β(yj) = wj for t ≤ j ≤ n,
P1(vm+r) = cr for 1 ≤ r ≤ t− 1,
Pp(zm+l) = wl + δl for t ≤ l ≤ n,

(4.9)

where δl is some decomposable element of Lt for t ≤ l ≤ n.

Proposition 4.8 is proved by same arguments as in Proposition 4.1, and
so we give an outline of the proof.

We proceed by an induction on 1 ≤ t ≤ n + 1. For t = 1, if we set
Z1 = Ym+1, then by Proposition 4.1, Z1 satisfies the required properties. We
assume that there exists an H-space Zt with the conditions of Proposition
4.8, and construct an H-space Zt+1 satisfying the required properties.

We can construct a K-Hopf algebra map h : H∗(Zt) → H∗(BZ/p) such
that h(yt) = ωp

2
and h = 0 on the other generators. By a result of Lannes,

there is an H-map ξ : BZ/p → Zt such that ξ∗ = h, and we see that the
evaluation map eξ : Map(BZ/p, Zt)ξ → Zt becomes a homotopy equivalence.
For an H-structure µ of BZ/p, if ι : BZ/p → Map(BZ/p, Zt)ξ denotes the
adjoint of ξµ, then we have the following fibration:

Zt
'←− Map(BZ/p, Zt)ξ −→ F1 −→ B2Z/p,
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where F1 is an H-space given by the Borel construction for ι.
For 1 ≤ t ≤ n+ 1, we set an algebra Dt as

Dt = Z/p[u, yt+1, . . . , yn]

⊗ Λ(v1, . . . , vm+t, zm+t+1, . . . , zm+n, c1, . . . , ct, wt+1, . . . , wn)

with yj , zk, wl and vq for 1 ≤ q ≤ m+t−1 are as in Lt, |u| = 2 and |vm+t| = 3.
Then, using the Serre spectral sequence, we have that H∗(F1) ∼= Dt with
the operations (4.9) and β(u) = vm+t. Iterating this process, we have a
sequence of H-spaces and H-maps

Zt −→ F1 −→ F2 −→ · · ·
such that H∗(Zt) ∼= Lt, H∗(Fs) ∼= Dt with the operations (4.9). If we set
Zt+1 = lim−→ sFs, then Zt+1 has an H-structure, and using the Milnor exact
sequence, we obtain that H∗(Zt+1) ∼= Lt+1 with the operations (4.9). We
can show that the homotopy fiber Zt+1〈vm+t〉 ' Zt, and so by the induction
hypothesis, the three-connected cover Zt+1〈3〉 ' Y . This establishes the
proof of Proposition 4.8.

Now we set W = Zn+1. Then W is a simply connected mod p finite
H-space such that

H∗(W ) ∼= Λ(v1, . . . , vm+n, c1, . . . , cn)

with P1(zm+r) = cr for 1 ≤ r ≤ n, and Y 'W 〈3〉 by Proposition 4.8. This
completes the proof of Proposition 2.6. �
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[1] J. Aguadé and L. Smith, On the mod p Torus Theorem of John Hubbuck, Math. Z.,
191 (1986), 325-326.

[2] A. Bousfield and D. Kan, Homotopy Limits, Completions and Localizations, Springer
Lecture Notes in Math., 304 (1972).

[3] C. Broto and J.A. Crespo, H-spaces with Noetherian mod two cohomology algebra,
preprint.

[4] W. Browder, Homotopy commutative H-spaces, Ann. of Math., 75 (1962), 283-311.

[5] , On differential Hopf algebras, Trans. Amer. Math. Soc., 107 (1963), 153-178.

[6] E. Dror Farjoun, Cellular Spaces, Null Spaces and Homotopy Lacalization, Springer
Lecture Notes in Math., 1622 (1996).

[7] W.G. Dwyer and C.W. Wilkerson, Spaces of null homotopic maps, Astérisque, 191
(1990), 97-108.

[8] Y. Hemmi, Higher homotopy commutativity of H-spaces and the mod p Torus theo-
rem, Pacific J. Math., 149 (1991), 95-111.

[9] K. Iriye and A. Kono, Mod p retracts of G-product spaces, Math. Z., 190 (1985),
357-363.

[10] D. Kraines, The kernel of the loop suspension map, Illinois J. Math., 21 (1977),
91-108.



328 YUSUKE KAWAMOTO

[11] J. Lannes, Sur les espaces fonctionnels dont la source est le classifiant d’un p-groupe
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DUAL SPACES AND ISOMORPHISMS OF SOME
DIFFERENTIAL BANACH ∗-ALGEBRAS OF OPERATORS

Edward Kissin and Victor S. Shulman

The paper continues the study of differential Banach *-
algebras AS and FS of operators associated with symmetric
operators S on Hilbert spaces H. The algebra AS is the do-
main of the largest *-derivation δS of B(H) implemented by S
and the algebra FS is the closure of the set of all finite rank op-
erators in AS with respect to the norm ‖A‖ = ‖A‖+‖δS(A)‖.
When S is selfadjoint, FS is the domain of the largest *-
derivation of the algebra C(H) implemented by S. If S is
bounded, FS = C(H) and AS = B(H), so AS is isometri-
cally isomorphic to the second dual of FS . For unbounded
selfadjoint operators S the paper establishes the full analogy
with the bounded case: AS is isometrically isomorphic to the
second dual of FS. The paper also classifies the algebras AS

and FS up to isometrical *-isomorphism and obtains some
partial results about bounded but not necessarily isometrical
*-isomorphisms of the algebras FS.

1. Introduction and preliminaries.

Extensive development of non-commutative geometry requires elaborating
of the theory of differential Banach *-algebras, that is, dense *-subalgebras
of C∗-algebras whose properties in many respects are analogous to the prop-
erties of algebras of differentiable functions.

Blackadar and Cuntz [2] and the authors [12] introduced and studied
various classes of differential Banach *-algebras; the most interesting class
consists of D-algebras, that is, dense *-subalgebras A of C∗-algebras (U, ‖·‖)
which, in turn, are Banach *-algebras with respect to another norm ‖ · ‖1
and the norms ‖ · ‖ and ‖ · ‖1 on A satisfy the inequality:

‖xy‖ ≤ D(‖x‖ ‖y‖1 + ‖x‖1‖y‖), for x, y ∈ A,(1.1)

for some D > 0. This class contains, for example, the domains D(δ) of closed
unbounded *-derivations δ of C∗-algebras U where the norm ‖ · ‖1 on D(δ)
is defined, as usual, by the formula

‖A‖1 = ‖A‖+ ‖δ(A)‖, for A ∈ D(δ).
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Much work has been done on the investigation of properties of the dif-
ferential Banach *-algebras (see Blackadar and Cuntz [2] and Kissin and
Shulman [12, 13]) and the algebras D(δ) in particular (see, for example,
Bratteli and Robinson [3] and Sakai [16]).

In many cases closed *-derivations of C∗-algebras U of operators on Hilbert
spaces are implemented by closed symmetric operators. In particular, Brat-
teli and Robinson [3] showed that if U contains the ideal of all compact
operators then any closed *-derivation of U is implemented by a symmetric
operator.

Any closed symmetric operator S on a Hilbert space H implements closed
*-derivations of various C∗-algebras of operators on H. Among all these
derivations there is the largest one - δS with domain D(δS) (which we denote
by AS) containing the domains of all derivations implemented by S:

AS =
{
A ∈ B(H) : AD(S) ⊆ D(S), A∗D(S) ⊆ D(S) and

(SA−AS)|D(S) extends to a bounded operator AS

}
and δS(A) = iClosure (SA−AS), for A ∈ AS .

The closure of AS with respect to the norm ‖ · ‖ in B(H) is the enveloping
C∗-algebra which we denote by US .

The algebra AS is a unital Banach *-algebra with respect to the norm

‖A‖S = ‖A‖+ ‖AS‖.(1.2)

If S implements a *-derivation δ of a C∗-algebra U of operators on H then

D(δ) ⊆ AS , U ⊆ US and δ = δS |U.

By C(H) we denote the algebra of all compact operators on H. The
*-algebras

KS = AS ∩ C(H) and JS = {A ∈ KS : δS(A) ∈ C(H)}

are dense in C(H) and are the domains of the largest closed *-derivations
from C(H) into B(H) and C(H), respectively, implemented by S.

By FS we denote the closure with respect to the norm ‖ · ‖S of the sub-
algebra of all finite rank operators in AS .

It was shown in [13] that (KS , ‖·‖S) and (JS , ‖·‖S) are semisimple Banach
*-algebras, that (FS , ‖ · ‖S) is a simple Banach *-algebra and

FS ⊆ JS ⊆ KS ⊆ AS .

Furthermore, FS , JS andKS are closed two-sided ideals of (AS , ‖·‖S) and FS
is contained in any closed two-sided ideal of (AS , ‖·‖S). The relation between
the ideals FS , JS and KS and the question of how the properties of the
operator S are reflected in the structure of KS , JS and FS were investigated
in [13]. In particular, it was established that (KS)2 = (JS)2 = FS , for all
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symmetric S, and that the ideals JS and FS have a bounded approximate
identity if and only if S is selfadjoint. For selfadjoint S, it was also proved
that KS 6= JS = FS .

In spite of the fact that the structure of the algebras FS , JS , KS , AS and
US is comparatively simple, many important questions still remain open. In
Section 2 we mainly study the structure of the algebras AS and US in the
case when S is a selfadjoint operator. However, we also consider the case
when S is a symmetric operator with at least one finite deficiency index and
show that the algebrasAS and US contain closed ideals of finite codimension.

If S is a bounded symmetric operator on H then FS = C(H) and AS =
B(H), so AS is isometrically isomorphic to the second dual of FS . In Section
3 we investigate the structure of the dual and the second dual spaces of the
algebras FS for unbounded symmetric operators S. In the case when S is
selfadjoint we establish the full analogy with the bounded case: The algebra
AS is isometrically isomorphic to the second dual of FS .

In Section 4 we study the problem of classification of the algebras FS
and AS up to *-isomorphism. For isometrical *-isomorphism this problem
is completely solved in Theorem 4.4. For bounded but not necessarily iso-
metrical *-isomorphism we obtain some interesting partial results in the case
when S is selfadjoint.

2. Structure of the algebras AS and the enveloping C∗-algebras
US.

The main purpose of this section is to study the structure of the algebras AS
and US in the case when S is a selfadjoint operator. However, we start the
section by considering the case when S is a symmetric operator with at least
one finite deficiency index. Making use of the existence of a J-symmetric
representation of AS on the deficiency space of S, we will show that the
algebras AS and US contain closed ideals of finite codimension.

Let S be symmetric, S∗ be the adjoint operator, let N−(S) and N+(S)
be the deficiency spaces of S and

n±(S) = dim (N±(S))

be the deficiency indices of S. It is well known that D(S∗) is a Hilbert space
with respect to the scalar product

〈x, y〉 = (x, y) + (S∗x, S∗y), for x, y ∈ D(S∗),

and it is the orthogonal sum of the closed subspaces D(S), N−(S) and
N+(S):

D(S∗) = D(S)〈+〉N−(S)〈+〉N+(S).
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Set N(S) = N−(S)〈+〉N+(S) and let Q be the projection on N(S) in
D(S∗). It was shown in [7] and [8] that

[x, y] = i(x, S∗y)− i(S∗x, y), for x, y ∈ N(S),

is an indefinite non-degenerate sesquilinear form on N(S), that

πS(A) = QA|N(S), for A ∈ AS ,

is a bounded representation of (AS , ‖ · ‖S) on N(S) and that it is J-symme-
tric:

[πS(A)x, y] = [x, πS(A∗)y], for x, y ∈ N(S).
A subspace L in N(S) is neutral if

[x, y] = 0, for all x, y ∈ L.

The operator S is well-behaved if the representation πS has no neutral in-
variant subspace.

Let κS = min(n−(S), n+(S)) and assume that 0 < κS <∞. It was proved
in [10] that the representation πS has a κS-dimensional subrepresentation
σ. Let ρ be an irreducible subrepresentation of σ. It was shown in [11] that
ρ is bounded with respect to the operator norm ‖ · ‖ in AS and, therefore,
extends to a bounded *-representation of the enveloping C∗-algebra US . If S
is well-behaved, it follows from Theorem 28.13 [14] that KS ⊆ Ker(ρ). This
yields

Theorem 2.1. Let S be a symmetric unbounded operator and 0 < κS <∞.
(i) There exists a closed two-sided ideal J in the Banach *-algebra (AS ,
‖ · ‖) such that the quotient algebra AS/J is isomorphic to the full
matrix algebra Mn(C) with 0 < n ≤ κS .

(ii) The uniform closure J of J in US is a closed two-sided ideal and the
quotient algebra US/J is isomorphic to the full matrix algebra Mn(C).

(iii) If S is well-behaved then KS ⊆ J and C(H) ⊆ J.

Example 2.2. Let H = L2(0, 1) and S = i ddt with domain D(S) consisting
of all absolutely continuous functions h such that h′ ∈ L2(0, 1) and h(0) =
h(1) = 0. Then S is a symmetric operator and n−(S) = n+(S) = 1.

It was proved in [9] that S is well-behaved. Therefore it follows from The-
orem 2.1 that there exists a closed two-sided ideal J in (AS , ‖ · ‖) containing
KS such that dim(AS/J) = 1 and that the uniform closure of J in US is an
ideal of codimension 1. �

Let S be the same as in Example 2.2 and let Lip (0, 1) be the algebra of all
functions on [0, 1] satisfying a Lipshitz condition: |g(t) − g(s)| ≤ Kg|t − s|
for some Kg > 0 and all t, s ∈ [0, 1]. For g ∈ Lip (0, 1), denote by Mg

the operator of multiplication by g on L2(0, 1) and set B = {Mg : g ∈
Lip (0, 1)}. Then MgD(S) ⊆ D(S), (Mg)∗D(S) = MgD(S) ⊆ D(S) and
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SMg − MgS extends to the operator iMg′ which is bounded, since g′ is
essentially bounded on [0, 1]. Thus B ⊂ AS .

(The authors are grateful to the referee of the paper for pointing out an
error in the definition of the algebra B in the first version of the paper.)

Problem 2.3. Is AS = B +KS?

The assumption that a symmetric operator S is selfadjoint makes the
task of studying the structure of the algebras AS and US easier. First
of all, the structure of the ideals KS , JS and FS is simpler. While for
arbitrary symmetric operators S it is only known (see [13]) that (KS)2 =
(JS)2 = FS , where the closure is taken with respect to the norm ‖ · ‖S , for
selfadjoint operators S it was shown in [13] that FS = JS 6= KS . Secondly,
in the selfadjoint case we can employ the Spectral Theorem to establish the
structure of AS and US .

Let

S =
∫ ∞

−∞
λ dES(λ)

be the spectral decomposition of S. For every integer n, set

PS(n) = ES(n+ 1)− ES(n) and [S] =
∞∑
−∞

nPS(n).(2.1)

Then [S] is a selfadjoint operator, Sp ([S]) ⊆ Z and the operator S − [S] is
bounded. Therefore it follows that

AS = A[S], KS = K[S] and FS = F[S]

and the norms ‖ · ‖S and ‖ · ‖[S] are equivalent on AS . This reduces the
problem of the description of the structure of the algebras AS and US to the
case when Sp (S) ⊆ Z.

We denote by SZ the set of all selfadjoint operators S on H such that
Sp (S) ⊆ Z and set

HS(n) = PS(n)H, for n ∈ Sp (S).(2.2)

Then

H =
∑

n∈Sp(S)

⊕HS(n).(2.3)

We omit the proof of the following simple result.

Proposition 2.4. Let S, T ∈ SZ. If there exists a one-to-one mapping
ϕ from Sp (T ) onto Sp (S) such that dim(HT (n)) = dim(HS(ϕ(n)), for
n ∈ Sp (T ), and

sup
n∈Sp(T )

|ϕ(n)− n| <∞

then there exists a unitary operator U such that AT = UASU∗.



334 EDWARD KISSIN AND VICTOR S. SHULMAN

Let S ∈ SZ. Every operator A in B(H) has a block-matrix form A = (Aij),
i, j ∈ Sp(S), with respect to decomposition (2.3). We denote by DS the C∗-
algebra of all block-diagonal operators A = (Aij) in B(H), that is, Aij = 0
if i 6= j. By R we denote the subalgebra of all operators A = (Aij) in B(H)
with only finite number of non-zero entries Aij . Then, clearly,

DS ⊆ AS and RS ⊆ AS .

Let RS be the closure of RS in (AS , ‖ · ‖S) and let CS(H) be the uniform
closure of RS in B(H).

Lemma 2.5. DS + CS(H) is a C∗-subalgebra of US and DS + RS is a
closed *-subalgebra of (AS , ‖ · ‖S).

Proof. Let L be the uniform closure of DS + RS in B(H). Then L is a
C∗-subalgebra of US . Since RS is a two-sided ideal of the algebra DS +RS ,
the C∗-algebra CS(H) is a two-sided ideal of L. Therefore it follows from
Corollary 1.8.4 [4] that DS + CS(H) is a C∗-algebra, so L = DS + CS(H).

For A ∈ B(H), set

φ(A) =
∑

n∈Sp(S)

PS(n)APS(n) and Ã = A− φ(A).

Then φ is a conditional expectation from B(H) onto DS and

‖φ(A)‖ ≤ ‖A‖ and ‖Ã‖ ≤ 2‖A‖.(2.4)

If A ∈ AS then Ã ∈ AS and Closure (SA−AS) = Closure (SÃ− ÃS).
Assume that {An} converge to A in AS with respect to ‖ · ‖S . Then

‖A−An‖ → 0 and ‖Closure (S(A−An)− (A−An)S)‖ → 0, as n→∞,

and therefore, by (1.2) and (2.4),

‖Ã− Ãn‖S = ‖Ã− Ãn‖+ ‖Closure (S(Ã− Ãn)− (Ã− Ãn)S)‖
≤ 2‖A−An‖+ ‖Closure (S(A−An)− (A−An)S)‖ → 0,(2.5)

as n→∞.

Hence Ãn converge to Ã with respect to ‖ · ‖S .
Suppose now that B ∈ RS . Then there are {Bn} in RS converging to

B with respect to ‖ · ‖S . It follows from (2.5) that B̃n converge to B̃ with
respect to ‖ · ‖S and, since B̃n belong to RS , we obtain that B̃ ∈ RS .

Finally, let Cn = An + Bn converge to C in AS with respect to ‖ · ‖S
where An ∈ DS and Bn ∈ RS . Then C̃n = B̃n and, by (2.5), B̃n converge
to C̃ with respect to ‖ · ‖S . Since, by the above argument, all B̃n belong to
RS , the operator C̃ also belong to RS . Hence C ∈ DS +RS and DS +RS
is a closed *-subalgebra of (AS , ‖ · ‖S). �
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Let S ∈ SZ. We number the elements of Sp(S) in such a way that Sp(S) =
{ni}i∈I is an increasing sequence,

0 ≤ ni, for 0 ≤ i, and 0 > ni, for 0 > i.

Then |i| ≤ |ni| and, depending on S, the set I is either the set Z of all
integers, or the set of all integers from −∞ to some m, or from m to∞. We
consider the case when I = Z. Two other cases can be considered similarly.

Set

ρS(k) =
(

inf
i∈Z
|ni+k − ni|

)−1

, for k 6= 0, and ρS(0) = 0.

Since infi∈Z |ni+k − ni| ≥ |k|,

0 < ρS(k) ≤ 1
|k|
, for k 6= 0.

Proposition 2.6. If

lim
|i|→∞

(ni+1 − ni) =∞(2.6)

and
∑
k∈Z

ρ(k) converges(2.7)

then US = DS + CS(H).

Proof. Let A = (Aij) ∈ AS , where Aij are bounded operators from HS(nj)
into HS(ni). Then the operator

B = SA−AS = (Bij), where Bij = (ni − nj)Aij ,
is bounded. Set b = ‖B‖. Since ‖Bij‖ ≤ ‖B‖, for all i, j ∈ Z,

‖Aij‖ ≤
b

|ni − nj |
, for i 6= j.(2.8)

For k ∈ Z \ 0 and m > 0, let

Gkmij = Aij , if j = i+ k and −m ≤ i ≤ m, and Gkmij = 0 otherwise.

Then the operator Gkm = (Gkmij ) belongs to RS . Taking into account (2.6)
and (2.8), we obtain that the operators Gkm converge uniformly in B(H) to
a bounded operator Gk = (Gkij), as m→∞, where

Gkij = Aij , if j = i+ k, and Gkij = 0 otherwise.

Therefore Gk ∈ CS(H) and, by (2.8),

‖Gk‖ = sup
i
‖Aii+k‖ ≤ bρS(k).

It follows from (2.7) that the operator G =
∑

k∈Z\0G
k belongs to CS(H).

Since A − G ∈ DS , we obtain that A ∈ DS + CS(H), so that
AS ⊆ DS +CS(H). It follows from Lemma 2.5 that US = DS +CS(H). �
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Corollary 2.7. If there are a > 0, c > 0 and an integer N such that

c|i|a ≤ ni+1 − ni for N ≤ |i|
then US = DS + CS(H).

Proof. Condition (2.6), clearly, holds. Let k > 4N. Then

ρS(k)−1 = inf
i∈Z
|ni+k − ni| = inf

i∈Z

k∑
p=1

(ni+p − ni+p−1)

≥ c
[ k
2
]∑

m=N

ma ≥ c

a+ 1

([
k

2

]a+1

− (N − 1)a+1

)

≥ c

a+ 1

(
k

4

)a+1

.

Similarly, if k < −2N then ρS(k)−1 ≥ c
a+1

(
|k|
4

)a+1
. Therefore condition

(2.7) also holds and the result follows from Proposition 2.6. �

Suppose now that dim(HS(n)) =∞ for all n ∈ Sp(S) and let n0 ∈ Sp(S).
SetK = HS(n0). Then there exists a Hilbert spaceH with dim(H) =∞ such
that the C∗-algebra CS(H) is isomorphic to the tensor product B(K)⊗C(H)
where C(H) is the C∗-algebra of all compact operators on H. Choosing a
basis {en}∞n=1 in H, we obtain that the algebra DS is isomorphic to the von
Neumann algebra tensor product B(K)⊗L of B(K) and the W ∗-algebra L
of all operators on H diagonal with respect to {en}∞n=1. From this and from
Proposition 2.6 we obtain the following result.

Corollary 2.8. Let S ∈ SZ. If dim(HS(n)) = ∞ for all n ∈ Sp(S) and
conditions (2.6) and (2.7) hold then there exist Hilbert spaces K and H such
that US is isomorphic to B(K)⊗L+B(K)⊗C(H), where L is the W ∗-algebra
of all operators on H diagonal with respect to some basis.

Assume now that dim(HS(n)) < ∞ for all n ∈ Sp(S). Then CS(H) co-
incides with the algebra C(H) of all compact operators on H. Taking into
account the definition of the ideal KS and applying Proposition 2.6 we obtain
the following result.

Corollary 2.9. Let S ∈ SZ and dim(HS(n)) < ∞ for all n ∈ Sp(S). If
conditions (2.6) and (2.7) hold then US = DS + C(H) and AS = DS +KS .
Example 2.10. Let {ei}∞i=−∞ be an orthonormal basis in H and let

Sei = sgn (i)|i|1+aei, where a > 0.

Then S ∈ SZ and ni = sgn (i)|i|1+a, so that

lim
|i|→∞

ni+1 − ni
sgn (i)|i|a

= 1 + a.
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Therefore, by Corollaries 2.7 and 2.9, US = DS +C(H) and AS = DS +KS
where DS is the algebra of all operators diagonal with respect to {ei}∞i=−∞.
Thus the quotient algebra AS/KS is isomorphic to the commutative
C∗-algebra DS/L where L is the algebra of all compact diagonal operators
on H. �

Let {ei}∞i=−∞ be an orthonormal basis in H and let

Sei = iei and Uei = ei+1, for all i ∈ Z.

Then S ∈ SZ and U is the shift operator. We have that

UD(S) ⊆ D(S), U∗D(S) ⊆ D(S) and (SU − US)|D(S) extends to U,

so that U ∈ AS . Hence US contains the C∗-algebra C(DS , U) generated by
U and by the commutative algebra DS of all operators diagonal with respect
to {ei}∞i=−∞.

Problem 2.11. Is US = C(DS , U)?

3. Dual and second dual spaces of the algebras FS.

Let S be a closed symmetric operator. Recall that FS is the closure with
respect to the norm ‖ · ‖S (see (1.2)) of the subalgebra of all finite rank
operators in AS . If S is a bounded symmetric operator on H, it follows that
FS = C(H) and AS = B(H), so that AS is isometrically isomorphic to the
second dual of FS . In this section we study the structure of the dual and the
second dual spaces of the algebra FS for unbounded symmetric operators
S. In the case when S is selfadjoint we establish the full analogy with the
bounded case: The algebra AS is isometrically isomorphic to the second
dual of FS .

By T (H) we denote the Banach *-algebra of trace class operators on H
with the norm

|A| =
∞∑
i=1

si(A) = Tr
(
(A∗A)1/2

)
,

where {si(A)}∞i=1 is the set of all eigenvalues of the positive compact operator
(A∗A)1/2.

It is well known that T (H) can be identified with the dual space of the
algebra C(H): For any T ∈ T (H),

FT (A) = Tr(AT ), A ∈ C(H),

is a bounded linear functional on C(H) and ‖FT ‖ = |T |; and that B(H) can
be identified with the dual space of T (H): For any B ∈ B(H),

θB(T ) = Tr (BT ), T ∈ T (H),

is a bounded linear functional on T (H) and ‖θ‖ = ‖B‖.
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Set B̂(H) = B(H)⊕B(H) and Ĉ(H) = C(H)⊕ C(H). Then B̂(H) and
Ĉ(H) are Banach spaces with the norm

‖A⊕B‖ = ‖A‖+ ‖B‖.

Set T̂ (H) = T (H)⊕ T (H). It is a Banach space with the norm

|R⊕ T | = max(|R|, |T |), T,R ∈ T (H),

and it can be identified with the dual space of Ĉ(H): For R, T ∈ T (H),

FR⊕T (A⊕B) = Tr (AR) + Tr (BT ), A⊕B ∈ Ĉ(H),(3.1)

is a bounded linear functional on Ĉ(H) and ‖FR⊕T ‖ = |R ⊕ T |. Similarly,
B̂(H) can be identified with the dual space of T̂ (H): For A,B ∈ B(H),

θA⊕B(R⊕ T ) = Tr (AR) + Tr (BT ), R⊕ T ∈ T̂ (H),(3.2)

is a bounded linear functional on T̂ (H) and ‖θA⊕B‖ = ‖A⊕B‖.
Set

ÂS = {A⊕AS : A ∈ AS} and F̂S = {A⊕AS : A ∈ FS},

where AS = Closure (SA−AS). Then (AS , ‖ ·‖S) and (ÂS , ‖ ·‖), (FS , ‖ ·‖S)
and (F̂S , ‖ · ‖) are isometrically isomorphic, since

‖A‖S = ‖A‖+ ‖AS‖ = ‖A⊕AS‖.

Therefore ÂS is a closed subspace of B̂(H) and F̂S is a closed subspace of
Ĉ(H), since A ∈ FS implies AS ∈ C(H).

Set

TS =
{
T ∈ T (H) : TD(S) ⊆ D(S∗), T ∗D(S) ⊆ D(S∗) and the operator

(S∗T − TS)|D(S) extends to a bounded trace class operator T
}
.

If T ∈ TS ∩AS then TS = TS . In particular, if S is selfadjoint then TS = TS
for all T ∈ TS . Clearly, TS is a linear subspace in T (H) and

ŤS = {TS ⊕ T : T ∈ TS}

is a linear subspace in T̂ (H). For T ∈ TS and z, u ∈ D(S),

−((TS)∗z, u) = −(z,TSu) = −(z, (S∗T − TS)u) = ((S∗T ∗ − T ∗S)z, u),

so that

−(TS)∗|D(S) = (S∗T ∗ − T ∗S)|D(S) = (T∗)S |D(S).(3.3)

Therefore T ∗ ∈ TS .
For x, y ∈ H, the rank one operator x⊗ y on H is defined by the formula

(x⊗ y)z = (z, x)y.(3.4)
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It is easy to check that

‖x⊗ y‖ = ‖x‖ ‖y‖,(3.5)

(x⊗ y)∗ = y ⊗ x, (x⊗ y)(u⊗ v) = (v, x)(u⊗ y),
R(x⊗ y) = x⊗Ry, and (x⊗ y)R extends to (R∗x)⊗ y,

if R is a densely defined operator, y ∈ D(R) and x ∈ D(R∗). Let {ej}∞j=1 be
a basis in H. Then

Tr(x⊗ y) =
∞∑
j=1

((x⊗ y)ej , ej) =
∞∑
j=1

(ej , x)(y, ej)(3.6)

=

y, ∞∑
j=1

(x, ej)ej

 = (y, x).

Let x, y ∈ D(S∗) and T = x⊗ y. By (3.4) and (3.5),

Tz = (z, x)y ∈ D(S∗)(3.7)

T ∗z = (y ⊗ x)z = (z, y)x ∈ D(S∗), for z ∈ H,
and TS = S∗T − TS = x⊗ S∗y − (S∗x)⊗ y ∈ T (H),

so that T ∈ TS . By ΦS we denote the set of all linear combinations of the
operators x⊗ y, for x, y ∈ D(S∗). Clearly, Φ ⊂ TS and

Φ̌S = {TS ⊕ T : T ∈ ΦS}

is a linear subspace of ŤS .
Let X∗ be the dual space of a Banach space X and Y be a linear subspace

of X. The annihilator

Y ⊥ = {F ∈ X∗ : F (y) = 0, for all y ∈ Y }

of Y in X∗ is a closed subspace of X∗ and from the general theory of Banach
spaces (see [5] II.4.18 and [15] III, Problem 30) we have the following lemma.

Lemma 3.1. The dual space Y ∗ of a closed subspace Y of X is isometrically
isomorphic to the quotient space X∗/Y ⊥ and the second dual Y ∗∗ of Y is
isometrically isomorphic to Y ⊥⊥ where

Y ⊥⊥ = {θ ∈ X∗∗ : θ(F ) = 0, for all F ∈ Y ⊥}.

Since F̂S ⊆ Ĉ(H), the annihilator (F̂S)⊥ is a closed subspace of the dual
space Ĉ(H)∗ = T̂ (H) and, since Φ̌S ⊆ ŤS ⊆ T̂ (H), the annihilator (Φ̌S)⊥ is
a closed subspace of the dual space T̂ (H)∗ = B̂(H).

Theorem 3.2. (i) ŤS is a closed subspace in T̂ (H) and (F̂S)⊥ = ŤS .

(ii) (ŤS)⊥ ⊆ (Φ̌S)⊥ = {A⊕AS : A ∈ AS and AD(S∗) ⊆ D(S)} ⊆ ÂS .
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Proof. Let TS ⊕ T ∈ ŤS and x, y ∈ D(S). Then A = x ⊗ y ∈ FS and, by
(3.3) and (3.5),

AS = S(x⊗ y)− (x⊗ y)S = x⊗ Sy − (Sx)⊗ y,(3.8)

AST = (x⊗ Sy)T − ((Sx)⊗ y)T = (T ∗x)⊗ Sy − (T ∗Sx)⊗ y,
ATS = (x⊗ y)TS = ((TS)∗x)⊗ y = ((T ∗S − S∗T ∗)x)⊗ y.

Therefore, by (3.1), (3.6) and (3.8),

FTS⊕T (A⊕AS) = Tr (ATS) + Tr(AST )

= (y, (T ∗S − S∗T ∗)x) + (Sy, T ∗x)− (y, T ∗Sx) = 0.

It follows from Lemma 3.1 [13] that any finite rank operator A in FS
has the form A =

∑n
i=1 xi ⊗ yi where xi, yi ∈ D(S). Hence FTS⊕T (A ⊕

AS) = 0 for any finite rank operator A ∈ FS . Since, by definition of FS ,
finite rank operators are dense in (FS , ‖ · ‖S) and since (FS , ‖ · ‖S) and
(F̂S , ‖ · ‖) are isometrically isomorphic, the operators A⊕ AS , where A are
finite rank operators, are dense in F̂S . Since FTS⊕T is continuous on Ĉ(H),
FTS⊕T (A ⊕ AS) = 0, for all A ∈ FS . Therefore FTS⊕T ∈ (F̂S)⊥, so that
ŤS ⊆ (F̂S)⊥.

Conversely, let R ⊕ T ∈ (F̂S)⊥ ⊆ T̂ (H) and let A = x ⊗ y ∈ FS , where
x, y ∈ D(S). From (3.1), (3.5), (3.6) and (3.8) it follows that

0 = FR⊕T (A⊕AS) = Tr(AR) + Tr(AST )

= Tr((R∗x)⊗ y) + Tr[(T ∗x)⊗ Sy − (T ∗Sx)⊗ y]
= (y,R∗x) + (Sy, T ∗x)− (y, T ∗Sx).

Hence
(Sy, T ∗x) = (y, (T ∗S −R∗)x), for all x, y ∈ D(S).

Therefore T ∗x ∈ D(S∗) and S∗T ∗x = (T ∗S −R∗)x. Thus T ∗D(S) ⊆ D(S∗)
and

(Sx, Ty) = (T ∗Sx, y) = (S∗T ∗x, y) + (R∗x, y) = (x, TSy) + (x,Ry).

From this it follows that Ty ∈ D(S∗) and S∗Ty = TSy +Ry. Hence

TD(S) ⊆ D(S∗) and R|D(S) = S∗T |D(S) − TS|D(S).

Therefore T ∈ TS and R = TS . Thus (F̂S)⊥ ⊆ ŤS , so that (F̂S)⊥ = ŤS .
From this we also obtain that ŤS is a closed subspace of T̂ (H). Part (i) is
proved.

Since Φ̌S ⊆ ŤS , we have (ŤS)⊥ ⊆ (Φ̌S)⊥. Let now A ⊕ AS ∈ ÂS and
AD(S∗) ⊆ D(S). It was shown in Lemma 3.1 [13] that

AS |D(S∗) = (S∗A−AS∗)|D(S∗).
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For x, y ∈ D(S∗), the operator T = x ⊗ y belongs to ΦS and, taking the
above equality into account, we obtain from (3.5) and (3.7) that

AST = x⊗ASy = x⊗ (S∗A−AS∗)y and

ATS = A(x⊗ S∗y − (S∗x)⊗ y) = x⊗AS∗y − (S∗x)⊗Ay.
Therefore, by (3.2) and (3.6),

θA⊕AS
(TS ⊕ T ) = Tr(ATS) + Tr(AST )

= (AS∗y, x)− (Ay, S∗x) + (S∗Ay, x)− (AS∗y, x)

= (S∗Ay, x)− (Ay, S∗x).

Since AD(S∗) ⊆ D(S), it follows that S∗Ay = SAy and (Ay, S∗x) =
(SAy, x). Hence θA⊕AS

(TS⊕T ) = 0 and, by linearity, it holds for all T ∈ ΦS .
Therefore

{A⊕AS : A ∈ AS and AD(S∗) ⊆ D(S)} ⊆
(
Φ̌S

)⊥
.(3.9)

Conversely, let A⊕B ∈ (Φ̌S)⊥. Then, for every x, y ∈ D(S∗), T = x⊗y ∈
ΦS and

θA⊕B(TS ⊕ T ) = Tr(ATS) + Tr(BT ) = 0.
By (3.5), BT = x⊗By and, as above, ATS = x⊗AS∗y−(S∗x)⊗Ay. Hence,
by (3.6),

0 = (AS∗y, x)− (Ay, S∗x) + (By, x).
Thus

(Ay, S∗x) = (AS∗y, x) + (By, x), for all x, y ∈ D(S∗).
Therefore Ay ∈ D(S∗∗) and S∗∗Ay = AS∗y+By. Since S is closed, S∗∗ = S
and we obtain that

AD(S∗) ⊆ D(S) and B|D(S∗) = (SA−AS∗)|D(S∗).(3.10)

Restricting (3.10) to D(S), we have

AD(S) ⊆ D(S) and B|D(S) = (SA−AS)|D(S).

Making use of (3.10), we obtain that for z ∈ D(S) and u ∈ D(S∗),

(A∗z, S∗u) = (z,AS∗u) = (z, SAu)− (z,Bu) = (A∗Sz, u)− (B∗z, u).

Therefore A∗z ∈ D(S∗∗). Since S∗∗ = S, we have A∗D(S) ⊆ D(S). Thus
A ∈ AS and B = AS , so A ⊕ B = A ⊕ AS ∈ ÂS . Taking into account that
AD(S∗) ⊆ D(S), we obtain that

(Φ̌S)⊥ ⊆ {A⊕AS : A ∈ AS and AD(S∗) ⊆ D(S)}.
Combining this with (3.9), we complete the proof of the theorem. �

Since the Banach spaces (FS , ‖ · ‖S) and (F̂S , ‖ · ‖) and the Banach spaces
(AS , ‖ · ‖S) and (ÂS , ‖ · ‖) are isometrically isomorphic and since (F̂S , ‖ · ‖)
is a closed subspace of Ĉ(H), Lemma 3.1 and Theorem 3.2 yield:
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Corollary 3.3. The dual space of the Banach *-algebra (FS , ‖ · ‖S) is iso-
metrically isomorphic to the quotient space T̂ (H)/ŤS and the second dual
space of (FS , ‖ · ‖S) is isometrically isomorphic to a closed subspace of
(AS , ‖ · ‖S).

The following example shows that if S is not selfadjoint then, generally
speaking, (Φ̌S)⊥ 6= ÂS , so that (FS)⊥⊥ 6= ÂS and the second dual space of
(FS , ‖ · ‖S) is isometrically isomorphic to a proper subspace of (AS , ‖ · ‖S).

Example 3.4. Let, as in Example 2.2, H = L2(0, 1) and the operator S =
i ddt with domain D(S) = {h(t) : h, h′ ∈ L2(0, 1) and h(0) = h(1) = 0}. Then
S is a symmetric operator, non-selfadjoint and

D(S∗) = {h(t) : h, h′ ∈ L2(0, 1)}.
Let g(t) be a differentiable function on [0, 1] such that g(0) 6= 0 and let Mg

be the bounded operator of multiplication by g(t) on H. Then Mg ∈ AS .
If h(t) ∈ D(S∗) and h(0) 6= 0 then (Mgh)(0) = g(0)h(0) 6= 0, so that
Mgh /∈ D(S). Thus Mg⊕ (Mg)S /∈ {A⊕AS : A ∈ AS and AD(S∗) ⊆ D(S)}.
Hence (Φ̌S)⊥ 6= AS .

Assume now that S is selfadjoint. Then D(S∗) = D(S), TS = TS , for
T ∈ TS , and

TS = {T ∈ T (H) ∩ AS : TS ∈ T (H)} ⊆ AS .
It is well known (see, for example, [5] and [6]) that the algebra T (H) is a
two-sided ideal of B(H) and if A ∈ B(H) and B ∈ T (H) then

|AB| ≤ ‖A‖ |B|, |B∗| = |B| and ‖B‖ ≤ |B|.(3.11)

We consider now two equivalent norms on TS :

|T |1 = |T |+ |TS | and |T |2 = max(|T |, |TS |), for T ∈ TS .

Since

TS = T and |T |2 = max(|T |, |TS |) = |TS ⊕ T |, for T ∈ TS ,

(TS , | · |2) is isometrically isomorphic to ŤS .

Proposition 3.5. Let S be selfadjoint. Then:
(i) TS ⊂ FS and (TS , | · |2) is a two-sided Banach AS -module;
(ii) (TS , | · |1) is a Banach *-algebra and a D-subalgebra of C(H)

(see (1.1)) with D = 1.

Proof. It was shown in [13] that if S is selfadjoint then FS coincides with
the algebra JS = {A ∈ AS : A and AS belong to C(H)}. Since TS ⊂ JS ,
we obtain that TS ⊂ FS .

In Theorem 3.2(i) it was shown that ŤS is a closed subspace of T̂ (H).
Since (TS , | · |2) is isometrically isomorphic to ŤS , it is a Banach space.
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Since the norms | · |1 and | · |2 are equivalent, (TS , | · |1) is also a Banach
space.

For A,B ∈ AS ,

(AB)S |D(S) = (SAB −ABS)|D(S)

= [(SA−AS)B +A(SB −BS)]|D(S) = (ASB +ABS)|D(S),

so that

(AB)S = ASB +ABS .(3.12)

Let T ∈ TS and A ∈ AS . Then T, TS ∈ T (H). Since TS ⊂ AS and T (H)
is a two-sided ideal of B(H), it follows that AT ∈ T (H)∩AS and, by (3.12),

(AT )S = AST +ATS ∈ T (H).

Therefore AT ∈ TS . Making use of (3.11), we obtain that

|AT |2 = max (|AT |, |(AT )S |) ≤ max (‖A‖ |T |, ‖AS‖ |T |+ ‖A‖ |TS |)
≤ (‖A‖+ ‖AS‖) max(|T |, |TS |) = ‖A‖S |T |2.

Similarly, TA ∈ TS and |TA|2 ≤ ‖A‖S |T |2. Thus (TS , | · |2) is a two-sided
Banach AS-module. Part (i) is proved.

From (i) and from the fact that TS ⊆ AS , we have that TS is an algebra.
We also have that T ∗ ∈ TS and, since TS = TS , it follows from (3.3) that
(T ∗)S = −(TS)∗ ∈ T (H). Taking this and (3.11) into account, we obtain
that

|T ∗|1 = |T ∗|+ |(T ∗)S | = |T ∗|+ | − (TS)∗| = |T |+ |TS | = |T |1
and

|TR|1 = |TR|+ |(TR)S | = |TR|+ |TSR+ TRS |
≤ ‖T‖ |R|+ |TS | ‖R‖+ ‖T‖ |RS |
≤ |T | |R|+ |TS | |R|+ |T | |RS | ≤ |T |1 |R|1,

for T,R ∈ TS . Hence (TS , | · |1) is a Banach *-algebra.
Clearly, TS is dense in C(H). For T,R ∈ TS , it follows from (3.11) that

|TR|1 = |TR|+ |(TR)S | = |TR|+ |TSR+ TRS |
≤ ‖T‖ |R|+ |TS | ‖R‖+ ‖T‖ |RS |
≤ ‖T‖(|R|+ |RS |) + (|T |+ |TS |)‖R‖
= ‖T‖ |R|1 + |T |1‖R‖.

Thus (TS , | · |1) is a D-subalgebra of C(H) with the constant D = 1. �

If S is selfadjoint, it follows from Theorem 3.2 that (Φ̌S)⊥ = ÂS and(
F̂S
)⊥⊥

=
(
ŤS
)⊥ ⊆ (Φ̌S

)⊥ = ÂS .
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In order to prove that (F̂S)⊥⊥ = ÂS it suffices to show that Φ̌S is dense
in ŤS . For this we need the following lemma which is a partial case of
the general result obtained by Gohberg and Krein [6, Theorem 6.3] for
symmetrically normable ideals.

Lemma 3.6. Let T ∈ T (H) and let Qn be finite rank projections which
converge to 1H in the strong operator topology. Then

|T −QnT | → 0 and |T − TQn| → 0, as n→∞.
Proof. Let A = x⊗y, x, y ∈ H. By (3.5), A∗A = ‖y‖2(x⊗x) and the operator
(A∗A)1/2 = ‖y‖

‖x‖(x⊗x) has only one non-zero eigenvalue λ = ‖x‖ ‖y‖. Hence

|x⊗ y| = |A| = Tr(A∗A)1/2 = λ = ‖x‖ ‖y‖.(3.13)

If T =
∑k

i=1 xi ⊗ yi is a finite rank operator then, by (3.5) and (3.13),

|T −QnT | =

∣∣∣∣∣
k∑
i=1

xi ⊗ (yi −Qnyi)

∣∣∣∣∣ ≤
k∑
i=1

|x⊗ (yi −Qnyi)|

=
k∑
i=1

‖xi‖ ‖yi −Qnyi‖ → 0,

as n→∞. For any T in T (H) and any ε > 0, there is a finite rank operator
Tε such that |T − Tε| < ε. Making use of the inequality (3.11), we obtain
that

|T −QnT | ≤ |T − Tε|+ |Tε −QnTε|+ |Qn(T − Tε)|
≤ ε+ |Tε −QnTε|+ ‖Qn‖ |T − Tε|
≤ 2ε+ |Tε −QnTε|.

Since Tε is a finite rank operator, by the above argument, there is nε such
that |Tε−QnTε| ≤ ε, for n > nε. Hence |T −QnT | ≤ 3ε and |T −QnT | → 0,
as n→∞. Similarly, one can prove that |T − TQn| → 0, as n→∞. �

Proposition 3.7. Let S be selfadjoint. Then ΦS is dense in (TS , | · |1).
Proof. Let [S] be the selfadjoint operator constructed in Section 2. Then
D(S) = D([S]), so that ΦS = Φ[S]. Since B = S− [S] is a bounded operator,
BT − TB ∈ T (H), for T ∈ T (H). Therefore, taking into account that

(ST − TS)D(S) = ([S]T − T [S])D(S) + (BT − TB)D(S),

we conclude that TS = T[S] and TS = T[S] +BT − TB.
Making use of (3.11), we obtain that for any T ∈ TS ,

|T |+ |TS | = |T |+
∣∣T[S] +BT − TB

∣∣
≤ |T |+

∣∣T[S]

∣∣+ 2‖B‖ |T |
≤ (1 + 2‖B‖)

(
|T |+

∣∣T[S]

∣∣) .



DIFFERENTIAL *-ALGEBRAS OF OPERATORS 345

Similarly, |T |+ |T[S]| ≤ (1+2‖B‖)(|T |+ |TS |). Thus the norms | · |1 generated
by the operators S and [S] on TS are equivalent. Hence to obtain the proof
we only have to show that Φ[S] is dense in (T[S], | · |1).

In every subspace HS(n) (see (2.2)) we choose an increasing sequence of
finite-dimensional projections {Qkn}∞k=1 converging to the projection PS(n)
(see (2.1)) in the strong operator topology as k →∞. Set

Qk =
k∑

n=−k
⊕Qkn.

Then Qk are finite-dimensional projections commuting with [S]. Hence
Qk ∈ Φ[S]. The projections Qk converge to 1H in the strong operator topol-
ogy. Let T ∈ T[S]. Then QnT ∈ Φ[S] and

[S]QkT −QkT [S] = Qk[S]T −QkT [S] = Qk([S]T − T [S]) = QkT[S].

Therefore (QkT )[S] = QkT[S].
Since T, T[S] ∈ T (H), we obtain from Lemma 3.6 that

|T −QkT | → 0 and
∣∣∣T[S] − (QkT )[S]

∣∣∣ = ∣∣∣T[S] −QkT[S]

∣∣∣→ 0, as k →∞.

Hence
|T −QkT |1 = |T −QkT |+

∣∣∣T[S] − (QkT )[S]

∣∣∣→ 0

as k →∞, so that Φ[S] is dense in (T[S], | · |1). �

Corollary 3.8. Let S be a selfadjoint operator. Then:
(i) the Banach *-algebra (TS , | · |1) is simple;
(ii) (ŤS)⊥ = (Φ̌S)⊥ = ÂS ;
(iii) the dual space of (TS , | · |2) is isometrically isomorphic to the quotient

space B̂(H)/ÂS .

Proof. Let I be a closed two-sided ideal of (TS , | · |1) and 0 6= T ∈ I.
Since D(S) is dense in H, there is x ∈ D(S) such that Tx 6= 0. Since S
is selfadjoint, it follows from the definition of TS that Tx ∈ D(S). From
this and from the discussion before Lemma 3.1 we obtain that the rank one
operators y ⊗ x and Tx ⊗ z belong to TS for any y, z ∈ D(S). By (3.5),
T (y ⊗ x) = (y ⊗ Tx) ∈ I and

(Tx⊗ z)(y ⊗ Tx) = ‖Tx‖2(y ⊗ z) ∈ I.

Thus y ⊗ z ∈ I and, therefore, ΦS ⊆ I. Since I is closed, we obtain from
Proposition 3.7 that I = TS . Part (i) is proved.

Since the norms | · |1 and | · |2 are equivalent on TS , it follows from
Proposition 3.7 that ΦS is dense in (TS , | · |2). Taking into account that
(TS , | · |2) is isometrically isomorphic to the closed subspace ŤS of T̂ (H),
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we obtain that the linear subspace Φ̌S is dense in ŤS . From this and from
Theorem 3.2(ii) we obtain (ŤS)⊥ = (Φ̌S)⊥ = ÂS . Part (ii) is proved.

The dual space of (TS , | · |2) is isometrically isomorphic to the dual space
of the closed subspace ŤS of T̂ (H). Since T̂ (H)∗ = B̂(H), part (iii) follows
from (ii) and from Lemma 3.1. �

Theorem 3.9. If S is a selfadjoint operator then (F̂S)⊥⊥ = ÂS and the
second dual space of the algebra (FS , ‖ · ‖S) is isometrically isomorphic to
the algebra (AS , ‖ · ‖S).

Proof. Combining Theorem 3.2(i) and Corollary 3.8(ii) yields (F̂S)⊥⊥ = ÂS .
Therefore it follows from Lemma 3.1 that the second dual space of (F̂S , ‖·‖)
is isometrically isomorphic to (ÂS , ‖·‖). Taking into account that (FS , ‖·‖S)
is isometrically isomorphic to (F̂S , ‖ · ‖) and that (AS , ‖ · ‖S) is isometrically
isomorphic to (ÂS , ‖ · ‖), we complete the proof. �

4. Isomorphism of the algebras FS and AS.

In this section we study the problem of classification of the algebras FS
and AS up to *-isomorphism. For isometrical *-isomorphism this problem
is completely solved in Theorem 4.4. As far as bounded but not necessar-
ily isometrical *-isomorphism is concerned, we have obtained some partial
results in Theorems 4.6 and 4.8 for the case when S is selfadjoint.

Banach *-algebras (A, ‖ ‖A) and (B, ‖ ‖B) are *-isomorphic if there is a
bounded *-isomorphism ϕ from A onto B. They are isometrically
*-isomorphic if, in addition, ‖ϕ(A)‖B = ‖A‖A, for A ∈ A.

Let (A, ‖ ‖A) and (B, ‖ ‖B) be Banach *-algebras of operators on Hilbert
spaces H and H (the norms ‖ · ‖A and ‖ · ‖B do not, generally speaking,
coincide with the operator norms in B(H) and B(H)) and let ϕ be a bounded
*-isomorphism from A onto B. An isometry operator U from H into H
implements ϕ if

ϕ(A) = UAU∗, A ∈ A.

Lemma 4.1. Let R and T be symmetric operators on H, S be a symmetric
operators on H, U be an isometry operator from H onto H and t ∈ R.

(i) If FR = FT then the norms ‖ · ‖R and ‖ · ‖T on this algebra are
equivalent, so that the Banach *-algebras (FR, ‖ · ‖R) and (FT , ‖ · ‖T )
are *-isomorphic.

(ii) If R = ±T + t1H then FR = FT and the norms ‖ · ‖R and ‖ · ‖T
coincide.

(iii) If S = λUTU∗ + B, where 0 6= λ ∈ R and B is a bounded selfadjoint
operator, then A→ UAU∗ is a bounded *-isomorphism from (FT , ‖·‖T )
onto (FS , ‖ · ‖S). If λ = ±1 and B = t1H then A → UAU∗ is an
isometric *-isomorphism.
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The same results hold for the algebras AS .

Proof. By Proposition 3.2 [13], the algebras FR and FT are semisimple.
Hence if FR = FT then it follows from Johnson’s uniqueness of norm theorem
that the norms ‖ · ‖R and ‖ · ‖T on this algebra are equivalent. Therefore
the identity mapping is a bounded *-isomorphism from (FR, ‖ · ‖R) onto
(FT , ‖ · ‖T ).

Let R = ±T + t1H. Then D(R) = D(T ) and AT = AR for any A ∈ AT .
Hence ‖A‖R = ‖A‖T and AR = AT . The sets of finite rank operators in the
algebras FR and FT coincide and, since these algebras are the closures of
these sets with respect to the norm ‖ · ‖T , we obtain that FS = FT .

If S = λUTU∗ +B then D(S) = UD(T ) and, for A ∈ AT ,
UAU∗D(S) = UAD(T ) ⊆ UD(T ) = D(S) and

SUAU∗ − UAU∗S = λU(TA−AT )U∗ + (BA−AB),

so that UAU∗ ∈ AS and (UAU∗)S = λUATU
∗ + (BA − AB). Thus

AS = UATU∗ and

‖UAU∗‖S = ‖UAU∗‖+ ‖(UAU∗)S‖ = ‖A‖+ ‖λUATU∗ + (BA−AB)‖
≤ ‖A‖+ λ‖A‖+ 2‖B‖ ‖A‖ ≤ max(λ, 1 + 2‖B‖)‖A‖T ,

so that ψ(A) = UAU∗ is a bounded *-isomorphism from (AT , ‖ · ‖T ) onto
(AS , ‖ · ‖S). If A is a finite rank operator in AT then UAU∗ is a finite rank
operator in AS . Therefore FS = ψ(FT ). �

Let S be a symmetric operator with domainD(S). It was shown in Lemma
3.1 [13] that a finite rank operator A belongs to FS if and only if

A =
n∑
i=1

xi ⊗ yi, where xi, yi ∈ D(S).(4.1)

Theorem 4.2. Let S and T be symmetric operators on H and H and let
B and C be closed *-subalgebras of (AS , ‖ · ‖S) and (AT , ‖ · ‖T ), respectively,
such that FS ⊆ B and FT ⊆ C. Let ψ be a bounded *-isomorphism from C
onto B and let ϕ = ψ|FT . Then:

(i) ϕ is a bounded *-isomorphism of (FT , ‖ · ‖T ) onto (FS , ‖ · ‖S);
(ii) there is an isometry operator U from H onto H implementing ψ:

ψ(A) = UAU∗, for A ∈ C,
and D(S) = UD(T ) and FUTU∗ = FS .

Proof. For x, y ∈ D(T ), x 6= 0, y 6= 0, set Y = ϕ(x ⊗ y). If Y is not a rank
one operator, there are z, u ∈ D(S) such that Y z 6= 0, Y u 6= 0 and Y z⊥Y u.
Since Y ∈ AS , we have that Y z, Y u ∈ D(S), so that Y z ⊗ z ∈ FS and
u⊗ Y u ∈ FS . By (3.5)

(Y z ⊗ z)(u⊗ Y u) = (Y u, Y z)(u⊗ z) = 0.(4.2)
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Since (z ⊗ z)∗ = z ⊗ z and ϕ is a *-isomorphism, it follows from (3.5) that(
ϕ−1(z ⊗ z)x

)
⊗ y = (x⊗ y)

[
ϕ−1(z ⊗ z)

]∗
= ϕ−1(Y )ϕ−1(z ⊗ z) = ϕ−1(z ⊗ Y z) 6= 0.

Thus ϕ−1(z⊗ z)x 6= 0. Similarly, ϕ−1(u⊗u)x 6= 0. From this and from (3.5)
and (4.2) it follows that

0 = ϕ−1((Y z ⊗ z)(u⊗ Y u)) = ϕ−1((z ⊗ z)Y ∗Y (u⊗ u))
= ϕ−1(z ⊗ z)ϕ−1(Y ∗)ϕ−1(Y )ϕ−1(u⊗ u)
= ϕ−1(z ⊗ z)(y ⊗ x)(x⊗ y)ϕ−1(u⊗ u)
= ϕ−1(z ⊗ z)‖y‖2(x⊗ x)ϕ−1(u⊗ u)
= ‖y‖2([ϕ−1(u⊗ u)x]⊗ [ϕ−1(z ⊗ z)x]) 6= 0.

This contradiction shows that Y is a rank one operator. Hence Y ∈ FS and,
by (4.1), ϕ maps all finite rank operators in FT into finite rank operators in
FS . Since ϕ is bounded ϕ(FT ) ⊆ FS . Similarly, ϕ−1(FS) ⊆ FT , so that ϕ is
a bounded *-isomorphism from FT onto F . Part (i) is proved.

Fix x0 ∈ D(T ), ‖x0‖ = 1. Since x0 ⊗ x0 is a projection, ϕ(x0 ⊗ x0) is
a one-dimensional projection in FS . By (4.1), we can choose ξ0 in D(S),
‖ξ0‖ = 1, such that ϕ(x0 ⊗ x0) = ξ0 ⊗ ξ0. Let y ∈ D(T ). Making use of the
equality x0 ⊗ y = (x0 ⊗ y)(x0 ⊗ x0), we obtain that

ϕ(x0 ⊗ y) = ϕ(x0 ⊗ y)ϕ(x0 ⊗ x0)

= ϕ(x0 ⊗ y)(ξ0 ⊗ ξ0) = ξ0 ⊗ ϕ(x0 ⊗ y)ξ0.

Since ϕ(x0⊗y) ∈ FS , it follows from (4.1) that ϕ(x0⊗y)ξ0 belongs to D(S).
Now U : y ∈ D(T ) → ϕ(x0 ⊗ y)ξ0 is a linear mapping from D(T ) into

D(S) and ϕ(x0 ⊗ y) = ξ0 ⊗ Uy. Then

ϕ((y ⊗ x0)(x0 ⊗ y)) = ‖y‖2ϕ(x0 ⊗ x0) = ‖y‖2(ξ0 ⊗ ξ0)
= ϕ((x0 ⊗ y)∗)ϕ(x0 ⊗ y)
= (Uy ⊗ ξ0)(ξ0 ⊗ Uy) = ‖Uy‖2(ξ0 ⊗ ξ0).

Thus ‖Uy‖2 = ‖y‖2, for y ∈ D(T ), and U extends to an isometry operator
from H into H which we also denote by U. We have that, for x, y ∈ D(T ),

ϕ(x⊗ y) = ϕ((x0 ⊗ y)(x⊗ x0)) = (ξ0 ⊗ Uy)(ξ0 ⊗ Ux)∗(4.3)

= Ux⊗ Uy = U(x⊗ y)U∗.

Similarly, there is an isometry operator V which maps D(S) into D(T )
such that ϕ−1(ξ ⊗ η) = V ξ ⊗ V η, for ξ, η ∈ D(S). Hence

ξ ⊗ η = ϕ(ϕ−1(ξ ⊗ η)) = ϕ(V ξ ⊗ V η) = UV ξ ⊗ UV η.
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Thus UV ξ = λ(ξ)ξ where λ is a function on D(S) such that |λ(ξ)| = 1.
Hence UD(T ) = D(S). Since D(S) is dense in H and U is an isometry
operator, we have UH = H.

Let A ∈ C and set R = U∗ψ(A)U. Then x⊗ y ∈ FT , for any x, y ∈ D(T ),
and, since FT is an ideal of AT , we have A(x⊗ y) = x⊗Ay ∈ FT . By (4.3),

R(x⊗ y) = U∗ψ(A)U(x⊗ y) = U∗ψ(A)U(x⊗ y)U∗U
= U∗ψ(A)ϕ(x⊗ y)U = U∗ψ(A)ψ(x⊗ y)U
= U∗ψ(A(x⊗ y))U = U∗ϕ(x⊗Ay)U = x⊗Ay.

Therefore R(x⊗ y) = x⊗Ry = x⊗Ay, so that Ry = Ay. Thus R = A and

ψ(A) = UAU∗.

The operator F = UTU∗ is symmetric and D(F ) = UD(T ) = D(S). By
Lemma 4.1, FF = UFTU∗ and A → UAU∗ is an isometric *-isomorphism
from (FT , ‖ · ‖T ) onto (FF , ‖ · ‖F ). Hence

ϕ(U∗BU) = U(U∗BU)U∗ = B, for B ∈ FF ,
is a bounded *-isomorphism from FF onto FS . Therefore FF = FS . �

It was shown in Theorem 3.4 [13] that the algebra (FS , ‖ · ‖S) has a
bounded approximate identity if and only if S is selfadjoint. Making use of
this and of Theorem 4.2, we obtain the following result.

Corollary 4.3. If the algebras FS and FT are *-isomorphic or the alge-
bras AS and AT are *-isomorphic then the operators S and T are either
selfadjoint or non-selfadjoint at the same time.

Apart from the sufficient conditions of Lemma 4.1 and the necessary con-
ditions of Corollary 4.3 for two algebras FS and FT to be *-isomorphic we do
not know any other sufficient or necessary condition in the case when S and
T are arbitrary symmetric operators. Later, in Theorem 4.6 and Corollary
4.8 we consider a particular case when the operators S and T are selfadjoint.

It follows from Theorem 4.2 that if FS and FT are *-isomorphic, they are
unitary isomorphic. This, however, does not necessarily imply that they are
isometrically isomorphic. In the following theorem we obtain necessary and
sufficient conditions for algebras FS and FT to be isometrically *-isomorphic.

Theorem 4.4. The algebras (FS , ‖ · ‖S) and (FT , ‖ · ‖T ) are isometrically
*-isomorphic if and only if there are λ ∈ R and an isometry operator U
such that S − λ1H = ±UTU∗. The same result holds for (AS , ‖ · ‖S) and
(AT , ‖ · ‖T ).

Proof. From Lemma 4.1 it follows that the conditions of the theorem are
sufficient. From Theorem 4.2 it follows that if these conditions are necessary
for the algebras (FS , ‖ ·‖S) and (FT , ‖ ·‖T ) to be isometrically *-isomorphic,
they are also necessary for the algebras (AS , ‖ · ‖S) and (AT , ‖ · ‖T ).
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Let ϕ be an isometric *-isomorphism from (FT , ‖ · ‖T ) onto (FS , ‖ · ‖S)
and let U be the isometry operator as in Theorem 4.2 which implements ϕ:

ϕ(A) = UAU∗, for A ∈ FT .

Set F = UTU∗. Then F is a symmetric operator on H, D(S) = D(F ) =
UD(T ) and FS = FF . Since ϕ is isometric, the norms ‖ · ‖S and ‖ · ‖F
coincide.

We will show that there is λ ∈ R such that either S − λ1H = F or
S − λ1H = −F.

Step 1. Suppose that z ∈ D(S) is not an eigenvector of S and ‖z‖ = 1. Set

s = (Sz, z), t = (Fz, z), R = S − s1H and G = F − t1H .

Since S an F are symmetric, s, t ∈ R, the operators R and G are symmetric
and

D(R) = D(G), Rz 6= 0 and (Rz, z) = (Gz, z) = 0.(4.4)

Set D = D(R) = D(G). Since FS = FF and the norms ‖ · ‖S and ‖ · ‖F
coincide, it follows from Lemma 4.1 that FR = FG and the norms ‖ · ‖R and
‖ · ‖G coincide.

Taking into account that R and G are symmetric, we obtain from (3.5)
that

‖y ⊗ x‖R = ‖y ⊗ x‖+ ‖y ⊗Rx− (Ry)⊗ x‖ = ‖y ⊗ x‖G
= ‖y ⊗ x‖+ ‖y ⊗Gx− (Gy)⊗ x‖,

for x, y ∈ D. Therefore

‖y ⊗Rx− (Ry)⊗ x‖ = ‖y ⊗Gx− (Gy)⊗ x‖.(4.5)

Represent the elements Rx and Gx in the form

Rx = α(x)x+ xR and Gx = β(x)x+ xG,(4.6)

where xR and xG are orthogonal to x. Then

α(x)‖x‖2 = (Rx, x) = (x,Rx) = α(x)‖x‖2.

Thus α(x) is real, for x ∈ D. Therefore

x⊗Rx− (Rx)⊗ x = α(x)(x⊗ x) + x⊗ xR − α(x)(x⊗ x)− xR ⊗ x
= x⊗ xR − xR ⊗ x.

Since x and xR are orthogonal, any u ∈ H can be represented in the form
u = νx+τxR+ũ, where ν, τ ∈ C and ũ is orthogonal to x and xR. Therefore

‖u‖ = |ν|2‖x‖2 + |τ |2‖x‖2 + ‖ũ‖2
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and, by (3.5),

‖(x⊗ xR + xR ⊗ x)u‖2 = ‖(u, x)xR + (u, xR)x‖2

=
∥∥ν ‖x‖2xR + τ‖xR‖2x

∥∥2

= |ν|2‖x‖4‖xR‖2 + |τ |2‖xR‖4‖x‖2

= ‖x‖2‖xR‖2(|ν|2‖x‖2 + |τ |2‖xR‖2).
Consequently,

‖x⊗Rx− (Rx)⊗ x‖2 = ‖x⊗ xR − xR ⊗ x‖2 = ‖x‖2‖xR‖2.
Similarly, ‖x ⊗ Gx − (Gx) ⊗ x‖2 = ‖x‖2‖xG‖2 and it follows from (4.5)

that
‖xR‖ = ‖xG‖, for x ∈ D.

Therefore we obtain from (4.6) that for x ∈ D
‖x‖2‖Rx‖2 − |(Rx, x)|2 = ‖x‖2(|α(x)|2‖x‖2 + ‖xR‖2)− |α(x)|2‖x‖4

= ‖x‖2‖xR‖2 = ‖x‖2‖xG‖2

= ‖x‖2‖Gx‖2 − |(Gx, x)|2.
Hence

‖x‖2(‖Rx‖2 − ‖Gx‖2) = |(Rx, x)|2 − |(Gx, x)|2.(4.7)

In particular, it follows from (4.4), (4.6) and (4.7) that

Rz = zR, Gz = zG and ‖Rz‖ = ‖Gz‖.(4.8)

Step 2. SetD⊥
Z = {y ∈ D : y is orthogonal to z}. Let y ∈ D⊥

Z and x = y+µz,
µ ∈ C. Then ‖x‖2 = ‖y‖2 + ‖µz‖2 = ‖y‖2 + |µ|2 and, by (4.8),

‖Rx‖2 − ‖Gx‖2 = ‖Ry‖2 + ‖µRz‖2 + 2Re[µ(Rz,Ry)]

− ‖Gy‖2 − ‖µGz‖2 − 2Re[µ(Gz,Gy)]

= A+ 2Re(µB),

where
A = ‖Ry‖2 − ‖Gy‖2 and B = (Rz,Ry)− (Gz,Gy).

Since R is symmetric, it follows from (4.4) that

(Rx, x) = (Ry, y) + (µRz, y) + (Ry, µz) + (µRz, µz)

= (Ry, y) + 2Re[µ(Rz, y)].

Similarly, (Gx, x) = (Gy, y) + 2Re[µ(Gz, y)].
Let µ = reiψ. Substituting all this in (4.7), we obtain that

(‖y‖2 + r2)[A+ 2rRe(eiψB)](4.9)

= {(Ry, y) + 2rRe[eiψ(Rz, y)]}2 − {(Gy, y) + 2rRe[eiψ(Gz, y)]}2.
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Set

C = (Ry, y)Re[eiψ(Rz, y)]− (Gy, y)Re[eiψ(Gz, y)] and

E = {Re[eiψ(Rz, y)]}2 − {Re[eiψ(Gz, y)]}2.
Since R and G are symmetric, (Ry, y) and (Gy, y) are real. Hence

C = Re{eiψ[(Ry, y)(Rz, y)− (Gy, y)(Gz, y)]}.
Comparing the coefficients of the same powers of r in (4.9), we obtain that

Re(eiψB) = 0, A = 4E and C = 0.

Taking into account that Re (eiψK) = 0, for 0 ≤ ψ < 2π, implies K = 0,
we obtain that C = 0 implies

(Ry, y)(Rz, y)− (Gy, y)(Gz, y) = 0.(4.10)

Set (Rz, y) = aeib and (Gz, y) = ceid. Then

E = a2
[
Re
(
ei(ψ+b)

)]2
− c2

[
Re
(
ei(ψ+d)

)]2
= a2 cos2(ψ + b)− c2 cos2(ψ + d).

Since A = 4E and since A does not depend on ψ, neither does E. Hence
a2 = c2 and d = b or d = b+ π. Since a ≥ 0 and c ≥ 0, a = c. Thus

(Rz, y) = ±(Gz, y), for y ∈ D⊥
Z .(4.11)

Since D is dense in H, D⊥
Z is dense in the subspace {Cz}⊥. Hence (4.11)

holds for all y ∈ {Cz}⊥. From (4.9) it follows that Rz = zR ∈ {Cz}⊥.
Substituting Rz for y in (4.11), we obtain ‖Rz‖ = (Rz,Rz) = ±(Gz,Rz).
Let Gz = νRz + u, where ν ∈ C and u is orthogonal to Rz. Then

‖Rz‖2 = ±(Gz,Rz) = ±ν‖Rz‖2.
Since Rz 6= 0 (see (4.4)), ν = ±1. Taking (4.9) into account, we obtain

‖Rz‖2 = ‖Gz‖2 = (νRz + u, νRz + u)

= |ν|2‖Rz‖2 + ‖u‖2 = ‖Rz‖2 + ‖u‖2.
Hence u = 0 and either Rz = Gz or Rz = −Gz.
Step 3. Let Rz = Gz. Set W = R−G. Then W is symmetric, Wz = 0 and
it follows from (4.10) that

[(Ry, y)− (Gy, y)](Rz, y) = (Wy, y)(Rz, y) = 0, for y ∈ D⊥
Z .

Any x ∈ D can be represented in the form x = y + µz where µ ∈ C and
y ∈ D⊥

Z . Then Wx = Wy and, since (Rz, z) = 0, we have (Rz, x) = (Rz, y).
Since Wz = 0,

(Wx, x)(Rz, x) = (Wy, y + µz)(Rz, y)

= [(Wy, y) + (y, µWz)](Rz, y) = (Wy, y)(Rz, y) = 0.
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Therefore

(Wx, x)(Rz, x) = 0, for x ∈ D.(4.12)

Let X = {x ∈ H : (Rz, x) = 0} be the orthogonal complement of the
subspace {CRz} in H. By (4.4), Rz 6= 0, so X has codimension 1. Set
D = {x ∈ D : x /∈ X}. Since D is dense in H, D is also dense in H. For
x ∈ D, we have (Rz, x) 6= 0. Hence, by (4.12),

(Wx, x) = 0.

If x, y ∈ D, there is r > 0 such that x + reiψy ∈ D, for all 0 ≤ ψ < 2π.
Taking into account that W is symmetric, we obtain that

0 = (W (x+ reiψy), x+ reiψy) = (Wx, x) + 2rRe[eiψ(Wy, x)] + r2(Wy, y)

= 2rRe[eiψ(Wy, x)].

Hence (Wy, x) = 0. Since D is dense in H, we have Wy = 0, for y ∈ D.
Let u ∈ D∩X, so that (Rz, u) = 0. For y ∈ D, (Rz, y+u) = (Rz, y) 6= 0.

Hence y + u ∈ D and 0 = W (y + u) = Wy +Wu = Wu. Thus Wx = 0, for
all x ∈ D, so that R = G. Hence S − s1H = F − t1H . Setting λ = s− t, we
obtain that

S − λ1H = F = UTU∗.

Similarly, in the case when Rz = −Gz we obtain that S − λ1H = −F =
−UTU∗ which concludes the proof of the theorem. �

In the rest of this section we study conditions for the algebras FS and
FT to be *-isomorphic but not necessarily isometrically *-isomorphic in the
case when S and T are selfadjoint operators. Taking Theorem 4.2(ii) into
account, we may assume, without loss of generality, that FS = FT and
D(S) = D(T ).

In Example 4.7 we show that the coincidence of the domains of selfadjoint
operators S and T even in the case when Sp(S) ⊆ Z, Sp(T ) ⊆ Z and S and
T have the same sets of eigenvectors is not sufficient for FS = FT . In
other words, the algebras FS and FT may be the closures of the same set of
finite rank operators and, nevertheless, be non-isomorphic. Necessary and
sufficient conditions for these algebras to be *-isomorphic will be obtained
in Theorem 4.6.

Let H be a Hilbert space with an orthogonal basis {ei}∞i=−∞. Every op-
erator T in B(H) has a matrix representation T = (tij), −∞ < i, j < ∞,
where tij = (Tej , ei). A matrix M = (mij), −∞ < i, j < ∞, is called a
Schur multiplier, if, for any T = (tij) ∈ B(H), the matrix M ◦ T = (mijtij)
belongs to B(H). Then T →M ◦ T is a bounded map of B(H) into itself; it
will also be denoted by M and its norm by |M |B(H).
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Let H =
∑∞

i=−∞⊕Hi be an orthogonal sum of Hilbert spaces Hi. Ev-
ery operator A in B(H) has a block-matrix representation A = (Aij),
−∞ < i, j <∞, where Aij are bounded operators from Hj into Hi.

Lemma 4.5. Let M = (mij) be a Schur multiplier on H. It defines a
bounded operator M on B(H) by the formula

M×A = (mijAij), where A = (Aij) ∈ B(H),

and |M|B(H) = |M |B(H).

Proof. Let G = {gj}∞j=−∞ and F = {fj}∞j=−∞ be sequences of elements
such that gj , fj ∈ Hj and ‖gj‖ = ‖fj‖ = 1. For A = (Aij) ∈ B(H), let

TG,F (A) =
(
aGFij

)
, −∞ < i, j <∞, be the matrix such that

aGFij = (Aijgj , fi) ∈ C.(4.13)

For α =
∑∞

j=−∞⊕αjej ∈ H and β =
∑∞

j=−∞⊕βjej ∈ H, set

xGα =
∞∑

j=−∞
⊕αjgj and yFβ =

∞∑
j=−∞

⊕βjfj .

Then xGα , y
F
β ∈ H,

∥∥xGα∥∥ = ‖α‖,
∥∥∥yFβ ∥∥∥ = ‖β‖ and

(
AxGα , y

F
β

)
=

∞∑
i=−∞

∞∑
j=−∞

αj β̄i(Aijgj , fi)

=
∞∑

i=−∞

∞∑
j=−∞

αj β̄ia
GF
ij =

(
TG,F (A)α, β

)
.

Therefore TG,F (A) ∈ B(H) and

‖A‖ = sup
α,β,G,F

∣∣∣(AxGα , yFβ )∣∣∣
‖xGα ‖

∥∥∥yFβ ∥∥∥(4.14)

= sup
G,F

(
sup
α,β

|(TG,F (A)α, β)|
‖α‖ ‖β‖

)
= sup

G,F

∥∥TG,F (A)
∥∥ .

It follows from (4.13) that TG,F (M×A) = M ◦TG,F (A). Since M is a Schur
multiplier, M ◦ TG,F (A) ∈ B(H) and, by (4.14),

‖M×A‖ = sup
G,F

∥∥TG,F (M×A)
∥∥ = sup

G,F

∥∥M ◦ TG,F (A)
∥∥

≤ sup
G,F
|M |B(H)

∥∥TG,F (A)
∥∥ = |M |B(H) sup

G,F

∥∥TG,F (A)
∥∥

= |M |B(H)‖A‖.
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Hence |M|B(H) ≤ |M |B(H). On the other hand, it is easy to see that
|M |B(H) ≤ |M|B(H). Thus |M|B(H) = |M |B(H). �

Let S and T be selfadjoint operators on H and assume that Sp(S) ⊆ Z,
Sp(T ) ⊆ Z and that

H =
∞∑

i=−∞
⊕Hi where S|Hi = si1Hi , T |Hi = ti1Hi ,

si 6= sj and ti 6= tj if i 6= j.

Set

M = (mij) where mij =
si − sj
ti − tj

, for i 6= j, and mii = 0, and

N = (nij) where nij =
ti − tj
si − sj

, for i 6= j, and nii = 0.

Theorem 4.6. FS = FT if and only if M and N are Schur multipliers.

Proof. In everyHi we choose a non-decreasing sequence of finite-dimensional
projections {Qpi }∞p=1 which converge to 1Hi in the strong operator topology
as p → ∞. Set Qp =

∑p
i=−p⊕Q

p
i . The finite-dimensional projections Qp

commute with S and T , belong to FS∩FT and converge to 1H in the strong
operator topology. Therefore ‖Qp‖S = ‖Qp‖T = ‖Qp‖ = 1.

For any A = (Aij) ∈ AS ∩ AT ,

AS = SA−AS =
(
ASij
)

and AT = TA−AT =
(
ATij
)
,

where ASij = (si − sj)Aij and ATij = (ti − tj)Aij . Set B = AT . Then AS =
M×B,

‖A‖S = ‖A‖+ ‖AS‖ = ‖A‖+ ‖M×B‖ and(4.15)

‖A‖T = ‖A‖+ ‖AT ‖ = ‖A‖+ ‖B‖.
We assume now that M and N are Schur multipliers and show that FS =

FT . By Lemma 4.5 and (4.15),

‖A‖S ≤ ‖A‖+ |M | ‖B‖(4.16)

≤ ‖A‖+ |M | (‖A‖T − ‖A‖) ≤ (|M |+ 1)‖A‖T .
Similarly,

‖A‖T ≤ (|N |+ 1)‖A‖S .(4.17)

Let A ∈ FS . Then QpA ∈ FS and, since Qp commute with S,

(QpA)S = Closure (SQpA−QpAS) = ClosureQp(SA−AS) = QpAS .

Since A and AS are compact and since Qp converge to 1H in the strong
operator topology,

‖A−QpA‖ → 0 and ‖AS − (QpA)S‖ = ‖AS −QpAS‖ → 0, as p→∞.
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Hence ‖A−QpA‖S → 0, so that {Qp} is a bounded approximate identity in
FS . Similarly, it is a bounded approximate identity in FT .

Let A ∈ FS . For any p, QpT = QpTQp = TQp is a finite rank operator.
Hence

(QpAQp)T = T (QpAQp)− (QpAQp)T = (TQp)AQp −QpA(QpT )

is a finite rank operator. Therefore QpAQp ∈ FS ∩ FT and, by (4.17),

‖Qp+kAQp+k −QpAQp‖T ≤ (|N |+ 1)‖Qp+kAQp+k −QpAQp‖S .
Since {Qp} is a bounded approximate identity in FS , the operatorsQpAQp

converge to A with respect to ‖ · ‖S . From the above inequality it follows
that {QpAQp} is a fundamental sequence with respect to ‖·‖T . Hence there
is A1 ∈ FT such that ‖A1−QpAQp‖T → 0, as p→∞. Since ‖A−QpAQp‖ ≤
‖A−QpAQp‖S → 0 and ‖A1−QpAQp‖ ≤ ‖A1−QpAQp‖T → 0, as p→∞,
we obtain that A = A1, so FS ⊆ FT . Similarly, FT ⊆ FS . Thus we conclude
that FS = FT .

Suppose now that FS = FT . Choose elements ei ∈ Hi such that ‖ei‖ = 1
and let H be the subspace of H generated by all ei, −∞ < i <∞. Then H is
invariant for S and T, Sei = siei and Tei = tiei. By SH and TH we denote
the restrictions of S and T to H. Since FS = FT ,

FSH
= FTH

.

We shall show now that M and N are Schur multipliers on H.
The function f(t) = i(π− t) on [0, 2π] has Fourier coefficients c0 = 0 and

cn = 1
n , for n = ±1,±2, . . . . Let H be a Hilbert space with an orthonormal

basis {hk}∞k=−∞ and R = (rkl), −∞ < k, l < ∞, be a Toeplitz matrix such
that rkk = 0 and rkl = ck−l = 1

k−l , k 6= l. Then R ∈ B(H) and it follows
from Theorem 8.1 [1] that R is a Schur multiplier and |R| = sup |f(t)| = π.

Identifying ei in H with hti in H, we can consider H as a subspace of H.
For B = (bkm) ∈ B(H), where bkm = (Bem, ek), let B̃ = (̃bij) ∈ B(H) be
such that B̃|H = B and B̃|H⊥ = 0. Then ‖B̃‖ = ‖B‖,

b̃tktm =
(
B̃htm , htk

)
= (Bem, ek) = bkm, and

b̃ij =
(
B̃hj , hi

)
= 0 if either i 6= tk or j 6= tm.

Since R is a Schur multiplier, the operator C̃ = (c̃ij) = R ◦ B̃ belongs to
B(H), where

c̃tktm = rtktm b̃tktm = (tk − tm)−1bkm, if k 6= m, and
c̃ij = 0 if either i 6= tk or j 6= tm or i = j = tk.

Setting C = C̃|H, we obtain that C = (ckm) ∈ B(H), where

ckm = c̃tktm = (tk − tm)−1bkm, if k 6= m, and ckk = 0,
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that ‖C̃‖ = ‖C‖ and that C = W ◦ B, where W = (wkm) is a matrix such
that

wkm = (tk − tm)−1, k 6= m, and wkk = 0.

From this it follows that W is a Schur multiplier on H and

‖W ◦B‖ = ‖C‖ =
∥∥∥C̃∥∥∥ =

∥∥∥R ◦ B̃∥∥∥ ≤ |R| ∥∥∥B̃∥∥∥ = |R| ‖B‖.

Thus |W | ≤ |R| = π.
Let Pn be the orthoprojections in H on the subspaces

∑n
j=−n⊕{Cej}.

Then Pn are finite rank operators commuting with operators SH and TH and
PnH ⊆ D(SH). Hence Pn ∈ FSH

. For every B ∈ B(H), PnBPn are finite
rank operators preserving D(SH) and their adjoints PnB∗Pn also preserve
D(SH). Therefore

PnBPn ∈ FSH
.(4.18)

Any B = (bkm) ∈ B(H) can be represented in the form B = Bd + B0,
where Bd is the diagonal operator such that (Bd) = bkk. Then

‖Bd‖ ≤ ‖B‖ and ‖B0‖ = ‖B −Bd‖ ≤ 2‖B‖.(4.19)

We have that

M ◦ (PnBPn) = Pn(M ◦B)Pn.(4.20)

Since mkk = 0 in the matrix M = (mkm),

M ◦ (PnBPn) = M ◦ (PnB0Pn).(4.21)

Set A = W ◦B. Since W is a Schur multiplier, A ∈ B(H) and, by (4.18),
PnAPn ∈ FSH

. It is easy to check that

PnB0Pn = TH(PnAPn)− (PnAPn)TH = (PnAPn)TH
, and(4.22)

M ◦ (PnB0Pn) = SH(PnAPn)− (PnAPn)SH = (PnAPn)SH
.

Since FSH
= FTH

, it follows from Lemma 4.1(i) that the norms ‖ · ‖SH

and ‖ · ‖TH
are equivalent. Therefore there exists D > 0 such that

‖PnAPn‖SH
≤ D‖PnAPn‖TH

. Hence we obtain from (4.19), (4.21) and (4.22)
that

‖M ◦ (PnBPn)‖ = ‖M ◦ (PnB0Pn)‖ =
∥∥(PnAPn)SH

∥∥
≤ ‖PnAPn‖SH

≤ D‖PnAPn‖TH

= D
(
‖PnAPn‖+

∥∥(PnAPn)TH

∥∥)
≤ D(‖A‖+ ‖PnB0Pn‖) ≤ D(‖A‖+ ‖B0‖)
= D(‖W ◦B‖+ ‖B0‖) ≤ D(|R| ‖B‖+ 2‖B‖) = ρ.

Thus all operators M ◦ (PnBPn), 1 ≤ n <∞, lie in the ball Bρ of B(H) of
radius ρ. Compactness of Bρ in the weak operator topology implies that the
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sequence {M ◦ (PnBPn)}∞n=1 has a cluster point K ∈ B(H). Therefore there
is a subsequence {M ◦ (PnjBPnj )} such that for all ek and em,

(Kek, em) = lim
j→∞

(M ◦ (PnjBPnj )ek, em).

If nj ≥ max(|k|, |m|) then Pnjek = ek and Pnjem = em and, by (4.20),(
M ◦

(
PnjBPnj

)
ek, em

)
=
(
Pnj (M ◦B)Pnjek, em

)
= (M ◦Bek, em).

Hence (Kek, em) = ((M ◦ B)ek, em), −∞ < k,m < ∞. Thus K = M ◦ B,
so M is a Schur multiplier. Similarly, we obtain that N is also a Schur
multiplier. �

Example 4.7. Let
si = i and ti = (−1)ii

in Theorem 4.6. If FS = FT then, by Theorem 4.6, M is a Schur multiplier
and we have that |mij | ≤ |M | for all i and j. Let i = 2k and j = −2k + 1.
Then si = ti = 2k and sj = −tj = −2k + 1. Hence

mij =
si − sj
ti − tj

= 4k − 1→∞, as k →∞.

This shows that M is not a Schur multiplier and, therefore, FS 6= FT .

Making use of Theorem 4.6, we obtain the following result of a more
general character.

Theorem 4.8. Let S and T be selfadjoint operators on H and H respec-
tively. If there exists a bijection ϕ of Z onto Z such that

dim(HT (ϕ(i))) = dim(HS(i)), for all i ∈ Z,

(see (2.2) for definition of HT (i) and HS(i)) and if

M = (mij) where mij =
ϕ(i)− ϕ(j)

i− j
, for i 6= j, and mij = 0, and

N = (nij) where nij =
i− j

ϕ(i)− ϕ(j)
, for i 6= j, and nij = 0

are Schur multipliers then the algebras FS and FT are *-isomorphic.

Proof. Consider the operators [S] and [T ] (see (2.1)) and the corresponding
decompositions

H =
∑
i∈Z
⊕HS(i) and H =

∑
i∈Z
⊕HT (i)

where HS(i) = PS(i)H and HT (i) = PT (i)H (see (2.3)). The operators
S − [S] and T − [T ] are bounded, so FS = F[S] and FT = F[T ].
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Consider the selfadjoint operator R on H such that all subspaces HS(i)
are invariant for R and R|HS(i) = ϕ(i)1HS(i). Since M and N are Schur
multipliers, it follows from Theorem 4.6 that FR = F[S].

On the other hand, since dim(HT (ϕ(i))) = dim(HS(i)), for all i ∈ Z,
there exists an isometry operator U from H onto H which maps HS(i) onto
HT (ϕ(i)). Then U∗[T ]U = R. By Lemma 4.1, the algebras FR and F[T ] are
*-isomorphic. Hence the algebras FS and FT are *-isomorphic. �
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COMPLETELY REGULAR MULTIVARIATE STATIONARY
PROCESSES AND THE MUCKENHOUPT CONDITION

S. Treil and A. Volberg

We are going to give necessary and sufficient conditions for
a multivariate stationary stochastic process to be completely
regular. We also give the answer to a question of V.V. Peller
concerning the spectral measure characterization of such pro-
cesses.

1. Introduction.

In this paper we shall give a necessary and sufficient condition for a multi-
variate stationary stochastic process to be completely regular. For the scalar
case the description of completely regular processes was obtained by Helson
an Sarason, see [2, 9]. Almost none of the scalar methods is available in the
vector situation. The explanation is simple. Our problem will be reduced to
verifying L2 weighted inequalities for a certain integral operator. The weight
will be a matrix weight arising from the spectral measure of the process. All
the pointwise estimates of integral operators become too crude for the vec-
tor valued case. For example, if a positive kernel is majorized by another
one, and this second kernel gives the bounded operator in L2(µ), then the
original kernel obviously corresponds to a bounded operator in L2(µ) too.
But this is not the case if µ is a matrix measure even for scalar kernels.

The study of prediction theory for multivariate stationary stochastic pro-
cesses was started by Kolmogorov and Wiener in the 50’s, see, for example
[13], [14], and [4]. It was later continued in works of I. Ibragimov, Yu.
Rozanov, V. Solev, A. Yaglom, V. Peller, S. Khruschev, N.J. Young. An
extensive bibliography can be found in [6] (for scalar processes) and in [5]
(for vector ones).

Let us recall that a multivariate stationary stochastic process with discrete
time is a sequence of d-tuples x(n) = (x1(n), x2(n), . . . , xd(n)), n ∈ Z of
scalar random variables such that E|xj(n)|2 <∞ and the correlation matrix
Q(n, k)

Q(n, k) = {Q(n, k)i,j}1≤i,j≤d :=
{

Exi(n)xj(k)
}

1≤i,j≤d

depends only on the difference n − k; here E denotes mathematical expec-
tation.
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It is well known (see [8]) that there exists a matrix-valued nonnegative
measure M on the unit circle T whose Fourier coefficients coincide with
entries of the correlation matrix

Q(n, k) = M̂(n− k) , n, k ∈ Z .

The measure M is called the spectral measure of the process {x(n)}n∈Z.
The random variables xj(n) can be treated as elements of Hilbert space

L2(Ω, dP ), where Ω is the probability space and P is the probability, so
x(n) can be treated as elements of the Rd-valued L2 space L2

Rd(Ω, dP ) For
a moment n of time we can consider the past Xn and the future X n of the
process, which are defined as the subspaces

Xn = span {xj(k) : 1 ≤ j ≤ d, k < n}
X n = span {xj(k) : 1 ≤ j ≤ d, k ≥ n}

of L2(Ω, dP ).
A process is called regular if ∩n≥0X n = {0}. In this case (see [8]) the

spectral measure M of the process is absolutely continuous with respect to
Lebesgue measure. Let W be the density of M with respect to Lebesgue
measure. The matrix-valued function W is called the spectral density of the
process.

A process {x(n)}n∈Z is called completely regular if its past is asymptoti-
cally orthogonal to the future, namely if

sup
{
|E(ξη)| : ξ ∈ X0, η ∈ X n, E|ξ|2 ≤ 1, E|η|2 ≤ 1

}
−→ 0 as n→∞ .

Of course, complete regularity implies regularity. If the process is Gaussian
(i.e. all random variables xj(k) have normal distribution) then the complete
regularity means simply that past and future are almost independent. The
problem we are dealing with is to characterize completely regular processes
in terms of spectral measure.

It has been already mentioned (see again [8]) that if the process is com-
pletely regular, then its spectral measure is absolutely continuous, dM =
Wdm where dm is the normalized (m(T) = 1) Lebesgue measure on the
unit circle T.

The reader is referred to [8] once more to see that there exists d0 ≤ d
(the rank of the process) such that the spectral density W (t) has rank d0

for almost all t ∈ T. If d0 = d then the process {x(n)} is said to be a full
rank.

The study of processes of arbitrary rank can be easily reduced to the
study of the processes of full rank, see [3]. So in this paper we shall consider
only processes of full rank.

For the scalar case the description of completely regular processes was
obtained by Helson an Sarason, see [2, 9]. To state their result we need a
couple of definitions.
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Let us recall that a function f on the unit circle T belongs to the space
BMO (bounded mean oscillation) if

sup
I

1
|I|

∫
I
|f − fI |dm = ‖f‖BMO <∞ ;

here fI denotes the mean value of f on the interval I: fI := |I|−1
∫
I fdm

and the supremum is taken over all subarcs I of T.
The space VMO (vanishing mean oscillation) consists of all function f ∈

BMO such that

sup
I

1
|I|

∫
I
|f − fI |dm −→ 0 as |I| → 0 .

Theorem 1.1 (Helson, Sarason). Let w be the spectral density of a scalar
stationary process. Then the process is completely regular if and only if w
admits a representation

w = |p|2eϕ ,
where p is a polynomial with roots on the unit circle T and ϕ is a real-valued
function in VMO.

It was conjectured by V. Peller in [5] that the same result holds for mul-
tivariate stationary processes. Namely he conjectured that a multivariate
stationary process is completely regular if and only if its spectral density W
admits the following representation

W = P ∗eΦP,

where P is a polynomial matrix whose determinant has roots on T and the
matrix function Φ = Φ∗ belongs VMO.

In this direction he was able to prove the following theorem:

Theorem 1.2. A multivariate stationary process is completely regular if
and only if its spectral density W admits the factorization

W = P ∗W1P,

where P is a polynomial matrix whose determinant has roots on T and W1 is
the density of a completely regular stationary process such that W−1

1 ∈ L1.
1.1. The main result. Let us recall that a measure µ on the unit disk D
is called Carleson if

sup
I
µ(Q(I)) ≤ C · |I|

and is called the vanishing Carleson measure if

lim sup
|I|→0

µ(Q(I))/|I| = 0

where limsup is taken over all subarcs I of T . Here Q(I) denotes the “Car-
leson square” for the arc I,

Q(I) = {z ∈ D : z/|z| ∈ I, 1− |I| ≤ |z| < 1}.
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For a function F on the unit circle let F (λ), λ ∈ D, denote its harmonic
extension at the point λ.

The main result of the paper is the following theorem.

Theorem 1.3. Let the density W of a stationary process satisfy W−1 ∈ L1.
Then the the following are equivalent:

1) The process is completely regular;
2) W−1 is the spectral density of a completely regular process;

3) lim sup
|I|→0

∥∥∥∥( 1
|I|

∫
I
Wdm

)1/2( 1
|I|

∫
I
W−1dm

)1/2
∥∥∥∥ = 1; here supremum is

taken over all subarcs I of T;

4) lim sup
|λ|→1

∥∥∥∥(W (λ)
)1/2(

W−1(λ)
)1/2

∥∥∥∥ = 1, where W (λ) and W−1(λ) are

harmonic extensions of functions W
∣∣T and W−1

∣∣T respectively at point
λ ∈ D.

5) lim sup
|λ|→1

{
det
(
W (λ)

)
exp
(
−
[
log detW

]
(λ)
)}

= 1, where W (λ) and

[log detW
]
(λ) are harmonic extensions of functions W

∣∣T and
log detW

∣∣T respectively at point λ ∈ D.
6) The measures∥∥∥∥W (z)−1/2

(
∂

∂x
W (z)

)
W (z)−1/2

∥∥∥∥2

(1− |z|2)dxdy

and ∥∥∥∥W (z)−1/2

(
∂

∂y
W (z)

)
W (z)−1/2

∥∥∥∥2

(1− |z|2)dxdy

are vanishing Carleson measures.

Together with Theorem 1.2 the above theorem yields the complete de-
scription of completely regular stationary processes.

Theorem 1.4. A stationary process with spectral density W is completely
regular if and only if W admits the representation

W = P ∗WP,

where P is a polynomial matrix whose determinant has roots on T and the
matrix-function W satisfies W−1 ∈ L1 and one of equivalent conditions 3-6
of Theorem 1.3.

Let us discuss the main result (Theorem 1.3) a little bit. First of all it
is not difficult to show directly that in the scalar case the conditions 3-6 of
Theorem 1.3 are equivalent to W = eϕ, ϕ ∈ VMO. We are leaving this as
an exercise for the reader.
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Usually in probability only real valued stationary processes are considered.
In that case the spectral density of a process should satisfy W (z) = W (z),
and only such functions can be realized as densities of stationary processes.

If one allow complex-valued processes, any nonnegative matrix function
is the spectral density of some stationary process.

Our theorem deals with arbitrary nonnegative matrix-functions and can
be applied to complex-valued processes (as well as to real-valued).

2. Scheme of the proof of the main result.

The diagram of the proof will be the following: 1 =⇒ 4 =⇒ 5 =⇒ 6 =⇒ 1.
Then we will show that 1 =⇒ 2 and so automatically 2 =⇒ 1.

And in this section we will show that 3⇐⇒ 4.

Lemma 2.1. For a scalar weight w the following conditions are equivalent:

1) lim sup
|I|→0

( 1
|I|

∫
I
w
)( 1
|I|

∫
I
w−1

)
= 1;

2) lim sup
|λ|→1

w(λ)w−1(λ) = 1, where w(λ) and w−1(λ) denote the harmonic

extensions of w and w−1 respectively at the point λ;
3) w = eϕ, where ϕ ∈ VMO.

Proof. First of all let us rewrite condition 1. Let ϕ := logw. For a function
f let f

I
denote its average over the arc I, f

I
:= |I|−1

∫
I f . Then clearly

w
I
· (w−1)

I
=
[
w
I
exp(−ϕ

I
)
]
·
[
(w−1)

I
exp(ϕ

I
)
]
.

By Jensen inequality (geometric mean ≤ arithmetic mean) the expressions
in brackets are at least 1, so the condition 1 splits into the following 2
conditions

lim sup
|I|→0

[
w
I
exp(−ϕ

I
)
]

= 1, and lim sup
|I|→0

[
(w−1)

I
exp(ϕ

I
)
]

= 1.

Let f+ denote the positive part of the function f , f+(x) := max(f(x), 0).
Then the inequality

x ≤ ex − 1 for x ≥ 0
implies

1
|I|

∫
I
(ϕ− ϕ

I
)+ ≤

1
|I|

∫
I

(
exp(ϕ− ϕ

I
)− 1

)
= w

I
exp(−ϕ

I
)− 1→ 0 as |I| → 0.

Since
∫
I |ϕ− ϕI | = 2

∫
I(f − fI )+, one can conclude that ϕ ∈ VMO.

Similarly, using Poisson averages instead of averages over intervals one
can get from condition 2 of the lemma that harmonic extension of |ϕ−ϕ(λ)|
at the point λ tends to 0 as λ → 1. But that is an equivalent definition of
VMO, so the condition 2 also implies that ϕ ∈ VMO.
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On the other hand, if ϕ ∈ VMO, John-Nirenberg Theorem (see [1, Chap-
ter VI]) claims that the measure of the set {t ∈ I : |ϕ(t) − ϕ

I
| > a} is

estimated from above by Ce−Ka, where K = K
I
→ ∞ as |I| → 0. There-

fore for x > 1 the measure of the set {t ∈ I : exp(ϕ(t)−ϕ
I
) > x} is estimated

from above by Cx−K . Integrating this distribution function one can get that
lim sup|I|→0wI exp(−ϕ

I
) ≤ 1 (in fact, it is 1, because by Jensen inequality

w
I
exp(−ϕ

I
) ≥ 1). Similarly, lim sup|I|→0(w−1)

I
exp(ϕ

I
) = 1. Multiplying

the above two inequalities one gets condition 1.
The proof that 3 =⇒ 2 is similar. For a point λ ∈ D let Iλ be an

interval with center at λ/|λ| of length (1− |λ|)1/3. Since the Poisson Kernel
Pλ(z) = (1 − |λ|2) · |1 − λz|−2 satisfies supz∈T\Iλ Pλ(z) → 0 as |λ| → 1, the
distribution inequality for ϕ on Iλ implies that w(λ) · exp(−ϕ(λ)) → 1 as
|λ| → 1, and therefore the condition 2 of the lemma. �

The following Lemma is probably well known and can be easily from the
distribution function inequality for VMO (John-Nirenberg Theorem).

Lemma 2.2. For λ ∈ D let Iλ be an interval centered at λ/|λ| of length
1− |λ|. If ϕ ∈ VMO, then ϕ

Iλ
− ϕ(λ)→ 0 as |λ| → 1.

Corollary 2.3. Let ϕ ∈ VMO and let w = eϕ. Then for Iλ as in the above
lemma we have

lim
|λ|→1

w(λ)
w
Iλ

= 1.

Proof. By the above lemma lim|λ|→1 exp(ϕ(λ))/ exp(ϕ
Iλ

) = 1. On the other
hand it follows from the proof of Lemma 2.1 that

lim
|λ|→1

w(λ)/ exp(ϕ(λ)) = 1 and lim
|I|→0

w
I
/ exp(ϕ

I
) = 1.

Taking the ration of the last 2 identities (with I = Iλ) we get the statement
we need. �

Now to show equivalence of condition 3 and 4 of Theorem 1.3 is enough
to show that these conditions imply that for a fixed vector e ∈ Cd scalar
weight w(z) = (W (z)e, e) satisfies conditions 1 and 2 of Lemma 2.1. Then
Corollary 2.3 implies that the averages W

Iλ
and W (λ) are equivalent, the

same holds for W−1, and we are done.
It remains now to show that the scalar weight w(z) = (W (z)e, e) satisfies

condition 1 (equivalently 2) of Lemma 2.1. The easiest way to do that is to
recall where the Muckenhoupt condition (A2) came from, see [10].

Recall that the quantity
∥∥[W

I
]1/2[(W−1)

I
]1/2
∥∥ is just the norm of the

averaging operator f 7→ f
I
·χ
I

in the weighted space L2(W ), see [10, Lemma
2.1]. Then [w

I
]1/2[(w−1)

I
]1/2 is the norm of the restriction of the above
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averaging operator onto the subspace of L2(W ) consisting of functions of
form fe where f is a scalar function. Therefore

1 ≤ [w
I
]1/2[(w−1)

I
]1/2 ≤

∥∥[W
I
]1/2[(W−1)

I
]1/2
∥∥

so the weight w satisfies condition 1 of the lemma.
Similarly, the quantity

∥∥W (λ)1/2W−1(λ)1/2
∥∥ is just the norm of another

averaging operator
(
f 7→

∫
T fkλ

)
kλ, where kλ is the normalized reproducing

kernel of H2, kλ(z) = (1 − |λ|2)1/2(1 − λz)−1, see [10, Lemma 2.1], so
condition 4 of the theorem implies condition 2 of the lemma for the weight
w.

3. Eliminating probability.

The problem of description of completely regular processes can be now stated
without mentioning any probability theory at all.

First of all notice that without loss of generality we can assume that the
process is complex-valued. Namely, if we have a real stationary process
{x(n)}n∈Z we can consider its comlexification, namely the same process but
in the complex Hilbert space L2

Cd(Ω, dP ). Consider the comlexificated past
(Xn)C and future (X n)C

(Xn)C = span {xj(k) : 1 ≤ j ≤ d, k < n}
(X n)C = span {xj(k) : 1 ≤ j ≤ d, k ≥ n}

where span now means the closed linear span in the complex Hilbert space
L2

Cd(Ω, dP ). It is easy to see that

sup
{
|E(ξη)| : ξ ∈ X0, η ∈ X n, E|ξ|2 ≤ 1, E|η|2 ≤ 1

}
= sup

{
|E(ξη̄)| : ξ ∈ (X0)C, η ∈ (X n)C, E|ξ|2 ≤ 1, E|η|2 ≤ 1

}
,

so a process and its comlexification are completely regular simultaneously.
So we indeed can assume from the beginning that our process is complex
valued.

Consider now the vector space L2(W ) of Cd-valued functions on the unit
circle with the norm

‖f‖2L2(W ) =
∫

T
(W (ξ)f(ξ), f(ξ))

Cd
dm(ξ)

(of course we have to take the quotient space over the functions of norm
0). The mapping xj(k) 7→ zkej , where ej , j = 1, ..., d is the standard
orthonormal basis in Cd, is an isometric isomorphism between span{xj(k) :
1 ≤ j ≤ d, k ∈ Z} and L2(W ).
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The past Xn and future X n are mapped to the spaces Xn and Xn of
L2(W )

Xn = span{zkCd : k < n}(3.1)

Xn = span{zkCd : k ≥ n} .(3.2)

So the problem of describing completely regular stationary processes can
be reformulated as follows: Describe all matrix weights W such that the
spaces X0 and Xn are asymptotically (as n→∞) orthogonal to each other,

(3.3) ρn = sup
{
|(ξ, η)

L2(W )
| : ξ ∈ X0, η ∈ Xn,

‖ξ‖
L2(W )

≤ 1, ‖η‖
L2(W )

≤ 1
}
−→ 0,

as n→∞.

4. Necessity (1 =⇒ 4).

In this section we are going to prove the implication 1 =⇒ 4 (see Theorem
4.1 below) and the equivalence 1⇐⇒ 2 (see Lemma 4.4).

For a function F defined on the unit circle T let F (λ) denote its harmonic
extension at the point λ ∈ D.

Theorem 4.1. Let W be a matrix valued weight such that W−1 ∈ L1. Sup-
pose the “past” X0 and “future” Xn defined by (3.1), (3.2) are asymptotically
orthogonal, which is

ρn = sup
{
|(ξ, η)

L2(W )
| : ξ ∈ X0, η ∈ Xn,

‖ξ‖
L2(W )

≤ 1, ‖η‖
L2(W )

≤ 1
}
−→ 0

as n→∞. Then

lim sup
|λ|→1

∥∥∥∥(W (λ)
)1/2(

W−1(λ)
)1/2

∥∥∥∥ = 1 .

Proof. First of all let us show that if W−1 is completely regular and W−1 ∈
L1 then W satisfies the Muckenhoupt (A2) condition

sup
λ∈D

∥∥∥∥(W (λ)
)1/2(

W−1(λ)
)1/2

∥∥∥∥ <∞ .(Ap)

Recall that
∥∥∥∥(W (λ)

)1/2(
W−1(λ)

)1/2
∥∥∥∥ is exactly the norm of the operator

f 7→ (f, kλ)kλ in the weighted space L2(W ); here kλ denotes the normalized
reproducing kernel for H2,

kλ(z) :=
(1− |λ|2)1/2

1− λz
, λ ∈ D,



COMPLETELY REGULAR STATIONARY PROCESSES 369

‖kλ‖2 = 1. Note that k0 ≡ 1. So if W−1 ∈ L1 the operator f 7→ (f, 1)1
is bounded in L2(W ), and therefore by translation invariance the operators
f 7→ (f, zn)zn = f̂(n)zn are bounded as well (they all have the same norm).

We know that the spaces X0 and Xn are asymptotically orthogonal,
so we can say that for large enough N the operator P+ restricted onto
span{X0, X

N} = span{znCd : n /∈ [0, N ]} is bounded, say by 2,

‖P+f‖L2(W )
≤ 2‖f‖

L2(W )
, ∀f ∈ span{X0, X

N} = span{znCd : n /∈ [0, N ]}.

Since f −
∑N

n=0 f̂(n)zn ∈ span{X0, X
N} = span{znCd : n /∈ [0, N ]}, one

can conclude that the operator P+ is bounded in L2(W ), and so the weight
satisfies the Muckenhoupt condition (A2).

We will need the following simple lemma about Muckenhoupt weights.

Lemma 4.2. If w is a scalar Muckenhoupt weight, then its harmonic ex-
tension w(λ) cannot decay too fast near the boundary of the disk. Namely,
if the Muckenhoupt norm of w is at most M there is a function α = α

M
,

α : [0, 1)→ (0,∞), α(t)↘ 0 as t→ 1+ such that

(1− |λ|2)w(0)
w(λ)

≤ α(|λ|).

Proof of the lemma. For an arc I ⊂ T and k > 0 let kI denote the arc of
length k|I| with the same center as I.

We are going to show that for a Muckenhoupt weight w with the Muck-
enhoupt norm at most M

w
2nI
≤M2(2− ε)nw

I
, ε = ε(M) > 0 .(4.1)

Applying this formula in the case 2nI = T and using the trivial estimate

w(λ) ≥ Cw
Iλ

where Iλ is the arc with center at the point λ/|λ|, |Iλ| = 1−|λ|2 and C is an
absolute constant, we can get from there (recall that |Iλ| = 1− |λ|2 = 2−n)

w(λ) ≥ c(2−ε)−n ·w(0) = c(2−ε)log2(1−|λ|2) ·w(0) = c·(e−δ)log(1−|λ|2) ·w(0),

where δ = δ(ε) > 0; here e is the base of the natural logarithm, not a
vector in Cd. This estimate implies the conclusion of the lemma with α(t) =
c−1(1− t2) · (e− δ)− log(1−t2).

To prove (4.1) we notice the since the weight w−1 is the Muckenhoupt
(A2) weight with the same Muckenhoupt norm as w, it is doubling and
therefore

(w−1)
2I
≥ (2− ε)−1(w−1)

I
,

where ε depends only on the Muckenhoupt norm of w. Iterating this in-
equality n times we get

(w−1)
2nI
≥ (2− ε)−n(w−1)

I
.
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The last estimate and the Muckenhoupt condition imply

w
2nI
≤M/(w−1)

2nI
≤M · (2− ε)n/(w−1)

I
≤M2(2− ε)nw

I

and that is exactly what we need. �

Corollary 4.3. If a matrix weight W satisfies the Muckenhoupt condition
(A2) with the Muckenhoupt norm at most M then for any e ∈ Cd

(1− |λ|2) ·
(W (0)e, e)

Cd

(W (λ)e, e)
Cd

≤ α(|λ|) → 0 as |λ| → 1,

where α = αM is the function from Lemma 4.2.

Proof of the corollary. The proof follows immediately from the fact that the
scalar weight w, w(ξ) =

(
W (ξ)e, e

)
Cd is the Muckenhoupt (A2) weight with

the Muckenhoupt norm at most M (see [11], proof of Corollary 2.4). �

We now return to the proof of the theorem.
The condition W−1 ∈ L1 implies that

∫
T log detW (ξ)dm(ξ) > −∞, hence

(see [7]) there exists a factorization of W of the form W = F ∗F , where F
is an outer matrix function in H2.

Take e ∈ Cd and let us compute the distance

dist
L2(W )

{z−1e, span{znCd : n ≥ 0}} = dist
L2(W )

{e, span{znCd : n > 0}}.

By the vectorial version of the Szegö theorem (see [7]) this distance is exactly
‖F (0)e‖. Using the Möbius transformation of the disk one can get from there

dist
L2(W )

{
(1− |λ|2)1/2

z − λ
e, span{znCd : n ≥ 0}

}
= ‖F (λ)e‖

Cd
.

Writing the Fourier series expansion of (1−|λ|2)1/2

z−λ

(1− |λ|2)1/2

z − λ
= (1− |λ|2)1/2

∞∑
n=0

λnz−(n+1)

one can see that for any fixed N > 0 the function (1−|λ|2)1/2

z−λ e is almost in
the “past” X−N as |λ| → 1. Namely,

fλ =
(1− |λ|2)1/2

z − λ
e

= (1− |λ|2)1/2
N−1∑
n=0

λnz−(n+1)e+ (1− |λ|2)1/2
∞∑
n=N

λnz−(n+1)e

= f1
λ + f2

λ ,
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where f2
λ ∈ X−N , and f1

λ is small,

‖f1
λ‖L2(W )

‖fλ‖L2(W )

≤
(1− |λ|2)1/2N · ‖e‖

L2(W )(
W (λ)e, e

)1/2
Cd

=
(1− |λ|2)1/2N ·

(
W (0)e, e

)1/2
Cd(

W (λ)e, e
)1/2

Cd

≤ Nα(|λ|)1/2 → 0,

as |λ| → 1, where α(.) is as in Lemma 4.2 and Corollary 4.3.
Since X0 and XN are asymptotically orthogonal, the shift invariance im-

plies that the subspaces X−N and X0 are asymptotically orthogonal as well.
Taking |λ| → 1 and then N →∞ we can conclude that

‖F (λ)e‖
Cd
/‖W (λ)1/2e‖

Cd

= dist
L2(W )

{
(1− |λ|2)1/2

z − λ
e, span{znCd : n ≥ 0}

}
/ ‖fλ‖

L2(W )

≥ 1− β(|λ|)→ 1,

where β(.) depends only on the Muckenhoupt norm of W and β(|λ|)→ 0 as
|λ| → 1.

The last inequality implies

‖W (λ)1/2F (λ)−1‖ ≤ (1− β(|λ|))−1.(4.2)

Note that since ‖F (λ)e‖
Cd
/‖W (λ)1/2e‖

Cd
≤ 1 for all e ∈ Cd, we have

‖W (λ)1/2F (λ)−1‖ ≥ 1.

We will show a little later that under assumptions of the theorem the
subspaces X0 and XN in the weighted space L2(W−1) are asymptotically
orthogonal as well. The factorization W = F ∗F yields the factorization
W−1 = F−1(F−1)∗ of W−1. Similarly to the previous case

dist
L2(W−1)

{
(1− |λ|2)1/2

1− λz
e, span{znCd : n ≥ 0}

}
= ‖F−1(λ)∗e‖

Cd
= ‖F (λ)−1∗e‖

Cd
.

Acting as before we get

‖W−1(λ)1/2F (λ)∗‖ ≤ (1− β1(|λ|))−1(4.3)

where β1(|λ|)→ 0 as |λ| → 1.
Combining (4.2) and (4.3) we get

‖W (λ)1/2W−1(λ)1/2‖ ≤ (1− β(|λ|))−1(1− β1(|λ|))−1 → 1 as |λ| → 1 .

So, we completed the proof modulo the following lemma. �
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This lemma also gives us the equivalence 1⇐⇒ 2.

Lemma 4.4. Under assumptions of Theorem 4.1 the weight W−1 is a spec-
tral density of a completely regular process, i.e., the spaces X0 and XN are
asymptotically orthogonal (as N →∞) in the weighted space L2(W−1).

Proof. It is enough to show that

‖P+

∣∣ span{X0, X
N}‖

L2(W−1)→L2(W−1)
→ 1 as N →∞.

The later is true because

‖P+

∣∣ span{X0, X
N}‖

L2(W−1)→L2(W−1)

= ‖W−1/2
(
P+

∣∣ span{X0, X
N}
)
W 1/2‖

L2→L2

= ‖W 1/2
(
P+

∣∣ span{X0, X
N}
)
W−1/2‖

L2→L2

= ‖P+

∣∣ span{X0, X
N}‖

L2(W )→L2(W )

and
‖P+

∣∣ span{X0, X
N}‖

L2(W )→L2(W )
→ 1 as N →∞

(since X0 and XN are asymptotically orthogonal in L2(W )). �

5. Vanishing Carleson measures.

Recall that W (λ) and W−1(λ) denote harmonic extensions at the point
λ ∈ D of the weights W and W−1 respectively.

Lemma 5.1. Let a matrix weight W satisfy

lim
|λ|→1

‖W (λ)1/2
(
W−1

)
(λ)1/2‖ = 1.

Then
lim sup
|λ|→1

{
det
(
W (λ)

)
exp
(
−
[
log detW

]
(λ)
)}

= 1 .

Proof. First of all let us notice that the assumption of the lemma implies that
W,W−1 ∈ L1(T), therefore log(detW ) ∈ L1(T). Therefore there exists a
factorizationW = F ∗F a.e. on T, where F is an outer function inH2(Md×d).

Since F is an outer function in H2, detF is an outer function in H2/d.
Therefore

|detF (z)| = exp {(log |detF |) (z)} = exp
{

1
2

(log detW ) (z)
}
.(5.1)

It is well known fact that F ∗(z)F (z) ≤ W (z) for any z ∈ D, where ≤
means the inequality for quadratic forms. There are many proofs of this
fact, for example it admits a very simple operator-theoretic interpretation
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which is in fact hidden in the proof of Theorem 4.1. Explanation that we
present here is more function-theoretic: Direct computation shows that

∆ (F (z)∗F (z)) = 4
(
∂̄F (z)∗

)
(∂F (z)) = 4 (∂F (z))∗ (∂F (z)) ≥ 0 ,

so for any e ∈ Cd the function ‖F (z)e‖2 is subharmonic and coincide with
(W (ξ)e, e) on T.

We can do the same factorization for W−1. Namely, let G be an outer
matrix-valued function inH2(Md×d) such thatW−1 = G∗G on T. We should
point out to the reader that in general G does not necessarily coincide with
F−1. However, applying (5.1) to G one can conclude that

|detG(z)| = exp
{

1
2
(
log detW−1

)
(z)
}

= |detF (z)|−1.(5.2)

Now we are in position to prove the lemma. By the assumption

lim
|z|→1

∥∥∥W (z)1/2(W−1)(z)1/2
∥∥∥ = 1,(5.3)

and therefore,
lim
|z|→1

∣∣det(W (z)) det
(
(W−1)(z)

)∣∣ = 1.

Using (5.2) one can rewrite the last identity as

lim
|z|→1

{[
detW (z)/|detF (z)|2

] [
detW−1(z)/|detG(z)|2

]}
= 1.

Since F (z)∗F (z) ≤W (z) and G(z)∗G(z) ≤W−1(z), expressions in brackets
are at least 1, so, taking into account (5.1) we get

lim
|z|→1

[detW (z)/ exp {(log detW )(z)}] = 0

or equivalently

lim
|z|→1

log {det(W (z))} − (log detW ) (z) = 0 .(5.4)

�

Theorem 5.2. A matrix weight W satisfies

lim sup
|λ|→1

{
det
(
W (λ)

)
exp
(
−
[
log detW

]
(λ)
)}

= 1

if and only if the measures∥∥∥∥W (z)−1/2

(
∂

∂x
W (z)

)
W (z)−1/2

∥∥∥∥2

(1− |z|2)dxdy

and ∥∥∥∥W (z)−1/2

(
∂

∂y
W (z)

)
W (z)−1/2

∥∥∥∥2

(1− |z|2)dxdy

are vanishing Carleson measures.
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The implication 3 =⇒ 4 of Theorem 1.3 follows immediately from Theo-
rem 5.2 and Lemma 5.1.

To prove the theorem we need the following well known description of
vanishing Carleson measures:

Lemma 5.3. A measure µ in the unit disk D is a vanishing Carleson mea-
sure if and only if

lim
|λ|→1

∫
D

1− |λ|2

|1− λz|2
dµ(z) = 0.

We also need the following lemma that was proved in [11], see Lemma
3.1 there.

Lemma 5.4. Let W be a harmonic function of n variables with values in
the space of strictly positive d× d matrices (W (x) = W (x)∗ > 0 ∀x). Then

∆ (log(detW )) = −
n∑
j=1

trace

((
W−1/2∂W

∂xj
W−1/2

)2
)
.

Proof of Theorem 5.2. The proof below follows the lines of the proof of The-
orem 3.2 of [11].

By Green’s formula and Lemma 5.4

log {det(W (s))} − (log detW ) (s)

= − 1
2π

∫∫
D

log
∣∣∣∣1− szz − s

∣∣∣∣∆ log {det(W (z))} dxdy

=
1
4π

∫∫
D

{
trace

(
W (z)−1/2∂W (z)

∂x
W (z)−1/2

)2

+ trace
(
W (z)−1/2∂W (z)

∂y
W (z)−1/2

)2
}

log
∣∣∣∣1− szz − s

∣∣∣∣2 dxdy.
Using an elementary inequality log(1/a) ≥ 1 − a for 0 < a ≤ 1 and the

fact that ‖A‖ ≤ traceA for a nonnegative matrix A, the last integral is at
least

1
4π

∫∫
D

∥∥∥∥W (z)−1/2∂W (z)
∂x

W (z)−1/2

∥∥∥∥2

log
∣∣∣∣1− szz − s

∣∣∣∣2 dxdy
≥ 1

4π

∫∫
D

∥∥∥∥W (z)−1/2∂W (z)
∂x

W (z)−1/2

∥∥∥∥2
(

1−
∣∣∣∣ z − s1− sz

∣∣∣∣2
)
dxdy

=
∫∫

D

∥∥∥∥W (z)−1/2∂W (z)
∂x

W (z)−1/2

∥∥∥∥2

· (1− |s|
2)(1− |z|2)

|1− sz|2
dxdy.
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Together with (5.4) this imply

lim
|s|→1

∫∫
D

(1− |s|2)
|1− sz|2

·
∥∥∥∥W (z)−1/2∂W (z)

∂x
W (z)−1/2

∥∥∥∥2

(1− |z|2) dxdy = 0

that yields that the measure
∥∥W (z)−1/2

(
∂
∂xW (z)

)
W (z)−1/2

∥∥2
(1−|z|2) dxdy

is a vanishing Carleson measure.

The measure
∥∥∥W (z)−1/2

(
∂
∂yW (z)

)
W (z)−1/2

∥∥∥2
(1− |z|2) dxdy is treated

similarly.
To prove the opposite implication, let us estimate the integral∫∫

D
trace

(
W (z)−1/2∂W (z)

∂x
W (z)−1/2

)2

log
∣∣∣∣1− szz − s

∣∣∣∣2 dxdy
(the integral with ∂W/∂y can be estimated absolutely the same way). De-
note by bs a Blaschke factor with zero at the point s, bs(z) = (z−s)(1−sz)−1.

First of all, we can estimate the trace by d · ‖ · ‖, where d is dimension of
the space. So we can estimate the integral by

C

∫∫
D

∥∥∥∥W (z)−1/2∂W (z)
∂x

W (z)−1/2

∥∥∥∥2

log |bs(z)|−2dxdy

=
∫∫

|bs(z)|<ε

· · · +
∫∫

|bs(z)|≥ε

· · · .

To estimate the second integral we notice that

log |bs(z)|−2dxdy ≤ C(ε)
(1− |s|2)(1− |z|2)

|1− sz|2

for |bs(z)| ≥ ε, and since the measure is a vanishing Carleson measure we
can make the integral as small as we want when |s| → 1.

To estimate the first integral let make a trivial observation: If w ∈ L1(T),
w ≥ 0 and w(z) denotes its harmonic extension at the point z, then for all
z such that |z| ≤ 1/2 (and therefore for all z such that |z| < ε ≤ 1/2)

∂

∂x
w(z) ≤ Cw(0),

where C is an absolute constant. Combining this observation with the Har-
nack inequality w(0) ≤ C ′w(z), |z| ≤ 1/2, and applying it to functions
w(.) =

(
W (·)e, e)Cd we get the inequality for quadratic forms

∂

∂x
W (z) ≤ CεW (0) ≤ C1W (z).

This implies∥∥∥∥W (z)−1/2
( ∂
∂x
W (z)

)
W (z)−1/2

∥∥∥∥ ≤ C1, ∀z : |z| < ε ≤ 1/2.
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Using the Möbius transformation z 7→ bs(z) we get∥∥∥∥W (z)−1/2
( ∂
∂x
W (z)

)
W (z)−1/2

∥∥∥∥ ≤ Cε , ∀z : |bs(z)| < ε ≤ 1/2 .

Since ∫∫
|bs(z)|≤ε

log |bs(z)|−2dxdy ≤ Cε2 log
1
ε
,

we can estimate the first integral by Cε2 log(1/ε); we can make this number
as small as we want by picking sufficiently small ε.

�

6. Embedding theorem and equivalent norms.

By analogy with the scalar case (see [12]) we will say that a matrix weight
W satisfies the invariant A∞ condition if

sup
s∈D

{
det
(
W (s)

)
exp
(
−
[
log detW

]
(s)
)}

<∞ .(invA∞)

The supremum is called the invariant A∞ norm of W .
Theorem 5.2 implies that if the measures∥∥∥∥W (z)−1/2

(
∂

∂x
W (z)

)
W (z)−1/2

∥∥∥∥2

(1− |z|2)dxdy

and ∥∥∥∥W (z)−1/2

(
∂

∂y
W (z)

)
W (z)−1/2

∥∥∥∥2

(1− |z|2)dxdy

are vanishing Carleson measures then the weight W satisfies the invariant
A∞ condition.

Literally repeating the proof of Theorem 5.2 one can obtain that the
weight W satisfies the invariant A∞ condition if and only if the above mea-
sures are Carleson.

We will need the following “embedding theorem”. More general result
was proved in [11], Lemma 4.1.

Lemma 6.1. Let W be a matrix weight satisfying the invariant A∞ condi-
tion, and let µ be a Carleson measure with the Carleson norm ‖µ‖

C
. Then

for any analytic (or antianalytic) vector-function f , the following inequality
holds,∫∫

D
(W (z)f(z), f(z)) dµ(z) ≤ C‖µ‖

C

∫
T
(W (ξ)f(ξ), f(ξ))dm(ξ),

where the constant C depends the dimension d and the invariant A∞ norm
of W .
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Proof. The invariant A∞ condition implies that log detW ∈ L1, so there
exists (see [7]) an outer function F ∈ H2(Md×d) such that W = F ∗F . It is
well known (see again [7]) that

|detF (z)| = exp
{

1
2
[
log detW

]
(z)
}
.

It is well known and it was already shown it in the proof of Lemma 5.1 that
F (z)∗F (z) ≤W (z). Hence

‖W (z)1/2F (z)−1e‖ ≥ ‖e‖, e ∈ Cd .(6.5)

Since∣∣∣det
{
W (z)1/2F (z)−1

}∣∣∣ = {det
(
W (λ)

)
exp
(
−
[
log detW

]
(λ)
)}1/2

≤ C

we can estimate
‖W (z)1/2F (z)−1e‖ ≤ C .

Together with (6.5) it implies that (W (z)e, e) and ‖F (z)e‖2 are equivalent
in a sense of two-sided estimate. Therefore∫∫

D
(W (z)f(z), f(z)) dµ(z)

≤ C
∫∫

D
(F (z)f(z), F (z)f(z)) dµ(z)

≤ C‖µ‖
C

∫
T
(F (ξ)f(ξ), F (ξ)f(ξ))dm(ξ)

= C‖µ‖
C

∫
T
(W (ξ)f(ξ), f(ξ))dm(ξ).

�

We also need the following simple lemma.

Lemma 6.2 (equivalence of weighted norms). Let W be a matrix weight
satisfying the invariant A∞ condition. There exist a constant C such that for
any analytic or antianalytic vector-function f in L2(W ) satisfying f(0) = 0

1
C

∫
T
(Wf, f)dm ≤

∫∫
D
(W (z)f ′(z), f ′(z)) log

1
|z|

dxdy ≤ C
∫

T
(Wf, f)dm.

Proof. Let us recall the the operators ∂ and ∂ are defined as

∂f =
1
2

(
∂f

∂x
− i∂f

∂y

)
, ∂f =

1
2

(
∂f

∂x
+ i

∂f

∂y

)
.

Recall that for analytic functions ∂f = f ′ and ∂f = 0.
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Let f be an analytic function, f(0) = 0. Using the Green’s formula and
taking into account that f(0) = 0 and ∆ = 4∂∂ = 4∂∂ we get∫

T

(
Wf, f

)
dm =

1
2π

∫∫
D

∆
(
W (z)f(z), f(z)

)
log

1
|z|
dxdy

=
2
π

∫∫
D

(
∂W (z)f ′(z), f(z)

)
log

1
|z|
dxdy

+
2
π

∫∫
D

(
∂W (z)f(z), f ′(z)

)
log

1
|z|
dxdy

+
2
π

∫∫
D

(
W (z)f ′(z), f ′(z)

)
log

1
|z|
dxdy

=
2
π

(I1 + I2 + I3).

The last integral I3 is exactly the integral we want to estimate. Let us
denote A2 :=

∫
T
(
Wf, f

)
dm, B2 := I3. We want to show that A � B in a

sense of two sided estimate. Let us estimate I1:
|I1|

=
∣∣∣ ∫∫

D

(
W (z)−1/2∂W (z)W (z)−1/2W (z)1/2f ′(z),W (z)1/2f(z)

)
· log

1
|z|
dxdy

∣∣∣
≤
∣∣∣ ∫∫

D

∥∥W (z)−1/2∂W (z)W (z)−1/2
∥∥ · ∥∥W (z)1/2f ′(z)

∥∥ · ∥∥W (z)1/2f(z)
∥∥

· log
1
|z|
dxdy

∣∣∣
≤
(∫∫

D

∥∥W (z)−1/2∂W (z)W (z)−1/2
∥∥2(

W (z)f(z), f(z)
)

Cd log
1
|z|
dxdy

)1/2

·
(∫∫

D

(
W (z)f ′(z), f ′(z)

)
Cd log

1
|z|
dxdy

)1/2

.

The measure
∥∥W (z)−1/2∂W (z)W (z)−1/2

∥∥2 log 1
|z|dxdy is Carleson, so by

Lemma 6.1 the first term in the product is estimated by KA (K is a con-
stant). The second term is just B so |I1| ≤ KAB. Similarly |I2| ≤ KAB.
So

A2 = B2 + I1 + I2 ,
where

|I1|, |I2| ≤ KAB .
This immediately implies

1
C
A ≤ B ≤ CA
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for an appropriate choice of C. �

7. Proof of the implication 6 =⇒ 1.

To prove the implication 6 =⇒ 1 we need to estimate
∫

T(Wznf, g)dm, f ∈
X0, g ∈ X0, ‖f‖L2(W )

= ‖g‖
L2(W )

= 1.

Using the Green’s formula and taking into account that g(0) = 0 and
∆ = 4∂∂ = 4∂∂ we get∫

T
(Wznf, g)dm =

1
2π

∫∫
D

∆
(
W (z)znf(z), g(z)

)
Cd log

1
|z|
dxdy

=
2
π

∫∫
D

(
∂W (z)∂(znf(z)), g(z)

)
Cd log

1
|z|
dxdy

+
2
π

∫∫
D

(
∂W (z)(znf(z)), ∂g(z)

)
Cd log

1
|z|
dxdy

=
2
π

(I1 + I2).

The second integral is easy to estimate:

|I2|

=
∣∣∣ ∫∫

D

(
W (z)−1/2∂W (z)W (z)−1/2W (z)1/2(znf(z)),W (z)1/2∂g(z)

)
Cd

· log
1
|z|
dxdy

∣∣∣
≤
∫∫

D
‖W (z)−1/2∂W (z)W (z)−1/2‖ · ‖W (z)1/2(znf(z))‖ · ‖W (z)1/2∂g(z)‖

· log
1
|z|
dxdy

≤
(∫∫

D
|z|2n · ‖W (z)−1/2∂W (z)W (z)−1/2‖2 ·

(
W (z)f(z), f(z)

)
Cd

· log
1
|z|
dxdy

)1/2

·
(∫∫

D

(
W (z)∂g(z), ∂g(z)

)
Cd log

1
|z|
dxdy

)1/2

.

The last term is equivalent to the norm ‖g‖
L2(W )

(see Lemma 6.2), so by
Lemma 6.1

|I2| ≤ ‖f‖L2(W )
· ‖g‖

L2(W )

·
∥∥∥∥|z|2n · ‖W (z)−1/2∂W (z)W (z)−1/2‖ log

1
|z|
dxdy

∥∥∥∥1/2

C

.
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Since the measure ‖W (z)−1/2∂W (z)W (z)−1/2‖ log 1
|z|dxdy is a vanishing

Carleson measure, the Carleson norm∥∥∥∥|z|2n · ‖W (z)−1/2∂W (z)W (z)−1/2‖ log
1
|z|
dxdy

∥∥∥∥1/2

C

→ 0

as n→∞. So |I2| → 0 as n→∞.
To estimate I1 we pick r < 1 close to 1 and split the integral into two:

I1 =
∫∫

rD . . .+
∫∫

D\rD . . . . Acting as with I2 we can estimate∣∣∣∣∫∫
X
. . .

∣∣∣∣
≤
(∫∫

X
·‖W (z)−1/2∂W (z)W (z)−1/2‖2 ·

(
W (z)g(z), g(z)

)
Cd

· log
1
|z|
dxdy

)1/2

·
(∫∫

X

(
W (z)∂

(
znf(z)

)
, ∂
(
znf(z)

))
Cd log

1
|z|
dxdy

)1/2

,

whereX is either rD or D\rD. Note that both terms are uniformly bounded.
We can say even more. If X = rD the second term can be made as small

as we wish by picking sufficiently large n.
Let nowX = D\rD. The measure ‖W (z)−1/2∂W (z)W (z)−1/2‖ log 1

|z|dxdy

is a vanishing Carleson measure, so for r sufficiently close to 1 its restriction
onto D \ rD has the Carleson norm as small as we want. So by Lemma 6.1
the first term is as small as we want if r is sufficiently close to 1.

8. A counterexample to Peller’s conjecture.

In this section we are going to construct a weight W , such that W−1 ∈ L1,
logW ∈ VMO, but the corresponding stationary process is not completely
regular (i.e., the weight W does not satisfy any of the conditions 1–6 of
Theorem 1.3).

Let

W = U∗
(

1 0
0 δ(z)

)
U, U =

(
cosα − sinα
sinα cosα

)
.

Here
δ(eit) = 1/ log(1/|t|), −1/4 ≤ t ≤ 1/4,

and δ is a continuous function bounded away from 0 and ∞ on the rest of
the circle, and

α(eit) = (t/|t|)δ(eit)1/4, −1/4 ≤ t ≤ 1/4,

and again α is continuous on the rest of the circle.
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Then

logW = U∗
(

0 0
0 log δ

)
U =

(
sin2 α log δ sinα cosα log δ
sinα cosα log δ cos2 α log δ

)
,

and this matrix clearly belongs to VMO: log δ = log log 1/|t| (considered
only in a neighborhood of 0) is a “typical” unbounded function in VMO, so
cos2 α log δ ∈ VMO, and all other entries of the matrix are continuous.

Let us now show that the weight W does not even satisfies the Mucken-
houpt condition (A2). Direct computations show that

W =
(

cos2 α − sinα cosα
− sinα cosα sin2 α

)
+ δ

(
sin2 α sinα cosα

sinα cosα cos2 α

)
and

W−1 =
(

cos2 α − sinα cosα
− sinα cosα sin2 α

)
+ δ−1

(
sin2 α sinα cosα

sinα cosα cos2 α

)
.

If we pick I to be a symmetric arc [e−iε, eiε] (ε > 0 is small), then off-diagonal
entries of W

I
and (W−1)

I
equal 0, and so we can estimate

W
I
≥ C

(
cos2 α(ε) 0

0 sin2 α(ε)

)
,

(W−1)
I
≥ C

(
δ(ε)−1 sin2 α(ε) 0

0 δ(ε)−1 cos2 α(ε)

)
.

Therefore∥∥[W
I
]1/2[(W−1)

I
]1/2
∥∥ ≥ Cδ(ε)−1 sinα(ε) cosα(ε)→∞ as ε→ 0 .

References

[1] J.B. Garnett, Bounded Analytic Functions, Acad. Press, NY, 1981.

[2] H. Helson and D. Sarason, Past and future, Math. Scand., 21 (1967), 5-16.

[3] I.A. Ibragimov, Completely regular multidimensional stationary processes with dis-
crete time, Proc. Steklov Inst. Math., 111 (1970), 269-301.

[4] P. Masani and N. Wiener, On bivariate stationary processes and the factorization of
matrix-valued functions, Theor. Probability Appl., 4 (1959), 300-308.

[5] V.V. Peller, Hankel operators and multivariate stationary processes, Operator theory:
Operator algebras and applications, Part 1, (Durham, NH, 1988), 357-371, Proc.
Sympos. Pure Math., 51(1), Amer. Math. Soc., Providence, RI, 1990.

[6] V.V. Peller and S.V. Khruschev, Hankel operators, best approximation, and stationary
Gaussian processes, Russian Math. Surveys, 37 (1982), 53-124.

[7] M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, (Oxford Math-
ematical Monographs) Oxford Science Publications, The Clarendon Press, Oxford
University Press, New York, 1985.

[8] Yu.A. Rozanov, Stationary Stochastic Processes, Holden-Day, SF, 1967.



382 S. TREIL AND A. VOLBERG

[9] D. Sarason, An addendum to “Past and future”, Math. Scand., 30 (1972), 62-64.

[10] S. Treil and A. Volberg, Wavelets and the angle between past and future, Journal of
functional analysis, 143(2) (1997), 269-308.

[11] , Continuous frame decomposition and a vector Hunt-Muckenhoupt-Wheeden
Theorem, Arkiv för Matematik, 35(2) (1997), 363-386.

[12] S. Treil, A. Volberg and D. Zheng, Hilbert transform, Toeplitz operators and Hankel
operators, and invariant A∞ weights, to appear in Rev. Mat. Iberoamericana.

[13] N. Wiener and P. Masani, The prediction theory of multivariate stochastic processes,
I. The regularity conditions, Acta Math., 98 (1957), 111-150.

[14] , The prediction theory of multivariate stochastic processes, II. The linear
predicator, Acta Math., 99 (1958), 93-137.

Received February 2, 1998. This research was partially supported by the NSF grant DMS
9622936, binational Israeli-USA grant BSF 00030, and research program at MSRI in the
Fall of 1997.

Michigan State University
East Lansing, Michigan 48824
E-mail address: treil@math.msu.edu

Michigan State University
East Lansing, Michigan 48824
E-mail address: volberg@math.msu.edu

mailto:treil@math.msu.edu
mailto:volberg@math.msu.edu


PACIFIC JOURNAL OF MATHEMATICS
Vol. 190, No. 2, 1999

LOWER BOUND ESTIMATES
OF THE FIRST EIGENVALUE
FOR COMPACT MANIFOLDS

WITH POSITIVE RICCI CURVATURE

DaGang Yang

We present some new lower bound estimates of the first
eigenvalue for compact manifolds with positive Ricci curva-
ture in terms of the diameter and the lower Ricci curvature
bound of the manifolds. For compact manifolds with bound-
ary, it is assumed that, with respect to the outward normal, it
is of nonnegative second fundamental form for the first Neu-
mann eigenvalue and the mean curvature of the boundary is
nonnegative for the first Dirichlet eigenvalue.

1. Introduction.

For a smooth n-dimensional closed Riemannian manifold Mn whose Ricci
curvature satisfies

Ric(Mn) ≥ (n− 1)K > 0(1.1)

for some positive constant K, it has been shown by A. Lichnerowicz [6] in
1958 (see also [7]) that the first positive eigenvalue λ of the manifold M has
a lower bound

λ ≥ nK.(1.2)

The aim of this paper is to give some new lower bound estimates in
terms of the lower Ricci curvature bound (n − 1)K and the diameter d of
the manifold M . The main results of this paper are summarized in the
following two theorems.

Theorem 1. Let Mn be a closed Riemannian manifold with Ric(Mn) ≥
(n − 1)K ≥ 0 and diameter d. Then the first positive eigenvalue λ on Mn

satisfies the lower bound

λ ≥ 1
4
(n− 1)K +

π2

d2
.(1.3)

Theorem 2. Let Mn be a compact manifold with nonempty boundary and
with Ric(Mn) ≥ (n− 1)K ≥ 0.

383
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(a) Assume that the boundary ∂M is weakly convex, that is, the second
fundamental form with respect to the outward normal is nonnegative.
Then the first positive Neumann eigenvalue λ on Mn satisfies the same
lower bound (1.3).

(b) Assume that the mean curvature with respect to the outward normal
of the boundary ∂M is nonnegative. Then the first positive Dirichlet
eigenvalue λ on Mn satisfies the lower bound estimate

λ ≥ 1
4

{
(n− 1)K +

π2

r2

}
(1.4)

where r is the inscribed radius for M .

These results generalize the Li-Yau [5] and Yang-Zhong [11] (cf. [4], [9])
estimates where they proved that the first positive eigenvalue satisfies λ ≥
π2

d2
for closed manifolds with nonnegative Ricci curvature. Notice that for

manifolds with small diameter, Theorem 1 is better than the estimate (1.2)
by A. Lichnerowicz. P. Li has conjectured that the first positive eigenvalue
should satisfy the lower bound

λ ≥ (n− 1)K +
π2

d2
.(1.5)

A proof of this conjecture would unify the Li-Yau and Yang-Zhong estimate
for manifolds with nonnegative Ricci curvature with the Lichnerowicz esti-
mate (1.1). It is my pleasure to thank Professor P. Li for raising to me this
interesting problem.

Theorems 1 and 2 follow from Theorems 4.1 and 4.2, which are more pre-
cise statements of our results. Our ideas are based on the gradient estimate
technique for eigenfunctions which was developed by P. Li and S.T. Yau
[3], [5]. Some preliminary lemmas are proved in Section 2 and the gradi-
ent estimates of eigenfunctions are presented in Section 3. These estimates
introduce a higher order term associated with the positive lower bound on
the Ricci curvature in the gradient estimates of Li-Yau and Yang-Zhong.
When K = 0, our gradient estimates reduce to the estimates derived by
Li-Yau and Yang-Zhong. The proof of Theorems 4.1 and 4.2 are presented
in Section 4.

2. Some Preliminary Lemmas.

Throughout this paper, M will be a compact n-dimensional Riemannian
manifold with or without smooth boundary with Ric(M) ≥ (n− 1)K ≥ 0.

Let v be a normalized eigenfunction of a positive eigenvalue λ on M with
either Dirichlet or Neumann boundary condition if ∂M 6= ∅, that is,

∆v = −λv,(2.1)
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such that

min v(x) ≥ −1 and max v(x) = 1(2.2)

if ∂M 6= ∅ and v is a Dirichlet eigenfunction, and

min v(x) = m1 − 1 and max v(x) = m1 + 1(2.3)

if ∂M 6= ∅ and v is a Neumann eigenfunction or ∂M = ∅, where 0 ≤ m1 < 1
is the median of v.

To give a unified presentation of the three different cases, we set m1 = 0
if ∂M 6= ∅ and v is a Dirichlet eigenfunction. Let u = v − m1. Given a
constant 0 < s < 1, consider the function

w = su = sv −m(2.4)

where 0 ≤ m = sm1 < s < 1. Thus max |w(x)| = s < 1 and lims→1− w = u.

Lemma 2.1. Let h(t) be a smooth positive function defined on the open
interval (−1, 1). Assume that Ric(M) ≥ (n − 1)K and there is a point
p ∈M such that the smooth function

H = |∇w|2 − 2h(w)(2.5)

satisfies the conditions that

H(p) = maxH(x) = 0 and ∇H(p) = 0.(2.6)

Then, at t = w(p), the function h satisfies the inequality

h′
2 + λ(t+m)h′ + 2h{(n− 1)K − λ− h′′} ≤ 0.(2.7)

Proof. Let t = w(p). Since |w| ≤ s < 1, H(p) = 0, and h is a positive
smooth function on (−1, 1), we have

|∇w(p)|2 = 2h(t) > 0.(2.8)

Choose a normal orthonormal frame e1, e2, . . . , en on a neighborhood of p
such that eiw(p) = 0 for i > 1. For any smooth function f , we shall adopt
the notation that fi = eif(p) and fij = ejeif(p) for i, j = 1, 2, . . . , n. Then
wi = 0 for i > 1 and (2.8) implies that w2

1 = 2h(t) > 0. Since ∇H(p) = 0,
we have

0 = Hj = 2
n∑
i=1

wiwij − 2h′(t)wj = 2(w1w1j − h′(t)wj)(2.9)

for j = 1, 2, . . . , n. In particular,

w11 = h′(t).(2.10)

Since H attains its maximum at p and ∇H(p) = 0, the maximum principle
applies to give

∆H(p) ≤ 0.(2.11)
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It follows from Bochner’s formula

1
2
∆|∇w|2 =

n∑
i,j=1

w2
ij +∇w · ∇(∆w) + Ric(∇w,∇w),(2.12)

(2.8), (2.10), (2.11), and ∆w = s∆v = −λ(w +m) that

0 ≥ 1
2
∆H(p)

=
n∑

ij=1

w2
ij − λ|∇w|2 + Ric(∇w,∇w)− {h′(t)∆w + h′′(t)|∇w|2}

≥ h′
2(t) + λ(t+m)h′(t) + 2h(t){(n− 1)K − λ− h′′(t)}.

If the maximum value of H is attained at an interior point p in M , the
condition that ∇H(p) = 0 in Lemma 2.1 is automatically satisfied. When
∂M 6= ∅ and p ∈ ∂M , the following lemma assures that ∇H(p) = 0 remains
to be true if suitable convexity conditions are imposed on the boundary.
Thus the maximum principle still applies even the maximum value of H is
attained on the boundary.

Lemma 2.2. Let h(t) be a smooth positive function on the open interval
(−1, 1), Assume that ∂M 6= ∅ and the maximum value 0 of the function
(2.5) is attained at a boundary point p ∈ ∂M . Then ∇H(p) = 0 in either of
the following two situations.

(a) v is a Neumann eigenfunction and ∂M is weakly convex in the sense
that the second fundamental form S in the outward normal direction
is nonnegative definite.

(b) v is a Dirichlet eigenfunction, ∂M has nonnegative mean curvature
trS ≥ 0 in the outward normal direction, and h(t) is an even function.

Proof. Let p ∈ ∂M and H(p) = maxH(x) = 0. We first consider the case
where v is a Neumann eigenfunction and assume that ∂M is weakly convex.
Let en be the unit outward normal vector field on ∂M . Then enw = 0 on
∂M since w = sv−m and v is a Neumann eigenfunction. Let e1, e2, . . . , en−1

be a local orthonormal frame tangent to ∂M on a neighborhood of p in ∂M
such that wi = eiw(p) = 0 for i > 1. Extend e1, e2, . . . , en to an orthonormal
frame in a neighborhood of p inM by parallel translation along the geodesics
exp∂M (ten). Thus en = d

dt exp∂M (ten) and Denei = 0 for i = 1, 2, · · · , n,
where D is the covariant differential operator of the Riemannian manifold
M . Moreover

∇w(p) = w1e1(p) 6= 0(2.13)

since |∇w(p)|2 = 2h(w(p)) > 0 and wi = 0 for i > 1. Since ∂M is smooth,
enw(p) = 0, and H has a maximum at p ∈ ∂M , we have Hi = eiH(p) = 0
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for i < n and

0 ≤ Hn = en|∇w(p)|2 = 2w1ene1w(p)(2.14)
= 2w1{e1enw(p) + (Dene1)w(p)− (De1en)w(p)}
= −2w2

1〈De1en, e1〉

where the last equality follows from the facts that enw = 0 on ∂M , e1 is
tangent to ∂M , Dene1 = 0, and wi = 0 for i > 1.

On the other hand, since ∂M is weakly convex, that is, the second fun-
damental form S satisfies S(V, V ) = 〈DV en, V 〉 ≥ 0 for all tangent vector V
to ∂M , we obtain

0 ≤ Hn = −2w2
1S(e1, e1) ≤ 0.(2.15)

Hence Hn = 0 and ∇H(p) =
∑n

i=1Hiei(p) = 0.

Now let h be an even function and let v be a Dirichlet eigenfunction
on M with nonnegative mean curvature trS ≥ 0. Extend en to a local
orthonormal frame e1, e2, . . . , en on a neighborhood of p in M such that
Denei = 0 for i = 1, 2, . . . , n. Recall that for Dirichlet boundary condition,
we have m1 = 0, thus w = sv and w|∂M = sv∂M = 0. Therefore eiw|∂M = 0
for i < n and ∇h(w)|∂M = 0 since h is an even function. Since H attains
its maximum value at p ∈ ∂M , we have Hi = 0 for i < n and

0 ≤ Hn = en|∇w(p)|2 = 2
n∑
i=1

wieneiw(p) = 2wne2nw(p).(2.16)

Since w(p) = 0 and Denen = 0, it follows from the definition of the Laplace
operator that

0 = −λw(p) = ∆w(p) =
n∑
i=1

(e2i −Deiei)w(p)(2.17)

= e2nw(p) + ∆w(p)− wn
n−1∑
i=1

〈en, Deiei〉

where ∆ is the Laplace operator on ∂M with the induced Riemannian met-
ric. Since w|∂M = 0 and the mean curvature

trS =
n−1∑
i=1

〈Deien, ei〉 = −
n−1∑
i=1

〈en, Deiei〉(2.18)

is nonnegative, we obtain ∆w(p) = 0 and

0 ≤ Hn = 2wne2nw(p) = −2w2
ntrS(p) ≤ 0.(2.19)

Therefore Hn = 0 and ∇H(p) = 0.
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We shall also need the following lower bound estimate of the first eigen-
value, which is due to A. Lichnerowicz [6] when M is a compact manifold
without boundary. For completeness sake, a proof is enclosed.

Lemma 2.3. Assume that Ric(M) ≥ (n− 1)K > 0. Let λ be the first posi-
tive eigenvalue on M (with either Dirichlet or Neumann boundary condition
if ∂M 6= ∅). If ∂M 6= ∅, we also assume that ∂M is of nonnegative mean
curvature trS ≥ 0 if λ is a Dirichlet eigenvalue and ∂M is of nonnegative
definite second fundamental form S ≥ 0 if λ is a Neumann eigenvalue. Then

λ ≥ nK.(2.20)

Proof. Let v be an eigenfunction of the eigenvalue λ. The lower bound
(2.20) follows from integrating Bochner’s formula for ∇v

1
2
∆|∇v|2 =

n∑
i,j=1

v2
ij − λ|∇v|2 + Ric(∇v,∇v)(2.21)

on M and applying the boundary conditions. More specifically, using the
Schwarz inequality

n∑
i,j=1

v2
ij ≥

n∑
i=1

v2
ii ≥

1
n

(∆v)2 =
1
n
λ2v2,(2.22)

and the lower bound on the Ricci curvature, integrate (2.21) over M yields

1
2

∫
∂M

en|∇v|2 =
1
2

∫
M

∆|∇v|2 ≥
∫
M

{
1
n
λ2v2 + [(n− 1)− λ]|∇v|2

}
.

(2.23)

Since ∆v = −λv, multiply by v and integrate over M and use the boundary
conditions yield

∫
M |∇v|

2 = λ
∫
M v2. Hence

1
2

∫
∂M

en|∇v|2 ≥
n− 1
n

λ(nK − λ)
∫
M
v2.(2.24)

If ∂M = ∅, then (2.20) follows from (2.24) immediately. Otherwise, we show
that en|∇v|2 ≤ 0 pointwisely on ∂M for either of the two boundary condi-
tions. Indeed, for any p ∈ ∂M , choose an orthonormal frame e1, e2, . . . , en
as in the proof of Lemma 2.2. For Neumann boundary condition, similar
computations as in (2.14), (2.15), and the convexity condition S ≥ 0 yield

en|∇v|2 = −2v2
1S(e1, e1) ≤ 0.(2.25)

For Dirichlet boundary condition, similar computations as in (2.17), (2.18),
(2.19), and trS ≥ 0 yield

en|∇v|2 = −2v2
ntrS ≤ 0.(2.26)
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In any case, we have ∫
∂M

en|∇v|2 ≤ 0.(2.27)

Thus the lower bound estimate (2.20) follows from (2.24) and (2.27).

Notice that if we have a test function h which satisfies the conditions in
Lemma 2.1, then we get a gradient estimate

|∇w|2 ≤ 2h(w).(2.28)

To construct a suitable test function h, the following function z, which was
introduced by H.C. Yang and J.Q. Zhong [11] to estimate the first eigenvalue
for manifolds with nonnegative Ricci curvature, is especially useful.

Lemma 2.4. The function

z(t) =
2
π

(
arcsin t+ t

√
1− t2

)
− t(2.29)

is a continuous odd function on [−1, 1]. Furthermore, on the open interval
(−1, 1), z is smooth and satisfies

(1− t2)z′′ + tz′ + t = 0,(2.30)

2
5
t2(1− t2) ≤ |z(t)| < 1

4
(1− t4),(2.31)

z′
2 − 2zz′′ >

1
4
(t− tz′ + 2z)2,(2.32)

2(1− t2)(3 + t2)(z′2 − 2zz′′ + z′) >
{

6tz + (1− t2)
(

6
π

√
1− t2 − 1

)}2

.

(2.33)

Proof. It follows from the definition (2.29) for z(t) that

z′(t) =
4
π

√
1− t2 − 1,(2.34)

z′′(t) = − 4
π
t(1− t2)−1/2.(2.35)

Thus the identity (2.30) is clearly true. Furthermore, we have

t− tz′ + 2z =
4
π

arcsin t,(2.36)

z′
2 − 2zz′′ = (1− t2)−1/2

{
(1− t2)1/2

(
1 +

16
π2

)
− 8
π

+
16
π2
t arcsin t

}
,

(2.37)
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z′
2 − 2zz′′ + z′ = 4(1− t2)−1/2

{
4
π2

[
(1− t2)1/2 + t arcsin t

]
− 1
π

(1 + t2)
}
.

(2.38)

For the inequalities, we first notice that z is an odd function. Hence, all
of the functions involved in the inequalities are even functions. Therefore,
we need only to verify them on the interval [0, 1).

Let

φ(t) = z(t)− 2
5
t2(1− t2),(2.39)

φ1(t) = 1− t4 − 4z(t),(2.40)

φ2(t) = (1− t2)1/2
(

1 +
16
π2

)
− 8
π

+
16
π2
t arcsin t− 4

π2
(1− t2)1/2(arcsin t)2,

(2.41)

φ3(t) = 8(1− t2)1/2(3 + t2)
{

4
π2

[
(1− t2)1/2 + t arcsin t

]
− 1
π

(1 + t2)
}

−
{

12
π
t arcsin t+

6
π

(1− t2)1/2(1 + t2)− 1− 5t2
}2

.(2.42)

Then the inequalities (2.31), (2.32), and (2.33) are equivalent to φ ≥ 0 and
φi > 0 for i = 1, 2, 3 on [0, 1). Since all of the functions are explicit ele-
mentary functions, it is easy to give a rigorous proof of these inequalities.
However, it will take a few pages to do so. Instead, it is a much simpler mat-
ter to combine culculus with a graphing utility to verify these inequalities.
The details will therefore be left to the readers.

3. Gradient Estimates of Eigenfunctions.

In this section, we prove the following gradient estimates.

Theorem 3.1. Let M be a compact n-dimensional Riemannian manifold
without boundary with Ric(M) ≥ (n − 1)K ≥ 0. Let v be a normalized
eigenfunction on M with median m1 of a positive eigenvalue λ. Let u =
v −m1, a = (n−1)K

2λ , and let z be the function defined by (2.29). Then, the
gradient of u satisfies the inequality

|∇u|2 ≤ λ{(1− u2)[1− a(1− u2)] + 2m1z(u)}.(3.1)

Theorem 3.2. Let M be a compact n-dimensional Riemannian manifold
with nonempty boundary and with Ric(M) ≥ (n − 1)K ≥ 0 and let a =
(n−1)K

2λ .
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(a) Assume that the boundary is weakly convex, that is, the second funda-
mental form S in the outward normal direction is nonnegative definite.
Let v be a normalized Neumann eigenfunction on M with median m1

of a positive eigenvalue λ. Then, the gradient of u = v −m1 satisfies
the same inequality (3.1).

(b) Assume that the boundary is of nonnegative mean curvature trS ≥
0 in the outward normal direction. Let v be a normalized Dirichlet
eigenfunction on M of a positive eigenvalue λ. Then the gradient of v
satisfies the inequality

|∇v|2 ≤ λ(1− v2){1− a(1− v2)}.(3.2)

Notice that since lims→1−m = m1 and lims→1− w = v −m1 (m1 = 0 for
Dirichlet eigenfunction), to show the gradient estimates (3.1) and (3.2), it
suffices to show the corresponding estimates for w. We shall use Lemma
2.1 twice. First, we show a gradient estimate for w in Lemma 3.3 which
is a slight variation of the Yang-Zhong [11] estimate for compact manifolds
without boundary (see also [4] and [9]).

Lemma 3.3. Assume that Ric(M) ≥ 0. If ∂M 6= ∅, we also assume that ei-
ther the second fundamental form S is nonnegative definite if v is a Neumann
eigenfunction or the mean curvature trS is nonnegative if v is a Dirichlet
eigenfunction. Let w = sv −m be as in Section 2. Then, for all 0 < s < 1,
the gradient of w satisfies the inequality

|∇w|2 ≤ λ(1− w2 + 2mz(w)).(3.3)

Proof. Since |w| ≤ s < 1 and 0 ≤ m = sm1 < 1, the inequality (2.31)
implies that 1 − w2 + 2mz(w) is a positive smooth function on M . Thus,
there exists a positive constant β such that the smooth function

Q = |∇w|2 − β(1− w2 + 2mz(w))(3.4)

has 0 as its maximum value. Thus, the inequality (3.3) will follow if β ≤ λ.
Let

h(t) =
β

2
(1− t2 + 2mz(t)).(3.5)

Notice that if v is a Dirichlet eigenfunction, then m = sm1 = 0 and h
is an even function. Let p ∈ M be a point where the function Q attains
its maximum value 0. The convexity conditions S ≥ 0 or trS ≥ 0 and
Lemma 2.2 implies that ∇Q(p) = 0. It follows from Lemma 2.1 that, at
t = w(p) ∈ (−1, 1), the function h defined by (3.5) satisfies the inequality
(2.7) with K = 0, namely,

0 ≥ h′2 + λ(t+m)h′ − 2h(λ+ h′′).(3.6)
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Since h′ = β(mz′ − t), h′′ = β(mz′′ − 1), and β > 0, divide the inequality
(3.6) by β and simplify yield

0 ≥ (β − λ)
{

1 +m(t+ 2z − tz′) +m2(z′2 − 2zz′′)
}

+λm2
{
z′

2 − 2zz′′ + z′
}
−mβ{(1− t2)z′′ + tz′ + t}.(3.7)

The last term is 0 because of the identity (2.30). Completing the square in
the first term yields

0 ≥ (β − λ)
{

1 +
m

2
(t+ 2z − tz′)

}2
+ λm2{z′2 − 2zz′′ + z′}

+(β − λ)m2

{
z′

2 − 2zz′′ − 1
4
(t+ 2z − tz′)2

}
.(3.8)

If β > λ, then, it follows from Lemma 2.4 that all of the three terms on the
right side of the inequality (3.8) is nonnegative. Moreover, the first term is
positive if m = 0 and the last two terms are both positive if m 6= 0. That is
certainly not possible since the left side of the inequality (3.8) is 0. Hence,
we must have β ≤ λ.

The rest of this section will be devoted to the proof of Theorem 3.1 and
3.2. If K = 0, Theorem 3.1 and 3.2 follows from Lemma 3.3. So assume
that Ric(M) ≥ K > 0. As already been noticed, we need only show that
there exists a constant α ≥ a = (n−1)K

2λ such that w satisfies the inequality

|∇w|2 ≤ λ{(1− w2)[1− α(1− w2)] + 2mz(w)}.(3.9)

It follows from Lemma 3.3 that there exists a nonnegative constant α such
that the function

G = |∇w|2 − λ{(1− w2)[1− α(1− w2)] + 2mz(w)}(3.10)

has 0 as its maximum value since G is a strictly increasing linear function
in α and

G = |∇w|2 − λ(1− w2 + 2mz(w)) + λα(1− w2)2 ≤ λα(1− s2)2 < 0
(3.11)

if α < 0.

Suppose, on the contrary, that α < a. By Lemma 2.3, we have λ ≥ nK.
Thus

0 ≤ α < a =
(n− 1)K

2λ
≤ n− 1

2n
<

1
2
.(3.12)

It follows from the inequality (2.31) and (3.12) that the new test function

h(t) =
λ

2
{(1− t2)[1− α(1− t2)] + 2mz(t)}(3.13)

is a positive smooth function on (−1, 1).
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Let p ∈M be a point where the smooth function G attains its maximum
value 0. As in the proof of Lemma 3.3, the convexity condition S ≥ 0 or
trS ≥ 0 and Lemma 2.2 implies that ∇G(p) = 0. It follows from Lemma
2.1 that, at t = w(p) ∈ (−1, 1), the function defined by (3.13) satisfies the
inequality

h′
2 + λ(t+m)h′ + 2h{(n− 1)K − λ− h′′} ≤ 0.(3.14)

Since

h′(t) = λ{t[2α(1− t2)− 1] +mz′(t)},(3.15)

h′′(t) = λ{2α− 1− 6αt2 +mz′′(t)},(3.16)

and (n− 1)K = 2aλ, divide the inequality (3.14) by λ2 and then simplify it
using the identity (2.30) yield

0 ≥ 2(a− α){(1− t2)[1− α(1− t2)] + 2mz}
+2αt2(1− t2)[2− α(1− t2)](3.17)

+2mαt
{

6tz + (1− t2)
[

6
π

√
1− t2 − 1

]}
+m2(z′2 − 2zz′′ + z′).

It follows from the inequalities (2.31), (2.33), and (3.12) that the first
term on the right side of the inequality (3.17) is positive while the second
and the fourth terms are nonnegative, thus m > 0 and α > 0. Furthermore,
it follows from 1 > 2a > 2α > 0, (2.31), and (3.17) that

0 > α

{
t2(1− t2)(3 + t2) + 2mt

[
6tz + (1− t2)

(
6
π

√
1− t2 − 1

)]
(3.18)

+ 2m2(z′2 − 2zz′′ + z′)
}

≥ α(1− t2)−1(3 + t2)−1

{
t(1− t2)(3 + t2)

+m

[
6tz + (1− t2)

(
6
π

√
1− t2 − 1

)]}2

+m2α

{
2(z′2 − 2zz′′ + z′)

− (1− t2)−1(3 + t2)−1

[
6tz + (1− t2)

(
6
π

√
1− t2 − 1

)]2}
.

Since m > 0 and α > 0, the inequality (3.18) apparently contradicts with
the inequality (2.33) in Lemma 2.4. Therefore, we have proved that there
exists a constant α ≥ a such that w satisfies the gradient estimate (3.9) for
each constant 0 < s < 1. Taking the limit to the inequality (3.9) by letting
s→ 1− now yields the inequalities (3.1) and (3.2). This completes the proof
of Theorems 3.1 and 3.2.
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4. Lower Bound Estimates of the First Positive Eigenvalue.

In this section, we apply the gradient estimates obtained in the previous
section to derive some new lower bound estimates of the first positive eigen-
value on compact Riemannian manifolds whose Ricci curvature satisfies
Ric(M) ≥ (n− 1)K ≥ 0.

Theorem 4.1. Let M be a compact n-dimensional Riemannian manifold
without boundary whose Ricci curvature satisfies Ric(M) ≥ (n − 1)K ≥ 0.
Let d be the diameter of M . Let v be the normalized eigenfunction of the
first positive eigenvalue λ so that

inf v(x) = m1 − 1 and max v(x) = m1 + 1(4.1)

where 0 ≤ m1 < 1 is the median of v. Then

λ ≥ min

{
(n− 1)K +

π2

d2
, (n− 1)K/4 +

π2

d2

[
1 + 0.09m2

1

]2 [1(4.2)

+
∞∑
k=1

(4k − 1)!!(2k − 1)!!
(4k)!!(2k)!!

(
(n− 1)Kd2

4π2 + 3(n− 1)Kd2

)2k]2}
.

Proof. Let u = v −m1. It follows from Theorem 3.1 that

|∇u|2 ≤ λ{(1− u2)[1− a(1− u2)] + 2m1z(u)}(4.3)

where a = (n−1)K
2λ . Hence

(4.4)
|∇u|

(1− u2)1/2[1− a(1− u2)]1/2[1 + 2m1z(u)(1− u2)−1[1− a(1− u2)]−1]1/2

≤ λ1/2.

By (4.1), there exist two points p, q ∈M such that

u(p) = −1 and u(q) = 1.(4.5)

Let γ(t) be a minimal geodesic from p to q in M and let

θ(x) = arcsinu(x) ∈ [−π/2, π/2].(4.6)
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Integrate (4.4) along γ yields

λ1/2d ≥
∫
γ
λ1/2dt ≥

∫ 1

−1
(1− u2)−1/2[1− a(1− u2)]−1/2{1

+ 2m1z(u)(1− u2)−1[1− a(1− u2)]−1}−1/2du(4.7)

=
∫ π/2

−π/2

[
1− a

2
− a

2
cos 2θ

]−1/2
{

1 + 2m1z(sin θ) sec2 θ

[
1

− a

2
− a

2
cos 2θ

]−1}−1/2

dθ.

Let b = a
2−a = (n−1)K

4λ−(n−1)K . Then 0 ≤ b < 1/3 since λ ≥ nK. Thus[
1− a

2
− a

2
cos 2θ

]−1/2
= (1− a/2)−1/2(1− b cos 2θ)−1/2 ≥ 1.(4.8)

The inequality (2.31) in Lemma 2.4 implies that

2m1|z(sin θ)| sec2 θ
[
1− a

2
− a

2
cos 2θ

]−1
≤ m1 < 1(4.9)

since a < 1/2.
So we can apply the binomial series expansion

(1− y)−1/2 = 1 +
∞∑
k=1

(2k − 1)!!
(2k)!!

yk(4.10)

for

y = −2m1z(sin θ) sec2 θ
[
1− a

2
− a

2
cos 2θ

]−1
(4.11)

and notice that (4.11) is an odd function in θ. It follows from (4.7), (4.8),
(4.10), and (4.11) that

λ1/2d ≥ (1− a/2)−1/2

∫ π/2

−π/2
[1− b cos 2θ]−1/2

[
1

+
∞∑
k=1

(2k − 1)!!
(2k)!!

yk
]
dθ

= 2(1− a/2)−1/2

∫ π/2

0
[1− b cos 2θ]−1/2

[
1(4.12)

+
∞∑
k=1

(4k − 1)!!
(4k)!!

y2k

]
dθ

≥ 2(1− a/2)−1/2

∫ π/2

0
[1− b cos 2θ]−1/2

[
1 +

3
8
y2

]
dθ.
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By the inequalities (2.31) and (4.8), we have

y2 ≥
[
4
5
m1 sin2 θ

]2

=
16
25
m2

1 sin4 θ.(4.13)

Now expand (1− b cos 2θ)−1/2 in (4.12) and integrate term by term yield

dλ1/2
(
1− a

2

)1/2

≥ 2
∫ π/2

0

(
1 +

6
25
m2

1 sin4 θ

)
(1− b cos 2θ)−1/2dθ

= 2
∫ π/2

0

(
1 +

6
25
m2

1 sin4 θ

)[
1 +

∞∑
k=1

(2k − 1)!!
(2k)!!

bk cosk 2θ

]
dθ

≥ π(1 + 0.09m2
1)

[
1 +

∞∑
k=1

(4k − 1)!!(2k − 1)!!
(4k)!!(2k)!!

b2k

]
.

(4.14)

Since a = (n−1)K
2λ , we obtain

λ ≥ n− 1
4

K +
π2

d2
(1 + 0.09m2

1)
2

[
1 +

∞∑
k=1

(4k − 1)!!(2k − 1)!!
(4k)!!(2k)!!

b2k

]2

(4.15)

where b = (n−1)K
4λ−(n−1)K .

So either λ ≥ π2

d2
+ (n− 1)K or else b ≥ (n−1)Kd2

4π2+3(n−1)Kd2
and

λ ≥ n− 1
4

K +
π2

d2
(1 + 0.09m2

1)
2

·

[
1 +

∞∑
k=1

(4k − 1)!!(2k − 1)!!
(4k)!!(2k)!!

(
(n− 1)Kd2

4π2 + 3(n− 1)Kd2

)2k
]2

.

(4.16)

This completes the proof of Theorem 4.1.

Theorem 4.2. Let M be a compact n-dimensional Riemannian manifold
with nonempty boundary ∂M . Assume that the Ricci curvature satisfies
Ric(M) ≥ (n − 1)K ≥ 0. Let d = diam(M) be the diameter of M and let
r = sup{d(x, ∂M)|x ∈M} be the inscribed radius of M . Then:

(a) If the second fundamental form of the boundary in the outward nor-
mal direction is nonnegative definite, then the first positive Neumann
eigenvalue for M satisfies the same inequality (4.2).

(b) If the mean curvature of the boundary in the outward normal direc-
tion is nonnegative, then the first positive Dirichlet eigenvalue for M
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satisfies the lower bound

λ ≥ min

{
(n− 1)K +

π2

4r2
,
n− 1

4
K

+
π2

4r2

[
1 +

∞∑
k=1

(4k − 1)!!(2k − 1)!!
(4k)!!(2k)!!

(
(n− 1)Kr2

π2 + 3(n− 1)Kr2

)2k
]2}

.

(4.17)

Proof. Since the Neumann eigenfunction satisfies the same gradient esti-
mate (3.1), the proof of the lower bound (4.2) for the first positive Neumann
eigenvalue is identical with the proof of Theorem 4.1. The proof of the lower
bound (4.17) for the first Dirichlet eigenvalue is also similar to the proof of
Theorem 4.1.

Let v be the normalized first Dirichlet eigenfunction such that 0 ≤ v ≤
max v(x) = 1. Let q ∈ M and p ∈ ∂M be two points such that v(q) = 1
and d(p, q) = d(q, ∂M). By the definition of the inscribed radius r, we have
d(p, q) ≤ r. It follows from the inequality (3.2) that

|∇v|
(1− v2)1/2[1− a(1− v2)]1/2

≤ λ1/2.(4.18)

Integrate the inequality (4.18) along a minimal geodesic from p to q as in
the proof of Theorem 4.1 yields the desired lower bound (4.17).
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