Vol. 194, No. 2, 2000

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The pluricomplex Green function with two poles of the unit ball of n

Dan Coman

Vol. 194 (2000), No. 2, 257–283
Abstract

In this paper we find the formula for the pluricomplex Green function of the unit ball of n with two poles of equal weights. The strategy will be to show the existence of a foliation of the ball (singular at the poles) by proper smooth analytic discs passing through one or through both of the poles, such that the restriction of the pluricomplex Green function to these discs is harmonic away from the poles. This foliation is obtained by solving a suitable extremal problem, in analogy to the results of Lempert in the case of one pole for convex domains. Using the expression of the Green function along each leaf of the foliation, we construct its formula on the whole ball. We then show that this function is of class C1,1 but not C2.

Milestones
Received: 4 August 1998
Revised: 24 May 1999
Published: 1 June 2000
Authors
Dan Coman
University of Notre Dame
Notre Dame, IN 46556-5683