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We consider the correspondence between nilmanifolds and
Lie algebras with rational basis, and we define spectral se-
quences converging to the respective cohomologies. The E2

terms of the spectral sequences are the cohomolgies of iso-
morphic graded Lie algebras.

Each nilmanifold gives rise to a Lie algebra with rational
basis. We give an example which illustrates that not all such
Lie algebras correspond to nilmanifolds. Given a Lie algebra
with rational basis we give a construction that produces a
nilmanifold with Lie algebra that is rationally equivalent to
the starting Lie algebra.

0. Introduction.

In Section 1 we consider the correspondence between groups and Lie alge-
bras over the reals and rationals. A nilmanifold is completely determined by
its fundamental group — a finitely-generated, torsion-free, nilpotent group.
In Section 2 we show how a nilmanifold determines a nilpotent Lie algebra
with a finite rational basis; we give an example to illustrate that not every
such Lie algebra comes from a nilmanifold. In Section 3 we define a spectral
sequence for a nilmanifold. We prove that spectral sequence converges to
the integer cohomology of the nilmanifold and has E2 term isomorphic to
the cohomolgy of a graded Lie algebra. In Section 4 we define the corre-
sponding spectral sequence for the Lie algebra associated to a nilmanifold.
The spectral sequence converges to the cohomology of the Lie algebra; the
E2 term is the cohomology of a graded Lie algebra, and if A is the smallest
subring of the rationals containing the structure constants of the Lie algebra
then with coefficients equal to A the E2 terms of the spectral sequences of
the nilmanifold and the Lie algebra are isomorphic. In Section 5 we give a
construction of a nilmanifold from a nilpotent Lie algebra with finite rational
basis; the Lie algebra associated to this nilmanifold is rationally equivalent
to the original Lie algebra.
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1. Nilmanifolds and corresponding Lie algebras over the reals
and the rationals.

A nilmanifold is the quotient of a simply-connected Lie group by a uniform
discrete subgroup. A uniform discrete subgroup can be identified with a
finitely-generated, torsion-free, nilpotent group. We denote such a group by
G. Let GR be a k-dimensional, connected, simply-connected, nilpotent Lie
group. Then GR can be identified with its real Lie algebra LR with bracket
[ , ]. With respect to any basis {d1, . . . , dk} for LR, the group GR can be
identified with the set of elements ξ1d1 + · · ·+ ξkdk, ξj ∈ R, in Rk. The Lie
algebra LR has real structure constants and the group structure ∗ on GR (as
well as on any subgroup) is given by the Campbell-Hausdorff formula:

Using the notation ad(x)(y) = [x, y], ad2(x)(y) = ad(x)([x, y]) =
[x[x, y]], . . . we can write

x ∗ y = z(x, y),(1)

z(x, y) =
∞∑
n=1

zn(x, y),

zn(x, y) =
1
n

∑
p+q=n

(z′p,q + z′′p,q), where

z′p,q =
∑

p1+···+pm=p
q1+···+qm−1=q−1
pi+qi≥1,pm≥1

(−1)m+1

m

adp1(x)adq1(y) · · · adpm(x)(y)
p1!q1! · · · pm!

,

z′′p,q =
∑

p1+···+pm=p
q1+···+qm−1=q−1
pi+qi≥1,pm≥1

(−1)m+1

m

adp1(x)adq1(y) · · · adpm−1(y)(x)
p1!q1! · · · qm−1!

.

It is easy to find the first three homogeneous components of z. Namely,

z1(x, y) = x+ y,

z2(x, y) =
1
2
[x, y],

z3(x, y) =
1
12

[x, [x, y]] +
1
12

[y, [y, x]].

It is clear that z(x, 0) = x, z(0, y) = y, and z(z(w, x), y) = z(w, z(x, y)).
Malcev [3] showed that a group GR contains a uniform discrete subgroup

G if and only if there is a basis for LR with rational structure constants. Let
{d1, . . . , dk} be such a rational basis. Then the set of elements

ξ1d1 + · · ·+ ξkdk, ξj ∈ Q,
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has the structure of a Lie algebra L = LQ. L as a subset of GR has group
structure given by the Campbell-Hausdorff formula. We denote this group
by GQ. Since L is a nilpotent Lie algebra, a rational basis for L can be chosen
so that {di, . . . , dk} is a basis for an ideal Li of L, with [Li,L] ⊆ Li+1 and
Lk+1 = 0. Such a basis is called a canonical basis for L. It follows from the
Jacobi identity that

(2) [Li,Lj ] ⊆ Li+j

for i, j ≥ 1. In particular, the bracket on L induces a graded Lie algebra
structure on

⊕
i≥1 Li/Li+1.

Let G be the group on the set of elements

(x1d1) ∗ · · · ∗ (xkdk), xj ∈ Q,
with group structure given by the map ∗. The elements

(xidi) ∗ · · · ∗ (xkdk)

generate a normal subgroup Gi of the group G.

G = G1 > G2 > · · · > Gk > 1

is a central series. The commutator (a, b) = a−1b−1ab for any a ∈ G and
b ∈ Gi belongs to Gi+1, and the quotient groups Gi/Gi+1 are isomorphic to
Q.

Proposition 1 ([3]). The groups G and GQ are isomorphic. The isomor-
phism is given by the maps

G
ϕ

�
ψ
GQ, (x1d1) ∗ · · · ∗ (xkdk)

ϕ

�
ψ
ξ1d1 + · · ·+ ξkdk,

where

ξj = xj + ϕj(x1, . . . , xj−1) and xj = ξj + ψj(ξ1, . . . , ξj−1)

are rational polynomials.

Proof. See [3]. �

The explicit formulas for ϕ and ψ follow from the Campbell-Hausdorff
formula.

Note that the maps ϕ and ψ give one-to-one maps of sets

Gi
ϕ

�
ψ
Li, i = 1, 2, . . . , k.

The group G, as a set, can be identified with Qk via the map e : G → Qk

given by
e : (x1d1) ∗ · · · ∗ (xkdk) −→ x = (x1, . . . , xk).

e induces on Qk a group structure by the operation

x · y = e(e−1x ∗ e−1y).
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It follows that

(3) x · y = ρ(x, y) = (ρ1(x, y), . . . , ρk(x, y)),

where the ρ′js are rational polynomials of the form

ρj(x, y) = xj + yj + τj(x1, . . . , xj−1, y1, . . . , yj−1)

= xj + yj + σj(x1, . . . , xj−1, y1, · · · , yj−1) + · · · ,

and where σj = σj(x1, . . . , yj−1) denotes the quadratic part of τj . Then Qk

can be given a Lie algebra structure with bracket [ , ] defined by setting

[x, y] = σ(x, y)− σ(y, x), where σ(x, y) = (σ1, . . . , σk).

This bracket on Qk induces the original Lie algebra structure on L (= GQ)
via the maps e, ϕ, and ψ.

2. Finitely-generated torsion-free nilpotent groups.

Let G be a torsion-free, nilpotent group on k generators. A set of elements
{g1, . . . , gk} of G is called a canonical basis for G if every element of G can
be expressed in the form

gx1
1 · · · gxk

k , xj ∈ Z,

so that the elements of the form gxi
i · · · gxk

k generate a normal subgroup Gi

of G, for i = 1, 2, . . . , k, with the quotients Gi/Gi+1 being infinite cyclic.
Any such group is isomorphic to a uniform discrete subgroup of the real

Lie group GR. This isomorphism is given as the composition of maps

G
i−→ G ϕ−→ GQ

inclusion−→ GR,

where

i(gx1
1 · · · gxk

k ) = x1g1 ∗ · · · ∗ xkgk,

and

ϕ(x1g1 ∗ · · · ∗ xkgk) = ξ1g1 + · · ·+ ξkgk.

As in Proposition 1, it follows that {g1, . . . , gk} is a canonical basis for
the Lie algebra L. Note that while the x′js are integers the ξ′js are rational
numbers in general. Furthermore, recall that GQ = LQ = L and GR = LR as
sets. We identify G with its image i(G) in G. Thus we have:

(i) G is the subgroup of G consisting of the elements

(x1g1) ∗ · · · ∗ (xkgk), xj ∈ Z.

(ii) The groups Gi = G ∩ Gi of the elements

(xigi) ∗ · · · ∗ (xkgk), xj ∈ Z
are normal subgroups of G.
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(iii) The quotient groups Gi/Gi+1 are infinite cyclic.
(iv) The Z module

⊕
i≥1 Gi/Gi+1 has a graded Lie algebra structure in-

duced by the commutators on G. This Lie algebra structure is induced
from that on

⊕
i≥1 Li/Li+1 by the map ϕ ◦ i : G −→ L.

(v) The group G, as a set, can be identified with Zk ⊂ Qk via the map
i ◦ e. The group structure on Zk in (3) is induced by e. Therefore, the
rational polynomials ρj are Z-valued polynomials when restricted to
Zk × Zk. Each polynomial ρj(x, y) can be written as a sum (over Z)
of binomials(

x1

a1

)(
x2

a2

)
· · ·

(
xr
ar

)(
y1

b1

)(
y2

b2

)
· · ·

(
ys
bs

)
,

with au, bv nonnegative integers, r, s ≤ j, where not all a′us and not
all b′vs are equal to zero and also as sum (over Q) of polynomials (see
[1]).

Thus, we can consider the group Zk with the group operation given by
(3). We denote by G the image of Zk in GQ under the one-to-one map

ch = ϕ ◦ e−1 : Zk −→ G ⊂ GQ.

Recall that, given a canonical basis {g1, . . . , gk} for G, Gk is the set of
elements ξ1g1 + · · ·+ξkgk, where ξ1, . . . , ξk are certain rational numbers. Gk
with the operation ∗ given by the Campbell-Hausdorff formula is a group.
It is important to note that the sequence of rational numbers ξ1, . . . , ξk is
not an arbitrary sequence of rational numbers; it depends on the choice of
a canonical basis {g1, . . . , gk} for G. Once a canonical basis is chosen then
ξj = xj + ϕj(x1, . . . , xj−1), where the xu’s are integers and the rational
polynomials ϕj are determined by the Lie algebra bracket.

We summarize our observations as follows:

Proposition 2. Let G be a torsion-free nilpotent group on k generators, and
let {g1, . . . , gk} be a canonical basis for G. Then the group G is isomorphic
to the group Zk with the group operation defined by

(4) x · y = ch−1(ch(x) ∗ ch(y)),

where x = (x1, . . . , xk), y = (y1, ..., yk) and where ∗ is given by the Campbell-
Hausdorff formula (1).

In order to illustrate the type of rational numbers ξ1, . . . , ξk that can
occur, we look again at a classical example.

Example 1 (The Heisenberg group). Let G be the group of matrices1 a1 a3/k
0 1 a2

0 0 1

 , where aj ∈ Z and k is a fixed integer > 0.
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Then g1 =

1 1 0
0 1 0
0 0 1

 , g2 =

1 0 0
0 1 1
0 0 1

 , g3 =

1 0 1/k
0 1 0
0 0 1


is a canonical basis, and

gx1
1 gx2

2 gx3
3 =

1 x1 (x3/k) + x1x2

0 1 x2

0 0 1

 .

{g1, g2, g3} is a canonical basis for L, [g1, g2] = kg3, and [gi, gj ] = 0 other-
wise. We have

ch(x) = x1g1 + x2g2 +
(
x3 +

k

2
x1x2

)
g3, x = (x1, x2, x3);

therefore,

ξ1 = x1, ξ2 = x2, ξ3 = x3 +
k

2
x1x2.

It can be checked that the group structure on Z3 is given by (4). Namely,

ch(x) ∗ ch(y) =(x1 + y1)g1 + (x2 + y2)g2

+
(

(x3 + y3 − ky1x2) +
k

2
(x1 + y1)(x2 + y2)

)
g3

=ϕ
(
((x1 + x2)g1) ∗ ((y1 + y2)g2) ∗ ((x3 + y3 − ky1x2)g3)

)
=ϕ ◦ e−1(x · y)
=ch(x · y).

As was mentioned above, a canonical basis for G determines a canonical
basis for the rational Lie algebra. However, the converse is not always true.
A canonical basis for L is not always a canonical basis for G. This fact is
demonstrated by the next example. We will see later that given a canonical
basis for a Lie algebra, there is always a rationally equivalent basis that is
induced by a canonical basis of the corresponding group.

Example 2. Let L be the Lie algebra over Z with generators g1, . . . , g7 and
with product given by

[g1, g2] = g4 − g5,
[g1, g3] = g4 + g5, [g2, g3] = g5,
[g1, g4] = g6, [g2, g4] = g6, [g3, g4] = g7,
[g1, g5] = g6, [g2, g5] = g7,
[gi, gj ] = 0 otherwise.

L is a nilpotent finitely-generated Lie algebra with no torsion elements. The
set {g1, . . . , g7} forms a canonical basis for L with {gi, . . . , g7} a basis for
the ideal Li. We want to show that {g1, . . . , g7} can not be a canonical



NILMANIFOLDS AND ASSOCIATED LIE ALGEBRAS OVER THE INTEGERS 11

basis for a finitely-generated torsion-free nilpotent group whose associated
Lie algebra is L. The idea is the following. Assuming that {g1, . . . , g7} is
such a canonical basis we show that there are elements x, y ∈ Z7 such that
ch−1(ch(x) ∗ ch(y)) fails to be a sequence of seven integers.

Let x = (x1, . . . , x7) ∈ Z7. Then ch(x) ∈ GQ,

ch(x)

= ϕ(x1g1 ∗ · · · ∗ x7g7)
= x1g1 + x2g2 + x3g3

+ (x4 + 1/2(x1x2 + x1x3))g4 + (x5 + 1/2(−x1x2 + x1x3 + x2x3))g5
+ (x6 + 1/12(−x1x

2
2 + 2x2

1x3 + 2x1x2x3 + 6x1x4 + 6x2x4 + 6x2x5))g6
+ (x7 + 1/12(x1x

2
2 − x1x

3
3 + x2

2x3 − 2x1x2x3 + 6x3x4 + 6x2x5))g7

and there is a similar formula when x is replaced by y = (y1, . . . , y7).
Now we assume that there is a sequence of integers z = (z1, . . . , z7) ∈ Z7

such that ch(z) = ch(x) ∗ ch(y). A routine computation shows that

zi = xi + yi, i = 1, 2, 3,
z4 = x4 + y4 − x2y1 − x3y1,

z5 = x5 + y5 + x2y1 − x3y1 − x3y2,

z6 = x6 + y6 − x4y1 − x4y2 − x5y1

+ x2y1y2 + x3y1y2 + x3y
2
1 +

1
2
x2

2y1

z7 = x7 + y7 − x5y2 − x4y3 − x2y1y2 + x2y1y3 + x3y1y2

+ x3y1y3 + x2x3y1 +
1
2
x2

3y1 −
1
2
x2

2y1
1
2
x3y

2
2.

From here it is immediate that for x and y such that x2 = 1, xj = 0, j 6= 2
and y1 = 1, yi = 0, i 6= 1 we get z6 = 1/2 and z7 = −1/2. Thus, the
cannonical basis {g1, . . . , g7} for L is not induced by a cannonical basis for
any group.

However, it is possible to find a nilpotent torsion-free Lie algebra L′ on
seven generators e1, . . . , e7 over Z such that L and L′ are isomorphic over
Q (but not over Z) and that the generators e1, . . . , e7 are induced by a
canonical basis for a torsion-free nilpotent group on 7 generators and that
L′ is the corresponding Lie algebra. Such a Lie algebra is the following:
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Example 3. Let L′ be the Lie algebra over Z with generators e1, . . . , e7
and products

[e1, e2] = 2e4 − 2e5,
[e1, e3] = 4e4 + 4e5, [e2, e3] = 2e5,
[e1, e4] = 2e6, [e2, e4] = e6, [e3, e4] = 2e7,
[e1, e5] = 2e6, [e2, e5] = e7,
[ei, ej ] = 0 otherwise.

In this case for x = (x1, . . . , x7) and y = (y1, . . . , y7) from Z7, ch(x) and
ch(y) belong to G7 ⊂ GQ,

ch(x)
= x1e1 + x2e2 + x3e3

+ (x4 + 2x1x3 + x1x2)e4 + (x5 + 2x1x3 + x2x3 − x1x2)e5
+ 1/12(12x6 + 12x1x4 + 6x2x4 + 12x1x5 + 8x1x2x3 + 16x2

1x3 − 2x1x
2
2)e6

+ 1/12(12x7 + 12x3x4 + 6x2x5 − 8x1x2x3 − 8x1x
2
3 + 2x2

2x3 + 2x1x
2
2)e7 .

There are similar formulas for ch(y). The group structure on Z7 is given
by the formula z = ch−1(ch(x) ∗ ch(y)),

z1 = x1 + y1,

z2 = x2 + y2,

z3 = x3 + y3,

z4 = x4 + y4 − 2x2y1 − 4x3y1

z5 = x5 + y5 + 2x2y1 − 4x3y1 − 2x3y1

z6 = x6 + y6 − 2x4y1 − x4y2 − 2x5y1 + 2x2y1y2 + 4x3y1y2 + 8x3y
2
1 + x2

2y1

z7 = x7 + y7 − x5y2 − x4y3 − 2x2y1y2 + 4x2y1y3 + 4x3y1y2 + 8x3y1y3

+ 4x2x3y1 + 4x2
3y1 − x2

2y1 + x3y
2
2.

Thus, the group G′ whose Lie algebra is L′ is the set of elements of the form
ex1
1 ∗ · · · ∗ ex7

7 with the product given by the above formulas.

Given a finitely-generated, torsion-free, nilpotent Lie Algebra over the in-
tegers, there is a family of Lie algebras over the integers that are equivalent
to it over the rationals. All such algebras can be provided with canonical
bases. However, as we have seen in Example 2, not all such bases are deter-
mined by a canonical basis for a finitely-generated, torsion-free, nilpotent
group. It seems natural to ask the following question: Suppose that we are
given a finitely-generated nilpotent Lie algebra over the integers. Can we
find a finitely-generated torsion-free nilpotent group and a canonical basis
for such a group so that its associated Lie algebra is a Lie algebra over the
integers that is rationally equivalent to the original one? It turns out that it
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is possible. In the last part of this paper we describe a procedure for finding
such a group.

3. The spectral sequence for polynomial cochains.

In this part we start with a finitely-generated, torsion-free, nilpotent group
G with a canonical basis. The induced Lie algebra is a Lie algebra over the
rationals together with the induced canonical basis. In [1] we proved that the
integral cohomology of G is isomorphic to the cohomology of the differential
algebra P (G) of rational polynomial maps from Zk to Z, where k is the
number of generators of the group G. The differential on P (G) is induced
by the group structure on Z. In this section we use the structure of the group
G to define a filtration on P (G), and study the resulting spectral sequence.
Starting with the sequence of normal subgroups of G, G = G1 > G2 >
· · · > Gk > 1, denote by i1 the largest positive integer such that G1/Gi1+1

is a torsion-free, abelian group and by i2 the largest positive integer such
that Gi1+1/Gi2+1 is a torsion-free, abelian group. Inductively, let 0 = i0 <
i1 < i2 < · · · < iN−1 < iN = k be the largest positive integers such that
Gij−1+1/Gij+1, j = 1, 2, . . . , N − 1, are torsion-free, abelian groups. Then

G = G1 > G2 > · · · > GN+1 = 1, Gj+1 = Gij+1, j = 0, 1, 2, . . . , N − 1

is the shortest central series with torsion-free quotients. Then ϕ maps this
sequence of normal subgroups to a sequence of ideals of the Lie algebra L.

L = L1 ⊃ L2 ⊃ · · · ⊃ LN+1 = 0, Lj+1 = Lij+1,

ϕ (Gj) ⊂ Lj , j = 1, 2, . . . , N.

From (4) it follows that the commutators induce a Lie algebra structure on
the Z-module gr G = ⊕j≥1Gj/Gj+1. The Lie bracket [ , ] on L induces a
Lie algebra structure on the Q-module gr L = ⊕j≥1Lj/Lj+1. In addition the
graded Lie algebras gr G⊗Q and gr L are isomorphic. The isomorphism is
induced by ϕ.

For the remainder of this paper, we assume that the canonical basis
{g1, . . . , gk} for G is such that {g1, . . . , gi1} projects to a basis for G1/G2;
{gi1+1, . . . , gi2} projects to a basis for G2/G3; and in general

{gij−1+1, . . . , gij} projects to a basis for Gj/Gj+1.

To each basis element gj of g we assign a weight as follows. If gj projects
to a basis element for Gr/Gr+1, then its weight is |gj | = r. In particular,
|gir−1+1| = · · · = |gir | = r for r = 1, 2, . . . , and for every rational number q
we set

|qgj | = |gj |.
Furthermore,

|gr + gs| = max{|gr|, |gs|}.
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Since a canonical basis for G induces a canonical basis for L, we set the
weight of an element gj of L to be the weight of gj considered as an element
of G.

From (2) it follows that for any two elements of the canonical basis gr ∈
La, gs ∈ Lb the Lie bracket is

[gr, gs] =
∑
j≥r+s

qr,sj gj ,

where qr,sj ∈ Q and gj ∈ La+b. Thus,∣∣[gr, gs]∣∣ ≥ |gr|+ |gs|.
The above summation goes over all j such that

|gj | ≥ |gr|+ |gs|.
Next we assign a weight to each binomial map Zk → Z according to the
rules:

|xj | = |gj |,∣∣∣∣(xja
)∣∣∣∣ = a|xj |, a = 0, 1, 2, . . . ,∣∣∣∣p(xja
)∣∣∣∣ =

∣∣∣∣(xja
)∣∣∣∣ for any integer p 6= 0,

|u+ v| = max{|u|, |v|},
|uv| = |u|+ |v|.

Analogously, we assign a weight to each monomial map Zk → Z as follows:

|xj | = |gj |,
|xaj | = a|xj |,
|qxj | = |xj | for any rational number q 6= 0,

|u+ v| = max{|u|, |v|},
|uv| = |u|+ |v|.

Observe that each binomial of weight w is a sum of monomials of weight
≤ w and that each monomial of weight w is a sum of binomials of weight
≤ w.

Lemma 1. Let the group structure on G be induced by the ·-product (3).
Then each ρj(x, y) is a sum (over Z) of binomials. ρj(x, y) can be also
expressed as a sum (over Q) of monomials of weight ≤ |gj |, j = 1, 2, . . . .

Proof. Because the group structure on Zk is given by restricting the ∗-
product from G to e−1(Zk), it follows that the statement is proved if we
verify that

|ρj(x, y)| ≤ |gj |, j = 1, 2, . . . , k
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for every x, y ∈ Zk.
Equivalently, it suffices to show that the above inequality is satisfied in

the product formula on G,

((x1g1) ∗ · · · ∗ (xkgk)) ∗ ((y1g1) ∗ · · · ∗ (ykgk)) = (ρ1(x, y)g1 ∗ · · · ∗ ρk(x, y)gk).

But the maps ϕ,ψ;G
ϕ

�
ψ
L are such that

ψ(ξ1g1 + · · ·+ ξkgk)

= (ξ1g1) ∗ · · · ∗ (ξj + ψj(ξ1, . . . , ξj−1))gj ∗ · · · ∗ (ξk + ψk(ξ1, . . . , ξk−1))gk,

ϕ(x1g1 ∗ · · · ∗ xkgk)
= x1g1 + · · ·+ (xj + gj(x1, . . . , xj−1))gj + · · ·+ (xk + gk(x1, . . . , xk−1))gk,

where

|ξj + ψj(ξ1, . . . , ξj−1)| ≤ |ξj | = |gj |

and

|xj + ϕj(x1, . . . , xj−1)| ≤ |xj | = |gj |.

It follows that the statement is proved if we show that the product in L,
given by (1)

ξ ∗ η = (ξ1g1 + · · ·+ ξkgk) ∗ (η1g1 + · · ·+ ηkgk)

= (β1(ξ, η)g1 + · · ·+ βk(ξ, η)gk)

holds with βj(ξ, η) = βj(ξ1, . . . , ξj−1, η1, . . . , ηj−1) and |βj(ξ, η)| ≤ |gj | for
j = 1, 2, . . . , k. But

βj(ξ, η) = ξj + ηj +
1
2
[ξ, η]j + · · · .

Hence, it is enough to verify that |[ξ, η]j | ≤ |gj | if |ξj | ≤ |gj | and |ηj | ≤ |gj |
for all j = 1, 2, . . . .

Since

[gr, gs] =
∑
j≥r+s

ar,sj gj , ar,sj ∈ Q,

where the sum is over all g′js such that |gj | ≥ |gr|+ |gs| and

[ξ, η] =
k∑

r,s=1

∑
j≥r+s

ξrηsa
r,s
j gj ,
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the result follows from the identities

|[ξ, η]j | =

∣∣∣∣∣∣∣∣
∑

1≤r,s≤k
r+s≤j

ξrηsa
r,s
j

∣∣∣∣∣∣∣∣
≤ max

1≤r,s≤k
r+s≤j

{|ξrηsar,sj |}

= max{|ξrηs|}
= max{|ξr|+ |ηs|}
≤ max{|gr|+ |gs|} ≤ |gj |.

�

Recall from [1] that an element of Pn(G), n ≥ 1, is given as a linear
combination, with integral coefficients, of the binomials∏

1≤i≤k
1≤j≤n

(
xij
aij

)
,

where the a′ijs are nonnegative integers. P 0(G) = Z. The differential d on
P (G), as a derivation, is completely determined by its values on P 1(G). On
a typical binomial

u =
(
x1

a1

)(
x2

a2

)
· · ·

(
xk
ak

)
in P 1(G)

(5) du =
(
y1

a1

)
· · ·

(
yk
ak

)
+

(
z1
a1

)
· · ·

(
zk
ak

)
−

(
ρ1

a1

)
· · ·

(
ρk
ak

)
,

where ρj = yj + zj + τj , or more explicitly

ρj(y1, . . . , yj , z1, . . . , zj) = yj + zj + τj(y1, . . . , yj−1, z1, . . . , zj−1),

where τj is a polynomial of degree ≥ 2. To each polynomial cochain u in
P (G) we assign a nonnegative integer ‖u‖ called its norm, according to the
following rules:

‖qgi‖ = ‖gi‖ for any rational number q,∥∥∥∥(
xi
a

)∥∥∥∥ = a‖xi‖ for i = 1, 2, . . . , k,∥∥∥∥p(xia
)∥∥∥∥ =

∥∥∥∥(
xi
a

)∥∥∥∥ for any integer p,

‖uv‖ = ‖u‖+ ‖v‖,
‖u+ v‖ = max{‖u‖, ‖v‖} for any u ∈ P i(G), v ∈ P j(G).
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Lemma 2. The polynomial functions ρj and τj have their norms bounded
from above. Namely,

‖ρj(x1, . . . , xj , y1, . . . , yj)‖ ≤ |gj | − 1,

‖τj(x1, . . . , xj−1, y1, . . . , yj−1)‖ ≤ |gj | − 2.

Proof. ρj(x1, . . . , xj , y1, . . . , yj) = xj + yj + τj(x1, . . . , xj−1, y1, . . . , yj−1),
where τj is a sum of binomials

β =
(
xi1
ai1

)
· · ·

(
xir
air

)(
yj1
bj1

)
· · ·

(
yjs
bjs

)
,

r ≥ 1, s ≥ 1, with integer coefficients. The norm of such a binomial β is

‖β‖ =
∑

au‖xu‖+
∑

bv‖yv‖

=
∑

au(|xu| − 1) +
∑

bv(|yv| − 1)

≤
(∑

au|xu|+
∑

bv|yv|
)
− 2

= |β| − 2

≤ |ρj | − 2

≤ |gj | − 2

according to Lemma 1. Therefore, ‖τj‖ ≤ |gj | − 2. Since ‖ρj‖ =
max{‖xj‖, ‖β‖} over all binomials β in ρj , it follows that ‖ρj‖ = ‖xj‖.
Hence, ‖ρj‖ = |gj | − 1. �

Using the norm ‖ ‖, we define a filtration on P (G) by setting

F i = F iP (G) = {u ∈ P (G)| ‖u‖ ≤ i}, i = 0, 1, 2, . . . ,

F 0 ⊂ F 1 ⊂ F 2 ⊂ · · ·F i−1 ⊂ F i ⊂ · · · ⊂ P (G).

This filtration has the following properties:

Lemma 3. (i) Under the cup product on chains

F i × F j −→ F i+j .

(ii) The differential d on P (G) preserves the filtration; i.e.,

dF i ⊂ F i.

Proof. (i) follows immediately from the definition.
(ii) follows once we verify that for every binomial u ∈ F i, du ∈ F i.
Let

u =
(
x1

a1

)
· · ·

(
xk
ak

)
.



18 BOHUMIL CENKL AND RICHARD PORTER

Then du is given by formula (5) above. Note that∥∥∥∥(
y1

a1

)
· · ·

(
yk
ak

)∥∥∥∥ =
k∑
j=1

aj(|gj | − 1) ≤ i

and ∥∥∥∥(
z1
a1

)
· · ·

(
zk
ak

)∥∥∥∥ =
k∑
j=1

aj(|gj | − 1) ≤ i.

And according to Lemma 2,

∥∥∥∥(
ρ1

a1

)
· · ·

(
ρk
ak

)∥∥∥∥ =
k∑
j=1

aj‖ρj‖ ≤
k∑
j=1

aj(|gj | − 1),

which is ≤ i, by the assumption. Therefore, ‖du‖ ≤ i. Hence, du ∈ F i. �

3.1. E0 and E1-terms of the spectral sequence. Let {Er, dr} be the
spectral sequence corresponding to the filtration {F i}. In particular, we
have

E0 = F i/F i−1.

Let p be the projection F i → E0. The next step is to compute E1. Since
d0 = pd and because each element of F i is an integral linear combination
of binomials, we look more closely at the last term in formula (5) for du,
where u ∈ F i.(

ρ1

a1

)
· · ·

(
ρk
ak

)
=

(
y1 + z1 + τ1

a1

)
· · ·

(
yk + zk + τk

ak

)

k∏
j=1


(
yj + zj
aj

)
+

(
τj
aj

)
+
aj−1∑
r=1

(
yj + zj
r

)(
τj

aj − r

) .

Observe that

‖τj‖ ≤ |gj | − 2

by Lemma 2. Therefore,∥∥∥∥(
τj
aj

)∥∥∥∥ = aj‖τj‖ < aj(|gj | − 1)
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and ∥∥∥∥∥∥
aj−1∑
r=1

(
yj + zj
r

)(
τj

aj − r

)∥∥∥∥∥∥
= max

1≤r≤aj−1

∥∥∥∥(
yj + zj
r

)(
τj

aj − r

)∥∥∥∥
= max

1≤r≤aj−1
{r‖yj + zj‖+ (aj − r)‖τj‖}

= max
1≤r≤aj−1

{r‖yj‖+ (aj − r)‖τj‖, r‖zj‖+ (aj − r)‖τj‖}

= max
1≤r≤aj−1

{r‖yj‖+ (aj − r)‖τj‖}

since ‖yj‖ = ‖zj‖. Because ‖yj‖ = |gj |−1 and ‖τj‖ < |gj |−1, the last term
is strictly smaller than

max
1≤r≤aj−1

{(r + (aj − r))(|gj | − 1)} = aj(|gj | − 1).

Therefore, the binomial
(
ρ1
a1

)
· · ·

(
ρk
ak

)
has the form(

ρ1

a1

)
· · ·

(
ρk
ak

)
=

k∏
j=1

{Xj + Tj},

where
‖Xj‖ = aj(|gj | − 1), ‖Tj‖ < aj(|gj | − 1).

But
k∏
j=1

(Xj + Tj) =
k∏
j=1

Xj +
∑

Ti1 · · ·TirXj1 · · ·Xjk−r
,

where the sum is over all sequences i1, . . . , ir of elements from 1, 2, . . . , k
of length r ≥ 1 and where j1, . . . , jk−r is the complementary sequence.
Observe that∥∥∥∑

Ti1 · · ·TirXj1 · · ·Xjk−r

∥∥∥
= max

(all sequences)

{
‖Ti1 · · ·Xjk−r

‖
}

< max
(all sequences)

{ai1(|gi1 | − 1) + · · ·+ air(|gir | − 1)

+ aj1(|gj1 | − 1) + · · ·+ ajk−r
(|gjk−r

| − 1)}

which is strictly smaller than i by the assumption that u ∈ F i. Therefore,

d0u = p


k∏
j=1

(
yj
aj

)
+

k∏
j=1

(
zj
aj

)
−

k∏
j=1

(
yj + zj
aj

)
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or d0u = pd1u, where d1u = 0 for u =
(
xi
1

)
when 1 ≤ i ≤ k and

d1u = −
k∏
j=1

aj−1∏
r=1

(
yj
r

)(
zj

aj − r

)
,

when aj ≥ 2. But this is the differential on P 1(A), when A is the Z-module
G1/G2 ⊕ · · · ⊕ Gj/Gj+1 ⊕ · · · considered as an abelian group. Using the
results of [1], we obtain:

Theorem 1. The E1-term of the spectral sequence {Er, dr} is isomorphic
to the exterior algebra

∧
Z(x1, . . . , xk) on one-dimensional generators.

3.2. E2-term of the spectral sequence. Since the terms of the spectral
sequence are algebras, it is sufficient to find the value of d1 on the generators
xj of

∧
Z(x1, . . . , xk). If xj , ‖xj‖ = i, is a representative of xj then d1xj

will be determined by the projection of dxj into the submodule of P (G) of
elements whose norm is i− 1.

From the definition of d on P (G) it follows that

dxj = −τj(y1, . . . , yj−1, z1, . . . , zj−1),

where

τj(y1, . . . , yj−1, z1, . . . , zj−1)

=
∑

c(a1, . . . , aj−1, b1, . . . , bj−1)
(
y1

a1

)
· · ·

(
yj−1

aj−1

)(
z1
b1

)
· · ·

(
zj−1

bj−1

)
,

where the coefficients c(· · · ) are integers and at least two of the nonnegative
integers a1, . . . , bj−1 are nonzero. Note that∥∥∥∥(

y1

a1

)
· · ·

(
zj−1

bj−1

)∥∥∥∥ =
j−1∑
t=1

(at‖yt‖+ bt‖zt‖)

=
j−1∑
t=1

(at + bt)(|gt| − 1)

=
j−1∑
t=1

(at + bt)|gt| −
j−1∑
t=1

(at + bt).

We are looking for the sequences of nonnegative integers a1, . . . , aj−1,
b1, . . . , bj−1 such that∥∥∥∥(

y1

a1

)
· · ·

(
yj−1

aj−1

)(
z1
b1

)
· · ·

(
zj−1

bj−1

)∥∥∥∥ = i− 1 = |gj | − 2.

From the above identity, it follows that such sequences satisfy
j−1∑
t=1

(at + bt)|gt| −
j−1∑
t=1

(at + bt) = |gt| − 2.
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But from Lemma 1, it follows that∣∣∣∣(y1

a1

)
· · ·

(
zj−1

bj−1

)∣∣∣∣ =
j−1∑
t=1

(at|yt|+ bt|zt|) =
j−1∑
t=1

(at + bt)|gt| ≤ |gj |.

Therefore,

j−1∑
t−1

(at + bt)|gt| =
j−1∑
t=1

(at + bt) + |gj | − 2 ≤ |gj |.

Hence, we must have
j−1∑
t=1

(at + bt) ≤ 2.

But if
∑j−1

t=1 (at + bt) ≤ 1, then there cannot be two nonzero integers among
a1, . . . , bj−1. Hence,

j−1∑
t=1

(at + bt) = 2.

But then exactly one of the at’s and exactly one of the bt’s must be equal to
1 and all the other integers must be equal to 0. Therefore, d1xj is determined
by the terms in τj of the form

j−1∑
r,s=1

cr,sj xrys, cr,sj ∈ Z,

where
‖xrys‖ = ‖xr‖+ ‖ys‖ = |gj | − 2.

Theorem 2. The E2-term of the spectral sequence {Er, dr} is isomorphic
to the integral cohomology of the graded Lie algebra

grG =
⊕
j≥1

Gj/Gj+1.

4. The spectral sequence for the Lie algebra cochains.

Let G be a finitely-generated, torsion-free, nilpotent group with canonical
basis {g1, . . . , gk}. We denote by A the smallest subring of the rationals
containing the structure constants of the corresponding Lie algebra L. Let
{ω1, . . . , ωk} be the A-dual of the canonical basis {g1, . . . , gk} of L. The
algebra of A-valued cochains on L is isomorphic to the exterior algebra∧

(L∗) =
∧

A
{ω1, . . . , ωk},
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L∗ = HomA(L,A). Recall that there is a pairing

〈 , 〉 :
r∧

(L∗)⊗
r∧

(L) −→ A,

such that for every v∗ = v∗1 ∧ · · · ∧ v∗r ∈
∧r(L∗) and any v = v1 ∧ · · · ∧ vr ∈∧r(L)

〈v∗, v〉 = det(〈v∗i , vj〉).

In particular, for every f ∈
∧r(L∗) and g ∈

∧s(L∗), f ∧ g ∈
∧r+s(L∗) and

〈f ∧ g, v1 ∧ · · · ∧ vr+s〉

=
∑

r,s shuffle

(sgnπ)〈f, vπ(1) ∧ · · · ∧ vπ(r)〉〈g, vπ(r+1) ∧ · · · ∧ vπ(r+s)〉.

For every ω = a1ω1 + · · · + akωk, aj ∈ A, the differential d : L∗ −→
∧2 L∗

takes the form

dω = a1ω1 + · · ·+ arωk

and extends to the map d :
∧r(L∗) −→

∧r+1(L∗) as a derivation.
Let ‖ ‖ be the norm on

∧
A(ω1, . . . , ωk) defined by the formulas

‖ωj‖ = |gj | − 1, ‖qωj‖ = ‖ωj‖ for q ∈ A,
‖u∗ ∧ v∗‖ = ‖u∗‖+ ‖v∗‖,

‖u∗ + v∗‖ = max{‖u∗‖+ ‖v∗‖}.

Using this norm, we define an ascending filtration on
∧

(L∗) by setting

F i = F i
∧

(L∗) =
{
v∗ ∈

∧
(L∗) | ‖v∗‖ ≤ i

}
.

Then

F0 ⊂ F1 ⊂ · · · ⊂ F i ⊂ F i+1 ⊂ · · · ⊂
∧

(L∗).

Lemma 4. The differential d on
∧

(L∗) lowers the filtration.

Proof. Since d is a derivation it suffices to verify that if ‖ωj‖ = i, then
‖dωj‖ < i. But

‖dωj‖ = max{‖ωr‖+ ‖ωs‖}
= max{‖gr‖+ ‖gs‖},

where the max is taken over all pairs ‖gr‖ + ‖gs‖ ≤ ‖gj‖ − 1 < ‖gj‖ = i.
Thus, dF i ⊂ F i−1, i ≥ 1. �



NILMANIFOLDS AND ASSOCIATED LIE ALGEBRAS OVER THE INTEGERS 23

4.1. E0, E1, and E2 terms of the spectral sequence for Lie algebra
cochains. We denote by {Er, dr} the spectral sequence associated with the
above filtration. In particular, let

E i0 = F i/F i−1,

and let p : F i −→ F i/F i−1 be the projection. Set ω∗j = pω∗j . Then d0 on
the element ωj with ‖ωj‖ = i is determined by those elements in dωj which
have norm exactly equal to i. But ‖ωj‖ ≤ i− 1. Hence, d0 ≡ 0.

Lemma 5. E1 is isomorphic to the exterior algebra
∧

A(ω1, . . . , ωk) on gen-
erators of dimension one.

The differential d on
∧

(L∗) is dual to the Lie bracket in the sense that

〈dωj , gr ∧ gs〉 = −〈ωj , [gr, gs]〉

= −
∑

qr,si 〈ωj , gi〉

= −
∑
u<v

qu,vj 〈ωu ∧ ωv, gr ∧ gs〉.

Note that the first summation is always zero if |gj | < |gr| + |gs| because
|gr|+ |gs| ≤ |gi| and 〈ωj , gi〉 = 0 whenever |gj | < |gi|. Hence,

dωj = −
∑
r<s

qr,sj ωr ∧ ωs

with |gr|+ |gs| ≤ |gj | or |ωr|+ |ωs| ≤ |ωj |, when |ωi| = ‖ωi‖+ 1.
The differential d1 on ωj ∈

∧
A(ω1, . . . , ωk) is determined by the terms in

ωj of the form ∑
r<s

qr,sj ωr ∧ ωs,

where ‖gr‖+ ‖gs‖ = ‖gj‖ − 1 or equivalently |gr|+ |gs| = |gj |. This implies:

Theorem 3. The E2-term of the spectral sequence {Er, dr} is isomorphic to
the cohomology of the graded Lie algebra

grL =
⊕
j≥1

(Lj/Lj+1 ⊗ A) .

Suppose that the group G is two-stage nilpotent, and let G = G1 > G2 >
1 be the shortest central series with torsion free quotients. Let {g1, . . . , gk}
be a canonical basis such that {g1, . . . , gi} projects to a basis for G1/G2 and
{gi+1, . . . , gk} projects to a basis for G2. Then {g1, . . . , gk} determines a
canonical basis for the induced Lie algebra L. We use the same symbols for
the canonical bases of the group and its associated Lie algebra. Then there
is a sequence of ideals of L, L = L1 ⊃ L2 ⊃ 0 and the subset {g1, . . . , gi}
of the canonical basis for L projects to a basis for L1/L2 and the subset
{gi+1, . . . , gk} projects to a basis for L2.
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Note that for the elements of the canonical basis for G and L, the norm
is

‖ga‖ = 0 for a = 1, . . . , i; ‖gb‖ = 1 for b = i+ 1, . . . , k,
and there are no elements of norm higher than 1. Note that the differential
dxj on xj in P 1(G) can be written in the form

dxj = δ0(xj) + δ1(xj) + · · ·+ δr(xj) + · · · ,
where δr(xj) is the element of the submodule of P (G) whose norm is ‖xj‖−r.
The differential dr in the spectral sequence Er for the group G is determined
by δr(xj). Thus, in the case of a two-stage nilpotent group dr = 0 for r ≥ 2.
A similar argument shows that the differentials dr for r ≥ 2 for the Lie
algebra spectral sequence Er are also zero. Therefore, the spectral sequence
{Er, dr} converges to

H∗(G; Z); i.e., E2
∼= E∞ ∼= grH∗(G; Z),

where grH∗(G; Z) is the graded module associated with the filtration {F i}
of P (G). If the Lie algebra L is a Lie algebra over the integers, then A = Z
and we can also conclude that the spectral sequence {Er, dr} converges to
H∗(L; Z); i.e.,

E2
∼= E∞ ∼= grH∗(L; Z).

Therefore, from Theorem 2 and Theorem 3 we obtain:

Corollary 1. Let G be a two-stage, nilpotent, finitely-generated, torsion-
free group, and let L be its Lie algebra such that L is a Lie algebra over the
integers. Then there is an isomorphism of graded modules

grH∗(G; Z) ∼= grH∗(L; Z).

If we do not assume that G is a two-stage nilpotent group and that the
associated Lie algebra L is over the integers, then we get the following:

Corollary 2. Let A be the smallest subring of rationals containing the struc-
ture constants of the Lie algebra L. Then there is an isomorphism of A-
modules

E2 ⊗ A ∼= E2
∼= H∗(grL; A).

The conclusion of Corollary 1 is valid even for certain (perhaps for all)
three-stage, nilpotent, finitely-generated, torsion-free groups. However, the
argument based only on the length of lower central series used in the proof of
the Corollary 1 is not sufficiently strong to prove the statement. An explicit
computation of the E2-term and of the differential d2 is needed even in the
example below.

Example 3 (continued). Let G′ and L′ be the group and its associated
Lie algebra as stated above. Recall that {g1, . . . , g7} is a canonical basis for
G′ and also for L′ (as we keep the same notation for both). The shortest
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lower central series with torsion-free quotients is G = G1 > G2 > G3 > 1.
Then {g1, g2, g3} projects to a basis of G1/G2, {g4, g5} projects to a basis of
G2/G3, and {g6, g7} projects to a basis of G3. The Lie algebra L′ is filtered
by the ideals L′ = L′1 ⊃ L′2 ⊃ L′3 ⊃ 0 with appropriate quotients. The
weights are ‖g1‖ = ‖g2‖ = ‖g3‖ = 0, ‖g4‖ = ‖g5‖ = 1, ‖g6‖ = ‖g7‖ = 2.

Since the comparison of Theorems 2 and 3 implies that the E2-term of the
spectral sequence for the group G′ and the E2-term of the spectral sequence
for the Lie algebra L′ are isomorphic Z-modules, it suffices to compute only
one of them. We choose to compute the E2-term for L′.

Let {ω1, . . . , ω7} be the Z-dual basis of the canonical basis {g1, . . . , g7}
of L′. Then the exterior algebra∧

=
∧(

L′∗ = HomZ(L′,Z)
)

=
∧

(ω1, . . . , ω7)

is filtered and graded. The elements ω1, . . . , ω7 have dimension one and
filtration ‖ω1‖ = ‖ω2‖ = ‖ω3‖ = 0, ‖ω4‖ = ‖ω5‖ = 1, ‖ω6‖ = ‖ω7‖ = 2. The
increasing filtration on the Z-module

∧q of elements of
∧

of dimension q is
defined as the sequence of modules

Fp
q∧

= {ω ∈
q∧
| ‖ω‖ ≤ p}.

Setting F−p
∧q = Fp

∧q, we get a descending filtration

F0

q∧
⊂ F−1

q∧
⊂ · · · ⊂ F−p+1

q∧
⊂ · · · ⊂

q∧
.

Then

E−p,q0 = F−p
q−p∧

/F−p+1

q−p∧
with d0 = 0. Thus, E−p,q1

∼= E−p,q0 and d1 is determined by the full differential
d on

∧
. From the explicit formulas below we can see that ‖dωj‖ = ‖ωj‖−1.

Since the differential d is dual to the Lie bracket, we get

dω1 = dω2 = dω3,

dω4 = 2ω2ω1 + 4ω3ω1,

dω5 = −2ω2ω1 + 4ω3ω1 + 2ω3ω2,

dω6 = 2ω4ω1 + 2ω5ω1 + ω4ω2,

dω7 = ω5ω2 + 2ω4ω3.
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Then an explicit computation shows that

E0,q
2 = 0, 4 ≤ q,

E−1,q
2 = 0, q = 2, 5 ≤ q,

E−2,q
2 = 0, q = 3, 7 ≤ q,

E−3,q
2 = 0, q ≤ 5, 9 ≤ q,

E−4,q
2 = 0, q ≤ 7, 10 ≤ q,

E−5,q
2 = 0, q ≤ 9, 12 ≤ q,

E−6,q
2 = 0, q ≤ 10

E−p,q2 = 0, p ≥ 7.

d2 is determined by that part of the differential d that lowers the filtration
by two. But in our case d lowers the filtration only by one. Thus d2 = 0,
and E∞ ∼= E2

∼= grH∗(L′; Z). But, that is not the case for the differential d
on P (G′). That differential does have a component that lowers the degree
by two. However, since there is an isomorphism E2

∼= E2 of the second terms
of the spectral sequences for the group G′ and for the Lie algebra L′, d2 = 0
for dimensional reasons in all cases except possibly for d2 : E−2,4

2 −→ E0,3
2

because E−2,4
2

∼= E−2,4
2

∼= Z[α], where α is represented by the element ω5ω4−
4ω6ω1 − 3ω6ω2 − 2ω6ω3 − 4ω7ω1 − 2ω7ω2, and E0,3

2
∼= E0,3

2
∼= Z2[β], where

β is represented by ω3ω2ω1. In order to compute the differential d2 we need
an explicit form of the isomorphism E2

∼= E2. This isomorphism is induced
by the map sending ωj to the polynomial xj in P (G′) and the products
ωj1ωj2 · · ·ωjs to the monomials xj1xj2 · · ·xjs where j1 > j2 > · · · > js. The
technique of [1] is then used to show that d2 = 0. Thus, E3

∼= E2 and d3 = 0
for dimensional reasons. In fact all the higher differentials are also zero for
dimensional reasons. Then we get E∞ ∼= grH∗(G′; Z) and the comparison
of Theorems 2 and 3 gives grH∗(G′; Z) ∼= grH∗(L′; Z).

5. Construction of a group from a Lie algebra.

In his section we describe a method for generating examples of groups start-
ing with Lie algebras. More precisely, let L be a nilpotent torsion-free Lie
algebra over Z on a finite set of generators {g1, . . . , gk}. Our aim is to find a
torsion-free nilpotent group G on k generators whose associated Lie algebra
L(G) is a Lie algebra over the integers. Then a canonical basis for G induces
a canonical basis for L(G) and the group structure on G is determined via
the group structure on Zk by the formula x · y = ch−1(ch(x) ∗ ch(y)). In
some instances L(G) = L (see Example 1 and Example 3). Example 2 shows
that it is not always the case. We will show below that there is always a
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group G such that L(G) is rationally equivalent to L. However, G is not
uniquely determined by L.

Starting with a Lie algebra L with a canonical basis {g1, . . . , gk}, we first
check to see whether the basis is induced by a canonical basis of some group
G.

Assume that G is the set of elements gx1
1 . . . , gxk

k , x = (x1, . . . , xk) ∈ Zk.
Then compute ch(x) and ch(y) for x, y ∈ Zk. Note that ch(x) is completely
determined by the Lie algebra via the Campbell-Hausdorff formula (1), and
hence, so is the product ch(x) ∗ ch(y). Since ch : Zk −→ Gk is a one-to-one
map, it is enough to check whether or not ch(x) ∗ ch(y) has the form ch(z)
for some z ∈ Zk and for any choice of x and y. If the answer is yes, then G
is the desired group and {g1, . . . , gk} is a canonical basis for G induced by
the given basis {g1, . . . , gk} for L. This was the case in Example 3.

However, if there are elements x, y ∈ Zk such that ch(x)∗ch(y) is not equal
to ch(z) for some z ∈ Zk, then we proceed as follows: Let ξ = ξ1g1+· · ·+ξkgk
and η = η1g1 + · · · + ηkgk be any two elements of LQ = the Lie algebra L
over Z, considered as a Lie algebra over Q; i.e., ξj , ηj are rational numbers.
Then by (1)

ξ ∗ η = β1(ξ, η)g1 + · · ·+ βk(ξ, η)gk;

βj(ξ, η) = βj(ξ1, . . . , ξj−1, η1, . . . , ηj−1).

Let Nj be the smallest positive integer such that

βj(ξ, η) =
1
Nj

Bj(ξ, η); Bj(ξ, η) = Bj(ξ1, . . . , ξj−1, η1, . . . , ηj−1),

where Bj(ξ, η) is a polynomial with integer coefficients. {g1, . . . , gk} is as-
sumed to be a canonical basis for L. Therefore, {gj , . . . , gk} generates an
ideal of L, where L = L1 ⊃ L2 ⊃ · · · is the shortest sequence of such ideals
with abelian quotients. Then {g1, . . . , gk} can be grouped into subsets such
that {gij−1+1, . . . , gij} projects to a basis for Lj/Lj+1, j = 1, 2, . . . . Then
we define the norm of each such element gs, ij−1 ≤ s ≤ ij , to be ‖gs‖ = s−1.
We assume that the norm satisfies the identities: ‖pgj‖ = ‖gj‖ for any inte-
ger p, 1 ≤ j ≤ k, and ‖u+ v‖ = max{‖u‖, ‖v‖} for any u, v ∈ L.

Furthermore, we set ‖ξj‖ = ‖gj‖, 1 ≤ j ≤ k and ‖ξrξs‖ = ‖ξr‖+ ‖ξs‖, for
any polynomial variables. Therefore, ‖Bj+1(ξ, η)‖ = αi1+1‖ξi1+1‖ + · · · +
αj‖ξj‖ (note that ‖ξ1‖ = · · · = ‖ξi1‖ = 0). Denote the sum of the coefficients
by

εj = αi1+1 + · · ·+ αj .

Now we define the subset D of the Q-vector space LQ to be the set of
elements

m1

n1
g1 +

m2

n2
g2 + · · ·+ mk

nk
gk,
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where m1, . . . ,mk are arbitrary integers and

nj+1 = n
εj

j Nj+1, j = 1, 2, . . . .

n1 can be any nonzero integer. We choose n1 = 1. It follows that the
operation ∗ induces on D the structure of a group. D is a uniform discrete
subgroup of the real Lie group GR and the quotient is a nilmanifold. The
above construction of D is similar to that given by Malcev [3]. For different
choices of a canonical basis for D we get different but rationally equivalent
Lie algebras.

Now we make a choice of a canonical basis for D that the associated
Lie algebra is a Lie algebra over the integers. Starting with the original
canonical basis {g1, . . . , gk} for L we define

ej =
1
nj
gj , j = 1, 2, . . . , k.

Note that for every r and s, [gr, gs] =
∑
qr,su gu, where the summation is over

all u such that ‖gr‖+ ‖gs‖ < ‖gu‖. Therefore, u > max{r, s, }. Hence,

[er, es] =
1

nrns
[gr, gs] =

1
nrns

∑
qr,su gu

=
nu
nrns

∑
qr,su

gu
nu

=
nu
nrns

∑
qr,su eu,

where the qr,su are integers and nu
nrns

is also an integer since u > max{r, s}.
Therefore, the new Lie algebgra L̂ is a Lie algebra over the integers that is
rationally equivalent to L. Then the group G is defined as the set of elements
{ex1

1 , . . . , e
xk
k } with the operation (ex1

1 · · · exk
k ) ·(ey11 · · · eyk

k ) = ez11 · · · ezk
k given

by the formula z = ch−1(ch(x) ∗ ch(y)).

Example 2 (continued). The new Lie algebra L̂, in this case, has canoni-
cal basis {e1 = g1, e2 = g2, e3 = g3, e4 = 1

2g4, e5 = 1
2g5, e6 = 1

12g6, e7 = 1
12g7}

and bracket

[e1, e2] = 2e4 − 2e5
[e1, e3] = 2e4 + 2e5 [e2, e3] = 2e5
[e1, e4] = 6e6 [e2, e4] = 6e6 [e3, e4] = 6e7
[e1, e5] = 6e6 [e2, e5] = 6e7
[ei, ej ] = 0 otherwise.

The group G is the set of elements {ex1
1 , . . . , e

x7
7 } with the product induced

by the formula ch−1(ch(x) ∗ ch(y)).
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