Vol. 193, No. 2, 2000

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
L2 spectral decomposition on the Heisenberg group associated to the action of U(p,q)

T. Godoy and L. Saal

Vol. 193 (2000), No. 2, 327–353
Abstract

Here we consider the Heisenberg group Hn = Cn ×ℜ. U(p,q), p + q = n, acts by automorphism on Hn by g (z,t) = (gz,t).

Let {X1,...,Xn, Y1,...,Yn,T} be the standard basis of the Lie algebra of Hn and let

    ∑p (  2   2)   ∑n  (  2    2)
L =     Xj + Yj −       X j + Yj .
j=1           j=p+1

Via the Plancherel inversion formula, we obtain the joint spectral decomposition of L2(Hn) with respect to L and T

   ∑   ∫ + ∞        n
f =         f ∗S λ,k|λ| dλ, f ∈ S (Hn )
k∈Z  −∞

where each Sλ.k is a tempered distribution U(p,q) invariant satisfying iTSλ,k = λSλ,k, LSλ,k = |λ| (2k+ p − q)Sλ,k. We compute explicitly the distributions Sλ,k and the integral μk = −∞+f Sλ,k|λ|n.

Milestones
Received: 11 August 1998
Published: 1 April 2000
Authors
T. Godoy
Facultad de Matemática, Astronomía y Física
Universidad Nacional de Cordoba
Ciudad Universitaria
5000 Cordoba
Argentina
L. Saal
Facultad de Matemática, Astronomía y Física
Universidad Nacional de Cordoba
Ciudad Universitaria
5000 Cordoba
Argentina