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We consider the restriction of an irreducible FQ,,(g)-mo-
dule M to a subgroup H where F*(H) = A,, and where F
is algebraically closed with (char(F),q) # 1. Given certain
restrictions on the highest weight of M, we show that if m >
n%, then M|z is reducible.

1. Introduction.

In the study of the maximal subgroups of classical groups, the following
question arises: Given an absolutely irreducible module M for K and a
subgroup H, when does M| g remain absolutely irreducible? In this article
K =~ Q,,(q) is the commutator subgroup of an m-dimensional orthogonal
group over Fy, and F*(H) = A, is the alternating group of degree n. We
treat the case that the field of definition of M has characteristic dividing q.

Let F be an algebraically closed field containing F,, the field with ¢
elements, such that char(F) > 3. Then K < K where K = Q,,(F) and we
may assume that M is a FK-module. By [6, Theorem 43|, every absolutely
irreducible FK-module is the restriction of an irreducible FK-module of
the same weight. So we may assume that M = M(])) is an irreducible FK-
module with highest weight A\. Let ¢ = |m/2| be the Lie rank of K and
let {)\;} be the fundamental dominant weights of K. The labeling of these
weights corresponds to the labeling of the Dynkin diagrams for K as given
in [3].

Hypothesis 1.1. Assume the following are true:

0—2
(1) If m is even, then \ = (Z ai)w;) +ar—1(N—1+Xe); a; €Z, a; > 0.
i=1
-1
(2) If m is odd, then \ = (Z CLMi) + 2apM¢; a; € Z, a; > 0.
i=1
/-1 ¢
(3) If ui = Zaj, m even or if u; = Zaj, m odd then
j=i j=i

(a) p1 < p = char(Fy);
(b) 1<Z/Li=k<€.
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Conditions (1) and (2) imply that M is not a faithful module for any

proper covering group of K. We now state our main result:

Theorem 1.2. Assume that H, K and M = M(\) are as above with n,m >
10 and (q,6) = 1. Suppose further that X satisfies Hypothesis 1.1. If m > n®,
then M| g is reducible.

Our strategy is to produce a small subspace in M with a large stabilizer
in H and then, using Frobenius reciprocity, produce an upper bound for
dim(M). We produce a lower bound for dim(M) as an FK-module using
the length of the Weyl group orbit of a subdominant weight in M. The
result then follows by comparing these two bounds.

2. A construction of W (\).

In this section we construct the Weyl module W (\) of K with highest weight
A. Then M is a homomorphic image of this module. Our construction
proceeds by first constructing the Weyl module W () for a complex Lie
group G of the same type and rank as K, then we use Kostant’s Z-form
to produce W (). For notational convenience we assume that {\;} are the
fundamental dominant weights for G as well as for K, and accordingly,
assume that A is a dominant weight of G.

Let V be a complex, m-dimensional vector space possessing a non-degene-
rate orthogonal form f(, ) and let B be a basis for V' so that

B— {ei, fi |1 <i <t} if m is even
“\ {ei, fx | 1<i <} if mis odd

with f(ei,ej) = f(fz,f]) = f(z,e;) = f(z, f;) = 0, f(ei,fj) = 51‘,]’ and
f(x,z) = 2. We then define G = Q(V) and let T" be the maximal torus
of G' with respect to B. Set V. = (e; |1 <i < /) and Vi = (fi |1 <i < 0).

Suppose that A satisfies hypothesis 1.1 and d = max{i | u; # 0} so that
= (p1,...,H1q) is a proper partition of k. Let 7 be the tableau of shape
p with entries ¢;; = j + >, pts- Define the following subgroups of the
symmetric group Sg:

Ry = {0 € S| o(t;;) lies in the same row as t; j for all 7,5}

Cu = {0 € Si | o(t;;) lies in the same column as t; ; for all 7, j}

and elements of CSy:

Ty = Z o and = Z sgn(o)o

oceR, oeCy,
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Define &; ; : Yok _ yek-2) by /iz',j(vll ®"'®'Ulk) = f(?/liﬂ/lj)(’vll Q-
@®-~~®@®--~®vlk) for 1 <i< j<kand set

K= ﬂker(ﬁm).
1,J
Sy, acts on V®* by place permutation, specifically:
o0 @ Qi) = Vi) @ BV -

This action commutes with the diagonal action of G on V®*.

Given v € V® we define one additional element r,, of the group algebra
CSy. as follows: Let R, = {0 € Ry, | o(v) = v} and let {s;} be a left
transversal for R}, in R,. Define rj, = >, s; Notice that r,(v) = |R}|r;(v).

By [2, Theorem 19.22], W()) = ¢,y (VE*) N K is the Weyl module for
G with highest weight . Since V' is a complex vector space, c,r, (V®k) =
(curt(v) | v e VO,

Define Vz = Z[B] and let V = Vz ®z F. Then f( , ) = f(, ) ® 1p
is a non-degenerate orthogonal form on V. Without loss of generality, we
may assume that K = Q(V). Moreover if &; = ¢; ® 1, f; = fi ® 1y and
T =2 ® lg, then

B— {ei, f; | 1<i</(} if m is even
“\ {enfoT|1<i<€} ifmisodd

is a standard basis for V with respect to f(, ). We identify r, and ¢, with
the elements 7, ® 1g and ¢, ® 1g of FS.

Suppose that L C End(V) is the adjoint module for G so that L is a
complex Lie algebra of type Dy or By. Let A = {ry,...,r¢} be the set
of simple roots corresponding to the torus 7" and let ® be the root system
generated by A. Set Ag = {r1,...,ry—1} and let &9 C @ be the subset
generated by Ag. Using the setup of [1, §11.2], {e;,hy, | 7 € ®,1 < i < {}
is a Chevalley basis for L and {e,h,, | r € ®p,1 < i < £ —1} is a
Chevalley basis for Ly C L where Lg is a Lie algebra of type Ay_1. Let
Go < Ng(Ve @ V) such that Gy = SLy(C). Then, by [1, Theorem 11.3.2],
G = (exp(Cer) |r € @, ¢ € C) and Gy = (exp(Ce,) | r € ®g, ¢ € C). Note
that neither G nor Gy is the adjoint group for L or Lg, respectively. We
may consider V. to be the natural module for GGy. Under this identification,
V¢ is the dual of V.

Assume that U(L) is the universal enveloping algebra of L. From [3, §26],
Kostant’s Z-form Uz (L) is the Z-span of {¢"/m! |r € ®,m € Z*}. Given
any vector v of weight A\ in W(X), Uz(L)v @z F = W(\) where W()) is
the Weyl module for K with highest weight A\. By the previous remarks,
Uz (Lo) C Uz (L), which implies that Uz(Lo)v @z F C W(\).

Define vy, = @)L, e; and v, = QL v,
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Lemma 2.1. We have:

(1) cu(vy) is a vector of weight X\ in W (X);

(2) Uz (Lo)cu(vy) = cury (VEF) N Zle, ... e ®*.
Proof. First note that R,/ = R, so that 7,/ (v,) = v, and that c,(v,) # 0.
This implies that ¢, (v,) € cury (VEF). Tt is clear that c,(v,) € K so we
have ¢, (v,) € W(A). Let t € T and write ¢t = diag(t1,... ,te 7 ... ot ")
or t = diag(ty,... ,t[,tl_l, .. ,t;l,t’) depending on the parity of m. Then

d d
tv = cu(teu(vy)) = cu <® t?”m) = (H #) cu(vp)
i=1

i=1

From the definition of p it follows that c,(v,) is a vector of weight A and
o (1) follows. With the identification of V. with the natural module of Gy,
we see by [2, Theorem 15.15] that c,r, (VEF) is the Weyl module for Gy
corresponding to the partition p of k£ via the Schur functor. The argument
above restricted to t € T'N G shows that ¢,(v,) is a highest weight vector
in c,ry, (VEF). In particular U (Lo)cu(vy) = cury (VEF). Using the proof of
[4, Theorem 8.3.1], we have

Uz (Lo)cy(vy) = cury (V6®k> NZley,... ,6g]®k
which completes our proof. O
Lemma 2.2. Suppose T =7;, ® --- @ v;,, where {T;} is a collection of mu-
tually orthogonal, linearly independent singular vectors. Then:
(1) Ifsgn(oc)ocor(v) # =0 for allo. # 1 € Cyy 0 € Ry, then curpy(T) # 0;
(2) cur(v) € W(A).

Proof. Since ¥ is a summand of ¢, (7) and all other summands of ¢,,r},(7)
have the form sgn(o.)o.0,(v), part (1) must hold. There is g € K such that
g(Vi;) = ai;e;; such that a;; # 0 forall 1 <i <k Ifw=¢; @ ® e,
then ), = r)/. As

I
curu( w) € cury (V® ) NZley,... ,6g]®k,

Lemma 2.1 implies that ¢, (w) € Uz(L)v. Writing @ = o, &;, @ - -®@0;, &y,
we then have

CM GUZ ®F W

Finally, as W () is a FK-module, g 1CHT‘H (W) = curiy(v) € W(A). O

Though W () is a irreducible module for G, W(\) may not be an ir-
reducible module for K; however, it does possess a unique maximal sub-
module by [6, Lemma 80] which we denote by Rad(W()\)). Moreover,
M = W(\)/Rad(W ().
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We now discuss the orthogonal forms on V&* and W (\). Suppose v, w €
VO where v =11 ® - @ v and w = wy ® - - - @ wy,. We define f*(, ) by

k
fk(U, w) = H f(vi, w;).
i=1

f "“( , ) is a non-degenerate, G-invariant orthogonal form on V®k  This form
is also invariant under the action of S;. Note that
Fleu(v),cu(w)] = D sgu(o)f*[o(v), cu(w))]
oeCy
= ) sen(o)f*[v,07 cu(w)]
oeCy

= Z f* [v; cu(w)]

oeCy

= [Culf*[v, cu(w)):

We define fo( , ) on ¢, (VE*) by

£ [cu(v), cu(w)] = £¥[v, cu(w)].
By a similar argument as above, we see that f¥[v, ¢, (w)] = f¥[w, ¢, (v)], so
this form is symmetric. Since f*( , ) is bilinear and G-invariant, f[f (,)is
also bilinear and G-invariant. Therefore fl’j( , ) is a G-invariant orthogonal
form on W(X) C ¢, (V®¥). As before, fk( , ) =, )@l is a K-
invariant orthogonal form on 7" and ?Z( , ) = fl’j( , )®1p is a K-invariant
orthogonal form on W (). This form is possibly degenerate. We denote the

radical of this form as W()\)*. The following lemma is generally known,
although we present a proof:

Lemma 2.3. Rad(W()\)) = W(A\)*.

Proof. Define v_,,, = @/}, fiandv_, = ®?:1 U_,,;. Noting that r, " =1,
cu(v_y) # 0 € W(A) by Lemma 2.2. A similar argument as in the proof
of Lemma 2.1 shows that c,(v—,) is a vector of weight —A. Hypothesis 1.1
implies that d < ¢. In particular, there is an element wy of the Weyl group of
K such that wo[c,(v_,)] = ¢u(v,). This means that M = M ()\) must be self-
dual. Clearly we have that W(\)+ C Rad(W())) and that W (\)/W(\)+
is non-degenerate, so this latter module is also self-dual. Since M is self-
dual and is a homomorphic image of W(X)/W(A)+, W(A)/W(A)+ must
possess a submodule isomorphic to M. Since M = W (\)/Rad(W (\)) and

Rad(W (X)) does not possess a constituent which is isomorphic to M, we
must have Rad(W()\)) = W(\)* and our result follows. O
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be a hyperbolzc basis for some 2k-
R QU and W = w1 Q -+ Q Wg.

dimensional subspace of V. Set v
Then:

(1) (@) # 0, cur(@) £ 0;
(2) (@), cur(®@) € WN);
(3) £uleurn(v), curp(w)] # 0.

Lemma 2.4. Let {@,@Z |1 < S k}
=7

Proof. Parts (1) and (2) follow from Lemma 2.2 since r}, = r}) = r,, and the
v; are distinct, similarly for w;. If 01,09 € Si, then
k 1 ifog =09
Flon(@ fv RO (l)] { otherwise.
Recall that R, NC, = 1. Then we have
=k _ __ =k _ __
fu[curu(v),cum(w)] = f[ru.(v), Curu(w)]
= Y Flo(@), cury (W)
oc€RL
sk
= Y flo@),0w)
o€RL
= ’Ru|
Part (3) then follows as |R,| = Hle pi! and p; < char(Fy) for all . O

Lemma 2.5. M possesses a vector of weight A.

Proof. Let {&;, f; | 1 <i <k} be a subset of our standard basis B for V. By
part (2) of Lemma 2.4, ¢,r,(€1 ® - - - ® ;) € W(A). An argument similar to
that used in Lemma 2.1 shows that c,7,(€; ® --- ®€) is a vector of weight
Ak- Hence A is a subdominant weight of A\. Condition (3) of Hypothesis 1.1
insures that A is p-restricted. Therefore using the results of [5], M possesses
a vector of weight . O

3. Elementary abelian 3-subgroup Ej.

Assume that £ < n/3 — 2 and recall that F*(H) possesses a subgroup Hy
isomorphic to S,,_2. Let

Ei, = ((123), (456),...,(3k —2, 3k — 1, 3k)) < A,

be a subgroup of Hy generated by commuting 3-cycles in F*(H) so that Ej,
is an elementary abelian 3-group of rank k. Then

N = Nu,(Ex) = S305; X Sp_sk—2
Cr = Cu,(Ey) = Ej, X Sp_3k—2
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and let Hy < Cj so that Hy = S, _3,_2. Note that Cy, (Hy) = S35 and
this subgroup controls fusion in Ej. Let 0 # 1 € E}, and assume that o is the
product of k; disjoint 3-cycles. Then C, (o) = Z31Sk, X S30Sk—k, X Sp—sk—2
which implies |oVk| = 2k (lfl)

Let ¢ € Ef = Hom(E}, F*). The group Ny, acts on this group by ¢? : o —
(g tog) for g € N, 0 € Ei. We abuse notation slightly and define =1 by
ol 1o (o7t for all ¢ € Ey. Recall that Iny, (¢) = {g € Ni|p? = ¢}
is the inertia group of ¢ in N and note that Hy € Iny, (¢).

If ¢ € Ej is non-trivial, then the previous remarks concerning the action
of N, on Ej, imply that [Ny : Iny,(¢)] = 2k1( ) for some ki, 1 < k1 <k
and that go_l € goNk. Since (,fl) > k unless k = k1, in which case ok1 > 2k,
we have [Ny, : Iny, (¢)] > 2k.

4. Decomposition of V|, and Cy-invariant subspace of W(\).

We continue to assume that k& < n/3 —2 and we now consider the restriction
of V to Ej. Since char(F) # 3, we have VlEk% @%E; VSO where V@ is
the homogeneous component of ¢. Let 77 € V(pl and Uy € Vi,. Then
(971, g02) = ¢1(9)p2(9) (01, v2) for all 9 € Ey. If ;' # o then (v1,T2) = 0
which implies V,, L V., when o' # 9. Since V is non-degenerate,
dim(V,,) = dim(V) — dim(V,,) and it follows that V,, & V,,-1 must be
non-degenerate and therefore possesses a hyperbolic basis.

Pick ¢ # 1 so that Vi, # 0. Since gV, = Vi for g € N, we may consider
V, to be an Flny, (¢)-module. Let E} _; be a maximal subgroup of E} which
does not contain ¢. Define O = pE; | N and O_ = o7 Ef | NNk
so that Oy U O_ = ™ and |04| = |O_| > k. Moreover p; € O, if
and only if ;' € O_. We assume that O, = {p;} and that O_ = {¢; '}.

Then (@v co, Vv 1) éh (@@ 1oV, 71) is an F Ng-submodule of V| v, . If
¢’ € Nk then, as C, (Hy) also controls fusion in Ef, thereis a g € Cy, (Hy,)
such that gV]p = VSO/. In particular Vw = V + as FHp-modules. Define
D = dim(V,,) so that D = dim(V,) for all 4.

Given the above decomposition, we form the following;:

k k
V+ = ®V¥% and V_ = ®V(pi—1.
=1 =1

Recall that D = dim(V,,) and assume that {v; ;,w;; | 1 < j; < D} is a
hyperbolic basis for V EBV -t Define g1k = ®f 1 Vi j; and Wk =
®k _; Wi,j;- Then {its ok le’ «Jk | 1 < j; < D} forms a hyperbolic basis
for VieV_. If o € Sy, then o (TItrodk) = itk if and only if o = 1
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DIk

. = r, for all /t—Jk € V.

since the V,, are distinct. Moreover, r
Similarly for w/tJk € V_.

By parts (1) and (2) of Lemma 2.4, and as Vi are both totally sin-
gular, c,r, (V+) C W(X). By part (3) of Lemma 2.4, fﬁ[curu(ﬁjh'“’jk),
curp(@i--dk)] £ 0. Whenever (j1,...,Jk) # (ji,---,Ji), we have that
fﬁ[curu(ijh""jk), curp (@ Ik = 0. Therefore {c,r, (v %),

cprp(@it--3k) | 1 < j; < D} is a hyperbolic basis for

curu (V) @ curu (V=) -
Lemma 4.1. We have:
(1) Vi 2 eur(Va) as FCy-modules;
(2) If k is even, then Cy stabilizes a 1-dimensional subspace of M;
(3) If k is odd, then Cy stabilizes a D-dimensional subspace of M.

Proof. Given the hyperbolic basis {w/t % wit-Jk | 1 < j; < D} for
Vi@ V_, it is clear that the map v/t +— ¢,r,, (071 J%) is a Cy-invariant
bijection. Therefore V1 2 ¢,r, (V1) as FCi-modules. The case for V_ fol-
lows by a similar argument, proving part (1). Suppose that k is even and re-
call that V%. = V%‘ and V@i_l s V(p__1 as FHp-modules. As Hy = S,,_31_9

and all irreducible FS,,_o;_o are se]lf—dual, H;, stabilizes a 1-dimensional

subspace of V%. ® V%.. It follows by induction that Hj stabilizes a 1-
dimensional subspace of V. If k is odd, then the same argument leads to a
D-dimensional subspace being stabilized by Hj,. As Ej, acts as scalars on V 4,
these spaces are, in fact, stabilized by C. Using part (1), Cj stabilizes a sub-
space Wy of one of these dimensions in W (). Since ¢,ry, (V1) @ cury (V=)
possesses a hyperbolic basis, Wo N W (X)L = 0. If we let

Mo = (Wo+WN*) /(0"

then Lemma 2.3 implies that My C W()\)/W (AL = M, hence (2) and
(3). O

5. Proof of Theorem 1.2.

We are now in a position to prove Theorem 1.2:

Since M possesses a vector vy, of weight A\, by Lemma 2.5, we can produce
a lower bound for dim (M) as follows: Let Weyl(K) be the Weyl group of K
and recall that ¢ is the Lie rank of K. We compute Cweyl(?)(Ak) using [3,

§13.1], and compute ‘)\ZVeyl(K)” whence

(1) dim(M) > [\ EO) = 2k @
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Case 1. First suppose that & > n/3 — 1. We assume that dim(V') > 2n?,
so ¢ > n*. Since dim(M) < \/|H| < V/n!, Eq. (1) implies that 2~ (f;) < Vnl.
Trivially, 2"*/2 > v/n! for all n > 1, so that k < n*/2 < £/2. Using the fact
that (,fl) < (,52) if k1 < ko < £/2, (,i) will be minimal when k& = n/3 —1 and

¢ = n*. Note also that (f;) = Hk (i) DR WWe have:

i=1 (Foirl) = &
=i o
n/3—1 ’
2n/371 (n4 — n/3 + 2)n/3—1 < (n1/2)n71
(n/3)n/3-1 ’

2n/3—1(n3 _ 1)n/3—1 < n(n—l)/Q

n"3 < n(”_l)/2,
n—3<(n—-1)/2,
n <35.

This contradicts our assumption that n > 10, so that dim(V) < 2n? or
k<n/3—1.
Case 2. We assume that & < n/3 — 1 and that &k is odd. Lemma 4.1
and Frobenius reciprocity imply dim(M) < D[H : Cy]. Since D > £ and
[H : C] = W—!%—W’ we have dim(M) < £ S’C(n—ni?:k—w Combining
with (1) we get:

ok l < t n!
k) = 2k 2(3F)(n — 3k — 2)!”
/-1 n3k+2
k o
2 (k-—1> S 3T
2k (g k4t 1)k:—1 n3k=1),5
(k‘ _ 1)k71 < 3k—1 7

(—k n?
ot =k _ M 5/(k-1)
k—1°-3"
Observing that (k — 1)n5/(k*1) < n3 when k£ > 3 and n > 10, we have

nb + 2n 6
3 <n.

2 <

Case 3. Finally we assume that k& < n/3 — 1 and that k is even. Again
Lemma 4.1 and Frobenius reciprocity imply that dim(M) < [H : Cf] <
n! Combining with (1) we get:

237 (n—3k—2)!"
l n!
k
<
2 <k:> ~ 3k(n—3k—2)V
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(e_ k+ l)k n3k+2 n3k )

k _
C—k n?
gt =R _ 17 ok
— <z
5
In all cases, 2¢ < n®, which implies that dim(V) < n% This completes
the proof of Theorem 1.2. O
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