Vol. 193, No. 2, 2000

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Toroidal surgery on periodic knots

Katura Miyazaki and Kimihiko Motegi

Vol. 193 (2000), No. 2, 381–396
Abstract

We show that r-Dehn surgery on a hyperbolic, periodic knot K with period p > 2 yields a hyperbolic manifold unless p = 3, r = 0 and the genus of K is one. Regarding hyperbolic, periodic knots with period 2, we show that only integral Dehn surgeries can yield toroidal manifolds.

Milestones
Received: 24 July 1998
Published: 1 April 2000
Authors
Katura Miyazaki
Tokyo Denki University
College of Humanities & Sciences
2-2 Kanda-Nishikicho Nihon University
Tokyo 101
Japan
Kimihiko Motegi
Nihon University
Sakurajosui 3-25-40, Setagaya-Ku Tokyo 156
Japan