ON UNIVALENT HARMONIC MAPPINGS AND MINIMAL SURFACES

Allen Weitsman
ON UNIVALENT HARMONIC MAPPINGS AND MINIMAL SURFACES

ALLEN WEITSMAN

If \(S \) is the graph of a minimal surface, then when given parametrically by the Weierstrass representation, the first two coordinate functions give a univalent harmonic mapping. In this paper, the starting point is a univalent harmonic mapping \(f \) of the unit disk \(U \). A height function is defined on an appropriate Riemann surface over the range of \(f \) which satisfies the minimal surface equation away from the branch points. This height function is then used to obtain function theoretic information about \(f \).

1. Introduction.

Let \(f \) be a univalent harmonic mapping of the unit disk \(U \). By this it is meant not only that \(f \) is \(1 - 1 \) and harmonic, but also that \(f \) is sense preserving.

Harmonic univalent mappings were first studied in connection with minimal surfaces by E. Heinz [H]. However, considerable interest in their function theoretic properties, quite apart from this connection, was generated by Clunie and Sheil-Small [CS-S].

Now, the Jacobian of \(f(\zeta) \) is \(J = |f_\zeta|^2 - |f_\z\|^2 \), and \(f \) can be written

\[
f = h + g \tag{1.1}
\]

where \(h \) and \(g \) are analytic in \(U \). If \(a(\zeta) \) is defined by

\[
a(\zeta) = \frac{|f_\zeta(\zeta)|}{|f_\z\(\zeta)\|} = \frac{g'(\zeta)}{h'(\zeta)}, \tag{1.2}
\]

then \(a(\zeta) \) is analytic and \(|a(\zeta)| < 1 \) in \(U \). We shall refer to \(a(\zeta) \) as the analytic dilatation as opposed to the usual dilatation \(f_\zeta/f_\z\) in the theory of quasiconformal mappings.

The case where \(a(\zeta) \) is a finite Blaschke product is of special interest since this case arises in taking Fourier series of step functions [S-S]. Their function theoretic properties have been studied in [HS2] as well as in [S-S], and infinite Blaschke products have been considered in [L].

In the present paper we shall study a connection between harmonic mappings and the theory of minimal surfaces, and in \(\S 4 \) we use this to prove a special case of uniqueness for the Riemann mapping theorem of Hengartner
and Schober [HS1]. As we have shown elsewhere, uniqueness fails in general [W].

2. Definition of the height function and conjugate height function.

Using the Weierstrass representation [O, p. 63] we shall associate with \(f \), a minimal surface given parametrically in a simply connected subdomain \(N \subseteq U \) where \(a(\zeta) \) does not have a zero of odd order.

With \(g \) and \(h \) as in (1.1) we define up to an additive constant, a branch of

\[
(2.1) \quad F(\zeta) = 2i \int \sqrt{h'(\zeta)g'(\zeta)} \, d\zeta = 2i \int h'(\zeta)\sqrt{a(\zeta)} \, d\zeta = 2i \int f_\zeta(\zeta)\sqrt{a(\zeta)} \, d\zeta.
\]

Then, by (1.2) it follows that a branch of \(F \) can be defined in \(N \), and for \(\zeta \in N \),

\[
(2.2) \quad \zeta \rightarrow (f(\zeta), \Re F(\zeta))
\]

gives a parametric representation of a minimal surface. Here we have identified \(\mathbb{R}^2 \) with \(\mathbb{C} \) by \((x, y) \leftrightarrow (\Re f, \Im f) \).

Let \(\hat{U} \) be the Riemann surface of the function \(\sqrt{a(\zeta)} \). Then \(\hat{U} \) has algebraic branch points corresponding to those points \(\zeta \in U \) for which \(a(\zeta) \) has a zero of odd order. Specifically, \(\hat{U} \) can be concretely described (the analytic configuration [Sp, 69-74]) in terms of function elements \((\alpha, F_\alpha) \) where \(\alpha \in U \), and \(F_\alpha \) is a power series expansion of a branch of \(F \) in a neighborhood of \(\alpha \) if \(a(\zeta) \) does not have a zero of odd order at \(\zeta = \alpha \), and \(F_\alpha \) a power series in \(\sqrt{\zeta - \alpha} \) otherwise. The mapping \(p: (\alpha, F_\alpha) \rightarrow \alpha \) is the projection of the surface so realized. The mapping \(F \) may now be lifted to a mapping \(\hat{F} \) on \(\hat{U} \).

By continuation, we may induce a mapping \(\hat{U} \rightarrow \hat{U} \) to a surface \(\tilde{U} \) with a real analytic structure defined in terms of elements \((\beta, \tilde{F}_\beta) \) with \(\beta \in f(U) \) by \(\alpha = f^{-1}(\beta) \) and \(\tilde{F}_\beta = F_\alpha \circ f^{-1} \). We again define a projection by \(\pi: (\beta, \tilde{F}_\beta) \rightarrow \beta \).

We shall refer to a point \(\hat{\zeta} \in \hat{U} \) to be over \(\zeta \), if \(p(\hat{\zeta}) = \zeta \), and \(\tilde{z} \in \tilde{U} \) to be over \(z \) if \(\pi(\tilde{z}) = z \).

The harmonic mapping \(f: U \rightarrow f(U) \) lifts to a mapping \(\hat{f}: \hat{U} \rightarrow \hat{U} \) which is \(1-1 \), onto, and satisfies the condition \(\pi(\hat{f}(\hat{\zeta})) = f(p(\hat{\zeta})) \) for all \(\zeta \in U \).

With these notations, we shall extend the meaning of (2.2). Thus

\[
(2.3) \quad \hat{\zeta} \rightarrow (\hat{f}(\hat{\zeta}), \Re \hat{F}(\hat{\zeta}))
\]

gives a parametric representation of a minimal surface in the sense that in a neighborhood of \(\hat{\zeta} \in \hat{U} \setminus \mathcal{B} \) where \(\mathcal{B} \) is the branch set, that is, the points
above the zeros of \(a \) of odd order, then (2.2) is the same as (2.3) computed in terms of local coordinates given by projection.

We may also define the surface nonparametrically on \(\hat{U} \setminus \hat{B} \), where \(\hat{B} = \hat{f}(B) \), as follows. Let \(D \) be an open disk in \(f(U) \) such that \(f^{-1}(D) \) contains no zeros of \(a \) of odd multiplicity. Let \(w = \varphi(x, y) \) be the nonparametric description of the minimal surface corresponding to (2.2), that is, for \(\zeta \in f^{-1}(0) \) (cf. \([HS3, p. 87]\)),

\[
\begin{align*}
(2.4) \quad x &= \Re f(\zeta) \quad y = \Im f(\zeta), \\
\varphi(x, y) &= \Re F(\zeta).
\end{align*}
\]

Then, by continuation \(\varphi \) lifts to a function \(\hat{\varphi} \) on \(\hat{U} \) which satisfies the minimal surface equation when computed in local coordinates given by projection off the branch set \(\hat{B} \). We shall call \(\hat{\varphi}(z) \) a height function corresponding to \(f \). Finally, we define a conjugate height function \(\hat{\psi}(z) \) by solving locally

\[
(2.5) \quad \psi_y = \varphi_x/W, \quad \psi_x = -\varphi_y/W \quad \left(W = \sqrt{1 + \varphi_x^2 + \varphi_y^2}\right)
\]

(cf. \([F1, p. 344]\)) and lifting to \(\hat{U} \setminus \hat{B} \) as was done for \(\varphi \). Let \(\hat{F} = \hat{\varphi} + i\hat{\psi} \).

Then \(\hat{F} \) is real analytic and locally quasiconformal on \(\hat{U} \setminus \hat{B} \), with dilatation whose magnitude is \((W - 1)/(W + 1)\). The fact that \(\hat{\psi} \) and \(\hat{F} \) are well defined on \(\hat{U} \setminus \hat{B} \) follows from Theorem 1.

A glossary of terminology is given schematically in Figure 1.
Theorem 1. With the above notations, $\hat{F} = \tilde{F} \circ \hat{f} + C$ for some constant C.

Proof. Let D be an open disk in $f(U)$ such that $f^{-1}(D)$ contain no zeros of odd multiplicities of a. We fix a branch of \sqrt{a} in $f^{-1}(D)$, and consider $\hat{\varphi}(\zeta) + i\hat{\psi}(\zeta) = \hat{F}(\zeta)$ for points in a component of \hat{U} over $f^{-1}(D)$, and $\tilde{\varphi}(\tilde{z}) + i\tilde{\psi}(\tilde{z}) = \tilde{F}(\tilde{z})$ for points in a component of \tilde{U} over D. Since we shall compute in local coordinates given by projection, to reduce notation in this proof, we shall subsequently write \hat{F}, $\hat{\varphi}$, $\hat{\psi}$ in place of $\hat{F} \circ p^{-1}$, $\hat{\varphi} \circ p^{-1}$, $\hat{\psi} \circ p^{-1}$, and \tilde{F}, $\tilde{\varphi}$, $\tilde{\psi}$ in place of $\tilde{F} \circ \pi^{-1}$, $\tilde{\varphi} \circ \pi^{-1}$, $\tilde{\psi} \circ \pi^{-1}$ respectively. With this notation, by (2.4) we have that

$$(2.6) \hat{\varphi} = \tilde{\varphi} \circ f,$$

so it suffices to show that

$$(2.7) \hat{\psi} = \tilde{\psi} \circ f + C.$$

The result then follows from continuation. □

In fact, since $\hat{\varphi} + i\hat{\psi}$ is analytic in $f^{-1}(D)$, it follows from (2.6) that to prove (2.7) it suffices to show that $\tilde{F} \circ f$ is analytic in $f^{-1}(D)$.

We first record the relationship between $a(\zeta)$ of (1.2) and $W(z)$ ($z = f(\zeta)$) of (2.5). This is given by [O, p. 105], [HS3, pp. 87-88] as

$$(2.8) |a| = \frac{W - 1}{W + 1}.$$

Now,

$$(2.9) (\hat{F} \circ f)_{\zeta} = \hat{F}_{\tilde{z}} f_{\zeta} + \hat{F} z_{\zeta} = \hat{F}_{\tilde{z}} f_{\zeta} + \hat{F} z_{\zeta}. f_{\zeta}.$$

A simple computation using (2.5) gives

$$F_{\tilde{z}} = \frac{W + 1}{W} \varphi_{\tilde{z}}, \quad F_{\zeta} = \frac{W - 1}{W} \varphi_{\zeta}.$$

When used in (2.9) these give

$$(2.10) (\hat{F} \circ f)_{\zeta} = \frac{W + 1}{W} \varphi_{\tilde{z}} f_{\zeta} + \frac{W - 1}{W} \varphi_{\zeta} f_{\zeta}.$$

Again, a direct computation gives

$$\hat{\varphi}_{\tilde{z}} = \frac{\hat{\varphi} f_{\tilde{z}} (f_{\zeta}) - \hat{\varphi} f_{\zeta} (f_{\tilde{z}})}{|f_{\zeta}|^2 - |f_{\tilde{z}}|^2} , \quad \hat{\varphi}_{\zeta} = \frac{\hat{\varphi} f_{\zeta} (f_{\tilde{z}}) - \hat{\varphi} f_{\tilde{z}} (f_{\zeta})}{|f_{\zeta}|^2 - |f_{\tilde{z}}|^2}.$$

When used in (2.10) this gives

$$(2.11) (\hat{F} \circ f)_{\zeta} = \frac{1}{W(|f_{\tilde{z}}|^2 - |f_{\zeta}|^2)} \left(2 \hat{\varphi} f_{\zeta} (f_{\tilde{z}}) + \hat{\varphi} f_{\zeta} |f_{\zeta}|^2 \left(W - 1 - \frac{|f_{\tilde{z}}|^2}{|f_{\zeta}|^2} (W + 1) \right) \right).$$
Now, by (1.2), (2.1), and (2.8) we have,
\[\hat{\psi}_\zeta = ig'/\sqrt{a}, \quad \hat{\psi}_\zeta = -i\hat{g}'/\sqrt{a}, \quad f_\zeta = g'/a, \quad f_\zeta = \hat{g}, \]
and
\[W - 1 - \frac{|f_\zeta|^2}{|f_{\bar{\zeta}}|^2}(W + 1) = W - 1 - |a|^2(W + 1) = 2(W - 1)/(W + 1). \]
Substituting into (2.11) we obtain
\[(\tilde{F} \circ f)_\zeta = \frac{1}{W(|f_\zeta|^2 - |f_{\bar{\zeta}}|^2)} \left(\frac{2ig'(g')^2}{\sqrt{aa}} - \frac{2i\hat{g}'|g'|^2}{\sqrt{a}a^2} \left(\frac{W - 1}{W + 1} \right) \right) \]
\[= 0. \]
Thus, \(\tilde{F} \circ f \) is analytic and (2.7) follows.

3. The height function corresponding to Poisson integrals of step functions.

Let \(\mathcal{P} \) be a polygon with vertices \(c_1, \ldots, c_n \) given cyclically, and in order induced by a positive orientation of \(\partial \mathcal{P} \). Let \(f \) be the Poisson integral of a step function on \(\partial U \) having values \(c_1, \ldots, c_n \) and suppose that \(f \) is then a univalent harmonic mapping, \(f: U \to \mathcal{P} \). If \(\mathcal{P} \) is convex, for example, this will always be the case \([C], [K]\). The analytic dilatation \(a(\zeta) \) for such mappings were studied in \([HS2]\) and \([S-S]\). In general, \(a(\zeta) \) is a Blaschke product of order at most \(n - 2 \), and of order precisely \(n - 2 \) if \(\mathcal{P} \) is convex \([S-S], \text{pp. 469, 473}\).

We shall now explore the boundary behavior of height functions corresponding to such mappings. The prototype for this is Scherk’s minimal surface over the square \(-\pi/2 < x < \pi/2, -\pi/2 < y < \pi/2\), given by
\[\psi(x, y) = \log(\cos x/\cos y) \]
which tends to \(+\infty\) and \(-\infty\) over alternate sides. It seems remarkable that this type of behavior persists in general for height functions corresponding to all such \(f \) described above.

Theorem 2. Let \(\mathcal{P} \) be a polygon having vertices \(c_1, \ldots, c_n \) given cyclically, and ordered by a positive orientation on \(\partial \mathcal{P} \). Let \(f \) be a univalent harmonic mapping of \(U \) such that \(f \) is the Poisson integral of a step function having the ordered sequence \(c_1, \ldots, c_n \) as its values. Then the analytic dilatation \(a(\zeta) \) of \(f \) is a finite Blaschke product of order at most \(n - 2 \), \(f(U) = \mathcal{P} \), and if \(\varphi \) is a height function for \(f \), then \(\varphi \) tends to \(+\infty\) or \(-\infty\) at points over the open segments making up the sides of \(\mathcal{P} \). If \(\mathcal{P} \) is convex, then \(+\infty\) and \(-\infty\) alternate on adjacent sides.
Proof. That $a(\zeta)$ is a Blaschke product of order at most $n - 2$ and $f(U) = \mathcal{P}$ follow from general properties of Poisson integrals [S-S, p. 469], [HS2, p. 203]. □

Let $f = h + g$ as in (1.1). Then we may write h' and g' in the form [S-S, pp. 460-461]

$$h'(\zeta) = \sum_{k=1}^{n} \frac{\alpha_k}{\zeta - \zeta_k}, \quad g'(\zeta) = -\sum_{k=1}^{n} \frac{\overline{\alpha_k}}{\zeta - \zeta_k},$$

where $\alpha_k \neq 0, \ k = 1, \ldots , n$.

With F as in (2.1), we are then interested in the branches of

(3.2) $$F(\zeta) = -2 \int \frac{\sum_{k=1}^{n} \frac{\alpha_k}{\zeta - \zeta_k} \sum_{k=1}^{n} \frac{-\overline{\alpha_k}}{\zeta - \zeta_k}}{1 + o(1)} d\zeta$$

as $\zeta \to \zeta_k, \ k = 1, \ldots , n$. The cluster sets for the nontangential approaches to points over the ζ_k give the points lying over the open segments making up the sides of \mathcal{P}.

Thus, take a vertex ζ_j, and an open segment l_j of $\partial \mathcal{P}$ corresponding to it. Then, as $\zeta \to \zeta_j$,

$$\sum_{k=1}^{n} \frac{\alpha_k}{\zeta - \zeta_k} \sum_{k=1}^{n} \frac{-\overline{\alpha_k}}{\zeta - \zeta_k} = |\alpha_j|^2 \left(1 + o(1)\right),$$

and hence, by (3.2), a branch of F satisfies

(3.3) $$F(\zeta) = \pm 2|\alpha_j| \log(\zeta - \zeta_j) + o(1)$$

as $\zeta \to \zeta_j$, for a fixed branch of the log. Suppose the fixed branch of (3.3) has minus sign, and let $\phi(z) = \text{Re} F \circ f^{-1}(z)$ be a corresponding branch in \mathcal{P} for points near the corresponding side l_j. Now suppose \mathcal{P} is convex and $F(\zeta)$ is analytically continued to an adjacent point, say ζ_{j+1}, so that ϕ is then continued to a corresponding side l_{j+1} having common endpoint c_j with l_j. Since $\phi \to -\infty$ as $z \to l_j$, it remains to show that $\phi \to +\infty$ as $z \to l_{j+1}$. This effect has been noted for minimal surfaces [JS], and can be accomplished by a simple barrier argument. I thank Professor Finn for pointing this out.

Let $0 < \beta < \pi$ be the angle in \mathcal{P} between l_j and l_{j+1}. Suppose that $\phi \to -\infty$ on both open segments l_j and l_{j+1}. Since ϕ satisfies the minimal surface equation, ϕ can only tend to $-\infty$ over line segments [O, p. 102]. Since we make no assumption at the common endpoint c_j, in order to get a contradiction we must show that $\phi \to -\infty$ at c_j as well. We may assume that $c_j = (\pi/2, 0)$, and l_j, l_{j+1} make the angle β symmetrically with respect to the x axis, opening toward the origin. Let $0 < \varepsilon < (\pi/2) \cot(\beta/2)$ be small enough so that the isosceles triangle N formed by the sector and the line $x = \pi/2 - \varepsilon$ has the given branch of F single valued. Then, two of
the sides of N are contained in the segments l_j and l_{j+1}, and the third is $x = \pi/2 - \varepsilon, -\delta < y < \delta$, where $\delta = \varepsilon \tan(\beta/2)$. If ψ is the height function for Scherk's surface given by (3.1), then for any $M > 0$, clearly

$$\phi(x, y) < -\psi(x - \pi + \varepsilon, y) - M$$

on $\partial N \setminus \{c_j\}$. By the extended maximum principle [F1, pp. 342-343], it follows that (3.4) holds throughout N. Since $M > 0$ was arbitrary, it follows that $\phi \equiv -\infty$ on N, a contradiction. Thus $\phi = +\infty$ on l_{j+1}.

4. An application to the Riemann mapping theorem.

One of the most basic results in the theory of univalent harmonic mappings is the Riemann mapping theorem of Hengartner and Schober [HS1].

Theorem A. Let D be a bounded simply connected domain whose boundary is locally connected. Fix $w_0 \in D$, and let $a(\zeta)$ be analytic in U, with $a(U) \subseteq U$. Then there exists a univalent harmonic mapping f with the following properties.

a) f maps U into D and $f(0) = w_0, f_z(0) > 0$.

b) f satisfies the equation $(f_\zeta) = af_\zeta$.

c) Except for a countable set $E \subseteq \partial U$, the unrestricted limit $f^*(e^{it}) = \lim_{\zeta \to e^{it}} f(\zeta)$ exists and belongs to ∂D.

d) The one sided limits $\lim_{\tau \to t^+} f^*(e^{i\tau})$, $\lim_{\tau \to t^-} f^*(e^{i\tau})$ through values of $e^{i\tau} \not\in E$ exist and belong to ∂D; for $e^{it} \not\in E$ they are equal and for $e^{it} \in E$ they are different.

e) The cluster set of f at $e^{it} \in E$ is the straight line segment joining the left and right limits in d).

If in Theorem A, the set D is convex, and $a(\zeta)$ is a finite Blaschke product, one can say more [HS2, p. 203], [S-S, p. 473].

Theorem B. Let f be as in Theorem A with D bounded and convex, and $a(\zeta)$ a Blaschke product of order $n - 2$. Then $f(U)$ is a polygon with n vertices all of which lie on ∂D.

We shall prove uniqueness in the case $a(\zeta) = \zeta^n$ and D convex. The case of uniqueness when $D = U$ and $a(\zeta) = \zeta$ was done in [HS2, p. 204].

The proof involves a combinatorial argument with the level sets of the height function. Such arguments are often useful in the theory of partial differential equation, and in particular the minimal surface equation [F1], [FO], [JS], [Se].

Theorem 3. The solution $f(\zeta)$ to the Riemann mapping theorem above with D convex and

$$a(\zeta) = \zeta^{n-2}$$
is unique for each \(n = 3, 4, \ldots \)

Proof. Let \(f_1 \) and \(f_2 \) be Riemann mappings corresponding to \(D \). We may assume \(f_1(0) = f_2(0) = 0 \). Let \(\Delta \) be a disk centered at 0, and contained in \(f_1(U) \cap f_2(U) \).

If \(n \) is even, then \(\hat{U} = U \) and if \(n \) is odd \(\hat{U} \) is a two sheeted cover of \(U \) with branch point over 0. Similarly, if \(\hat{U}_1 \) corresponds to \(f_1(U) \) and \(\hat{U}_2 \) to \(f(U_2) \), then \(\hat{U}_1 \) and \(\hat{U}_2 \) are one or two sheeted according as \(n \) is even or odd.

We consider the case where \(n \) is odd. The even case goes the same way, but is simpler since one can bypass discussion of Riemann surfaces.

Let \(\varphi_j, \psi_j, \tilde{\varphi}_j, \tilde{\psi}_j, \tilde{F}_j, \tilde{U}_j, \pi_j, \ j = 1, 2 \) be the quantities of §2 defined for \(f_1 \) and \(f_2 \) respectively. We may assume that \(\tilde{F}_1(0) = \tilde{F}_2(0) = 0 \). If \(\hat{\Delta} \) represents the Riemann surface of \(\sqrt{z} \) over \(\Delta \), then we may consider \(\hat{\Delta} \subseteq \tilde{U}_1 \) and \(\hat{\Delta} \subseteq \tilde{U}_2 \), so that \(\tilde{F}_1 \) and \(\tilde{F}_2 \) may both be considered as defined for all \(\hat{z} \in \hat{\Delta} \). For brevity of notation, we shall write \(\tilde{F} \) for \(\tilde{F} \circ \pi^{-1} \).

Since the analytic dilatation for \(f_1(\zeta) \) and \(f_2(\zeta) \) is 0 when \(\zeta = 0 \), it follows from (1.2), (4.1), and a) of Theorem A, that

\[
(4.2) \quad f_j(\zeta) = c_j\zeta(1 + o(1)) \quad (\zeta \to 0, \ c_j > 0, \ j = 1, 2).
\]

Then, from (2.1), (4.1), (4.2), and Theorem 1 we may take determinations of \(\tilde{F}_1 \) and \(\tilde{F}_2 \) in \(\hat{\Delta} \) so that

\[
(4.3) \quad \tilde{\varphi}_j(z) + i\tilde{\psi}_j(z) = \tilde{F}_j(z) = d_jz^{n/2}(1 + o(1)) \quad (j = 1, 2 \ z \to 0)
\]

with \(d_1, d_2 > 0 \) and \(z^{n/2} \) is some fixed branch.

Having thus fixed branches in (4.3) we may then take a constant \(\lambda > 0 \) such that

\[
(4.4) \quad \tilde{F}_1(z) - \lambda \tilde{F}_2(z/\lambda) = Cz^{n/2}(1 + o(1)) \quad (z \to 0)
\]

for some constant \(C \) and integer \(p \geq n \). We suppose \(\lambda \geq 1 \); otherwise we interchange \(\tilde{F}_1 \) and \(\tilde{F}_2 \). Now, the change from \(F(z) \) to \(\lambda F(z/\lambda) \) corresponds to replacing \(f \) by \(\lambda f \). Then the analytic dilatation is unchanged, and following the change in (2.1) it gives the parametrization \(\zeta \to (\lambda f(\zeta), \Re \lambda F(\zeta)) \).

Let \(\varphi_3, \psi_3, \tilde{\varphi}_3, \tilde{\psi}_3 \) correspond to \(f_3 = \lambda f_2 \) so that \(f_3(U) \), is nothing more than \(f_1(U) \) dilated by the constant \(\lambda \geq 1 \), and (4.5) becomes

\[
(4.5) \quad \tilde{F}_1(\hat{z}) - \tilde{F}_3(\hat{z}) = Cz^{n/2}(1 + o(1)) \quad (z \to 0).
\]

Case 1. \(C = 0 \) for every \(p \). Since \(\tilde{F}_1(z^2) - \tilde{F}_3(z^2) \) is real analytic, then \(\tilde{F}_1 \equiv \tilde{F}_3 \). Thus, in particular \(\lambda = 1 \) and \(f_1(U) = f_3(U) = \mathcal{P} \). In order to show that \(f_1 \equiv f_3 \) we use the subordination principle of [BHH, p. 170]. Briefly, since \(\mathcal{P} \) is a convex polygon by Theorem B, and \((f_1)_z(0), (f_3)_z(0) > 0\), we may apply the argument principle in [BHH, p. 170] to

\[
G(z) = (f_3)_z(0)f_1(z) - (f_1)_z(0)f_3(z)
\]
to deduce that \((f_1)_2(0) = (f_3)_2(0)\). Then, another application of the argument principle as in [BHH] to \(G_2(z) = (1 + \varepsilon)f_1(z) - f_3(z) (\varepsilon \to 0)\) shows that \(f_1 \equiv f_3\).

Case 2. \(C \neq 0\) for some \(p \geq n\). In this case, near the origin on \(\Delta\), by (4.5) there are \(2p + 4\) level curves \(\tilde{\varphi}_1 - \tilde{\varphi}_3 = 0\) emanating from \(\tilde{0}\). Between the level curves, \(\tilde{\varphi}_1 - \tilde{\varphi}_3\) alternates in sign. In order to analyze the component sets between the level sets, we must modify \(f_3\).

Let \(\eta_1, \eta_2, \ldots\) be homeomorphisms of \(|\zeta| = 1\) onto the boundary of \(\lambda D\), which converge to the (step function) boundary values of \(f_3\), and let \(f_3^{(n)}\), \(n = 1, 2, \ldots\) their corresponding Poisson integrals so that \(f_3^{(n)} \to f_3\) uniformly on compact subsets of \(U\).

The level sets of \(\tilde{\varphi}_1 - \tilde{\varphi}_3 = 0\) create \(2p + 4\) disjoint component open sets \(O_1, O_2, \ldots, O_{2p+4}\) where \(\tilde{\varphi}_1 - \tilde{\varphi}_3 > 0\) in \(O_{2j-1}\) and \(\tilde{\varphi}_1 - \tilde{\varphi}_3 < 0\) in \(O_{2j}\) for \(j = 1, \ldots, p + 2\). These components alternate in position around the origin.

For \(\varepsilon > 0\) we can find nonempty components at \(O_1(\varepsilon), O_2(\varepsilon), \ldots, O_{2p+4}(\varepsilon)\) where \(\tilde{\varphi}_1 - \tilde{\varphi}_3^{(n)} > \varepsilon\) in \(O_{2j-1}(\varepsilon)\), \(\tilde{\varphi} - \tilde{\varphi}_3^{(n)} = \varepsilon\) on \(\partial O_{2j-1}(\varepsilon)\), \(\Delta \cap O_{2j-1}(\varepsilon) \subseteq O_{2j-1}, j = 1, \ldots, 2p\), and analogous statements hold for \(O_{2j}(\varepsilon), j = 1, \ldots, p + 2\).

Now, \(f_3^{(j)}(U) = \lambda D\), so by the maximum principle for solutions to the minimal surface equation, the level sets forming the boundaries of the \(O_j(\varepsilon)\)'s must extend to points over the boundary of \(P = f_1(U)\). As in [FO, pp. 357-358], we observe that since \(\tilde{F}_1\) is \(\pm \infty\) over the sides of \(P\) by Theorem 2, if a component \(O_j(\varepsilon)\) has a boundary point over an interior point of a side of \(P\), then the boundary must contain that side. Since, by Theorem B, \(P\) has \(n\) sides, then \(\tilde{P} = \pi_1^{-1}(P)\) has \(2n\) sides. This implies that there are at most \(2n\) sets \(O_j(\varepsilon)\) whose boundaries have interior points over \(\partial P\). If \(O_j(\varepsilon)\) were a component whose boundary contained no points over \(\partial P\), then its boundary could only be interior points over \(P\), or vertices. As pointed out in [FO, p. 358], this is impossible by a theorem of Finn [F1, pp. 342-343]. Thus, \(2p + 4 \leq 2n\). Since \(p \geq n\), we obtain a contradiction and the theorem is proved. □

References

Received March 9, 1998.

Purdue University
West Lafayette, IN 47907-1395
E-mail address: weits@math.purdue.edu