COMMUTATORS WITH POWER CENTRAL VALUES ON
A LIE IDEAL

LUISA CARINI AND VINCENZO DE FILIPPIS
COMMUTATORS WITH POWER CENTRAL VALUES ON A LIE IDEAL

LUISA CARINI AND VINCENZO DE FILIPPIS

Let R be a prime ring of characteristic $\neq 2$ with a derivation $d \neq 0$, L a noncentral Lie ideal of R such that $[d(u), u]^n$ is central, for all $u \in L$. We prove that R must satisfy s_4 the standard identity in 4 variables. We also examine the case R is a 2-torsion free semiprime ring and $[d([x, y]), [x, y]]^n$ is central, for all $x, y \in R$.

Let R be a prime ring and d a nonzero derivation of R. A well known result of Posner [14] states that if the commutator $[d(x), x] \in Z(R)$, the center of R, for any $x \in R$, then R is commutative.

In [11] C. Lanski generalizes the result of Posner to a Lie ideal. To be more specific, the statement of Lanski’s theorem is the following:

Theorem ([11], Theorem 2, page 282]). Let R be a prime ring, L a noncommutative Lie ideal of R and $d \neq 0$ a derivation of R. If $[d(x), x] \in Z(R)$, for all $x \in L$, then either R is commutative, or $\text{char}(R) = 2$ and R satisfies s_4, the standard identity in 4 variables.

Here we will examine what happens in case $[d(x), x]^n \in Z(R)$, for any $x \in L$, a noncommutative Lie ideal of R and $n \geq 1$ a fixed integer.

One cannot expect the same conclusion of Lanski’s theorem as the following example shows:

Example 1. Let $R = M_2(F)$, the 2×2 matrices over a field F, and take $L = R$ as a noncommutative Lie ideal of R. Since $[x, y]^2 \in Z(R)$, for all $x, y \in R$, then also $[d(x), x]^2 \in Z(R)$, for all $x \in R$.

We will prove that:

Theorem 1.1. Let R be a prime ring of characteristic different from 2, L a noncentral Lie ideal of R, d a nonzero derivation of R such that $[d(u), u]^n \in Z(R)$, for any $u \in L$. Then R satisfies s_4.

We will proceed by first proving that:

Lemma 1.1. Let R be a prime ring of characteristic different from 2, L a noncentral Lie ideal of R, d a nonzero derivation of R, $n \geq 1$. If d satisfies $[d(u), u]^n = 0$, for any $u \in L$, then R is commutative.
We then examine the case R is a 2-torsion free semiprime ring. The results we obtain are:

Theorem 2.1. Let R be a 2-torsion free semiprime ring, d a nonzero derivation of R, n a fixed positive integer, U the left Utumi quotient ring of R and $[d([x,y]), [x,y]]^n = 0$, for any $x, y \in R$. Then there exists a central idempotent element e of U such that on the direct sum decomposition $eU \oplus (1-e)U$, d vanishes identically on eU and the ring $(1-e)U$ is commutative.

Theorem 2.2. Let R be a 2-torsion free semiprime ring, d a nonzero derivation of R, n a fixed positive integer, U the left Utumi quotient ring of R and $[d([x,y]), [x,y]]^n \in Z(R)$, for any $x, y \in R$. Then there exists a central idempotent e of U such that, on the direct sum decomposition $U = eU \oplus (1-e)U$, the derivation d vanishes identically on eU and the ring $(1-e)U$ satisfies s_4.

1. The case: R prime ring.

In all that follows, unless stated otherwise, R will be a prime ring of characteristic $\neq 2$, L a Lie ideal of R, $d \neq 0$ a derivation of R and $n \geq 1$ a fixed integer such that $[d(x), x]^n \in Z(R)$, for all $x \in L$.

For any ring S, $Z(S)$ will denote its center, and $[a, b] = ab - ba$, $[a, b]_2 = [[a, b], b], a, b \in S$. In addition s_4 will denote the standard identity in 4 variables.

We will also make frequent use of the following result due to Kharchenko [8] (see also [12]):

Let R be a prime ring, d a nonzero derivation of R and I a nonzero two-sided ideal of R. Let $f(x_1, \ldots, x_n, d(x_1, \ldots, x_n))$ a differential identity in I, that is

$$f(r_1, \ldots, r_n, d(r_1), \ldots, d(r_n)) = 0 \quad \forall r_1, \ldots, r_n \in I.$$

One of the following holds:

1) Either d is an inner derivation in Q, the Martindale quotient ring of R, in the sense that there exists $q \in Q$ such that $d = ad(q)$ and $d(x) = ad(q) (x) = [q, x]$, for all $x \in R$, and I satisfies the generalized polynomial identity

$$f(r_1, \ldots, r_n, [q, r_1], \ldots, [q, r_n]) = 0;$$

2) or I satisfies the generalized polynomial identity

$$f(x_1, \ldots, x_n, y_1, \ldots, y_n) = 0.$$

Lemma 1.1. Let R be a prime ring of characteristic different from 2, U a noncentral Lie ideal of R, d a nonzero derivation of R and $n \geq 1$. If $([d(u), u])^n = 0$, for any $u \in L$, then R is commutative.
Proof. Since we assume that \(\text{char} (R) \neq 2 \), by a result of Herstein [6], \(L \supseteq [I, R] \), for some \(I \neq 0 \), an ideal of \(R \), and also \(L \) is not commutative. Therefore we will assume throughout that \(L \supseteq [I, R] \). Without loss of generality we can assume \(L = [I, I] \).

Hence \(d([x, y]), [x, y]^n = 0 \), for any \(x, y \in I \), then \(I \) satisfies the differential identity
\[
f(x, y, d(x), d(y)) = [[d(x), y] + [x, d(y)], [x, y]]^n = 0.
\]
If the derivation \(d \) is not inner, by Kharchenko’s theorem [8], \(I \) satisfies the polynomial identity
\[
f(x, y, t, z) = [[[z, y] + [x, t], [x, y]]^n = 0
\]
and in particular, for \(z = 0 \),
\[
[[x, t], [x, y]]^n = 0.
\]
Since the latter is a polynomial identity for \(I \), and so for \(R \) too, it is well known that there exists a field \(F \) such that \(R \) and \(F \) satisfy the same polynomial identities (see [7, page 57, page 89]). Let \(e_{ij} \) the matrix unit with 1 in \((i,j)\)-entry and zero elsewhere. Suppose \(m \geq 2 \). If we choose \(x = e_{11}, y = e_{21}, t = e_{12}, \) then we get the contradiction
\[
0 = [[e_{11}, e_{12}], [e_{11}, e_{21}]^n = [e_{12}, -e_{21}]^n = (-1)^n e_{11} + e_{22} \neq 0.
\]
Therefore \(m = 1 \) and so \(R \) is commutative.

Let now \(d \) be an inner derivation induced by an element \(A \in Q \), the Martindale quotient ring of \(R \). Then, for any \(x, y \in I \), \(([A, [x, y]]_2)^n = 0 \). Since by [2] \(I \) and \(Q \) satisfy the same generalized polynomial identities, we have \(([A, [x, y]]_2)^n = 0 \), for any \(x, y \in Q \). Moreover, since \(Q \) remains prime by the primeness of \(R \), replacing \(R \) by \(Q \) we may assume that \(A \in R \) and \(C \) is just the center of \(R \). Note that \(R \) is a centrally closed prime \(C \)-algebra in the present situation [4], i.e., \(RC = R \). By Martindale’s theorem in [13], \(RC \) (and so \(R \)) is a primitive ring which is isomorphic to a dense ring of linear transformations of a vector space \(V \) over a division ring \(D \). Since \(R \) is primitive then there exist a vector space \(V \) and the division ring \(D \) such that \(R \) is dense of \(D \)-linear transformation over \(V \).

Assume first that \(\text{dim}_D V \geq 3 \).

Step 1.
We want to show that, for any \(v \in V \), \(v \) and \(Av \) are linearly \(D \)-dependent.
Since if \(Av = 0 \) then \(\{v, Av\} \) is \(D \)-dependent, suppose that \(Av \neq 0 \). If \(v \) and \(Av \) are \(D \)-dependent, since \(\text{dim}_D V \geq 3 \), then there exists \(w \in V \) such that \(v, Av, w \) are also linearly independent. By the density of \(I \), there exist \(x, y \in I \) such that
\[
xv = 0, \ Axv = w, \ xw = v
\]
\[
yv = 0, \ yAv = 0, \ yw = w.
\]
These imply that

\[[A, [x, y]]_2 v = -v \quad \text{and} \quad 0 = ([A, [x, y]]_2)^n v = (-1)^n v, \]

which is a contradiction.

So we can conclude that \(v \) are \(Av \) are linearly D-dependent, for all \(v \in V \).

Step 2.

We show here that there exists \(b \in D \) such that \(Av = vb \), for any \(v \in V \).

Now choose \(v, w \in V \) linearly independent. Since \(\dim_D V \geq 3 \), there exists \(u \in V \) such that \(v, w, u \) are linearly independent. By Step 1, there exist \(a_v, a_w, a_u \in D \) such that

\[Av = va_v, \quad Aw = wa_w, \quad Au = ua_u \quad \text{that is} \quad A(v + w + u) = va_v + wa_w + ua_u. \]

Moreover \(A(v + w + u) = (v + w + u)a_{v+w+u} \), for a suitable \(a_{v+w+u} \in D \). Then \(0 = v(a_{v+w+u} - a_v) + w(a_{v+w+u} - a_w) + u(a_{v+w+u} - a_u) \) and, because \(v, w, u \) are linearly independent, \(a_u = a_w = a_v = a_{v+w+u} \). This completes the proof of Step 2.

Let now \(r \in R \) and \(v \in V \). By Step 2, \(Av = vb, r(Av) = r(vb) \), and also \(A(rv) = (rv)b \). Thus \(0 = [A, r]v \), for any \(v \in V \), that is \([A, r]V = 0 \).

Since \(V \) is a left faithful irreducible R-module, \([A, r] = 0 \), for all \(r \in R \), i.e., \(A \in Z(R) \) and \(d = 0 \), which contradicts our hypothesis.

Therefore \(\dim_D V \) must be \(\leq 2 \). In this case \(R \) is a simple GPI ring with 1, and so it is a central simple algebra finite dimensional over its center. From Lemma 2 in [10] it follows that there exists a suitable field \(F \) such that \(R \subseteq M_k(F) \), the ring of all \(k \times k \) matrices over \(F \), and moreover \(M_k(F) \) satisfies the same generalized polynomial identity of \(R \).

If we assume \(k \geq 3 \), by the same argument as in Steps 1 and 2, we get a contradiction.

Obviously if \(k = 1 \) then \(R \) is commutative. Thus we may assume \(R \subseteq M_2(F) \), where \(M_2(F) \) satisfies \(([A, [x, y]]_2)^n = 0 \).

Since for any \(a, b \in M_2(F) \), \([a, b]^2 \in Z(R) \) then it follows easily that \(([A, [x, y]]^2 = 0 \), for any \(x, y \in M_2(F) \). Let \(A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \). If we choose \(x = e_{12}, y = e_{21} \) then we get:

\[
[A, e_{11} - e_{22}]_2 = \begin{bmatrix}
0 & 4a_{12} \\
4a_{21} & 0
\end{bmatrix}
\]

\[0 = ([A, e_{11} - e_{22}]_2)^2 = \begin{bmatrix}
16(a_{12}a_{21}) & 0 \\
0 & 16(a_{12}a_{21})
\end{bmatrix}. \]

Therefore either \(a_{12} = 0 \) or \(a_{21} = 0 \). Without loss of generality we can pick \(a_{12} = 0 \).
Now let \([x, y] = [e_{11}, e_{12} + e_{21}] = e_{12} - e_{21}\). In this case we have:

\[\begin{bmatrix}
2(a_{22} - a_{11}) & -2a_{21} \\
-2a_{21} & 2(a_{11} - a_{22})
\end{bmatrix}
\]

that is

\[4(a_{21})^2 = 4(a_{11} - a_{22})^2 = 0\]

On the other hand if \([x, y] = [e_{11}, e_{12} - e_{21}] = e_{12} + e_{21}\) then

\[\begin{bmatrix}
2(a_{11} - a_{22}) & -2a_{21} \\
2a_{21} & 2(a_{22} - a_{11})
\end{bmatrix}
\]

that is

\[4(a_{22} - a_{11})^2 = 4(a_{21})^2 = 0\]

(1) and (2) imply that \(a_{21} = 0\) and \(a_{11} = a_{22}\) which means that \(A\) is a central matrix in \(M_2(F)\), \(A \in F\) and \(d = 0\), a contradiction. Therefore \(k = 1\), i.e., \(R\) is commutative.

\[\square\]

Lemma 1.2. Let \(R = M_k(F)\), the ring of \(k \times k\) matrices over a field \(F\) of characteristic \(\neq 2\). If \(q \neq 0\) is a noncentral element of \(R\) such that \(([q, [x, y]]_2)^n \in F\), for any \(x, y \in R\), then \(k \leq 2\).

Proof. Suppose \(k \geq 3\). Let \(i, j, r\) be distinct indices and \(q = \sum a_{mn} e_{mn}\), with \(a_{mn} \in F\). For simplicity we assume that \(i = 1, j = 2, r = 3\). If we choose \([x, y] = [e_{12}, e_{23} - e_{31}] = e_{13} + e_{32}\), then

\[([q, [x, y]]_2)_n = a_{21}e_{11} + a_{21}e_{22} - 2a_{21}e_{33} + \sum_{n \neq 1} \gamma_n e_{1n} + \sum_{m \neq 2} \delta_m e_{m2}\]

with \(\gamma_n, \delta_m \in F\), and

\[([q, [x, y]]_2)^n = (a_{21})^n e_{11} + (a_{21})^n e_{22} + (-2a_{21})^n e_{33} + \sum_{n \neq 1} \alpha_n e_{1n} + \sum_{m \neq 2} \beta_m e_{m2}\]

with \(\alpha_n, \beta_m \in F\). Since by assumption \(([q, [x, y]]_2)^n \in F\), then \(a_{21} = \beta_m = 0\), for all \(m, n\), and \((a_{21})^n = (-2a_{21})^n = 0\), i.e., \(a_{21} = 0\). In a similar way we may conclude that \(a_{ij} = 0\), for any \(i \neq j\). Therefore if \(k \geq 3\), \(q\) is a diagonal matrix, \(q = \sum a_{tt} e_{tt}\), with \(a_t \in F\).

If we show that \(q\) is a central matrix, then we get a contradiction to our assumption and so \(k\) must be less or equal than 2.
Let \([x, y] = [e_{ij} - e_{ji}, e_{jj}] = e_{ij} + e_{ji}\). Therefore
\[
[q, [x, y]]_2 = 2(a_{ii} - a_{jj})e_{ii} + 2(a_{jj} - a_{ii})e_{jj}
\]
and
\[
([q, [x, y]]_2)^n = 2^n(a_{ii} - a_{jj})^n e_{ii} + 2^n(a_{jj} - a_{ii})^n e_{jj}.
\]
Since \(([q, [x, y]]_2)^n \in F\) and \(k \geq 3\), it follows that \(a_{ii} = a_{jj}\). Thus \(q\) is a central matrix.

Notice that if \(n = 1\) then by using the same argument and choosing \([x, y] = e_{12}\), we get \(N = [q, [x, y]]_2 = -2e_{12}q e_{12}\), which has rank 1 and so it cannot be central in \(M_k(F)\), with \(k \geq 2\). This implies that if \(n = 1\) then \(k = 1\), and \(R\) must be a commutative field. The proof of Lemma 1.2 is now complete.

\[\Box\]

Theorem 1.1. Let \(R\) be a prime ring of characteristic different from 2, \(L\) a noncentral Lie ideal of \(R\), \(d\) a nonzero derivation of \(R\) such that \([d(u), u]^n \in Z(R)\), for any \(u \in L\). Then \(R\) satisfies \(s_4\).

Proof. Let \(I\) be the nonzero two-sided ideal of \(R\) such that \(0 \neq [I, R] \subseteq L\) and \(J\) be any nonzero two-sided ideal of \(R\). Then \(V = [I, J]^2 \subseteq L\) is a Lie ideal of \(R\). If, for every \(v \in V\), \([d(v), v]^n = 0\), by Lemma 1.1, \(R\) is commutative. Otherwise, by our assumptions, \(J \cap Z(R) \neq 0\). Let now \(K\) be a nonzero two-sided ideal of \(R_Z\), the ring of the central quotients of \(R\). Since \(K \cap R\) is an ideal of \(R\) then \(K \cap R \cap Z(R) \neq 0\), that is \(K\) contains an invertible element in \(R_Z\), and so \(R_Z\) is simple with 1.

Moreover we may assume \(L = [I, I]\). For any \(x, y \in I\), \([d([x, y]), [x, y]]^n \in Z(R)\), i.e.,
\[
[[d([x, y]), [x, y]]^n, r] = 0 \quad \text{for any } x \in R.
\]
Thus \(I\) satisfies the differential identity
\[
f(x, y, r, d(x), d(y)) = [[[d(x), y] + [x, d(y)], [x, y]]^n, r] = 0.
\]
If the derivation is not inner, by [8], \(I\) satisfies the polynomial identity
\[
f(x, y, r, z, t) = [[[t, y] + [x, z], [x, y]]^n, r] = 0
\]
and in particular, for \(z = 0\),
\[
[[[t, y], [x, y]]^n, r] = 0.
\]
In this case we know that there exists a field \(F\) such that \(R\) and \(F_m\) satisfy the same polynomial identities. Thus \([[t, y], [x, y]]^n\) is central in \(F_m\). Suppose \(m \geq 3\) and choose \(x = e_{32}, y = e_{33}, t = e_{23}\).
\[
[t, y] = e_{23}, \quad [x, y] = -e_{32}
\]
\[
[[t, y], [x, y]] = -e_{22} + e_{33}
\]
\[
[[t, y], [x, y]]^n = (-1)^n e_{22} + e_{33} \notin Z(R)
\]
contrary to our assumptions. This forces \(m \leq 2\), i.e., \(R\) satisfies \(s_4\).
Notice that in the case $n = 1$, $[[t, y], [x, y]]$ must be central in F_m. But if $m \geq 2$ and $t = e_{11}, y = e_{12}, x = e_{21}$, we get the contradiction $[[t, y], [x, y]] = 2e_{12} \notin Z(R)$. Therefore m must be equal to 1 and R is commutative.

Now let d be an inner derivation induced by an element $A \in Q$. By localizing R at $Z(R)$ it follows that $([A, [x, y]]_2)^n \in Z(R_Z)$, for all $x, y \in R_Z$.

Since R and R_Z satisfy the same polynomial identities, in order to prove that R satisfies $S_4(x_1, x_2, x_3, x_4)$, we may assume that R is simple with 1 and $[R, R] \subseteq L$.

In this case, $([A, [x, y]]_2)^n \in Z(R)$, for all $x, y \in R$. Therefore R satisfies a generalized polynomial identity and it is simple with 1, which implies that $Q = RC = R$ and R has a minimal right ideal. Thus $A \in R = Q$ and R is simple artinian that is $R = D_k$, where D is a division ring finite dimensional over $Z(R)$ [13]. From Lemma 2 in [10] it follows that there exists a suitable field F such that $R \subseteq M_k(F)$, the ring of all $k \times k$ matrices over F, and moreover $M_k(F)$ satisfies the generalized polynomial identity $([A, [x, y]]_2)^n, z] = 0$. By Lemma 1.2, if $n \geq 2$ then $k \leq 2$ and R satisfies s_4, also if $n = 1$ then $k = 1$ and R must be commutative. \[\square\]

2. The case: R semiprime ring.

In all that follows R will be a 2-torsion free semiprime ring. We cannot expect the same conclusion of previous section to hold, as the following example shows:

Example 2. Let R_1 be any prime ring not satisfying s_4 and $R_2 = M_2(F)$, the ring of 2×2 matrices over the field F. Let $R = R_1 \oplus R_2$, d a nonzero derivation of R such that $d = 0$ in R_1. Consider $L = [R, R]$. It is a non-central Lie ideal of R. Let $r_1, s_1 \in R_1, r_2, s_2 \in R_2, u = [(r_1, r_2), (s_1, s_2)]$. Therefore $d(u) = (0, d([r_2, s_2]))$ and $[d(u), u] = (0, [d([r_2, s_2]), [r_2, s_2]])$. Since $[d([r_2, s_2]), [r_2, s_2]]^2 \in Z(R_2)$, then

$$[d(u), u]^2 = 0, [d([r_2, s_2]), [r_2, s_2]]^2 = 0, [d([r_2, s_2]), [r_2, s_2]]^2 \in Z(R)$$

but R does not satisfy s_4.

The related object we need to mention is the left Utumi quotient ring U of R. For basic definitions and preliminary results we refer the reader to [1], [5], [9].

In order to prove the main result of this section we will make use of the following facts:

Claim 1 ([1, Proposition 2.5.1]). Any derivation of a semiprime ring R can be uniquely extended to a derivation of its left Utumi quotient ring U, and so any derivation of R can be defined on the whole U.
Claim 2 ([3, p. 38]). If R is semiprime then so is its left Utumi quotient ring. The extended centroid C of a semiprime ring coincides with the center of its left Utumi quotient ring.

Claim 3 ([3, p. 42]). Let B be the set of all the idempotents in C, the extended centroid of R. Assume R is a B-algebra orthogonal complete. For any maximal ideal P of B, PR forms a minimal prime ideal of R, which is invariant under any derivation of R.

We will prove the following:

Theorem 2.1. Let R be a 2-torsion free semiprime ring, d a nonzero derivation of R, n a fixed positive integer, U the left Utumi quotient ring of R and $[d([x, y]), [x, y]]^n = 0$, for any $x, y \in R$. Then there exists a central idempotent element e of U such that on the direct sum decomposition $eU \oplus (1-e)U$, d vanishes identically on eU and the ring $(1-e)U$ is commutative.

Proof. Since R is semiprime, by Claim 2, $Z(U) = C$, the extended centroid of R, and, by Claim 1, the derivation d can be uniquely extended on U. Since U and R satisfy the same differential identities (see [12]), then $[d([x, y]), [x, y]]^n = 0$, for all $x, y \in U$. Let B be the complete boolean algebra of idempotents in C and M be any maximal ideal of B.

Since U is a B-algebra orthogonal complete (see [3, p. 42, (2) of Fact 1]), by Claim 3, MU is a prime ideal of U, which is d-invariant. Denote $\overline{U} = U/MU$ and \overline{d} the derivation induced by d on \overline{U}. For any $\overline{x}, \overline{y} \in \overline{U}$, $[\overline{d}(\overline{[x, y]}), \overline{[x, y]}]^n = 0$. In particular \overline{U} is a prime ring and so, by Lemma 1.1, $\overline{d} = 0$ in \overline{U} or \overline{U} is commutative. This implies that, for any maximal ideal M of B, $d(U) \subseteq MU$ or $[U, U] \subseteq MU$. In any case $d(U)[U, U] \subseteq MU$, for all M. Therefore $d(U)[U, U] \subseteq \bigcap_M MU = 0$.

By using the theory of orthogonal completion for semiprime rings (see [1, Chapter 3]), it follows that there exists a central idempotent element e in U such that on the direct sum decomposition $eU \oplus (1-e)U$, d vanishes identically on eU and the ring $(1-e)U$ is commutative. \square

We come now to our last result:

Theorem 2.2. Let R be a 2-torsion free semiprime ring, d a nonzero derivation of R, n a fixed positive integer, U the left Utumi quotient ring of R and $[d([x, y]), [x, y]]^n \in Z(R)$, for any $x, y \in R$. Then there exists a central idempotent e of U such that, on the direct sum decomposition $U = eU \oplus (1-e)U$, the derivation d vanishes identically on eU and the ring $(1-e)U$ satisfies s_4.

Proof. By Claim 2, $Z(U) = C$, and by Claim 1 d can be uniquely defined on the whole U. Since U and R satisfy the same differential identities, then $[d([x, y]), [x, y]]^n \in C$, for all $x, y \in U$. Let B be the complete boolean algebra of idempotents in C and M any maximal ideal of B. As already pointed out in the proof of Theorem 2.1, U is a B-algebra orthogonal complete and by Claim 3, MU is a prime ideal of U, which is d-invariant. Let \overline{d} the derivation induced by d on $\overline{U} = U/MU$. Since $Z(\overline{U}) = (C + MU)/MU = C/MU$, then $[\overline{d}(x, y), [x, y]]^n \in (C + MU)/MU$, for any $x, y \in \overline{U}$. Moreover \overline{U} is a prime ring, hence we may conclude, by Theorem 1.1, that $\overline{d} = 0$ in \overline{U} or \overline{U} satisfies s_4. This implies that, for any maximal ideal M of B, $d(U) \subseteq MU$ or $s_4(x_1, x_2, x_3, x_4) \subseteq MU$, for all $x_1, x_2, x_3, x_4 \in U$. In any case $d(U)s_4(x_1, x_2, x_3, x_4) \subseteq \bigcap_M MU = 0$. From [1, Chapter 3], there exists a central idempotent element e of U, the left Utumi quotient ring of R, such that there exists a central idempotent e of U such that $d(eU) = 0$ and $(1 - e)U$ satisfies s_4. □

References

Received August 19, 1998 and revised November 20, 1998.

Dipartimento di Matematica ed Applicazioni
Università di Palermo
90123 Palermo
Italy
E-mail address: lcarini@dipmat.unime.it

Dipartimento di Matematica
Università di Messina
98166 Messina
Italy
E-mail address: enzo@dipmat.unime.it