HIGHER DIMENSIONAL LINKS IN A SIMPLICIAL COMPLEX EMBEDDED IN A SPHERE

Kouki Taniyama
HIGHER DIMENSIONAL LINKS IN A SIMPLICIAL COMPLEX EMBEDDED IN A SPHERE

Kouki Taniyama

We show that any embedding of the \(n \)-skeleton of a \((2n + 3)\)-dimensional simplex into the \((2n + 1)\)-dimensional sphere contains a nonsplittable link of two \(n \)-dimensional spheres.

1. Introduction.

Throughout this paper we work in the piecewise linear category. Conway and Gordon showed in [1] that any embedding of the complete graph over six vertices into the 3-space contains a pair of nontrivially linked circles. We refer the reader to [6], [2], [4], [3] etc. for related works. In this paper we generalize the result of Conway and Gordon to higher dimensions.

Let \(\sigma^j \) be the \(i \)-skeleton of a \(j \)-dimensional simplex \(\sigma_j = \langle v_1, v_2, \ldots, v_{j+1} \rangle \) where \(v_1, v_2, \ldots, v_j \) and \(v_{j+1} \) are the 0-simplices of \(\sigma_j \). Let \(S^k \) be the \(k \)-dimensional unit sphere. Let \(X \) and \(Y \) be disjoint \(n \)-dimensional spheres embedded in \(S^{2n+1} \). Then the linking number \(\ell k(X, Y) \in \mathbb{Z} \) is defined up to sign, see for example [7]. Then the modulo 2 reduction \(\ell k_2(X, Y) \equiv \ell k_2(Y, X) \pmod{2} \). Let \(\mathcal{L}^n \) be the set of all unordered pairs of disjoint subcomplexes of \(\sigma^{2n+3} \) each of which is homeomorphic to an \(n \)-dimensional sphere. We note that each element \((J, K) \) of \(\mathcal{L}^n \) can be written as

\[
(J, K) = (\partial \langle v_{a_1}, v_{a_2}, \ldots, v_{a_{n+2}} \rangle, \partial \langle v_{b_1}, v_{b_2}, \ldots, v_{b_{n+2}} \rangle)
\]

where \(\partial \) denotes the boundary and \(\{a_1, a_2, \ldots, a_{n+2}\} \cup \{b_1, b_2, \ldots, b_{n+2}\} = \{1, 2, \ldots, 2n + 4\} \). Therefore the number of the elements of \(\mathcal{L}^n \) is \(\binom{2n+4}{n+2}/2 \).

Theorem 1.1. Let \(n \) be a non-negative integer. Let \(f : \sigma^n_{2n+3} \rightarrow S^{2n+1} \) be an embedding. Then

\[
\sum_{(J, K) \in \mathcal{L}^n} \ell k_2(f(J), f(K)) \equiv 1 \pmod{2}.
\]

We note that \(\sigma^3_1 \) is the complete graph over six vertices and the case \(n = 1 \) of Theorem 1.1 is what Conway and Gordon actually proved in [1]. By Theorem 1.1 we have that there is at least one \((J, K) \in \mathcal{L}^n \) with \(\ell k(f(J), f(K)) \equiv 1 \pmod{2} \). Thus we have that any embedding of \(\sigma^{2n+3} \) into \(S^{2n+1} \) contains a nonsplittable link of two \(n \)-spheres.

465
2. Proof of Theorem 1.1.

The idea of the following proof is essentially the same as that of Conway and Gordon in [1].

Lemma 2.1. For any embeddings \(f, g : \sigma_{2n+3}^n \to S^{2n+1} \),

\[
\sum_{(J, K) \in \mathcal{L}^n} \ell k_2(f(J), f(K)) \equiv \sum_{(J, K) \in \mathcal{L}^n} \ell k_2(g(J), g(K)) \pmod{2}.
\]

Proof. Since \(n < 2n + 1 \) we have that both \(f \) and \(g \) are homotopic to a constant map. Therefore \(f \) and \(g \) are homotopic. By a standard general position argument we can modify the homotopy between \(f \) and \(g \) and we may suppose that \(f \) and \(g \) are connected by a finite sequence of ‘crossing changes’ of \(n \)-simplices of \(\sigma_{2n+3}^n \). Namely we have a homotopy \(H : \sigma_{2n+3}^n \times [0, 1] \to S^{2n+1} \times [0, 1] \) with \(H(x, 0) = (f(x), 0) \), \(H(x, 1) = (g(x), 1) \) whose multiple points are only finitely many transversal double points of the product of \(n \)-simplices and \([0, 1] \) and no two of them have the same second entry. Then it is enough to show the case that \(H \) has just one double point. If the first entries of the preimage of the double point do not lie in disjoint \(n \)-simplices of \(\sigma_{2n+3}^n \) then we have \(\ell k_2(f(J), f(K)) \equiv \ell k_2(g(J), g(K)) \pmod{2} \) for each \((J, K) \in \mathcal{L}^n\). Thus we may suppose without loss of generality that the first entries of the preimage lie in \(n \)-simplices \(\langle v_1, v_2, \ldots , v_{n+1} \rangle \) and \(\langle v_{n+2}, v_{n+3}, \ldots , v_{2n+3} \rangle \). Let

\[
(J_1, K_1) = (\partial \langle v_1, v_2, \ldots , v_{n+1}, v_{2n+3} \rangle, \partial \langle v_{n+2}, v_{n+3}, \ldots , v_{2n+2}, v_{2n+4} \rangle)
\]

and

\[
(J_2, K_2) = (\partial \langle v_1, v_2, \ldots , v_{n+1}, v_{2n+4} \rangle, \partial \langle v_{n+2}, v_{n+3}, \ldots , v_{2n+2}, v_{2n+3} \rangle).
\]

Then we have \(\ell k_2(f(J_i), f(K_i)) \equiv \ell k_2(g(J_i), g(K_i)) + 1 \pmod{2} \) for \(i = 1, 2 \) and \(\ell k_2(f(J), f(K)) \equiv \ell k_2(g(J), g(K)) \pmod{2} \) for \((J, K) \in \mathcal{L}^n, (J, K) \neq (J_1, K_1), (J_2, K_2)\) as unordered pair. This completes the proof. \(\square \)

Lemma 2.2. There is an embedding \(f : \sigma_{2n+3}^n \to S^{2n+1} \) with

\[
\sum_{(J, K) \in \mathcal{L}^n} \ell k_2(f(J), f(K)) \equiv 1 \pmod{2}.
\]

Proof. We use the fact that \(S^{2n+1} \) is homeomorphic to the join of two \(n \)-dimensional spheres, see Chapter 1 of [5]. Let \(P \) be the join of the two simplicial complicies \(J_0 = \partial \langle v_1, v_2, \ldots , v_{n+2} \rangle \) and \(K_0 = \partial \langle v_{n+3}, v_{n+4}, \ldots , v_{2n+4} \rangle \). Since \(\sigma_{2n+3}^n = \langle v_1, v_2, \ldots , v_{2n+4} \rangle \) is the join of \(\langle v_1, v_2, \ldots , v_{n+2} \rangle \) and \(\langle v_{n+3}, v_{n+4}, \ldots , v_{2n+4} \rangle \) we have that \(P \) is a subcomplex of \(\sigma_{2n+3}^n \). Then we have that \(\sigma_{2n+3}^n \) is a subcomplex of \(P \). Since \(P \) is homeomorphic to \(S^{2n+1} \) we have an embedding, say \(f \), of \(\sigma_{2n+3}^n \) into \(S^{2n+1} \). Let \((J, K) \in \mathcal{L}^n \). Then

\[
(J, K) = (\partial \langle v_{a_1}, v_{a_2}, \ldots , v_{a_{n+2}} \rangle, \partial \langle v_{b_1}, v_{b_2}, \ldots , v_{b_{n+2}} \rangle)
\]
for some \(\{a_1, a_2, \ldots, a_{n+2}\} \) and \(\{b_1, b_2, \ldots, b_{n+2}\} \). If \((J, K) \neq (J_0, K_0)\) as unordered pair then we have that the \((n+1)\)-simplices \(\langle v_{a_1}, v_{a_2}, \ldots, v_{a_{n+2}} \rangle \) and \(\langle v_{b_1}, v_{b_2}, \ldots, v_{b_{n+2}} \rangle \) are contained in \(P \). Therefore \(f(J) \) and \(f(K) \) bound disjoint \((n+1)\)-dimensional disks in \(S^{2n+1} \) and we have \(\ell k_2(f(J), f(K)) \equiv 0 \pmod{2} \). It is clear that \(\ell k_2(f(J_0), f(K_0)) \equiv 1 \pmod{2} \). This completes the proof. \(\square \)

Theorem 1.1 follows immediately from Lemma 2.1 and Lemma 2.2.

Remark 2.3. If we consider a general position map \(f : \sigma_{j+k+3}^k \to S^{j+k+1}_j \) for \(0 \leq j \leq k \) and consider all pair \((J, K)\) of disjoint \(j\)-sphere and \(k\)-sphere in \(\sigma_{j+k+3}^k \), then we have a result that is a generalization of Lemma 2.1. The proof is essentially the same. However it turns out that the sum of \(\ell k_2 \) is zero whenever \(j < k \). In fact, for any finite simplicial complex \(Q \) and \(j < k \), there is a general position map \(f : Q \to S^{j+k+1}_j \) whose image is contained in the upper hemisphere and whose restriction to the \(j\)-skeleton of \(Q \) is an embedding into the equator \(S^{j+k} \subset S^{j+k+1}_j \). Then it is easy to see that \(\ell k_2(f(J), f(K)) = 0 \) for any pair \((J, K)\) of disjoint \(j\)-sphere and \(k\)-sphere in \(Q \).

Acknowledgement. The author would like to thank Professor Toshiki Endo for his helpful comment.

References

Received October 6, 1998 and revised February 23, 1999.

Department of Mathematics
Tokyo Woman’s Christian University
Zempukuji 2-6-1, Suginamiku Tokyo, 167-8585 Japan
E-mail address: taniyama@twcu.ac.jp