STARLIKE MAPPINGS ON BOUNDED BALANCED DOMAINS WITH C^1-PLURISUBHARMONIC DEFINING FUNCTIONS

HIDETAKA HAMADA
STARLIKE MAPPINGS ON BOUNDED BALANCED DOMAINS WITH C^1-PLURISUBHARMONIC DEFINING FUNCTIONS

HIDETAKA HAMADA

Let D be a bounded balanced domain with C^1 plurisubharmonic defining functions in \mathbb{C}^n. First, we give a necessary and sufficient condition that a locally biholomorphic mapping from D to \mathbb{C}^n is starlike. Next, we give a growth theorem for normalized starlike mappings on D. We also give a quasiconformal extension of some strongly starlike mapping on D.

1. Introduction.

Let f be a univalent mapping in the unit disk Δ with $f(0) = 0$ and $f'(0) = 1$. Then the classical growth theorem is as follows:

$$\frac{|z|}{(1 + |z|)^2} \leq |f(z)| \leq \frac{|z|}{(1 - |z|)^2}.$$

In this paper, we will extend the above results to (strongly) starlike mappings on bounded balanced domains with C^1 plurisubharmonic defining functions in \mathbb{C}^n. Since we cannot use the characterization of the starlikeness due to Suffridge [11], we first give a necessary and sufficient condition that a locally biholomorphic mapping on such domains is starlike using the idea of Gong, Wang and Yu [4]. To prove that condition, a Schwarz type lemma on balanced pseudoconvex domains [5], [6] is needed.

2. A Schwarz type lemma.

In this section, we recall a Schwarz type lemma on balanced pseudoconvex domains [5], [6]. The Lempert function \tilde{k}_D for a domain D in \mathbb{C}^n is defined
as follows:
\[
\tilde{k}_D(x, y) = \inf \{ \rho(\xi, \eta) \mid \xi, \eta \in \Delta, \exists \varphi \in H(\Delta, D) \text{ such that } \varphi(\xi) = x, \varphi(\eta) = y \},
\]
where \(\rho \) is the Poincaré distance on the unit disk \(\Delta \).

Let \(D \) be a balanced pseudoconvex domain in \(\mathbb{C}^n \). The Minkowski function \(h \) of \(D \) is defined as follows:
\[
h(z) = \inf \{ t > 0 \mid \frac{z}{t} \in D \}.
\]
Then we have (Proposition 3.1.10. of Jarnicki and Pflug [7]),
\[(2.1) \quad \tilde{k}_D(0, x) = \rho(0, h(x)) \text{ for any } x \in D.\]
Using (2.1) and the fact that the Lempert functions are contractible with respect to holomorphic mappings, we have the following theorem [5], [6].

Theorem 1. Let \(F \) be a holomorphic mapping from \(D \) to \(D \) such that \(F(0) = 0 \). Then
\[
h(F(z)) \leq h(z)
\]
holds for all \(z \in D \).

3. A necessary and sufficient condition for a locally biholomorphic mapping to be starlike.

Let \(D \) be a domain in \(\mathbb{C}^n \) which contains 0. A holomorphic mapping from \(D \) to \(\mathbb{C}^n \) is said to be starlike if \(f \) is biholomorphic, \(f(0) = 0 \) and \(f(D) \) is starlike with respect to the origin.

We say that \(D \) has \(C^1 \) plurisubharmonic defining functions, if for any \(\zeta \in \partial D \), there exist a neighborhood \(U \) of \(\zeta \) in \(\mathbb{C}^n \) and a \(C^1 \) plurisubharmonic function \(r \) on \(U \) such that \(D \cap U = \{ z \in U \mid r(z) < 0 \} \). Then \(D \) is pseudoconvex. From now on, let \(D \) be a bounded balanced pseudoconvex domain with \(C^1 \) plurisubharmonic defining functions. In this section, we give a necessary and sufficient condition for a locally biholomorphic mapping on \(D \) to be starlike.

Let
\[
u(z_1, z_2, \ldots, z_n) = \sum_{i=1}^{n} |z_i|^{p_i}
\]
and let
\[
B(p_1, \ldots, p_n) = \{ z \in \mathbb{C}^n \mid u(z) < 1 \},
\]
where \(2p_n > p_1 \geq p_2 \geq \ldots \geq p_n > 1 \). Gong, Wang and Yu [4] gave a necessary and sufficient condition that a locally biholomorphic mapping from \(B(p_1, \ldots, p_n) \) to \(\mathbb{C}^n \) is starlike.
Theorem 2. Suppose that \(f : B(p_1, \ldots, p_n) \to \mathbb{C}^n \) is a locally biholomorphic mapping with \(f(0) = 0 \). Then \(f \) is starlike if and only if
\[
(du \cdot f^{-1}) \cdot (dp)|_{w = f(z)} \geq 0 \quad \text{for any } z \in B(p_1, \ldots, p_n) \setminus \{0\},
\]
where \(a \cdot b \) is the inner product in \(\mathbb{R}^{2n} \) and \(\rho(w) \) is the distance function from the origin in \(\mathbb{R}^{2n} \).

Their proof uses the following properties of \(u \).
(i) \(u(z) = 0 \) if and only if \(z = 0 \),
(ii) \(u \) is \(C^1 \)-smooth on \(B(p_1, \ldots, p_n) \setminus \{0\} \),
(iii) \(u \) is continuous on \(B(p_1, \ldots, p_n) \),
(iv) \(\overline{B}_a = \{z \in B(p_1, \ldots, p_n) \mid u(z) \leq a\} \) for any \(0 < a < 1 \), where \(\overline{B}_a = \{z \in B(p_1, \ldots, p_n) \mid u(z) < a\} \),
(v) \(\overline{D}_a \) is compact for any \(0 < a < 1 \),
(vi) \(u(F(z)) \leq u(z) \) for any \(z \in B(p_1, \ldots, p_n) \), where \(F \) is a holomorphic mapping from \(B(p_1, \ldots, p_n) \) into itself with \(F(0) = 0 \) and \(DF(0) = \nu I \),
\(0 < \nu \leq 1 \), where \(I \) denotes the identity matrix.

We will prove that the Minkowski function \(h \) of \(D \) satisfies the above properties.

Proposition 1. Let \(h \) be the Minkowski function of \(D \), where \(D \) is a bounded balanced pseudoconvex domain in \(\mathbb{C}^n \) with \(C^1 \) plurisubharmonic defining functions. Then:
(i) \(h(z) = 0 \) if and only if \(z = 0 \),
(ii) \(h \) is \(C^1 \)-smooth on \(\mathbb{C}^n \setminus \{0\} \),
(iii) \(h \) is continuous on \(\mathbb{C}^n \),
(iv) \(\overline{D}_a = \{z \in D \mid h(z) \leq a\} \) for any \(0 < a < 1 \), where \(D_a = \{z \in D \mid h(z) < a\} \),
(v) \(\overline{D}_a \) is compact for any \(0 < a < 1 \),
(vi) \(h(F(z)) \leq h(z) \) for any \(z \in D \), where \(F \) is a holomorphic mapping from \(D \) into itself with \(F(0) = 0 \).

Proof. (i) Since \(D \) is bounded, \(h(z) = 0 \) if and only if \(z = 0 \).
(ii) There exists a \(R > 0 \) such that the Euclidean closed ball \(\overline{B}(0, R) \) centered at \(0 \) of radius \(R \) is contained in \(D \). Since \(h(z) = R^{-1}|z|h(Rz/|z|) \) for \(z \neq 0 \), it suffices to prove that \(h \) is \(C^1 \) in a neighborhood of \(z_0 \in \partial D \) and let \(r \) be a \(C^1 \) plurisubharmonic defining function of \(D \) near \(\zeta \). Let \(g(z, s) = r(z/s) \). Since \(g(z, h(z)) = 0 \) in a neighborhood of \(z_0 \), it suffices to show that \(\partial g/\partial s \neq 0 \) at \((z_0, h(z_0)) \) by the implicit function theorem. We use the idea of a proof of Hopf’s lemma (cf. Krantz [8], p. 61).
Let \(D_0 = \{t \in \mathbb{C} \mid t\zeta \in D\} \). Then \(D_0 = \{t \in \mathbb{C} \mid |t| < 1\} \). Let \(r_0(t) = r(t\zeta) \).
Let \(\mathbf{B}^* \) be the ball in \(\mathbb{C} \) centered at \(c(0 < c < 1) \) of radius \(1 - c \). Let \(\mathbf{B}_1 \) be a ball in \(\mathbb{C} \) centered at \(1 \) of sufficiently small radius. Let \(\mathbf{B}' = \mathbf{B}^* \cap \mathbf{B}_1 \).
Let \(\psi(t) = \exp(-\alpha|t - c|^2) - \exp(-\alpha(1 - c)^2) \). Then \(\psi \) is subharmonic on
a neighborhood of $\overline{B'}$ for sufficiently large α. Since $r_0 < 0$ on $\overline{B'} \cap \overline{B''}$, there exists an $\varepsilon > 0$ such that $r_0 + \varepsilon \psi < 0$ on $\overline{B'} \cap \overline{B''}$. Since $r_0 + \varepsilon \psi$ is subharmonic, $r_0 + \varepsilon \psi$ attains its maximum on $\overline{B'}$ at 1. Therefore,

\[
\frac{\partial (r_0 + \varepsilon \psi)}{\partial x}(1) \geq 0,
\]

where $x = \text{Re} t$. Since $\partial \psi / \partial x(1) < 0$, we have $\partial r_0 / \partial x(1) > 0$. Then

\[
\frac{\partial g}{\partial s}(z_0, h(z_0)) = -\frac{1}{h(z_0)} \frac{\partial r_0}{\partial x}(1) \neq 0.
\]

(iii) It suffices to show that h is continuous at 0. There exists a $R > 0$ such that the Euclidean closed ball $\overline{B}(0, R)$ centered at 0 of radius R is contained in D. Let $M = \sup \{h(z) \mid z \in \partial B(0, R)\}$. Then, for any $\varepsilon > 0$, $h < \varepsilon$ on $B(0, \varepsilon R / M)$.

(iv) Since h is continuous, it suffices to show that $\{z \in D \mid h(z) \leq a\} \subset D_a$. Let $h(z) \leq a$. Since $h(tz) = th(z) < a$ for $0 < t < 1$, $tz \in D_a$ and $tz \rightarrow z$ as $t \rightarrow 1$. This implies that $z \in D_a$.

(v) Since h is continuous on C^n, $D_a = \{z \in D \mid h(z) \leq a\} = \{z \in C^n \mid h(z) \leq a\}$. Then D_a is a bounded closed subset of C^n.

(vi) See Theorem 1.

Using Proposition 1, we obtain the following theorem as in the proof of Theorem 2 due to Gong, Wang and Yu [4].

Theorem 3. Let h be the Minkowski function of D, where D is a bounded balanced pseudoconvex domain in C^n with C^1 plurisubharmonic defining functions. Suppose that $f : D \rightarrow C^n$ is a locally biholomorphic mapping with $f(0) = 0$. Then f is starlike if and only if

\[
(dh \cdot f^{-1}) \bullet (d\rho)|_{w=f(z)} \geq 0 \text{ for any } z \in D \setminus \{0\},
\]

where $a \bullet b$ is the inner product in R^{2n} and $\rho(w)$ is the distance function from the origin in R^{2n}.

Remark 1. (i) It is mentioned in Gong, Wang and Yu [4] that FitzGerald pointed out that if the condition $2p_n > p_1$ is dropped, then the Schwarz type lemma does not hold for u. So, they cannot obtain Theorem 2 in the case that the condition $2p_n > p_1$ is dropped. However, Theorem 3 holds for all $B(p_1, \ldots, p_n)$ with $p_1, \ldots, p_n > 1$.

(ii) Let D and f be as in Theorem 3. Let $w(z) = (Df(z))^{-1}(f(z))$. Then the condition (3.1) can be written as follows:

\[
\text{Re} \left\langle \frac{\partial h^2}{\partial z}(z), w(z) \right\rangle \geq 0 \text{ for any } z \in D \setminus \{0\},
\]

where $\partial h^2 / \partial z = (\partial h^2 / \partial z_1, \ldots, \partial h^2 / \partial z_n)$ and $\langle \cdot, \cdot \rangle$ denotes the Hermitian inner product in C^n. In particular, Theorem 3 reduces to the Suffridge’s theorem [11] when $D = B(p_1, \ldots, p_n)$ with $p_1 = \cdots = p_n > 1$.

4. The growth and $1/4$-theorems for normalized starlike mappings.

In this section, we give the growth and $1/4$-theorems for normalized starlike mappings on bounded balanced pseudoconvex domains with C^1 plurisubharmonic defining functions using the ideas of Barnard, FitzGerald and Gong [1] and Chuaqui [2]. A holomorphic mapping f is said to be normalized if $f(0) = 0$ and $Df(0) = I$.

Let D be a bounded balanced pseudoconvex domain in \mathbb{C}^n with C^1 plurisubharmonic defining functions and let f be a starlike mapping from D to \mathbb{C}^n. By the Remark after Theorem 3, we have

$$\text{Re} \left< \frac{\partial h^2}{\partial z}(z), w(z) \right> \geq 0 \text{ for any } z \in D \setminus \{0\},$$

where $\partial h^2/\partial z = (\partial h^2/\partial z_1, \ldots, \partial h^2/\partial z_n)$, $w(z) = (Df(z))^{-1}(f(z))$ and $\langle \cdot, \cdot \rangle$ denotes the Hermitian inner product in \mathbb{C}^n. Let $z \in \partial D$ and let $\zeta \in \Delta \setminus \{0\} = \{|\zeta| < 1\} \setminus \{0\}$. Then

$$0 \leq \text{Re} \left< \frac{\partial h^2}{\partial z}(\zeta z), w(\zeta z) \right> = |\zeta|^2 \text{Re} \left< \frac{\partial h^2}{\partial z}(z), \left(\frac{w(\zeta z)}{\zeta} \right) \right>.$$

Let

$$\phi_z(\zeta) = \left< \frac{\partial h^2}{\partial z}(z), \left(\frac{w(\zeta z)}{\zeta} \right) \right>.$$

Since $w(0) = 0$, ϕ_z is a holomorphic function on Δ and $\text{Re} \phi_z \geq 0$ on Δ from (4.1). By differentiating $h^2(\zeta z) = \zeta \bar{\zeta} h^2(z)$ with respect to ζ, we have

$$\sum_{i=1}^{n} \frac{\partial h^2}{\partial z_j}(\zeta z) z_j = \bar{\zeta} h^2(z).$$

If $z \in \partial D$ and $\zeta = 1$,

$$\sum_{i=1}^{n} \frac{\partial h^2}{\partial z_j}(z) z_j = 1.$$

Since $Dw(0) = I$, this implies that $\phi_z(0) = 1$. If we put

$$\sigma(\zeta) = \frac{\phi_z(\zeta) - 1}{\phi_z(\zeta) + 1},$$

σ is a holomorphic function on Δ such that $\sigma(0) = 0$ and $|\sigma(\zeta)| \leq 1$. The mapping f is said to be strongly starlike if $\phi_z(\Delta)$ is contained in a compact subset of the right half-plane independent of $z \in \partial D$. This condition is equivalent to the condition that $|\sigma(\zeta)| \leq c < 1$ uniformly for $z \in \partial D$.

Let f be a starlike mapping on D with $|\sigma(\zeta)| \leq c \leq 1$ uniformly for $z \in \partial D$. Since
\[
\text{Re} \left(\frac{\partial h^2(z)}{\partial z} \right) = h^2(z) \text{Re} \varphi(h(z)) \quad \text{for } z \in D,
\]
where $\tilde{z} = z/h(z)$, we obtain the following lemma by applying the Schwarz lemma to σ as in Lemma 2.1 of Pfaltzgraff [9].

Lemma 1.
\[
h^2(z) \frac{1 - ch(z)}{1 + ch(z)} \leq \text{Re} \left(\frac{\partial h^2(z)}{\partial z} \right) \leq h^2(z) \frac{1 + ch(z)}{1 - ch(z)} \quad \text{for } z \in D \setminus \{0\}.
\]

Let $v(z, s, t)$ be defined by
\[
v(z, s, t) = f^{-1}(e^{s-t}f(z))
\]
for $0 \leq s \leq t$. Let $z \in D \setminus \{0\}$. Since
\[
\frac{\partial}{\partial t} h(v) = -h(v)^{-1} \text{Re} \left(\frac{\partial h^2}{\partial z}(v) \right),
\]
we have
\[
\frac{\partial}{\partial t} h(v) \leq -h(v) \frac{1 - ch(v)}{1 + ch(v)} < 0
\]
by Lemma 1. Then we have $h(v(z, s, t)) \leq h(v(z, s, s)) = h(z)$. Moreover, we obtain the following inequalities by Lemma 1 as in Lemma 2.2 of Pfaltzgraff [9].

\[
e^t \frac{h(v)}{(1 - ch(v))^2} \leq e^s \frac{h(z)}{(1 - ch(z))^2} \quad \text{on } D
\]

and
\[
e^s \frac{h(z)}{(1 + ch(z))^2} \leq e^t \frac{h(v)}{(1 + ch(v))^2} \quad \text{on } D.
\]

Since $D = \{z \in C^n \mid h(z) < 1\}$ is bounded with respect to the Euclidean distance, a bounded set with respect to h is bounded with respect to the Euclidean distance. By (4.4), we have
\[
h(e^tv) \leq e^s \frac{h(z)}{(1 - ch(z))^2}.
\]

Then \{e^tv\}_{t \geq s} forms a normal family on D. If f is normalized, we can show that there exists a sequence $\{t_m\}$ such that $t_m \to \infty$ and $e^{t_m}v(z, s, t_m) \to e^s f(z)$ on D as $m \to \infty$ as in Theorem 2.3 of Pfaltzgraff [9]. Substituting $t = t_m$ in (4.4) and (4.5) and letting $m \to \infty$, we have the following theorem.
Theorem 4. Let \(D \) be a bounded balanced pseudoconvex domain in \(\mathbb{C}^n \) with \(C^1 \) plurisubharmonic defining functions and let \(f \) be a normalized starlike mapping from \(D \) to \(\mathbb{C}^n \) with \(|\sigma(\zeta)| \leq c \leq 1 \) uniformly for \(z \in \partial D \). Let \(h \) be the Minkowski function of \(D \). Then

\[
\frac{h(z)}{(1 + ch(z))^2} \leq h(f(z)) \leq \frac{h(z)}{(1 - ch(z))^2}.
\]

For \(D = B(p_1, \ldots, p_n) \) with \(p_1, \ldots, p_n > 1 \), we can show that the estimates are sharp as in Theorem 2.1 of Barnard, FitzGerald and Gong [1].

Theorem 5. Let \(p_1, \ldots, p_n > 1 \). Let \(f \) be a normalized starlike mapping from \(B(p_1, \ldots, p_n) \) to \(\mathbb{C}^n \) with \(|\sigma(\zeta)| \leq c \leq 1 \) uniformly for \(z \in \partial B(p_1, \ldots, p_n) \). Let \(h \) be the Minkowski function of \(B(p_1, \ldots, p_n) \). Then

\[
\frac{h(z)}{(1 + ch(z))^2} \leq h(f(z)) \leq \frac{h(z)}{(1 - ch(z))^2}.
\]

Furthermore the estimates are sharp.

Proof. We will show that the estimates are sharp. Let

\[
f(z) = \left(\frac{z_1}{(1 - cz_1)^2}, \frac{z_2}{(1 - cz_2)^2}, \ldots, \frac{z_n}{(1 - cz_n)^2} \right).
\]

Then \(f \) is a normalized biholomorphic mapping on \(B(p_1, \ldots, p_n) \) and

\[
\phi_z(\zeta) = \sum_{j=1}^n \frac{\partial h^2}{\partial z_j}(z) z_j (1 - c\zeta z_j) \frac{1 - c\zeta z_j}{1 + c\zeta z_j}
\]

for any \(z \in \partial B(p_1, \ldots, p_n) \). Since \((\partial h^2/\partial z_j)(z) z_j \geq 0 \) and \(\sum_{j=1}^n (\partial h^2/\partial z_j)(z) z_j = 1 \), we have \(|\sigma(\zeta)| \leq c \) for any \(\zeta \in \Delta \). Therefore, \(f \) is a normalized starlike mapping with \(|\sigma(\zeta)| \leq c \) uniformly for \(z \in \partial B(p_1, \ldots, p_n) \). Since

\[
h(f(z_1, 0, \ldots, 0)) = \frac{1}{|1 - cz_1|^2} h((z_1, 0, \ldots, 0))
\]

and

\[
h((z_1, 0, \ldots, 0)) = |z_1|
\]

the estimates are sharp.

Corollary 1. Let \(D \) be a bounded balanced pseudoconvex domain in \(\mathbb{C}^n \) with \(C^1 \) plurisubharmonic defining functions and let \(f \) be a normalized starlike mapping from \(D \) to \(\mathbb{C}^n \) with \(|\sigma(\zeta)| \leq c \leq 1 \) uniformly for \(z \in \partial D \). Then the image of \(f \) contains \(1/(1 + c)^2 D \). If \(D = B(p_1, \ldots, p_n) \) with \(p_1, \ldots, p_n > 1 \), the value \(1/(1 + c)^2 \) is best possible.
Let k be a positive integer. We say that f has a k-fold symmetric image if the image of f is unchanged when multiplied by the scalar complex number $\exp(2\pi i/k)$. If k-fold symmetry of f is assumed, then Theorems 4, 5 and Corollary 1 can be strengthened as follows as in Barnard, FitzGerald and Gong [1].

Corollary 2. Let D be a bounded balanced pseudoconvex domain in \mathbb{C}^n with C^1 plurisubharmonic defining functions and let f be a normalized starlike mapping from D to \mathbb{C}^n with $|\sigma(\zeta)| \leq c \leq 1$ uniformly for $z \in \partial D$ and with a k-fold symmetric image for some positive integer k. Let h be the Minkowski function of D. Then

$$
\frac{h(z)}{(1 + ch(z)^k)^{2/k}} \leq h(f(z)) \leq \frac{h(z)}{(1 - ch(z)^k)^{2/k}}.
$$

Therefore, the image of D under f contains $\left(\frac{1}{1 + c}\right)^{2/k}D$. Furthermore, these estimates are sharp when $D = B(p_1, \ldots, p_n)$ with $p_1, \ldots, p_n > 1$.

Corollary 3. The only balanced domain which is the image of a bounded balanced pseudoconvex domain D in \mathbb{C}^n with C^1 plurisubharmonic defining functions under a normalized biholomorphic mapping is D.

5. Quasiconformal extensions.

In this section, we will show that a quasiconformal strongly starlike mapping with $|w|$ uniformly bounded on a bounded balanced pseudoconvex domain D in \mathbb{C}^n with C^1 plurisubharmonic defining functions admits a quasiconformal extension to \mathbb{C}^n using the idea of Chuaqui [2].

Let Ω, Ω' be domains in \mathbb{R}^m. A homeomorphism $f : \Omega \to \Omega'$ is said to be quasiconformal if it is differentiable a.e., ACL(absolutely continuous on lines) and

$$
\|D(f; x)\|^m \leq K|\det D(f; x)| \quad \text{a.e. in } \Omega,
$$

where $D(f; x)$ denotes the (real) Jacobian matrix of f, K is a constant and

$$
\|D(f; x)\| = \sup\{|D(f; x)(a)| \mid |a| = 1\}.
$$

Theorem 6. Let D be a bounded balanced pseudoconvex domain in \mathbb{C}^n with C^1 plurisubharmonic defining functions, and let f be a quasiconformal, strongly starlike mapping with $|w|$ uniformly bounded on D. Then f extends to a quasiconformal homeomorphism of \mathbb{R}^{2n} onto itself.

Proof. We may assume that f is normalized. Let $f_i = u_i + \sqrt{-1}v_i$ and $z_i = x_i + \sqrt{-1}y_i$. We first show that $\|D(u, v; x, y)\|$ is uniformly bounded in D. Let $1/2 < h(z) < 1$. By Lemma 1, we have

$$
(5.1) \quad h^2(z) \frac{1 - ch(z)}{1 + ch(z)} \leq \left| \frac{\partial h^2}{\partial z} \right| \cdot |w|.
$$
Using $Df(w) = f$, Theorem 4 and (5.1), we have
\[h \left(Df \left(\frac{w}{|w|} \right) \right) \leq \left| \frac{\partial h}{\partial z} \right| \frac{1 + ch(z)}{h(z)(1 - ch(z))^3} \leq 2 \left| \frac{\partial h}{\partial z} \right| \frac{1 + c}{(1 - c)^3}. \]
Since h is C^1 on $\mathbb{C}^n \setminus \{0\}$, $h(Df(w/|w|))$ is bounded for $1/2 < h(z) < 1$. Since $D = \{h(z) < 1\}$ is bounded, $|Df(w/|w|)|$ is uniformly bounded for $1/2 < h(z) < 1$. By the Cauchy-Riemann equations, this implies that $D(u,v;x,y)^t(\text{Re } w/|w|, \text{Im } w/|w|)$ is uniformly bounded for $1/2 < h(z) < 1$. Since f is quasiconformal, $\|D(u,v;x,y)\|$ is uniformly bounded for $1/2 < h(z) < 1$. Then $\|D(u,v;x,y)\|$ is uniformly bounded in D.

Next we will show that f admits a continuous extension to \overline{D}, and the extension is univalent in \overline{D}. For $a \in \partial D$, let $f(a) = \lim_{j \to \infty} f(t_ja)$, where $t_j < 1$ and $t_j \to 1$. This is well-defined, since $\|D(u,v;x,y)\|$ is uniformly bounded in D. Let g be the Riemannian metric induced on ∂D by the Euclidean metric on \mathbb{R}^{2n}, and let d_g be the distance function on ∂D with respect to g. For any positive ε, let $U_g(a) = \{z \in \partial D \mid d_g(a,z) < \varepsilon/2M\}$, where $M = \sup\{\|D(u,v;x,y)\| \mid (x,y) \in D\}$. Since the topology on ∂D defined by d_g coincides with the topology induced on ∂D by the Euclidean topology on \mathbb{C}^n, there exists a $\delta > 0$ such that $U(a) = \{z \in \partial D \mid |z - a| < \delta\} \subset U_g(a)$. Let
\[V = \{z \in \mathbb{C}^n \mid |z - a| < \delta/2\} \cap \left\{ z \in \overline{D} \mid L \left(\frac{1}{h(z)} - 1 \right) < \min \left(\frac{\delta}{2}, \frac{\varepsilon}{2M} \right) \right\}, \]
where $L = \sup\{|z| \mid z \in \overline{D}\}$. Then V is an open neighborhood of a in \overline{D}. Let $z \in V$. Then $z/h(z) \in U(a)$, since
\[|a - z/h(z)| \leq |a - z| + |z| \left(\frac{1}{h(z)} - 1 \right) < \delta. \]
Then there exists a piecewise C^1-curve $\gamma : [0,1] \to \partial D$ such that $\gamma(0) = a$, $\gamma(1) = z/h(z)$ and $L_g(\gamma) < \varepsilon/2M$, where $L_g(\gamma)$ denotes the length of γ with respect to g. Let $\iota : \partial D \to \mathbb{R}^{2n}$ be the natural inclusion mapping. Then, we have
\[
|f(a) - f(z/h(z))| = \lim_{j \to \infty} \left| \int_0^1 \frac{d}{ds} f(t_j(\iota \circ \gamma)(s)) ds \right|
\leq \lim_{j \to \infty} \int_0^1 \left| \frac{d}{ds} f(t_j(\iota \circ \gamma)(s)) \right| ds
\leq \lim_{j \to \infty} \int_0^1 M \left| t_j \frac{d}{ds} (\iota \circ \gamma)(s) \right| ds
= M \int_0^1 \sqrt{g(\dot{\gamma}(s), \dot{\gamma}(s))} ds
< \frac{\varepsilon}{2}.\]
Then \(|f(z) - f(a)| \leq |f(a) - f(z/h(z))| + |f(z/h(z)) - f(z)| \leq \varepsilon/2 + M|z - z/h(z)| < \varepsilon\) This implies that \(f\) is continuous on \(\overline{D}\). Since
\[
h(v)^{-1} \frac{\partial}{\partial t} h(v) \leq \frac{-(1 - c)}{1 + c}
\]
for \(z \neq 0\) by (4.3), we have
\[
h(v) \leq h(z) \exp \left\{ \frac{-1 - c}{1 + c} (t - s) \right\}
\]
as in Pfaltzgraff [10]. This implies that \(v(z, s, t) \subset D\) for \(0 \leq s < t\).

Let \(f_t(z) = e^t f(z)\) for \(t \geq 0\). By (4.2), we have \(f_s(z) = f_t(v(z, s, t))\) for \(z \in D\). Then by (5.2), \(f_s(D) \subset f_t(D)\) for \(0 \leq s < t\). Therefore
\[
v(z, s, t) = f_t^{-1}(f_s(z)) \quad (0 \leq s < t)
\]
defines a continuous extension of \(v\) to \(\overline{D}\). For \(z \in D\), we have
\[
|v(z, s, t) - z| \leq \int_s^t |\frac{\partial}{\partial \tau} v(z, s, \tau)| d\tau
\]
\[
= \int_s^t | - w(v(z, s, \tau))| d\tau
\]
\[
\leq C(t - s)
\]
for some positive constant \(C\), since \(|w|\) is uniformly bounded. Since \(v\) is continuous on \(\overline{D}\), this estimate holds for \(z \in \overline{D}\). Suppose that \(f(z_1) = f(z_2)\) for \(z_1, z_2 \in D\). Then for \(t > 0\), we have
\[
f_t(v(z_1, 0, t)) = f_t(v(z_2, 0, t)).
\]
Since \(f_t\) is univalent in \(D\), we obtain \(v(z_1, 0, t) = v(z_2, 0, t)\). Letting \(t \to 0\), we have \(z_1 = z_2\) by (5.3). Therefore, \(f\) is univalent in \(\overline{D}\).

Let
\[
F(z) = \begin{cases} f(z) & z \in \overline{D} \\ h(z) f(\frac{z}{h(z)}) & z \notin \overline{D}. \end{cases}
\]
We will show that \(F\) is the quasiconformal extension of \(f\). It is easy to show that \(F\) is continuous and univalent on \(\mathbb{R}^{2n}\). Let \(\mathbb{R}^{2n} \cup \{\infty\} = S^{2n}\) be a one point compactification of \(\mathbb{R}^{2n}\). We extend \(F\) to \(S^{2n}\) by \(F(\infty) = \infty\). By Theorem 4, \(F\) is a continuous bijective mapping from \(S^{2n}\) onto itself. Therefore, \(F\) is a homeomorphism from \(S^{2n}\) onto itself. Thus \(F\) is a homeomorphism from \(\mathbb{R}^{2n}\) onto itself. For \(0 < r < 1\), let
\[
F'(z) = \begin{cases} f(rz) & z \in \overline{D} \\ h(z) f(r \frac{z}{h(z)}) & z \notin \overline{D}. \end{cases}
\]
Then
\[
F'(z/r) = \begin{cases}
 f(z) & z \in \overline{D}_r \\
 r^{-1}h(z)f\left(\frac{z}{r^{-1}h(z)}\right) & z \notin \overline{D}_r.
\end{cases}
\]

Since \(r^{-1}h(z)\) is the Minkowski function of \(D_r\), \(F'(z)\) is a homeomorphism from \(\mathbb{R}^{2n}\) onto itself. We will show that \(F' \to F\) uniformly on compact subsets of \(\mathbb{R}^{2n}\), \(F'\) is differentiable a.e., \(F'\) is ACL and
\[
\|D(u^r, v^r; x, y)\|^{2n} \leq K|\det D(u^r, v^r; x, y)| \text{ a.e. in } \mathbb{R}^{2n},
\]
where \(F'_r = u'_r + \sqrt{-1}v'_r\) and \(K\) is independent of \(r\) and \(x\). Then by Corollary 21.3 and Corollary 37.4 of Väisälä [12], \(F\) is quasiconformal. Since \(f\) is continuous on \(\overline{D}\), \(F' \to F\) uniformly on compact subsets of \(\mathbb{R}^{2n}\). Since \(h\) is \(C^1\) on \(\mathbb{R}^{2n} \setminus \{0\}\), \(F'\) is differentiable on \(\mathbb{R}^{2n} \setminus \partial D\).

Since \(f\) is quasiconformal in \(D\), there exists a positive constant \(K_1\) such that
\[
(5.4) \quad \|D(u, v; x, y)\|^{2n} \leq K_1|\det D(u, v; x, y)| \text{ in } D.
\]
Then we have
\[
(5.5) \quad \|D(u^r, v^r; x, y)\|^{2n} \leq K_1|\det D(u^r, v^r; x, y)| \text{ in } D,
\]
and
\[
(5.6) \quad D(u^r, v^r; x, y) = rD(u, v; rx, ry) \text{ on } D.
\]
For \(z \notin \overline{D}\), let \(\zeta = rh(z)^{-1}z \in D \setminus \{0\}\) and let \(\zeta = \xi + \sqrt{-1}\eta\). Then
\[
D(u^r, v^r; x, y) = rD(u, v; \xi, \eta)(I + M(\xi, \eta)),
\]
where
\[
M(\xi, \eta) = r^{-1} \begin{pmatrix} \text{Re}(w(\zeta) - \zeta) \\ \text{Im}(w(\zeta) - \zeta) \end{pmatrix} \text{grad}h(\xi, \eta).
\]
Since \(h\) is \(C^1\) on \(\mathbb{C}^n \setminus \{0\}\) and \(\|M(\xi, \eta)\| = r^{-1}|w(\zeta) - \zeta||\text{grad}h(\xi, \eta)|\), \(\|M(\xi, \eta)\|\) is uniformly bounded for \(r\) near 1. Then
\[
(5.7) \quad \|D(u^r, v^r; x, y)\| \leq r\|D(u, v; \xi, \eta)\||I + M(\xi, \eta)|| \leq r\|D(u, v; \xi, \eta)\||(1 + \|M(\xi, \eta)\|) \leq K_2\|D(u, v; \xi, \eta)\|.
\]
Since \(M(\xi, \eta)\) has rank 1,
\[
\det(I + M(\xi, \eta)) = 1 + \text{tr } M(\xi, \eta)
\]
\[
= r^{-2}\text{Re}\left(\frac{\partial^2}{\partial z^2}(\zeta, \overline{w(\zeta)})\right)
\]
\[
\geq r^{-2}h^2(\zeta) \frac{1 - c_h(\zeta)}{1 + c_h(\zeta)}
\]
\[
\geq \frac{1 - c}{1 + c}
\]
by Lemma 1. Then

\[| \det D(u^r, v^r; x, y) | = r^{2n} | \det D(u, v; \xi, \eta) | | \det (I + M(\xi, \eta)) | \]

\[\geq r^{2n} \frac{1 - c}{1 + c} | \det D(u, v; \xi, \eta) |. \]

By (5.4), (5.7) and (5.8), we have

\[\| D(u^r, v^r; x, y) \|^2 \leq K_2^{2n} \| D(u, v; \xi, \eta) \|^2 \]

\[\leq K_1 K_2^{2n} | \det D(u, v; \xi, \eta) | \]

\[\leq r^{-2n} \frac{1 + c}{1 - c} K_1 K_2^{2n} | \det D(u^r, v^r; x, y) |. \]

By (5.5) and (5.9), we have

\[\| D(u^r, v^r; x, y) \|^2 \leq K | \det D(u^r, v^r; x, y) | \quad \text{a.e. in } \mathbb{R}^{2n}, \]

where \(K \) is independent of \(r \) and \(x \).

Let \(\mathbb{R}^{2n-1}_i = \{ x \in \mathbb{R}^{2n} \mid x_i = 0 \} \) and let \(P_i \) be the orthogonal projection of \(\mathbb{R}^{2n} \) onto \(\mathbb{R}^{2n-1}_i \). Let \(Q = \bigcap P_i^{-1}(y) \). We will show that \(F^r \) is absolutely continuous on \(J_y \) for almost every \(y \in P_i Q \).

Let \(A = \{ y \in P_i Q \mid J_y \cap \partial D \text{ is uncountable} \} \). By Theorem 30.16 of Väisälä [12], \(m_{2n-1}(A) = 0 \). For any \(y \in P_i Q \setminus A \), \(F^r|_{J_y} \) is an injective path, and \(J_y \cap \partial D \) is countable. By (5.6) and (5.7), \(| \partial_i F^r | \) is bounded on \(U \setminus \partial D \) for \(1 \leq i \leq 2n \), where \(U \) is a neighborhood of \(\partial D \cup J_y \), since \(\| D(u, v; x, y) \| \) is uniformly bounded in \(D \). Then \(F^r \) is absolutely continuous on every closed subinterval of \(J_y \setminus (J_y \cap \partial D) \) and

\[\int_{J_y} | \partial_i F^r | dm_1 < \infty. \]

By Theorem 30.12 of Väisälä [12], \(F^r|_{J_y} \) is absolutely continuous.

This completes the proof.

References

Received April 22, 1997.

Kyushu Kyoritsu University
1-8, Jiyugaoka, Yahatanishi-ku
Kitakyushu 807-8585
Japan

E-mail address: hamada@kyukyo-u.ac.jp