Vol. 194, No. 1, 2000

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
A Schläfli differential formula for simplices in semi-riemannian hyperquadrics, Gauss-Bonnet formulas for simplices in the de Sitter sphere and the dual volume of a hyperbolic simplex

Eva Suárez-Peiró

Vol. 194 (2000), No. 1, 229–255
Abstract

In this paper we prove a Schläfli differential formula for the volume of simplices in central unit hyperquadrics of semi-Euclidean space qn+1. Then we apply this result to obtain Gauss-Bonnet formulas for simplices with riemannian faces in the de Sitter sphere, and to generalize a formula of L. Santaló relating the volume of a hyperbolic simplex with the measure of the set of hyperbolic hyperplanes intersecting it.

Milestones
Received: 17 July 1997
Revised: 21 March 1999
Published: 1 May 2000
Authors
Eva Suárez-Peiró
Mathematisches Institut der Universität Tübingen
Auf der Morgenstelle 10
72076 Tübingen
Germany