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Let D be a bounded domain in Rn whose boundary has a
Minkowski dimension α < n. Suppose that EΛ ={e2πix·λ}λ∈Λ,
Λ an infinite discrete subset of Rn, is a frame of exponentials
for L2(D), with frame constants A, B, A ≤ B. Then if

R ≥ C

(
B|∂D|α

A|D|

) 1
n−α

,

where C depends only on the ambient dimension n and |∂D|α
denotes the Minkowski content, then every cube of sidelength
R contains at least one element of Λ. We give examples that
illustrate the extent to which our estimates are sharp.

Let D be a domain of finite Lebesgue measure in Rn. Suppose that L2(D)
has a frame of exponentials of the form EΛ = {e2πix·λ}, λ ∈ Λ, a discrete
infinite subset of Rn, with frame constants A,B, A ≤ B, in the sense that

(∗) A||f ||2L2(D) ≤
∑
Λ

|f̂(λ)|2 ≤ B||f ||2L2(D),

where f : D → C, and f̂ denotes the standard Fourier transform. In this
paper we will work with frames rather than exponential basis because L2 of
every bounded domain has frames, whereas exponential basis are generally
hard to come by. (See [Fug].) The following quantities were introduced by
Beurling. See [Br].

(1) D+
R = max

x∈Rn
#{Λ ∩QR(x)},

where QR(x) is a cube of sidelength 2R centered at x, and let

(2) D−
R = min

x∈Rn
#{Λ ∩QR(x)}.

It follows from results proved by Landau ([Lan], see also [GR]) that if D
is a bounded domain then

(3) lim sup
R→∞

D−
R

(2R)n ≥ |D|.

If the set EΛ is actually an orthogonal basis for L2(D) then the inequality
(3) is actually an equality for both D−

R and D+
R . These results show that,
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asymptotically, a sufficiently large cube centered at any point contains the
number of elements of Λ at least equal to its volume multiplied by the
Lebesgue measure of D. In this paper we will show that if the Minkowski
dimension, α, of the boundary ∂D is smaller than the ambient dimension n,
then there exists

(4) R = C

(
B|∂D|α
A|D|

) 1
n−α

,

where C only depends on n and |∂D|α = limε↓0ε
α−n|{x : d(x, ∂D) < ε}|

denotes the α-dimensional upper Minkowski content of ∂D, such that a cube
of sidelength 2R centered at any point contains at least one element of Λ.
Note that if ∂D is, say, piecewise smooth, then α = n− 1 and R = C B|∂D|

A|D| .
A note on notation. The letter C below shall denote a generic constant

which may change from line to line. We shall give more precise information
about the constants when appropriate.

Our main result is the following.

Theorem 1. Let D denote a domain in Rn with finite non-zero Lebesgue
measure whose boundary ∂D has Minkowski dimension α < n in the sense
that

(5) |{x ∈ Rn : d(x, ∂D) < ε}| ≤ Cεn−α.

Then there exists C depending only on n, such that if

(6) R ≥ C

(
B|∂D|α
A|D|

) 1
n−α

,

then

(7) Λ ∩QR(µ) 6= ∅

for every µ ∈ Rn, and any set Λ such that EΛ is an exponential frame for
L2(D), with frame constants A,B, A ≤ B where QR(µ) denotes the cube of
sidelength 2R centered at µ.

In other words, our result shows, at least if A = B, that if D has a fixed
volume, then the maximum gap between the elements of Λ is no larger than a
fixed constant times the the Minkowski content of the boundary. Moreover,
the rate of increase depends on the Minkowski dimension of ∂D. This idea
is illustrated by the following simple example.

Example 2. Let D = [0, a1]× [0, a2]× · · ·× [0, an], a1 ≥ a2 ≥ · · · ≥ an > 0,
Πn

j=1aj = 1. We can take Λ = Πn
j=1

1
aj

Z. It is not hard to see that the largest
cube that does not intersect Λ has sidelength 2R = 1

an
. The measure of ∂D
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is 2
∑n

j=1
1
aj

. It follows that

(8)
1
4n

≤ R

|∂D|
≤ 1

4
,

so R grows linearly with |∂D|.

Example 3. We now spice up the above example to illustrate the fractal
phenomenon. Let D be a domain constructed by taking a square [0, 1]2

and replacing the upper and lower segments by identical fractal curves of
Minkowski dimension 1 < α < 2. It is not hard to see that Λ may be taken
to be Z2. (See [Fug].) We now blow up the domain by the factor of t > 1
(i.e., we apply the matrix tI, where I is the identity matrix). Let tD denote
the image of D under that mapping. The set Λ must now be taken to be
(1

t Z)2, which tells us that R in Theorem 1 should be ≈ 1
t . On the other

hand, |∂tD|α ≈ tα, and |tD| = t2, so Theorem 1 gives us R ≈
(

tα

t2

) 1
2−α = 1

t .

The following example shows that if the Lebesgue measure |D| = 0 the
conclusion of Theorem 1 no longer holds.

Example 4. Let D ⊂ [0, 1] denote the Cantor type set consisting of num-
bers that do not have 1 or 3 in their base 4 expansion. Let m denote the
unique probability measure supported on D (see [Fal]) given by the equation

(9)
∫

f(t)dm(t) =
1
2

∫
f

(
t

4

)
dm(t) +

1
2

∫
f

(
t + 2

4

)
dm(t).

One can check that

(10) m̂(t) = eπi 2
3
tΠ∞

j=0 cos
(

πt

2 · 4n

)
.

If Λ is the set of non-negative integers whose base 4 expansion does not
contain 2 or 3, then EΛ is an orthonormal basis of L2(m). (See [JP].)

In particular this shows that the conclusion of Theorem 1 fails miserably
in this case.

Example 5. In this example we shall see that there exist families of do-
mains with piecewise smooth boundaries such that the volume of each do-
main is 1, the length of the boundary tends to infinity, but R, in the sense
of Theorem 1, may always be taken to be 1

2 + ε, for any ε > 0.
Let Dk denote the unit square in R2 where the upper and lower edges are

replaced by a sawtooth function with k teeth where the height of each tooth
is 1

2 . The length |∂Dk| goes to infinity as k → ∞. The set Λ for each Dk

is Z2, so R, in the sense of Theorem 1, may always be taken to be 1
2 + ε,

for any ε > 0. This says that the inequality (6) does not sharply describe
the behavior of R in this case. However, the proof of Theorem 1 (see the
discussion at the end of the proof of Theorem 1 below) shows that in some
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cases R may be taken to be C diameter (D)
|D| , where C depends only on n. We

shall see that the example given in this paragraph falls into that category.

In all the previous examples we used frames which were actually orthogo-
nal bases. However, this phenomenon persists in the cases when orthogonal
exponential basis do not exist and we have to make do with frames.

Example 6. Let Br denote the disc of radius r in R2 centered at the origin.
It was shown in [JP2] that Λ = 1

2rZ2 is frame for L2(Br) with constants
A = B = 4r2. Note that we do not have orthogonal basis becuase, in
particular, that would imply that A = B = |Br| = πr2. It is well known
that Br does not have orthogonal basis of exponentials. See [Fug].

It is clear that R, in the sense of Theorem 1 must be taken to be greater
than 1

4r , which is exactly what Theorem 1 predicts.

The key estimate (see Lemma 9 below) involved in the proof of Theorem
1 is

(11)
∑

λ/∈QR(µ)

|χ̂D(λ− µ)|2 ≤ C
|∂D|α
Rn−α

,

for any µ ∈ Rn, where C depends only on the dimension and on the frame
constant B.

This estimate is similar to the estimate that comes up in the theory of
irregularities of distributions, (see [Mgr, p. 110]), namely that for any
domain S whose boundary is a piecewise C1 curve C

(12)
∫
|t|≥R

|χ̂S(t)|2dt ≤ |C|
2π2R

.

In fact, our proof of the estimate (11) given in Lemma 9 below uses an
idea from the proof of the estimate (12) given by Brandolini, Colzani, and
Travaglini in [BCT].

The proof of Theorem 1 is based on the following sequence of lemmae.

Lemma 7. For any f ∈ L2(D) define

(13) FDf(ξ) =
∫

D
e−2πix·ξf(x)dx,

and let f̂ denote the standard Fourier transform

(14) f̂(ξ) =
∫

Rn

e−2πix·ξf(x)dx.

Let thf(x) = f(x + h), and let χD denote the characteristic function of
D. Then

FDthχD(λ) = e2πiλ·hχ̂D∩D+h(λ),(15)

FDt−hχD(λ) = χ̂D∩D+h(λ),(16)
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and

FDχD(λ) = χ̂D(λ).(17)

The proof is straightforward.

Lemma 8. Let D be as above. Then∫
D
|χD(x + h)− χD(x− h)|2dx ≤ C|h|n−α,(18)

and ∫
D
|χD(x)− χD(x− h)|2dx ≤ C|h|n−α,(19)

with C ≤ C ′|∂D|α, where C ′ depends only on n.

Remark. We note again that even though the estimate C ≤ C ′|∂D|α is
best possible over all h’s, for special choices of h, the estimate is frequently
much better. (See Example 5 above.)

To prove (19) note that the left hand side equals |{D− (D + h)} ∪ {(D +
h)−D}| ≤ |{x ∈ Rn : d(x, ∂D) < h}| ≤ C|∂D|α|h|

n−α. The proof of (18) is
similar.

The key lemma is the following. (See [BCT] for a similar argument.)

Lemma 9. Let D be as above and let Λ be such that EΛ is a frame of L2(D)
with frame constants A and B, A ≤ B. Then

(20)
∑

{λ∈Q
2k+1−Q

2k}

|χ̂D(λ)|2 ≤ CB2−k(n−α),

where QR = QR(0, . . . , 0), and C as in Lemma 8.

To prove Lemma 9 chose N boxes Aj
k and N vectors hj such that 2−k ≤

|hj | ≤ 2−k+1, ∪N
j=1A

j
k = Q2k+1 −Q2k , and

(21)
∣∣∣e2πiλ·hj − 1

∣∣∣ ≥ 1, λ ∈ Aj
k.

Clearly this can be done in any dimension n, for a sufficiently large N =
N(n).

Now, by triangle inequality∑
Aj

k

|χ̂D(λ)|2


1
2

(22)

≤

∑
Aj

k

|χ̂D∩D+hj
(λ)|2


1
2

+

∑
Aj

k

|χ̂D(λ)− χ̂D∩D+hj
(λ)|2


1
2
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= I + II.

By Lemma 7, the frame property, and Lemma 8 we get

II2 ≤
∑
Λ

|χ̂D(λ)− χ̂D∩D+hj
(λ)|2(23)

=
∑
Λ

|FDχD(λ)− FDt−hj
χD(λ)|2

≤ B

∫
D
|χD(x)− χD(x− hj)|2dx

≤ CB|hj |n−α ≤ CB2−k(n−α).

On the other hand, by (21), Lemma 7, the frame property, and Lemma 8
we get

I2 ≤
∑
Aj

k

|χ̂D∩D+hj
(λ)|2|e2πiλ·h − 1|2(24)

≤
∑
Λ

|χ̂D∩D+hj
(λ)|2|e2πiλ·hj − 1|2

=
∑
Λ

|FDthj
χD(λ)− FDt−hj

χD(λ)|2

≤ B

∫
D
|χD(x + hj)− χD(x− hj)|2dx

≤ CB|hj |n−α ≤ CB2−k(n−α).

Proof of Theorem 1.

Since EΛ is a frame for L2(D) if and only if EΛ−µ is also a frame for L2(D)
(with the same frame constants) for any µ ∈ Rn, and our estimates do not
depend on the choice of Λ, it is sufficient to consider the case µ = (0, . . . , 0).

By the frame property and Lemma 7 we get

A|D| ≤
∑
Λ

|FDχD(λ)|2 =
∑
Λ

|χ̂D(λ)|2(25)

=
∑
QR

|χ̂D(λ)|2 +
∑

{λ/∈QR}

|χ̂D(λ)|2.

Using Lemma 9 we see that if R = 2k0 ,

(26)
∑

{λ/∈QR}

|χ̂D(λ)|2 =
∞∑

k=k0

∑
Q

2k+1−Q
2k

|χ̂D(λ)|2 ≤ CB2−k0(n−α) =
BC

Rn−α
.
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So by (25) and (26)

(27)
∑
QR

|χ̂D(λ)|2 ≥ A|D| − BC

Rn−α

which proves that if R >
(

BC
A|D|

) 1
n−α , then

(28) Λ ∩QR 6= ∅.
Moreover, the above proof shows that C ≤ C ′|∂D|α where C ′ depends

only on n.

Remark. In the proof above the key estimate is |{D ∩ D − h}| ≤
C|h|n−α|∂D|α. While this is the best possible estimate uniform in h, in
the proof we are have a wide choice of h’s as long as |h| = 2−k and the
estimates (18), (19), and (21) are satisfied.

This observation can be used to handle the family of examples given by
Example 5 above. For convenience we take Λ = (1

2 , 0)+Z2. We can now take
all h’s in the proof of Theorem 1 of the form h = (h1, 0) and for this choice of
h’s it is easy to check that |{Dk ∩Dk−h}| ≤ C|h|diameter (Dk), where C is
a uniform constant, since the “teeth” of Dk’s point in the y-direction. Since
diameter (Dk) is uniformly bounded above and below, the lack of sharpness
of Theorem 1 exposed in Example 5 is resolved for this family of examples.
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