
Pacific
Journal of
Mathematics

RESTRICTIONS OF Ωm(q)-MODULES TO ALTERNATING
GROUPS

William J. Husen

Volume 192 No. 2 February 2000



PACIFIC JOURNAL OF MATHEMATICS
Vol. 192, No. 2, 2000

RESTRICTIONS OF Ωm(q)-MODULES TO ALTERNATING
GROUPS

William J. Husen

We consider the restriction of an irreducible FΩm(q)-mo-
dule M to a subgroup H where F ∗(H) ∼= An and where F
is algebraically closed with (char(F), q) 6= 1. Given certain
restrictions on the highest weight of M , we show that if m >
n6, then M↓H is reducible.

1. Introduction.

In the study of the maximal subgroups of classical groups, the following
question arises: Given an absolutely irreducible module M for K and a
subgroup H, when does M↓H remain absolutely irreducible? In this article
K ∼= Ωm(q) is the commutator subgroup of an m-dimensional orthogonal
group over Fq, and F ∗(H) ∼= An is the alternating group of degree n. We
treat the case that the field of definition of M has characteristic dividing q.

Let F be an algebraically closed field containing Fq, the field with q

elements, such that char(F) > 3. Then K < K where K ∼= Ωm(F) and we
may assume that M is a FK-module. By [6, Theorem 43], every absolutely
irreducible FK-module is the restriction of an irreducible FK-module of
the same weight. So we may assume that M = M(λ) is an irreducible FK-
module with highest weight λ. Let ` = bm/2c be the Lie rank of K and
let {λi} be the fundamental dominant weights of K. The labeling of these
weights corresponds to the labeling of the Dynkin diagrams for K as given
in [3].

Hypothesis 1.1. Assume the following are true:

(1) If m is even, then λ =

(
`−2∑
i=1

aiλi

)
+ a`−1(λ`−1 + λ`); ai ∈ Z, ai ≥ 0.

(2) If m is odd, then λ =

(
`−1∑
i=1

aiλi

)
+ 2a`λ`; ai ∈ Z, ai ≥ 0.

(3) If µi =
`−1∑
j=i

aj, m even or if µi =
∑̀
j=i

aj, m odd then

(a) µ1 < p = char(Fq);
(b) 1 <

∑
µi = k < `.
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Conditions (1) and (2) imply that M is not a faithful module for any
proper covering group of K. We now state our main result:

Theorem 1.2. Assume that H,K and M = M(λ) are as above with n, m ≥
10 and (q, 6) = 1. Suppose further that λ satisfies Hypothesis 1.1. If m > n6,
then M↓H is reducible.

Our strategy is to produce a small subspace in M with a large stabilizer
in H and then, using Frobenius reciprocity, produce an upper bound for
dim(M). We produce a lower bound for dim(M) as an FK-module using
the length of the Weyl group orbit of a subdominant weight in M . The
result then follows by comparing these two bounds.

2. A construction of W (λ).

In this section we construct the Weyl module W (λ) of K with highest weight
λ. Then M is a homomorphic image of this module. Our construction
proceeds by first constructing the Weyl module W (λ) for a complex Lie
group G of the same type and rank as K, then we use Kostant’s Z-form
to produce W (λ). For notational convenience we assume that {λi} are the
fundamental dominant weights for G as well as for K, and accordingly,
assume that λ is a dominant weight of G.

Let V be a complex, m-dimensional vector space possessing a non-degene-
rate orthogonal form f( , ) and let B be a basis for V so that

B =
{
{ei, fi | 1 ≤ i ≤ `} if m is even
{ei, fi, x | 1 ≤ i ≤ `} if m is odd

with f(ei, ej) = f(fi, fj) = f(x, ei) = f(x, fi) = 0, f(ei, fj) = δi,j and
f(x, x) = 2. We then define G = Ω(V ) and let T be the maximal torus
of G with respect to B. Set Ve = 〈ei | 1 ≤ i ≤ `〉 and Vf = 〈fi | 1 ≤ i ≤ `〉.

Suppose that λ satisfies hypothesis 1.1 and d = max{i | µi 6= 0} so that
µ = (µ1, . . . , µd) is a proper partition of k. Let T be the tableau of shape
µ with entries ti,j = j +

∑
s<i µs. Define the following subgroups of the

symmetric group Sk:

Rµ = {σ ∈ Sk | σ(ti,j) lies in the same row as ti,j for all i, j}

Cµ = {σ ∈ Sk | σ(ti,j) lies in the same column as ti,j for all i, j}

and elements of CSk:

rµ =
∑

σ∈Rµ

σ and cµ =
∑
σ∈Cµ

sgn(σ)σ
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Define κi,j : V ⊗k → V ⊗(k−2) by κi,j(vl1 ⊗· · ·⊗vlk) = f(vli , vlj )(vl1 ⊗· · ·⊗
v̂li ⊗ · · · ⊗ v̂lj ⊗ · · · ⊗ vlk) for 1 ≤ i < j ≤ k and set

K =
⋂
i,j

ker(κi,j).

Sk acts on V ⊗k by place permutation, specifically:

σ(vi1 ⊗ · · · ⊗ vik) = viσ−1(1)
⊗ · · · ⊗ viσ−1(k)

.

This action commutes with the diagonal action of G on V ⊗k.
Given v ∈ V ⊗k, we define one additional element rv

µ of the group algebra
CSk as follows: Let Rv

µ = {σ ∈ Rµ | σ(v) = v} and let {si} be a left
transversal for Rv

µ in Rµ. Define rv
µ =

∑
i si Notice that rµ(v) = |Rv

µ|rv
µ(v).

By [2, Theorem 19.22], W (λ) = cµrµ

(
V ⊗k

)
∩ K is the Weyl module for

G with highest weight λ. Since V is a complex vector space, cµrµ

(
V ⊗k

)
=

〈cµrv
µ(v) | v ∈ V ⊗k〉.

Define VZ = Z[B] and let V = VZ ⊗Z F. Then f( , ) = f( , ) ⊗ 1F

is a non-degenerate orthogonal form on V . Without loss of generality, we
may assume that K = Ω(V ). Moreover if ei = ei ⊗ 1F, f i = fi ⊗ 1F and
x = x⊗ 1F, then

B =
{
{ei, f i | 1 ≤ i ≤ `} if m is even
{ei, f i, x | 1 ≤ i ≤ `} if m is odd

is a standard basis for V with respect to f( , ). We identify rµ and cµ with
the elements rµ ⊗ 1F and cµ ⊗ 1F of FSk.

Suppose that L ⊂ End(V ) is the adjoint module for G so that L is a
complex Lie algebra of type D` or B`. Let ∆ = {r1, . . . , r`} be the set
of simple roots corresponding to the torus T and let Φ be the root system
generated by ∆. Set ∆0 = {r1, . . . , r`−1} and let Φ0 ⊂ Φ be the subset
generated by ∆0. Using the setup of [1, §11.2], {εr, hri | r ∈ Φ, 1 ≤ i ≤ `}
is a Chevalley basis for L and {εr, hri | r ∈ Φ0, 1 ≤ i ≤ ` − 1} is a
Chevalley basis for L0 ⊂ L where L0 is a Lie algebra of type A`−1. Let
G0 < NG(Ve ⊕ Vf ) such that G0

∼= SL`(C). Then, by [1, Theorem 11.3.2],
G = 〈exp(ζεr) | r ∈ Φ, ζ ∈ C〉 and G0 = 〈exp(ζεr) | r ∈ Φ0, ζ ∈ C〉. Note
that neither G nor G0 is the adjoint group for L or L0, respectively. We
may consider Ve to be the natural module for G0. Under this identification,
Vf is the dual of Ve.

Assume that U(L) is the universal enveloping algebra of L. From [3, §26],
Kostant’s Z-form UZ(L) is the Z-span of {εm

r /m! | r ∈ Φ,m ∈ Z+}. Given
any vector v of weight λ in W (λ), UZ(L)v

⊗
Z F = W (λ) where W (λ) is

the Weyl module for K with highest weight λ. By the previous remarks,
UZ(L0) ⊂ UZ(L), which implies that UZ(L0)v

⊗
Z F ⊂ W (λ).

Define vµi =
⊗µi

j=1 ei and vµ =
⊗d

i=1 vµi .
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Lemma 2.1. We have:
(1) cµ(vµ) is a vector of weight λ in W (λ);
(2) UZ(L0)cµ(vµ) = cµrµ

(
V ⊗k

e

)
∩ Z[e1, . . . , e`]⊗k.

Proof. First note that Rvµ
µ = Rµ so that r

vµ
µ (vµ) = vµ and that cµ(vµ) 6= 0.

This implies that cµ(vµ) ∈ cµrµ

(
V ⊗k

)
. It is clear that cµ(vµ) ∈ K so we

have cµ(vµ) ∈ W (λ). Let t ∈ T and write t = diag(t1, . . . , t`, t
−1
1 , . . . , t−1

` )
or t = diag(t1, . . . , t`, t

−1
1 , . . . , t−1

` , t′) depending on the parity of m. Then

tv = cµ(tcµ(vµ)) = cµ

(
d⊗

i=1

tµi
i vµi

)
=

(
d∏

i=1

tµi
i

)
cµ(vµ).

From the definition of µ it follows that cµ(vµ) is a vector of weight λ and
so (1) follows. With the identification of Ve with the natural module of G0,
we see by [2, Theorem 15.15] that cµrµ

(
V ⊗k

e

)
is the Weyl module for G0

corresponding to the partition µ of k via the Schur functor. The argument
above restricted to t ∈ T ∩G0 shows that cµ(vµ) is a highest weight vector
in cµrµ

(
V ⊗k

e

)
. In particular U(L0)cµ(vµ) = cµrµ

(
V ⊗k

e

)
. Using the proof of

[4, Theorem 8.3.1], we have

UZ(L0)cµ(vµ) = cµrµ

(
V ⊗k

e

)
∩ Z[e1, . . . , e`]⊗k

which completes our proof. �

Lemma 2.2. Suppose v = vi1 ⊗ · · · ⊗ vik where {vi} is a collection of mu-
tually orthogonal, linearly independent singular vectors. Then:

(1) If sgn(σc)σcσr(v) 6= −v for all σc 6= 1 ∈ Cµ, σr ∈ Rµ, then cµrv
µ(v) 6= 0;

(2) cµrv
µ(v) ∈ W (λ).

Proof. Since v is a summand of cµrv
µ(v) and all other summands of cµrv

µ(v)
have the form sgn(σc)σcσr(v), part (1) must hold. There is g ∈ K such that
g(vij ) = αijeij such that αij 6= 0 for all 1 ≤ i ≤ k. If w = ei1 ⊗ · · · ⊗ eik ,
then rv

µ = rw
µ . As

cµrw
µ (w) ∈ cµrµ

(
V ⊗k

e

)
∩ Z[e1, . . . , e`]⊗k,

Lemma 2.1 implies that cµrw
µ (w) ∈ UZ(L)v. Writing w = αi1ei1⊗· · ·⊗αikeik ,

we then have
cµrw

µ (w) ∈ UZ(L)v
⊗
Z

F = W (λ).

Finally, as W (λ) is a FK-module, g−1cµrw
µ (w) = cµrv

µ(v) ∈ W (λ). �

Though W (λ) is a irreducible module for G, W (λ) may not be an ir-
reducible module for K; however, it does possess a unique maximal sub-
module by [6, Lemma 80] which we denote by Rad(W (λ)). Moreover,
M ∼= W (λ)/Rad(W (λ)).
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We now discuss the orthogonal forms on V ⊗k and W (λ). Suppose v, w ∈
V ⊗k where v = v1 ⊗ · · · ⊗ vk and w = w1 ⊗ · · · ⊗ wk. We define fk( , ) by

fk(v, w) =
k∏

i=1

f(vi, wi).

fk( , ) is a non-degenerate, G-invariant orthogonal form on V ⊗k. This form
is also invariant under the action of Sk. Note that

fk[cµ(v), cµ(w)] =
∑
σ∈Cµ

sgn(σ)fk[σ(v), cµ(w)]

=
∑
σ∈Cµ

sgn(σ)fk[v, σ−1cµ(w)]

=
∑
σ∈Cµ

fk[v, cµ(w)]

= |Cµ|fk[v, cµ(w)].

We define fk
µ( , ) on cµ

(
V ⊗k

)
by

fk
µ [cµ(v), cµ(w)] = fk[v, cµ(w)].

By a similar argument as above, we see that fk[v, cµ(w)] = fk[w, cµ(v)], so
this form is symmetric. Since fk( , ) is bilinear and G-invariant, fk

µ( , ) is
also bilinear and G-invariant. Therefore fk

µ( , ) is a G-invariant orthogonal

form on W (λ) ⊂ cµ

(
V ⊗k

)
. As before, f

k( , ) = fk( , ) ⊗ 1F is a K-

invariant orthogonal form on V
⊗k and f

k
µ( , ) = fk

µ( , )⊗1F is a K-invariant
orthogonal form on W (λ). This form is possibly degenerate. We denote the
radical of this form as W (λ)⊥. The following lemma is generally known,
although we present a proof:

Lemma 2.3. Rad(W (λ)) = W (λ)⊥.

Proof. Define v−µi =
⊗µi

j=1 f i and v−µ =
⊗d

i=1 v−µi . Noting that r
v−µ
µ = 1,

cµ(v−µ) 6= 0 ∈ W (λ) by Lemma 2.2. A similar argument as in the proof
of Lemma 2.1 shows that cµ(v−µ) is a vector of weight −λ. Hypothesis 1.1
implies that d < `. In particular, there is an element ω0 of the Weyl group of
K such that ω0[cµ(v−µ)] = cµ(vµ). This means that M = M(λ) must be self-
dual. Clearly we have that W (λ)⊥ ⊂ Rad(W (λ)) and that W (λ)/W (λ)⊥

is non-degenerate, so this latter module is also self-dual. Since M is self-
dual and is a homomorphic image of W (λ)/W (λ)⊥, W (λ)/W (λ)⊥ must
possess a submodule isomorphic to M . Since M ∼= W (λ)/Rad(W (λ)) and
Rad(W (λ)) does not possess a constituent which is isomorphic to M , we
must have Rad(W (λ)) = W (λ)⊥ and our result follows. �
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Lemma 2.4. Let {vi, wi | 1 ≤ i ≤ k} be a hyperbolic basis for some 2k-
dimensional subspace of V . Set v = v1 ⊗ · · · ⊗ vk and w = w1 ⊗ · · · ⊗ wk.
Then:

(1) cµrµ(v) 6= 0, cµrµ(w) 6= 0;
(2) cµrµ(v), cµrµ(w) ∈ W (λ);
(3) f

k
µ[cµrµ(v), cµrµ(w)] 6= 0.

Proof. Parts (1) and (2) follow from Lemma 2.2 since rv
µ = rw

µ = rµ and the
vi are distinct, similarly for wi. If σ1, σ2 ∈ Sk, then

f
k[σ1(v), σ2(w)] =

k∏
i=1

f [vσ−1
1 (i), wσ−1

2 (i)] =
{

1 if σ1 = σ2

0 otherwise.

Recall that Rµ ∩ Cµ = 1. Then we have

f
k
µ[cµrµ(v), cµrµ(w)] = f

k[rµ(v), cµrµ(w)]

=
∑

σ∈Rµ

f
k[σ(v), cµrµ(w)]

=
∑

σ∈Rµ

f
k[σ(v), σ(w)]

= |Rµ|.

Part (3) then follows as |Rµ| =
∏d

i=1 µi! and µi < char(Fq) for all i. �

Lemma 2.5. M possesses a vector of weight λk.

Proof. Let {ei, f i | 1 ≤ i ≤ k} be a subset of our standard basis B for V . By
part (2) of Lemma 2.4, cµrµ(e1 ⊗ · · · ⊗ ek) ∈ W (λ). An argument similar to
that used in Lemma 2.1 shows that cµrµ(e1 ⊗ · · · ⊗ ek) is a vector of weight
λk. Hence λk is a subdominant weight of λ. Condition (3) of Hypothesis 1.1
insures that λ is p-restricted. Therefore using the results of [5], M possesses
a vector of weight λk. �

3. Elementary abelian 3-subgroup Ek.

Assume that k ≤ n/3 − 2 and recall that F ∗(H) possesses a subgroup H0

isomorphic to Sn−2. Let

Ek
∼= 〈(123), (456), . . . , (3k − 2, 3k − 1, 3k)〉 < An

be a subgroup of H0 generated by commuting 3-cycles in F ∗(H) so that Ek

is an elementary abelian 3-group of rank k. Then

Nk = NH0(Ek) ∼= S3 o Sk × Sn−3k−2

Ck = CH0(Ek) ∼= Ek × Sn−3k−2
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and let Hk < Ck so that Hk
∼= Sn−3k−2. Note that CNk

(Hk) ∼= S3 o Sk and
this subgroup controls fusion in Ek. Let σ 6= 1 ∈ Ek and assume that σ is the
product of k1 disjoint 3-cycles. Then CNk

(σ) ∼= Z3 oSk1×S3 oSk−k1×Sn−3k−2

which implies |σNk | = 2k1
(

k
k1

)
.

Let ϕ ∈ E∗
k = Hom(Ek,F∗). The group Nk acts on this group by ϕg : σ 7→

ϕ(g−1σg) for g ∈ Nk, σ ∈ Ek. We abuse notation slightly and define ϕ−1 by
ϕ−1 : σ 7→ ϕ(σ−1) for all σ ∈ Ek. Recall that InNk

(ϕ) = {g ∈ Nk|ϕg = ϕ}
is the inertia group of ϕ in Nk and note that Hk ∈ InNk

(ϕ).
If ϕ ∈ E∗

k is non-trivial, then the previous remarks concerning the action
of Nk on Ek imply that [Nk : InNk

(ϕ)] = 2k1
(

k
k1

)
for some k1, 1 ≤ k1 ≤ k

and that ϕ−1 ∈ ϕNk . Since
(

k
k1

)
≥ k unless k = k1, in which case 2k1 ≥ 2k,

we have [Nk : InNk
(ϕ)] ≥ 2k.

4. Decomposition of V ↓Ek
and Ck-invariant subspace of W (λ).

We continue to assume that k ≤ n/3−2 and we now consider the restriction
of V to Ek. Since char(F) 6= 3, we have V ↓Ek

∼=
⊕

ϕ∈E∗
k
V ϕ where V ϕ is

the homogeneous component of ϕ. Let v1 ∈ V ϕ1 and v2 ∈ V ϕ2 . Then
(gv1, gv2) = ϕ1(g)ϕ2(g)(v1, v2) for all g ∈ Ek. If ϕ−1

1 6= ϕ2 then (v1, v2) = 0
which implies V ϕ1 ⊥ V ϕ2 when ϕ−1

1 6= ϕ2. Since V is non-degenerate,
dim(V ⊥

ϕ1
) = dim(V ) − dim(V ϕ1) and it follows that V ϕ ⊕ V ϕ−1 must be

non-degenerate and therefore possesses a hyperbolic basis.
Pick ϕ 6= 1 so that V ϕ 6= 0. Since gV ϕ = V ϕg for g ∈ Nk, we may consider

V ϕ to be an FInNk
(ϕ)-module. Let E∗

k−1 be a maximal subgroup of E∗
k which

does not contain ϕ. Define O+ = ϕE∗
k−1 ∩ ϕNk and O− = ϕ−1E∗

k−1 ∩ ϕNk

so that O+ ∪ O− = ϕNk and |O+| = |O−| ≥ k. Moreover ϕi ∈ O+ if
and only if ϕ−1

i ∈ O−. We assume that O+ = {ϕi} and that O− = {ϕ−1
i }.

Then
(⊕

ϕi∈O+
V ϕi

)⊕(⊕
ϕ−1

i ∈O−
V ϕ−1

i

)
is an FNk-submodule of V ↓Nk

. If

ϕ′ ∈ ϕNk then, as CNk
(Hk) also controls fusion in E∗

k , there is a g ∈ CNk
(Hk)

such that gV ϕ = V ϕ′ . In particular V ϕ
∼= V ϕ′ as FHk-modules. Define

D = dim(V ϕ) so that D = dim(V ϕi) for all i.
Given the above decomposition, we form the following:

V + =
k⊗

i=1

V ϕi and V − =
k⊗

i=1

V ϕ−1
i

.

Recall that D = dim(V ϕi) and assume that {vi,j , wi,j | 1 ≤ ji ≤ D} is a
hyperbolic basis for V ϕi ⊕V ϕ−1

i
. Define vj1,... ,jk =

⊗k
i=1 vi,ji and wj1,... ,jk =⊗k

i=1 wi,ji . Then {vj1,... ,jk , wj1,... ,jk | 1 ≤ ji ≤ D} forms a hyperbolic basis
for V + ⊕ V −. If σ ∈ Sk, then σ(vj1,... ,jk) = vj1,... ,jk if and only if σ = 1
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since the Vϕi are distinct. Moreover, rvj1,... ,jk

µ = rµ for all vj1,... ,jk ∈ V +.
Similarly for wj1,... ,jk ∈ V−.

By parts (1) and (2) of Lemma 2.4, and as V ± are both totally sin-
gular, cµrµ

(
V ±
)
⊂ W (λ). By part (3) of Lemma 2.4, f

k
µ[cµrµ(vj1,... ,jk),

cµrµ(wj1,... ,jk)] 6= 0. Whenever (j1, . . . , jk) 6= (j′1, . . . , j′k), we have that
f
k
µ[cµrµ(vj1,... ,jk), cµrµ(wj′1,... ,j′k)] = 0. Therefore {cµrµ(vj1,... ,jk),

cµrµ(wj1,... ,jk) | 1 ≤ ji ≤ D} is a hyperbolic basis for

cµrµ

(
V +

)⊕
cµrµ

(
V −
)
.

Lemma 4.1. We have:
(1) V ± ∼= cµrµ(V ±) as FCk-modules;
(2) If k is even, then Ck stabilizes a 1-dimensional subspace of M ;
(3) If k is odd, then Ck stabilizes a D-dimensional subspace of M .

Proof. Given the hyperbolic basis {vj1,... ,jk , wj1,... ,jk | 1 ≤ ji ≤ D} for
V +⊕V −, it is clear that the map vj1,... ,jk 7→ cµrµ(vj1,... ,jk) is a Ck-invariant
bijection. Therefore V +

∼= cµrµ(V +) as FCk-modules. The case for V − fol-
lows by a similar argument, proving part (1). Suppose that k is even and re-
call that V ϕi

∼= V ϕj and V ϕ−1
i

∼= V ϕ−1
j

as FHk-modules. As Hk
∼= Sn−3k−2

and all irreducible FSn−2k−2 are self-dual, Hk stabilizes a 1-dimensional
subspace of V ϕi ⊗ V ϕj . It follows by induction that Hk stabilizes a 1-
dimensional subspace of V +. If k is odd, then the same argument leads to a
D-dimensional subspace being stabilized by Hk. As Ek acts as scalars on V ±,
these spaces are, in fact, stabilized by Ck. Using part (1), Ck stabilizes a sub-
space W 0 of one of these dimensions in W (λ). Since cµrµ

(
V +

)⊕
cµrµ

(
V −
)

possesses a hyperbolic basis, W 0 ∩W (λ)⊥ = 0. If we let

M0 =
(
W 0 + W (λ)⊥

)
/W (λ)⊥

then Lemma 2.3 implies that M0 ⊂ W (λ)/W (λ)⊥ ∼= M , hence (2) and
(3). �

5. Proof of Theorem 1.2.

We are now in a position to prove Theorem 1.2:
Since M possesses a vector vλk

of weight λk by Lemma 2.5, we can produce
a lower bound for dim(M) as follows: Let Weyl(K) be the Weyl group of K
and recall that ` is the Lie rank of K. We compute CWeyl(K)(λk) using [3,

§13.1], and compute |λWeyl(K)
k |, whence

dim(M) ≥ |λWeyl(K)
k | = 2k

(
`

k

)
.(1)
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Case 1. First suppose that k ≥ n/3 − 1. We assume that dim(V ) ≥ 2n4,
so ` ≥ n4. Since dim(M) ≤

√
|H| ≤

√
n!, Eq. (1) implies that 2k

(
`
k

)
≤
√

n!.
Trivially, 2n4/2 >

√
n! for all n ≥ 1, so that k < n4/2 ≤ `/2. Using the fact

that
(

`
k1

)
<
(

`
k2

)
if k1 < k2 < `/2,

(
`
k

)
will be minimal when k = n/3− 1 and

` = n4. Note also that
(

`
k

)
=
∏k

i=1
(`−i+1)
(k−i+1) ≥

(`−k+1)k

kk . We have:

2n/3−1

(
n4

n/3− 1

)
<
√

n!,

2n/3−1 (n4 − n/3 + 2)n/3−1

(n/3)n/3−1
< (n1/2)n−1,

2n/3−1(n3 − 1)n/3−1 < n(n−1)/2,

nn−3 < n(n−1)/2,

n− 3 < (n− 1)/2,

n < 5.

This contradicts our assumption that n ≥ 10, so that dim(V ) ≤ 2n4 or
k < n/3− 1.

Case 2. We assume that k < n/3 − 1 and that k is odd. Lemma 4.1
and Frobenius reciprocity imply dim(M) ≤ D[H : Ck]. Since D ≥ `

2k and
[H : Ck] = n!

2(3k)(n−3k−2)!
, we have dim(M) ≤ `

2k
n!

3k(n−3k−2)!
. Combining

with (1) we get:

2k

(
`

k

)
≤ `

2k

n!
2(3k)(n− 3k − 2)!

,

2k

(
`− 1
k − 1

)
<

n3k+2

3k−1
,

2k (`− k + 1)k−1

(k − 1)k−1
<

n3(k−1)n5

3k−1
,

2
`− k

k − 1
<

n3

3
n5/(k−1).

Observing that (k − 1)n5/(k−1) < n3 when k ≥ 3 and n ≥ 10, we have

2` <
n6 + 2n

3
< n6.

Case 3. Finally we assume that k < n/3 − 1 and that k is even. Again
Lemma 4.1 and Frobenius reciprocity imply that dim(M) ≤ [H : Ck] ≤

n!
2(3k)(n−3k−2)!

. Combining with (1) we get:

2k

(
`

k

)
≤ n!

3k(n− 3k − 2)!
,
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2k (`− k + 1)k

kk
<

n3k+2

3k
=

n3k

3k
n2,

2
`− k

k
<

n3

3
n2/k,

2` <
n5 + 3n

9
.

In all cases, 2` < n6, which implies that dim(V ) ≤ n6. This completes
the proof of Theorem 1.2. �
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