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Cotilting modules and bimodules over arbitrary associative
rings are studied. On the one hand we find a connection be-
tween reflexive modules with respect to a cotilting (bi)module
U and a notion of U-torsionless linear compactness. On the
other hand we provide concrete examples of cotilting bimod-
ules over linearly compact noetherian serial rings.

Cotilting theory is a generalization of Morita duality in a sense that is
analogous to that in which tilting theory is a generalization of Morita equiv-
alence. Indeed, cotilting modules first appeared as vector space duals of
tilting modules over finite dimensional algebras (see, e.g., [H, IV, 7.8]), just
as injective cogenerators are such duals of progenerators. Later, R.R. Colby
[Cb1] studied finitely generated cotilting bimodules over noetherian rings,
proving that they induce finitistic generalized Morita dualities, similar to
the finite dimensional algebra case. More recently, in [Cb2] he investigated
a more general class of representable dualities, namely (nonfinitistic) gen-
eralized Morita dualities. He proved that the existence of such a duality
implies the existence of a second pair of functors between classes that com-
plement the reflexive ones, obtaining a result which is close to a dual form
of the celebrated Tilting Theorem [BrBu], [HaRi].

For arbitrary rings R and S, a Morita duality between left S-modules
and right R-modules is given by the contravariant Hom functors induced by
a so called Morita bimodule SWR, namely, one such that (i) the classes of
W -reflexive modules contain RR, WR, SS and SW , and are closed under
submodules, factor modules and extensions; or, equivalently, (ii) SWR is
balanced, and WR and SW are injective cogenerators. Colby’s generalized
Morita dualities in [Cb2] are those induced by a bimodule SUR such that a
natural weakening of (i) holds (just closure under factor modules is left out).
Generalizing the notion of injective cogenerator, the authors of [CpDeTo]
and [CpToTr] defined a cotilting module UR over a ring R as one such that
Cogen(UR) = Ker Ext1R(−, UR). In [CpDeTo, Proposition 1.7] it is shown
that this notion is dual to that of tilting module by means of the following

Proposition. A module UR is a cotilting module if and only if it satisfies
the conditions

(1) inj dim(UR) ≤ 1,
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(2) Ext1R(Uα
R, UR) = 0 for any cardinal α,

(3) KerHomR(−, UR) ∩Ker Ext1R(−, UR) = 0.

To obtain a homological generalization of (ii), as in [Cp], we say that a
balanced bimodule SUR in which both UR and SU are cotilting modules is
a cotilting bimodule.

In this paper we continue the study of cotilting (bi)modules over arbi-
trary rings that was begun in [Cp]. There it was shown that any cotilting
bimodule SUR induces a pair of dualities between quite large subcategories
of torsion-free and torsion modules in Mod-R and S-Mod, respectively. This
result naturally generalizes Morita dualities to torsion theories, and it is still
dual to the Tilting Theorem.

A third major component of Morita duality theory is B. Müller’s theorem
[X, Corollary 4.2] that the reflexive modules relative to a Morita bimodule
are precisely the linearly compact modules. In Section 1 we investigate the
related notion of torsionless linear compactness and its connection to the
reflexivity of modules. This allows us to find a bridge between Colby’s gen-
eralized Morita duality and cotilting bimodules by showing that a cotilting
bimodule U induces a generalized Morita duality if and only if the classes
of the U -reflexive modules coincide with those of the U -torsionless linearly
compact modules. This is accomplished, in part, by answering a question
posed in [Cp].

Perhaps the most accessible collection of examples of tilting modules over
non-artinian rings are those over hereditary noetherian serial rings. They
and their endomorphism rings were classified in [CbFu]. In Section 2 we
show that the Morita dual of a tilting module possesses most of the prop-
erties of a cotilting bimodule. Then in Section 3 we employ these results
and Warfield’s theorems on noetherian serial rings in [Wa] to show that the
dual of any tilting module over a noetherian serial ring with selfduality is a
cotilting bimodule. Thus we obtain a class of concrete examples of cotilting
bimodules that are not, in general, finitely generated.

We denote by R and S two arbitrary associative rings with unit, and by
Mod-R and S-Mod the category of all unitary right R- and left S-modules,
respectively. All the classes of modules that we introduce are to be con-
sidered as full subcategories of modules closed under isomorphisms. Given
a module U , we denote by add(U) the class of all direct summands of any
finite direct sum of copies of U , and by Cogen(U) the class of all modules
cogenerated by U , that is all the modules M such that there exists an ex-
act sequence 0 → M → Uα, for some cardinal α. We denote by RejU (−)
the reject radical, defined by RejU (M) = ∩{Ker(f) | f ∈ HomR(M,U)},
i.e., the least submodule M0 of M such that M/M0 belongs to Cogen(U).
Given a bimodule SUR, we denote by ∆ both the functors HomR(−, U) and
HomS(−, U), and by Γ both the functors Ext1R(−, U) and Ext1S(−, U). For
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any module M , δM M → ∆2(M) denotes the evaluation morphism. M is
called ∆-reflexive if δM is an isomorphism. Note that if UR is a cotilting
module, then (Ker ∆,Ker Γ) is a torsion theory in Mod-R, associated to the
idempotent radical RejU (−) = Ker(δ−). For further notation, we refer to
[AF], [S] and [CE].

1. Reflexivity and torsionless linear compactness.

We start this section pointing out some facts on ∆-reflexivity of mod-
ules, with respect to a cotilting module UR, which generalize part of [Cp,
Lemma 4 and Proposition 5]:

Lemma 1.1. Let UR be a cotilting module, and let S = End(UR). Then:
(a) UR and SS are ∆-reflexive.
(b) If SL ∈ S-Mod is a factor of any ∆-reflexive module (in particular, if

SL is finitely generated), then δL is an epimorphism.
(c) If SL ∈ Cogen(SU) is a factor of any ∆-reflexive module, then L is

∆-reflexive.
(d) For any MR ∈ Mod-R, we have Coker(δM ) ∈ Ker Γ.
(e) Let MR ∈ Mod-R. Then MR is ∆-reflexive if and only if MR ∈ Ker Γ

and ∆(M) is ∆-reflexive.
(f) If MR ∈ Ker Γ and ∆(MR) is a factor of any ∆-reflexive module (in

particular, if ∆(MR) is finitely generated), then MR is ∆-reflexive.
(g) If LR ≤ MR, MR is ∆-reflexive and M/L ∈ Ker Γ, then LR is ∆-

reflexive.

Proof. (a) ∆2(UR) ∼= ∆(SS) ∼= UR and ∆2(SS) ∼= ∆(UR) ∼= SS canonically.
(b) Let K → M → L → 0 be an exact sequence in S-Mod, with M

∆-reflexive. Then we have the exact sequence 0 → ∆(L) → ∆(M) → I →
0, where I embeds into ∆(K), so that Γ(I) = 0. Therefore we get the
commutative exact diagram

M −−−→ L −−−→ 0

∼=
yδM

yδL

∆2(M) −−−→ ∆2(L) −−−→ 0

which shows that δL is epic.
(c) Clearly SL ∈ Cogen(SU) if and only if δL is monic. We can conclude

by (b).
(d) By adjunction, we get ∆(δM )◦δ∆(M) = id∆(M), so that ∆(δM ) is epic.

Therefore, from the exact sequence 0→M/RejU (M)→∆2(M)→Coker(δM )
→0 we see that Γ(Coker(δM )) ↪→ Γ∆2(M) = 0.

(e) Again from the identity ∆(δM ) ◦ δ∆(M) = id∆(M), we see that if δM is
an isomorphism, then δ∆(M) is too, and of course M ∈ Cogen(UR) = Ker Γ.
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Conversely, if δ∆(M) is an isomorphism, then ∆(δM ) must be monic, i.e.,
Coker(δM ) ∈ Ker ∆. Moreover Coker(δM ) ∈ Ker Γ because of (d). Since
(Ker ∆,Ker Γ) is a torsion theory, we conclude that Coker(δM ) = 0, i.e., δM

is epic. Under the further assumption that M ∈ Ker Γ, we conclude that
δM is an isomorphism.

(f) Since ∆(M) ∈ Cogen(SU), (c) applies, giving ∆(M) reflexive. We
conclude by (e).

(g) From the exact sequence 0 → L → M → M/L → 0 in Mod-R, by
assumption we get the exact sequence 0→ ∆(M/L)→ ∆(M)→ ∆(L)→ 0.
We conclude using (e) and (f). �

It is well known that linear compactness plays a fundamental role in the
study of duality. Here we introduce a concept of linear compactness with
respect to a torsion theory, drawing inspiration from [GpGaWi, §3]:

Definition 1.2. Let (T ,F) be a torsion theory in Mod-R. Then a right
R-module M is called F-linearly compact if M ∈ F and for any inverse
system of morphisms {pλ : M →Mλ} with Mλ ∈ F and Coker(pλ) ∈ T , for
all λ’s, it happens that Coker(lim←− pλ) ∈ T .

If UR is a cotilting module, a module M ∈ Mod-R is called U -torsionless
linearly compact (U -tl.l.c., for short) if M is Ker Γ-linearly compact.

Note that M ∈ Mod-R is linearly compact iff M is Mod-R-linearly com-
pact, i.e., it is linearly compact with respect to the trivial torsion the-
ory ({0},Mod-R). In particular if UR is a cotilting module, then the U -
torsionless linear compactness coincides with the usual linear compactness
iff UR is an injective cogenerator.

Torsionfree linear compactness is inherited by any inverse limit of the
type in Definition 1.2, as the following result due to A. Tonolo shows:

Proposition 1.3. Let (T ,F) be a torsion theory in Mod-R, and let M ∈
Mod-R be F-linearly compact. Then for any inverse system {pλ : M →Mλ}
with Mλ ∈ F and Coker(pλ) ∈ T , the module lim←−Mλ is F-linearly compact
too.

Proof. First of all, let us note that lim←−Mλ ∈ F , because F is closed under
inverse limits. Next, let {p′µ : lim←−Mλ → M ′

µ : µ ∈ Λ′} be any inverse
system with M ′

µ ∈ F and Coker(p′µ) ∈ T for all µ’s. Let us prove that
Coker(lim←− p′µ) ∈ T . Note that the cokernel of each map p′µ ◦ lim←− pλ, for all
µ’s, is in T , because it is an extension of a factor of Coker(lim←− pλ), which is
in T , by the torsion module Coker(p′µ). Hence, by assumption, we get that
the morphism lim←−(p′µ ◦ lim←− pλ) ∼= lim←− p′µ ◦ lim←− pλ has a torsion cokernel. This
implies that Coker(lim←− p′µ) ∈ T . �

In [Cp, Proposition 10] it was proved that if SUR is a cotilting bimodule,
then any U -tl.l.c. module is ∆-reflexive; and the question of whether the
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converse is true was posed. To give a partial answer, we start with a theorem
which generalizes a well known result, substantially due to Müller [Mu] (see
also [X, Theorem 4.1]):

Theorem 1.4. Let UR be a cotilting module, and let S = End(UR). Then
the following are equivalent for any M ∈ Mod-R:

(1) M is U -tl.l.c.

(2) M is ∆-reflexive, and for all L
i

↪→ ∆(M) we have Coker∆(i) ∈ Ker ∆.

Proof. (1) ⇒ (2). Let MR be U -tl.l.c., let L be a submodule of ∆(M)
and let {Lλ : λ ∈ Λ} be the upward directed family of the finitely generated

submodules of L. Thus, if we denote by iλ : Lλ ↪→ L
i

↪→ ∆(M) the canonical
inclusions, we get lim−→Lλ = L and lim−→ iλ = i. Let now pλ = ∆(iλ) ◦ δM :
M → ∆(Lλ). Then {pλ : λ ∈ Λ} is an inverse system of morphisms in
Ker Γ. In order to show that Coker(pλ) ∈ Ker ∆ for any λ, let us consider
the commutative diagram in Mod-R

Lλ
iλ−−−→ ∆(M) ∆(M)

∼=
yδLλ

yδ∆(M)

∥∥∥
∆2(Lλ)

∆2(iλ)−−−−→ ∆3(M)
∆(δM )−−−−→ ∆(M)

where δLλ
is an isomorphism because of Lemma 1.1(c), which proves that

∆(pλ) = ∆(δM ) ◦∆2(iλ) is monic, i.e., Coker(pλ) ∈ Ker ∆.
Thus the hypothesis (1) applies, giving Coker(lim←− pλ) ∈ Ker ∆. Moreover

(∗) lim←− pλ = lim←−∆(iλ) ◦ δM
∼= ∆(lim−→ iλ) ◦ δM = ∆(i) ◦ δM .

First, if we choose L = ∆(M) we clearly get Coker(δM ) ∼= Coker(lim←− pλ) ∈
Ker ∆. On the other hand, since M ∈ Ker Γ, δM is injective and Coker(δM ) ∈
Ker Γ because of Lemma 1.1(d). Therefore Coker(δM ) = 0, i.e., M is ∆-
reflexive.

Finally, in the case L is arbitrary, since δM is an isomorphism, from (∗)
we get Coker(∆(i)) ∼= Coker(lim←− pλ) ∈ Ker ∆.

(2) ⇒ (1). Let {pλ : M → Mλ} be an inverse system of morphisms in
Mod-R, with M,Mλ ∈ Ker Γ and Coker(pλ) ∈ Ker ∆ for all λ’s.

In the sequel, we will refer to the following exact sequences

0 −−−→ Kλ −−−→ M
αλ−−−→ Iλ −−−→ 0(ex1)

0 −−−→ Iλ
βλ−−−→ Mλ −−−→ Cλ −−−→ 0(ex2)

with Kλ = Ker(pλ), Iλ = Im(pλ), Cλ = Coker(pλ) and βλ ◦ αλ = pλ.

First, let us prove that all the Kλ, Iλ, Mλ are ∆-reflexive. Note that
the sequence (ex1) is in Ker Γ, and M is ∆-reflexive by assumption, so that
from Lemma 1.1(g) we obtain that Kλ is ∆-reflexive too. Moreover, looking
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at the embedding ∆(αλ) : ∆(Iλ) ↪→ ∆(M), by hypothesis we have that
Coker(∆2(αλ)) ∈ Ker ∆. Thus we obtain the commutative exact diagram

0 −−−−→ Kλ −−−−→ M
αλ−−−−→ Iλ −−−−→ 0??y∼= ??y∼= ??yδIλ

0 −−−−→ ∆2(Kλ) −−−−→ ∆2(M)
∆2(αλ)−−−−−→ ∆2(Iλ) −−−−→ Coker(∆2(αλ)) −−−−→ 0

from which we get (thanks to Lemma 1.1(d)) Coker(∆2(αλ)) ∼= Coker(δIλ
) ∈

Ker Γ. Thus Coker(δIλ
) = 0, i.e., Iλ is ∆-reflexive. Next, from (ex2) we get

the commutative exact diagram

0 −−−→ Iλ
βλ−−−→ Mλ −−−→ Cλ −−−→ 0

∼=
yδIλ

yδMλ

∆2(Iλ)
∆2(βλ)−−−−→ ∆2(Mλ) −−−→ C ′λ −−−→ 0

where Cλ ∈ Ker ∆ by assumption. Let us prove that C ′λ ∈ Ker ∆ too. From
the embedding

0 = ∆(Cλ) −−−→ ∆(Mλ)
∆(pλ)−−−→ ∆(M)(ex3)

we get, by hypothesis, that Coker(∆2(pλ)) ∈ Ker ∆. From ∆2(pλ) =
∆2(βλ) ◦∆2(αλ) we see that C ′λ = Coker(∆2(βλ)) ∈ Ker ∆ too. Therefore,
applying the functor ∆ to the previous diagram we obtain the commutative
exact diagram

0 −−−→ ∆(Mλ)
∆(βλ)−−−−→ ∆(Iλ)y∆(δMλ
)

y∼=
0 −−−→ ∆3(Mλ)

∆3(βλ)−−−−→ ∆3(Iλ)
which shows that ∆(δMλ

) is monic. Since ∆(δMλ
) ◦ δ∆(Mλ) = id∆(Mλ), we

conclude that δ∆(Mλ) is an isomorphism, so that Mλ is ∆-reflexive, because
of Lemma 1.1(e).

Finally, from (ex3), we derive the embedding lim−→∆(pλ) : lim−→∆(Mλ) ↪→
∆(M), so that Coker(∆(lim−→∆(pλ))) ∈ Ker ∆ by assumption. Therefore we
get the commutative exact diagram

∆2(M)
∆(lim−→∆(pλ))
−−−−−−−−−→ ∆(lim−→∆(Mλ)) ∼= lim←−∆2(Mλ) −−−−−→ Coker(∆(lim−→∆(pλ))) −−−−−→ 0

∼=
x??δM

∼=
x??lim←− δMλ

M
lim←− pλ
−−−−−→ lim←−Mλ −−−−−→ Coker(lim←− pλ) −−−−−→ 0

which shows that Coker(lim←− pλ) ∼= Coker(∆(lim−→∆(pλ))) ∈ Ker ∆. �

The next result points out some good properties of U -tl.l.c. modules.

Corollary 1.5. Let UR be a cotilting module.
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(a) If M → M ′ → T → 0 is exact in Mod-R, and M is U -tl.l.c., M ′ ∈
Ker Γ and T ∈ Ker ∆, then M ′ is U -tl.l.c. too.

(b) If M ∈ Mod-R is a factor of any U -tl.l.c. module, then δM is surjective
and M/RejU (M) is U -tl.l.c. too.

Proof. (a) is an immediate consequence of Proposition 1.3. In order to prove
(b), let us consider an epimorphism L

ϕ→ M → 0, with L U -tl.l.c. From
Theorem 1.4 we get that L is ∆-reflexive and, considering the embedding

0−→∆(M)
∆(ϕ)−→∆(L), also that Coker(∆2(ϕ)) ∈ Ker ∆. On the other hand,

from the commutative exact diagram

L
ϕ−−−→ M −−−→ 0

∼=
yδL

yδM

∆2(L)
∆2(ϕ)−−−−→ ∆2(M) −−−→ Coker(∆2(ϕ)) −−−→ 0

we see that Coker(∆2(ϕ)) ∼= Coker(δM ) ∈ Ker Γ, because of Lemma 1.1(d).
Hence Coker(∆2(ϕ)) ∼= Coker(δM ) = 0, so that δM is surjective and
M/RejU (M) ∼= ∆2(M) is U -tl.l.c. because of (a). �

Proposition 1.6. Let UR be a cotilting module and let S = End(UR). Then
UR is U -tl.l.c. if and only if ∆Γ(S/I) = 0 for every left ideal I of S.

Proof. The module UR is ∆-reflexive because of Lemma 1.1(a). There-
fore, by Theorem 1.4, UR is U -tl.l.c. if and only if for any exact sequence
of the form 0 −→ I

i−→ ∆(UR) ∼= SS −→ S/I −→ 0 it happens that
Coker(∆(i)) ∈ Ker ∆. Finally, from the previous sequence we get the exact

sequence 0 −→ ∆(S/I) −→ ∆(S)
∆(i)−→ ∆(I) −→ Γ(S/I) −→ 0, which shows

that Coker(∆(i)) ∼= Γ(S/I). �

We switch now to the case of a cotilting bimodule.

Corollary 1.7. Let SUR be a cotilting bimodule and let SS (RR, respectiv-
ely) be noetherian. Then UR (SU , respectively) is U -tl.l.c.

Proof. By assumption, for any left ideal I of S the cyclic module S/I is
finitely presented, and so it belongs to the class C, as proved in [Cp, Propo-
sition 5 d)]. Moreover, from [Cp, Theorem 6 a)], we get Γ(C) ⊆ Ker ∆, so
that ∆Γ(S/I) = 0. We finish the proof applying Proposition 1.6. �

We are now ready to answer the question posed in [Cp, Remark 11].

Theorem 1.8. Let SUR be a cotilting bimodule. The following conditions
are equivalent for any module MR ∈ Ker Γ:

(1) MR is U -tl.l.c.
(2) MR is ∆-reflexive and for all SL ≤ ∆(M) we have ∆Γ(∆(M)/L) = 0.



282 RICCARDO COLPI AND KENT R. FULLER

(3) Any S-submodule of ∆(M) is ∆-reflexive.

Proof. (1) ⇔ (2). Since Γ∆(M) = 0, for any embedding i : SL ↪→ ∆(M) we
get Coker(∆(i)) = Γ(∆(M)/L). Now apply Theorem 1.4.

(2) ⇒ (3). For any SL ≤ ∆(M) we get the exact sequence ∆2(M) →
∆(L)→ Γ(∆(M)/L)→ 0 where, by assumption, since (1) ⇔ (2), ∆2(M) is
U -tl.l.c. and Γ(∆(M)/L) ∈ Ker ∆. So Corollary 1.5(a) applies, giving ∆(L)
reflexive. Since L is clearly in Ker Γ, from Lemma 1.1(e) we obtain that L
is ∆-reflexive.

(3) ⇒ (2). By assumption ∆(M) is ∆-reflexive, and so M is ∆-reflexive
too, because of Lemma 1.1(e). Next, for any SL ≤ ∆(M) we get the canoni-
cal exact sequence 0→ L→ ∆(M)→ ∆(M)/L→ 0, with both L and ∆(M)
∆-reflexive. Then ∆Γ(∆(M)/L) = 0 because of [Cp, Lemma 4 d)]. �

Corollary 1.9. Let SUR be a cotilting bimodule. The following conditions
are equivalent:

(1) every ∆-reflexive right R-module is U -tl.l.c.,
(2) the class of all the ∆-reflexive left S-modules is closed under submod-

ules.

Proof. Apply (1) ⇔ (3) of Theorem 1.8. �

We now have the following connection between cotilting bimodules and
those bimodules SUR that induce Colby’s generalized Morita dualities [Cb2]
in the sense that the classes of ∆-reflexive modules are closed under exten-
sions and submodules, and contain SS and RR, respectively.

Corollary 1.10. Let SUR be a cotilting bimodule. Then SUR induces a
generalized Morita duality if and only if the class of the ∆-reflexive modules
coincides with the class of the U -torsionless linearly compact modules, both
in S-Mod and in Mod-R.

Proof. For any cotilting bimodule SUR, the regular modules SS and RR are
∆-reflexive, because of Lemma 1.1(a), and, similarly, any extension of two
∆-reflexive modules is ∆-reflexive too, because of [Cp, Proposition 5 a)].
Now apply Corollary 1.9. �

2. Morita duals of tilting bimodules.

Originally cotilting bimodules arose as k-duals of tilting bimodules. Namely,
consider two finite dimensional k-algebras R and S, and denote by D(−) the
vector space k-duality. In this context a cotilting bimodule is just the dual
D(RVS) of a finite dimensional tilting bimodule RVS , so cotilting theory for
finite dimensional algebras is just a perfect dual of tilting theory. Moreover,
since D(RR) is an injective cogenerator in R-Mod and adjunction induces
a natural isomorphism of left S-modules D(VS) ∼= HomR(RVS , D(RR)), it
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follows that D(VS) is a cotilting left S-module in our sense (see the proof
of 2.4 below). Arguing in the same way for D(RV ), we obtain that SUR =
D(RVS) is a cotilting bimodule in our sense.

Nevertheless, if we do not restrict our attention to finitely generated mod-
ules, cotilting theory is as far from tilting theory as Morita duality is from
Morita equivalence. Even in this classical case, the theory seems to be quite
hidden: We do not know, for instance, if the equivalent conditions of Corol-
lary 1.9 hold true.

Obviously, a natural way to generalize this construction is to consider
Morita duals of tilting bimodules. In this pursuit we are fortunate that stan-
dard methods yield the following extensions of the adjointness of the functors
HomA(V,−) and V⊗S− and of the contravariant functors HomA(−,W ) and
HomR(−,W ) induced by bimodules AVS and AWR (see [AF, §20]):

Lemma 2.1. Let SN and MR be modules and AVS and AWR be bimodules.
(a) If AW is injective, then there are natural isomorphisms

HomA(TorS
n(V,N),W ) ∼= Extn

S(N,HomA(V,W ))

for n = 1, 2, . . . .
(b) If AW and WR are both injective, then there are natural isomorphisms

Extn
A(V,HomR(M,W )) ∼= Extn

R(M,HomA(V,W ))

for n = 1, 2, . . . .

Proof. (a) This is [CE, page 120, Proposition 5.1].
(b) Being unable to find a reference for this part, we shall sketch a proof.

Let
· · · → P2 → P1 → P0 → AV → 0

be a projective resolution of AV , and note that the conditions on W yield
an injective resolution

0→ HomA(V,W )→ HomA(P0,W )→ HomA(P1,W )

→ HomA(P2,W )→ · · ·
of HomA(V,W )R. Then (see [R, Chapter 7]) one obtains the desired iso-
morphisms from the commutative diagram

HomA(P0,HomR(M,W )) −−−→ HomA(P1,HomR(M,W )) −−−→ · · ·
∼=
y ∼=

y
HomR(M,HomA(P0,W )) −−−→ HomR(M,HomA(P1,W )) −−−→ · · ·

�

For the remainder of this section A and R are supposed to be Morita
dual rings via faithfully balanced bimodule AWR that is a (linearly com-
pact) injective cogenerator on both sides. Moreover we assume that AV is
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a (linearly compact) tilting module with endomorphism ring S = End(AV ),
and we let

SUR = HomA(V,W ).

We futher assume that AV is not projective (equivalently, not a (pro)genera-
tor), so that the bimodule SUR is not just another Morita bimodule.

For convenience sake, given any bimodule AMB we shall denote by ∆M

the two contravariant functors Hom?(−, AMB) and by ΓM their first de-
rived functors Ext1?(−, AMB), where ? = A or B. Also we put HM =
HomA(M,−), TM = M⊗B−, H ′M = Ext1A(M,−) and T ′M = TorB

1 (M,−).
Thus by adjointness we have

∆U
∼= HV ∆W : Mod-R→ S-Mod

and
∆U
∼= ∆W TV : S-Mod→ Mod-R

and by Lemma 2.1

ΓU
∼= H ′V ∆W : Mod-R→ S-Mod

and
ΓU
∼= ∆W T ′V : S-Mod→ Mod-R.

Also there are natural transformations

δ : idMod-R → ∆U∆U and δ : idS-Mod → ∆U∆U

and
γ : ΓUΓU → idMod-R and γ : ΓUΓU → idS-Mod

with the δ’s via the usual evaluation maps, and the γ’s derived from the
natural transformations of the Tilting Theorem [CbFu, 1.4] and the ∆W ’s.
Thus we obtain

Duality 2.2. There are dualities

∆U : YR
−→←− SY : ∆U

ΓU : XR
−→←− SX : ΓU

where the Y’s and X ’s are the full subcategories on whose objects the δ’s and
the γ’s, respectively, are isomorphisms.

Let us denote by AC and CR the classes of all linearly compact left A-
and right R-modules, respectively. Moreover, (AT , AF) denotes the torsion
theory generated by the tilting module AV , and (ST , SF) the torsion theory
cogenerated by the cotilting module SU = HomA(AVS , AW ) (see the proof
of 2.4 below).

By assumption, the bimodule AWR induces a duality of the form

∆W : CR −→←− AC : ∆W
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and the tilting bimodule AVS induces the two equivalences

HV : AT −→←− SF : TV and H ′V : AF −→←− ST : T ′V .

Therefore, letting

AX = AC ∩ AT and AY = AC ∩ AF
we see that

XR ⊇ ∆W (AY), YR ⊇ ∆W (AX ),
SX ⊇ H ′V (AY), SY ⊇ HV (AX ).

Since AV is a tilting module, AV and AW belong to AX . Thus

UR = ∆W (AV ) ∈ YR, RR = ∆W (AW ) ∈ YR,

SU = HV (AW ) ∈ SY, SS = HV (AV ) ∈ SY,

so, in particular, we have:

2.3. Balance. The bimodule SUR is faithfully balanced.

Since AV is a ∗-module, SU = HomA(AVS , AW ) and AW is an injective
cogenerator, as in [CpToTr, 2.3 3)], we obtain:

2.4. Properties of SU . SU is a cotilting module.

One would hope that UR is one too. Perhaps not in general, but we do
have the following:

2.5. Properties of UR.
(a) There is an exact sequence 0 → UR → W ′ → W ′′ → 0, where

W ′,W ′′ ∈ add(WR). In particular UR is finitely cogenerated and
inj dim(UR) ≤ 1.

(b) There is an exact sequence 0→ U ′ → U ′′ →WR → 0, where U ′, U ′′ ∈
add(UR). In particular Ker∆U ∩Ker ΓU = 0.

(c) ∆W (AX ) ⊆ Ker ΓU . In particular Ext1R(M,U) = 0 for all MR ↪→ Un
R

(n finite).

Proof. (a) Since AV is a tilting module, there is an exact sequence of the
form 0→ A′ → A′′ → AV → 0, with A′, A′′ ∈ add(AA). Now apply ∆W .

(b) Similarly to the previous case, applying ∆W to the exact sequence
0 → AA → V ′ → V ′′ → 0, where V ′, V ′′ ∈ add(AV ), we obtain the re-
quired exact sequence. Finally, applying HomR(M,−) to that, we see that
HomR(M,U) = 0 = Ext1R(M,U) implies HomR(M,W ) = 0, and so M = 0.

(c) For any M ∈ ∆W (AX ) we clearly have ∆W (M) ∈ AX ⊆ AT =
Ker Ext1A(V,−). Therefore, we see by Lemma 2.1(b) that Ext1R(M,U) ∼=
Ext1A(V,∆W (M)) = 0. �

From 2.3, 2.4 and 2.5 we immediately have:

Proposition 2.6. The bimodule SUR is a cotilting bimodule if and only if
Ext1R(Uα, U) = 0 for any cardinal α.
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3. Cotilting bimodules over noetherian serial rings.

In [CbFu] Colby and Fuller determined all the tilting bimodules RVS over
a noetherian serial ring R. In this concluding section we shall see that if
R has self-duality induced by RWR then SUR = HomR(V,W ) is a cotilting
bimodule. Thus we obtain a large collection of cotilting bimodules (that
are not even finitely generated) in addition to the classical ones over finite
dimensional algebras.

According to [Wa, Theorem 5.11], a noetherian serial ring is a finite
direct sum of indecomposable artinian serial rings and prime noetherian
serial rings. Warfield proved that every finitely generated module and every
injective module over such a ring is a direct sum of uniserial modules. The
structure of artinian serial rings is well known (see [AF, §32]).

Let R be a prime noetherian serial ring with right Kupisch series

e1R, . . . , enR

so that, setting J = J(R)

e1J ∼= e2R, . . . , en−1J ∼= enR and enJ ∼= e1R

(see [CbFu, §3]). According to Warfield [Wa]

eiR > eiJ > eiJ
2 > . . . and Rei > Jei > J2ei > . . .

are complete lists of the submodules of eiR and Rei, for i = 1, . . . , n. Thus,
setting Si = eiR/eiJ , the composition factors of eiR are, from the top down,

Si, Si+1, . . . , Sn, S1, S2, . . . , Sn, . . . .

On the other hand, as Warfield showed, every finitely generated indecom-
posable R-module is uniserial. It follows that the indecomposable injective
R-modules are also uniserial. There are just n + 1 indecomposable injective
right R-modules

E1 = E(S1), . . . , En = E(Sn) and E0

with Soc(E0) = 0, each Ei is artinian, and for any i = 1, . . . , n the submod-
ules of Ei are

0 < Soc(Ei) < Soc2(Ei) < . . .

where Sock(M) = AnnM (Jk). And the composition factors of Ei, from the
bottom up, are

Si, Si−1, . . . , S1, Sn, Sn−1, . . . , S1, . . .

while the composition factor of E0 are

. . . Sn, . . . , Si, Si−1, . . . S1, Sn, Sn−1, . . . , Si, Si−1, . . . S1, . . . .

In particular any proper factor of an indecomposable injective module is
the injective envelope of its socle, and every proper submodule of E0 is
isomorphic to an indecomposable projective module.
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Lemma 3.1. Let R be a noetherian serial ring. If XR is an indecomposable
R-module of finite length, then for any cardinal α there is a cardinal γ such
that Xα ∼= X(γ).

Proof. Let Q = R/ AnnR(X). Then XQ is a faithful indecomposable mod-
ule over the artinian QF-3 ring Q. Thus X is the unique indecomposable
injective projective right Q-module (see [AF, §31 and §32]). But Xα is both
injective and, since Q is artinian, projective. Moreover Xα

Q is a direct sum
of indecomposable modules, since Q is artinian. �

Lemma 3.2. Let R be a prime noetherian serial ring with indecomposable
injective modules E1, . . . , En and E0 as above. Then for any cardinal α there
are cardinals β, γ such that Eα

i
∼= E

(β)
i ⊕ E

(γ)
0 .

Proof. Since R is semiperfect and J is finitely generated, we see that

Soc(Eα
i ) = AnnEα

i
(J) = AnnEi(J)α = Soc(Ei)α.

But if i 6= j then Soc(Ei)ej = 0. Thus Soc(Eα
i ) = S

(β)
i . So we see that

Eα
i
∼= E

(β)
i ⊕ E, with Soc(E) = 0. But the only indecomposable injective

with zero socle is E0, so E ∼= E
(γ)
0 . �

Proposition 3.3. If U is a finitely cogenerated module over a noetherian
serial ring R such that Ext1R(U,U) = 0, then Ext1R(Uα, U) = 0 for any
cardinal α.

Proof. Since U is finitely cogenerated, we have

U = Ei1 ⊕ · · · ⊕ Eik ⊕X1 ⊕ · · · ⊕Xl

where Eij = E(Sij ), j = 1, . . . , k, and Xi, i = 1, . . . , l, are uniserial modules
of finite length. Thus by Lemmas 3.1 and 3.2 we have

Uα = E
(β1)
i1
⊕ · · · ⊕ E

(βk)
ik
⊕ E

(γ)
0 ⊕X

(δ1)
1 ⊕ · · · ⊕X

(δl)
l .

Now, since Ext1R(−, Xi) converts direct sums to direct products, we need
only check that Ext1R(E0, Xi) = 0 for all i = 1, . . . , l. To this end, consider
the minimal injective resolution

0 −−−→ Xi −−−→ Ei
ν−−−→ Ej −−−→ 0.

Here we need to show that

HomR(E0, Ei)
HomR(E0,ν)−−−−−−−−→ HomR(E0, Ej) −−−→ 0

is exact. So let 0 6= β ∈ HomR(E0, Ej) with K = Ker(β). Then there is
m ∈ N such that E0/KJm ∼= Ei1 . But Ext1R(Ei1 , Xi) = 0, being a direct
summand of Ext1R(U,U), so

HomR(E0/KJm, Ei)
HomR(E0/KJm,ν)−−−−−−−−−−−−→ HomR(E0/KJm, Ej) −−−→ 0
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is exact. Thus, setting η : E0 → E0/KJm, we have a commutative diagram

E0
β−−−→ Ej

η

y ∥∥∥
E0/KJm β−−−→ Ej

γ

y ∥∥∥
Ei

ν−−−→ Ej

which shows that HomR(E0, ν)(γ ◦ η) = ν ◦ γ ◦ η = β ◦ η = β. �

Theorem 3.4. Let R be a noetherian serial ring with self-duality induced
by a bimodule RWR. If RV is a tilting module and S = End(RV ), then
SUR = HomR(V,W ) is a cotilting bimodule.

Proof. According to Proposition 2.6, it only remains to observe that
Ext1R(Uα, U) = 0 for any α. And this is true thanks to Proposition 3.3, since
Ext1R(U,U) = 0 and UR is finitely cogenerated because of 2.5(c) and (a). �

Let us pause to point out a couple of facts about self-duality for noetherian
serial rings.

Proposition 3.5. If R is a left linearly compact indecomposable prime noe-
therian serial ring, then R has a self-duality.

Proof. Assume, as we may, that R is basic. Let E = E1 ⊕ · · · ⊕ En be the
minimal cogenerator. Then E is artinian, hence linearly compact. Thus,
setting S = End(RE), SS is linearly compact and the bimodule RES defines
a Morita duality. Now it is easy to see that Ak = AnnE(Jk) is the minimal
cogenerator over R/Jk, and that the bimodule R/JkAkS/ AnnS(Ak) defines a
Morita duality. But R/Jk is a basic QF-ring (see [AF, §32.6]) and hence
R/JkAk

∼= R/JkR/Jk. But then

S/ AnnS(Ak) ∼= End(R/JkAk) ∼= R/Jk

as rings. Now both {Jk | k ≥ 1} and {AnnS(Ak) | k ≥ 1} are down-
ward directed sets of ideals with ∩kJ

k = 0 [Wa, Theorem 5.11] and so
∩k AnnS(Ak) = 0. Therefore, since RR and SS are both linearly compact,
we have

R ∼= lim←−R/Jk ∼= lim←−S/ AnnS(Ak) ∼= S.

�

As Warfield [Wa] showed, a prime noetherian serial ring R is isomorphic
to the n×n (D : M)-upper triangular matrix ring UTMn(D : M), consisting
of those matrices over a local noetherian serial ring D whose entries below
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the main diagonal all come from the unique maximal ideal M of D. It follows
from Proposition 3.5 and [X, Theorem 4.3, Lemma 4.9 and Proposition 3.3]
that R has self-duality if and only if D is linearly compact. According
to [Wb] and [DiMl], any artinian serial ring has self-duality. Thus from
Proposition 3.5 and [Mu] (see again [X, Theorem 4.3]) we have:

Proposition 3.6. A noetherian serial ring has a self-duality if and only if
it is left (equivalently right) linearly compact.

Finally, we note that any tilting module RV over a hereditary noetherian
ring (which was shown to be a finitistic cotilting module in [CbFu]) satisfies
at least two of the three conditions needed to be a cotilting module in our
sense whenever R has selfduality.

Proposition 3.7. Let R be a hereditary linearly compact noetherian serial
ring and let RV be a tilting module. Then RV is a finitistic cotilting module
with Ext1R(V α, V ) = 0 for all cardinal numbers α.

Proof. According to [CbFu, Proposition 2.1], RV is a finitistic cotilting
module, and since it is finitely generated

RV = P ⊕ T,

with P finitely generated projective and T = T1 ⊕ · · · ⊕ Tl, with all the
Ti’s uniserial modules of finite length. Since Ext1R(V, V ) = 0, and since, by
Lemma 3.1,

V α = Pα ⊕ T
(δ1)
1 ⊕ · · · ⊕ T

(δl)
l ,

it only remains to show that Ext1R(Pα, P ) = 0 and Ext1R(Pα, Ti) = 0 for
i = 1, . . . , l.

Let RWR induce a self-duality and observe that the canonical right R-
isomorphism

R −−−→ HomR(HomR(RR,W ),W ) −−−→ HomR(RWR, RWR)

is also a left R-map. Now Pα is flat by Chase’s Theorem [AF, 19.20], since
R is noetherian, and so by Lemma 2.1(a)

Ext1R(Pα, RR) ∼= Ext1R(Pα,HomR(RWR, RW ))
∼= HomR(TorR

1 (W,Pα),W ) = 0.

Thus, assuming, as we may, that P is a direct summand of RR, we do have

Ext1R(Pα, P ) = 0.

On the other hand, if Ti has length m, and A = R/Jm, then ATi is
injective [AF, Theorem 32.6] and

RTi
∼= HomA(AAR, ATi),
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so that

Ext1R(Pα, RTi) ∼= Ext1R(Pα,HomA(AAR, ATi))
∼= HomR(TorR

1 (AR, Pα), ATi) = 0.

�

Remark 3.8. (1) Krause and Saoŕın [KrSa, Proposition 3.8] have recently
shown that if MR is a finitely generated module, then every Mα is isomorphic
to a direct summand of some M (δ) if and only if S = End(MR) is left
coherent and right perfect and SM is finitely presented. Thus we see that if
R is right artinian and (hence) S is left artinian in a cotilting triple (S, U, R)
in the sense of [Cb1, §2], then Ext1R(Uα, U) = 0 = Ext1S(Uα, U) for any
cardinal α.

(2) Over rings of finite representation type, cotilting triples yield more
examples of cotilting modules. Indeed, in a cotiling triple (S, U, R), if it hap-
pens that R is a ring of finite representation type (so that every R-module
is a direct sum of finitely generated modules), then since UR is a finitis-
tic cotilting module [Cb1, Theorem 3.3], we also have KerHomR(−, UR) ∩
Ker Ext1R(−, UR) = 0, so that UR is a cotilting module in the present sense.
If in addition S has finite representation type (in particular, if R is heredi-
tary [CbFu, Proposition 2.2]), then SUR is a cotilting bimodule.

Acknowledgments. This paper was written while R. Colpi was visiting the
University of Iowa in April-May ’98, and he wishes to express his gratitude
to this University and especially to Kent Fuller for the great hospitality.

References

[AF] F.D. Anderson and K.R. Fuller, Rings and Categories of Modules (2nd edition),
Springer, New York, 1992.

[BrBu] S. Brenner and M. Butler, Generalizations of the Bernstein-Gelfand-
Ponomarev reflection functors, in ‘Proc. ICRA II (Ottawa, 1979)’, LNM 832,
Springer, Berlin, (1980), 103-169.

[CE] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press,
1956.

[Cb1] R.R. Colby, A generalization of Morita duality and the tilting theorem, Comm.
Algebra, 17(7) (1989), 1709-1722.

[Cb2] , A cotilting theorem for rings, in ‘Methods in Module Theory’,
M. Dekker, New York, (1993), 33-37.

[CbFu] R.R. Colby and K.R. Fuller, Tilting, cotilting and serially tilted rings, Comm.
Algebra, 18(5) (1990), 1585-1615.

[Cp] R. Colpi, Cotilting bimodules and their dualities, to appear in ‘1998 Murcie
Euroconference Proceedings’, Marcel Dekker.

[CpDeTo] R. Colpi, G. D’Este and A. Tonolo, Quasi-tilting modules and counter equiva-
lences, J. Algebra, 191 (1997), 461-494.



COTILTING MODULES AND BIMODULES 291

[CpToTr] R. Colpi, A. Tonolo and J. Trlifaj, Partial cotilting modules and the lattices
induced by them, Comm. Algebra, 25 (1997), 3225-3237.

[DiMl] F. Dischinger and W. Müller, Einreihig zerlegbare Ringe sind selbstdual, Arch.
Math., 43 (1984), 132-136.
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