Vol. 193, No. 2, 2000

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On the Diophantine equation (xn - 1)/(x-1) = yq

Yann Bugeaud, Maurice Mignotte and Yves Roy

Vol. 193 (2000), No. 2, 257–268
Abstract

We prove that if (x,y,n,q)(18,7,3,3) is a solution of the Diophantine equation (xn 1)(x1) = yq with q prime, then there exists a prime number p such that p divides x and q divides p 1. This allows us to solve completely this Diophantine equation for infinitely many values of x. The proofs require several different methods in diophantine approximation together with some heavy computer calculations.

Milestones
Received: 25 September 1998
Published: 1 April 2000
Authors
Yann Bugeaud
Université Louis Pasteur
67084 Strasbourg
France
Maurice Mignotte
Université Louis Pasteur
67084 Strasbourg
France
Yves Roy
Université Louis Pasteur
67084 Strasbourg
France