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Professor Dwork passed away on May 9, 1998 after a long
illness. The manuscript was completed a few days earlier, and
was submitted to the Pacific Journal of Mathematics follow-
ing his express desire. It is a testimony to his dedication to
mathematics even during his last illness - Managing Editor.

Part I.

Our object is to extend earlier work [D1] on singular hypersurfaces defined
over an algebraic number field to singular hypersurfaces defined over function
fields in characteristic zero.

A key role will be played by the results of Bertolin [B1] which in turn is
based upon the Transfer Theorem of André–Baldassarri–Chiarellotto [DGS,
Theorem VI 3.2].

Let h(A, x) be the generic form of degree d in n+1 variables x1, . . . , xn+1.

Thus letting F0 =
{

u ∈ Nn+1

∣∣∣∣ n+1∑
i=1

ui = d

}
,

h(A, x) =
∑
u∈F0

Auxu

where the symbols {Au}u∈F0 are algebraically independent over Q.
Let Ei = xi

∂
∂xi

(1 ≤ i ≤ n + 1), hi = Eih. Let R(A) be the resultant of
{h1, h2, . . . , hn, h}.

Let V be an absolutely irreducible subvariety of the discriminant locus,
R(A) = 0. Let k be the field of definition of V .

Let Ω be a suitable universal domain in characteristic zero, and let L∗Ω be
the ring of all formal sums

L∗Ω =

{
ξ∗ =

∑
u∈F

Cu
1
xu

∣∣∣ Cu ∈ πu0Ω

}
where F = {u = (u0, u1, . . . , un+1) | du0 = u1 + · · · + un+1} and where
πp−1 = −p, p a rational prime. (Thus π need not be in Ω.)

For λ ∈ V , λ rational over Ω we write

D∗
i,λ = γ− ◦ (Ei + πx0hi(λ, x)) 1 ≤ i ≤ n + 1
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82 BERNARD M. DWORK

an endomorphism of L∗Ω where γ− is the projection operator

γ−xv =

{
0 if any vi ≥ 1
xv if all vi ≤ 0.

For each integer `, let K(`)
λ be the set of all ξ∗ ∈ L∗Ω such that ξ∗ is annihilated

by all monomials of degree ` in {D∗
i,λ}1≤i≤n+1.

In the following, ord refers to a rank one valuation of Ω.
For b ∈ R, b > 0, let L∗(b) =

{∑
u∈F Cu

1
xu

∣∣ inf
u

(ordCu + u0b) > −∞
}

.
Let Γ be an indeterminate and consider the polynomial h(λ, x)+Γh(A, x).

Let R(λ, Γ, A) be the resultant of

E1(h(λ, x) + Γh(A, x)), . . . , En+1(h(λ, x) + Γh(A, x))

and write

R(λ, Γ, A) = Γe(ρ0(λ, A) + Γρ1(λ, A) + Γ2ρ2(λ, A) + · · · ),
where ρ0(λ, A) 6= 0. The key result of the research of Bertolin [B1, Theorem
3.11] states that:

Theorem 1.

K(`)
λ ⊂ L∗(τ(n, d, e, `) ord ρ0(λ, A) + ε)

for all ε > 0. Here τ(n, d, e, `) depends only on n, d, e and ` and is indepen-
dent of the coefficients of h(λ, X).

Remark. Bertolin obtains estimates independent of `. The estimate given
here depends upon ` but is simpler to state. The slight error in [B1, Theorem
3.11] is corrected in [B2].

Corollary 1. If λ ∈ V and ρ0(λ, A) 6= 0, then K(`)
λ ⊂ L∗(ε) for all ` and

all ε > 0 and for all but a finite set of valuations (depending on λ).

Corollary 2. For λ ∈ V with ρ0(λ, A) 6= 0, dimK(`)
λ is independent of λ.

Proof. We choose a valuation v of k(λ) such that (extending the valuation
of k(λ) to k(λ, A) via the Gauss norm relative to A)

|ρ0(λ, A)|v = 1

|λ|v ≤ 1.

By the Lemma of Appendix B, we may choose a generic point λ′ of V over
k so close to λ v-adically that |λ−λ′|v < 1 and hence |ρ0(λ′, A)|v = 1. Thus
K(`)

λ and K(`)
λ′ lie in L∗(ε) (v-adically) for all ε > 0 and hence Tλ,λ′ = γ−◦exp

πX0(h(λ′, x) − h(λ, x)) is an isomorphism between K(`)
λ and K(`)

λ′ as vector
spaces over Ω. �
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Part II: Koszul complex.

In earlier work [D1, Theorem 19.2] we discussed the (cohomological) Koszul

complex of D∗
1,λ(0) , . . . , D∗

n+1,λ(0) operating on K(∞)

λ(0) =
∞⋃

`=1

K(`)

λ(0) where λ(0)

is algebraic over Q. We denote by H(s)(K(∞)

λ(0) ) the s-th cohomology group
of this complex. We showed:

Theorem 2.
dim H(s)

(
K(∞)

λ(0)

)
< ∞.

We also showed [D1, Theorem 17.1] that this dimension can be bounded
in terms of d and n alone.

Note. Equation 19.4 of [D1] is stated without proof. This gap will be
filled in Appendix A.

Corollary 3. For λ′ ∈ V, dim H(s)(K(∞)
λ′ ) < ∞ and if ρ0(λ′, A) 6= 0, then

dim H(s)(K(∞)
λ′ ) is independent of λ′.

Proof. We choose λ(0) algebraic over Q such that λ(0) ∈ V and ρ0(λ(0), A) 6=
0. We choose a valuation v such that∣∣∣ρ0

(
λ(0), A

)∣∣∣
v

= 1,
∣∣∣λ(0)

∣∣∣
v
≤ 1

and then choose a generic point λ of V over k in Ω as in the proof of Corollary
2. Then Tλ(0),λ provides an isomorphism of K(s)

λ(0) with K(s)
λ which induces an

isomorphism of H(s)(K(∞)

λ(0) ) with H(s)(K(∞)
λ ) for all s. This shows finiteness

for λ generic.
If ρ0(λ′, A) 6= 0, then by the same argument choosing λ generic close to

λ′ we conclude that dim H(s)(K(∞)
λ′ ) = dim H(s)(K(∞)

λ ). If ρ0(λ′, A) = 0,
then λ′ lies in a proper subvariety of V and we may use induction on the
dimension. �

Notation. For B = {1, 2, . . . , n + 1} and W a vector space over k(λ) let
Fs(W ) = Hom (

∧s B,W ).

Corollary 4. For ` large enough (depending upon V ) and λ a generic point
of V over k,

Hs
(
K(∞)

λ

)
' ker

(
δ∗s+1,λ,Fs

(
K(`)

λ

)) / (
Fs

(
K(`)

λ

)
∩ δ∗s,λFs−1

(
K(∞)

λ

))
.

(For definition of δ∗s see [D1].)

Proof. There is a natural injection of the right hand space into the left–hand
one induced by the inclusion K(`)

λ ↪→ K(∞)
λ . The left–hand space is of finite

dimension and so the mapping is surjective. �
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We now give H(s)(K(∞)
λ ) the structure of a differential module when

viewed as a vector space over k(λ). Let λ1, . . . , λt be a transcendence basis
over k of k(λ). Viewing λt+1, λt+2 etc. as dependent variables we define for
1 ≤ i ≤ t

σ∗i = γ− ◦
(

∂

∂λi
− πx0

∂h

∂λi

)
.

These operators commute with {D∗
j,λ}1≤j≤n+1 and hence induce a set of

commuting operators on H(s)(K(∞)
λ ). If λ(1) ∈ V , then horizontal elements

are obtained by applying Tλ(1),λ to H(s)(K(∞)

λ(1) ).

Theorem 3. Let λ(1) be a generic point of V . We consider all extensions to
k(λ(1)) of valuations of k whose restriction to k(λ(1)

1 , . . . , λ
(1)
t ) is given by the

Gauss norm of that field relative to λ
(1)
1 , . . . , λ

(1)
t . For almost all such valu-

ations the horizontal elements converge for |(λ1, . . . , λt)−(λ(1)
1 , . . . , λ

(1)
t )| <

1.

Corollary 5. If k is an algebraic number field, then H(s)(K(∞)
λ ) is a G-

module.

Appendix A.

Let k be a field of characteristic zero and let f(x1, . . . , xn+1) be a form of
degree d in n + 1 variables. If Ω is an extension of k, let us write LΩ for the
ring of all polynomials in x0, x1, . . . , xn+1 of the form ∑

du0=u1+···+un+1

Cuπu0xu
∣∣ Cu ∈ Ω

 .

We define Di = Ei + πx0fi, Ei = xi
∂

∂xi
, fi = Eif . The Di are commuting

endomorphisms of LΩ and likewise by restricting to Lk we obtain commuting
endomorphisms of that ring.

Let L∗Ω (resp: L∗k) be the adjoint space of LΩ (resp: Lk) and K(`)
Ω (resp:

K(`)
k ) the set of all ξ∗ ∈ L∗Ω (resp: L∗k) annihilated by all forms in {D∗

1, D
∗
2, ...,

D∗
n+1} of degree `, where D∗

i = γ− ◦ (−Ei + πx0fi).

Again let K(∞)
Ω (resp: K(∞)

k ) be the union
∞⋃

`=1

K(`)
Ω

(
resp :

∞⋃
`=1

K
(`)
k

)
.

Finally we define H(s)(K(∞)
Ω ) (resp: H(s)(K(∞)

k )) to be the s-th cohomol-
ogy group of the (cohomological) Koszul complex of D∗

1, . . . , D∗
n+1 operating

on K(∞)
Ω (resp: K(∞)

k ).

Theorem.
(i) K(∞)

Ω = K(∞)
k ⊗ Ω
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(ii) H(s)(K(∞)
Ω ) = H(s)(K(∞)

k )⊗ Ω.

This was stated without proof as Equation (19.4) of [D1].

Proof. We first show for ` < ∞
(iii) K(`)

Ω = K(`)
k ⊗ Ω.

We know [D1, Lemma 7.2] that dimk K
(`)
k < ∞,dimΩK(`)

Ω < ∞. We may
view each element of K(`)

Ω as an ∞–tuple (z1, z2, . . . ) indexed by a countable
set I. Indeed ξ∗ ∈ K(`)

Ω implies ξ∗ =
∑
u

Cu/xu. The sum being over all u such

that du0 = u1 + · · ·+ un+1. Here Cu = πu0Cu with Cu ∈ Ω. Identifying the
{Cu} with the {zi}, the condition that ξ∗ ∈ K(`)

Ω is equivalent to an infinite
set of conditions ∑

tj,izi = 0 for all j ∈ J .

Here tj,i ∈ k, tj,i = 0 for almost all i, for each fixed j. For ξ∗ ∈ K(`)
k

we have the same set of conditions. Following a suggestion by Wan, by
elementary operations on the rows of the matrix {tj,i} the finite dimension
of the subspace is given by the number of zero columns in the reduced
echelon form. The echelon form is the same for the equation over Ω as over
k. It follows that indeed dimk K

(`)
k < ∞⇔ dimK(`)

Ω < ∞ and both are then
equal and K(`)

Ω = K(`)
k ⊗ Ω. The first assertion now follows.

For a vector space W we write Fs(W ) = Hom (
∧s B,W ) with B =

{1, 2, . . . , n + 1}. Then ξ∗ ∈ Fs(K(∞)
Ω ) implies ξ∗ =

∑
ηiξ

∗
i a finite sum

with ξ∗i ∈ Fs(K(∞)
k ) and {ηi} a finite set of elements of Ω linearly indepen-

dent over k.
If δ∗s+1ξ

∗ = 0 then by linear independence δ∗s+1ξ
∗
i = 0 and so

ker(δ∗s+1,Fs(K(∞)
Ω )) = ker(δ∗s+1,Fs(K(∞)

k ))⊗ Ω.
Also

δ∗sFs−1

(
K(∞)

Ω

)
= δ∗sFs−1

(
K(∞)

k

)
⊗ Ω.

The theorem now follows from the following well known proposition. �

Proposition. Let U be a subspace of a linear k space W . Then

W ⊗ Ω/U ⊗ Ω ' (W/U)⊗ Ω .

Appendix B. Approximation by generic points.

Lemma. Let the origin O be on an irreducible affine variety V defined over
a field k of characteristic zero. Let Ω be a universal domain complete under
a rank one valuation. Then there exists a generic point of V rational over
Ω which is as close as you please to the origin.

We first show the lemma holds if V is a curve in An.
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Proof. Let P = (x1, . . . , xn) be a generic point of V over k. Then R =
k[x1, . . . , xn] has a specialization into k given by (x1, . . . , xn) 7→ O and hence
there exists a place p of k(V ) with center O. Letting T be a uniformizing
parameter of p, each coordinate xi as element of k(V )p, the completion at
p of k(V ), is represented as a power series

xi = ai1T + ai2T
2 + · · ·+ ∈ k′[[T ]]

where k′ is the residue class field at p of k(V ), a finite extension of k. This
series may have zero radius of convergence in the metric of Ω, but if we
choose (as we shall) the uniformizing parameter, T , in k(V ) then the series
represents an algebraic function of T and hence by Eisenstein’s Theorem (or
more elementarily by Clark’s Theorem) the series has a non-trivial radius of
convergence.

Since P is a generic point, these series are not all constant. We think
of P (T ) as function of T for T restricted to a small disk D(0, r−) in Ω–
space. Trivially P (T ) → 0 as T → 0. We may suppose x1 is a non–constant
function of T . The theory of Newton polygons shows that the image of
D(0, r−) under x1 contains elements transcendental over k. This completes
the proof for dim V = 1.

We recall [H, Chapter I, Proposition 7.1]: �

Proposition. If V is irreducible of dimension s in An and H is a hyper-
surface not containing V then each irreducible component of H ∩ V has
dimension s− 1.

Proof of Lemma. Letting V0 = V we define inductively V1 ⊇ V2 ⊇ · · · by
the condition that Vj be an irreducible component of Vj−1 ∩ {x |xj = 0}
which contains the origin. Since

−1 + dim Vj−1 ≤ dim Vj ≤ dim Vj−1, dim Vn = {0}
there exists j such that Vj is a curve on V passing through the origin. �

We conclude there exists a curve V ′ on V passing through the origin.
Let k′ ⊃ k be a field of definition of V ′. By our previous treatment of
curves there exists P ∈ V ′, P as close as you please to O such that k′(P )
is of transcendence degree unity over k′. Let P1 be a coordinate of P of
transcendence degree unity over k′.

Let L = k(P1), A be the ideal of all f ∈ k[x1, . . . , xn] which are zero
everywhere on V . If g ∈ L[x1, . . . , xn], g = 0 on V then g ∈ AL[x] and
hence for each automorphism τ of L/k we have gτ = 0 on V . In particular
x1 − P1 cannot be zero on V as otherwise (x1 − P1)τ would also be zero on
V and hence P1−P τ

1 would be zero on V for every τ which is impossible as
there are nontrivial automorphisms of L/k.

Thus V does not lie in the hyperplane x1 = P1 and so the intersection has
an irreducible component W passing through P of dimension s−1. Let k′′ be
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a field of definition of W , P ∈ W . By induction there exists Q ∈ W, Q− P
as small as you please with transc deg k′′(Q)/k′′ = s− 1.

Clearly Q is as close as you please to O. It remains to show that s =
trans deg k(Q)/k.

Since Q1 = P1, k(Q) ⊃ k(P1). Hence

s ≥ trans deg k(Q)/k = trans deg k(Q)/k(P1) + trans deg k(P1)/k

≥ trans deg k
′′
(Q)/k

′′
+ trans deg k′(P1)/k′

≥ (s− 1) + 1 = s,

the two inequalities being based on

if k′ ⊃ k then trans deg k(P1)/k ≥ trans deg k′(P1)/k′

if k′′ ⊃ k(P1) then trans deg k(Q)/k(P1) ≥ trans deg k
′′
(Q)/k

′′
.

This completes the proof of the lemma.

Appendix C: (Generalization of Heaviside’s generalized
exponential functions).

In this article we examined the Koszul complex of {D∗
1,λ, . . . , D∗

n+1,λ} oper-

ating on K(∞)
λ . In this appendix, we replace L∗ by

L′ ∗ =

{ ∑
n∈F ′

Au
1
xu

∣∣∣ Au ∈ πu0Ω

}
and D∗

i,λ = γ− ◦ (−Ei + πx0hi(x1, x)) by D′ ∗
i,λ = −Ei + πx0hi(λ, x). Here

F ′ = {(u0, u1, . . . , un+1)
∣∣ ∈ Zn+2

∣∣du0 = u1 + · · ·+ un+1}.

Thus L′ ∗ consists of formal Laurent series in {xi,
1
xi
} i = 1, . . . , n + 1. We

note that L′ ∗ is adjoint to L′, the ring of Laurent polynomials with support
in

du0 = u1 + · · ·+ un+1.

Let Ds denote the ideal of all forms of degree s in D1,λ, . . . , Dn+1,λ with
coefficients in k(λ). We assert that

L′ = L+DsL′.

For s = 1 this follows by the proof of [D2, Lemma 9.7.1]. Assume the
formula valid for some given s then L′ = L + Ds(L + DL′) ⊂ L + Ds+1L′,
which completes the proof by induction.

This shows that the natural mapping of L into L′ induces a surjection
L/DsL → L′/DsL′. We recall that K(s) denotes the annihilator in L∗ of
DsL. Let K′(s) denote the annihilator in L′ ∗ of DsL′. We now know that
the dimension of L′/DsL′ is finite and hence the same holds for K′(s). Thus
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by duality the mapping of K′(s) into K(s) adjoint to the natural mapping is
injective. This adjoint mapping is γ−.

Conclusion. The mapping γ− maps K′(s) into K(s) injectively.
We now restrict our attention to the case where h(λ, x) ∈ Q[λ, x] and

consider λ(0) algebraic over Q. For b > 0, c ∈ R, w a finite valuation of Ω,
let L′ ∗(b, c) be the set of all formal Laurent series ξ∗ =

∑
u∈F ′

Bu
1

xu such that

Bu ∈ Ω, and ord(Bu−v) ≥ −b(u0 + v0) + c for all u, v,∈ F ′. Let L′ ∗(b) =⋃
c∈R L′ ∗(b, c), a Banach space. For almost all valuations of Q(λ(0)) we have

a completely continuous mapping of L′ ∗(b′) (giving Ω a valuation extending
that of Q(λ(0))) defined by putting F (x) = exp π(x0h(λ(0), x)−xq

0h(λ(0), xq))
where q is the order of the residue class field of Q(λ(0)) and writing

α′∗ = F ◦ φ, φ : xu → xqu

L′∗(b′)
φ−→ L′∗(b′/q) F−→ L′∗(b′/q) ↪→ L′∗(b′)

where b′ is chosen in [0, p−1
p ]. Here F means multiplication by F and the

last map is the inclusion map.
Letting L∗(b) = γ−L′∗(b) we have the completely continuous endomor-

phism of L∗(b′) (for almost all valuations of Q(λ(0))) given by

α∗ = γ− ◦ F ◦ φ .

By the trace formula the two mappings have the same Fredholm determi-
nant. Defining

W ∗
z =

⋃
k

ker
(
(I − zα∗)k, L∗(b′)

)
W ′∗

z =
⋃
k

ker
(
(I − zα′∗)k, L′∗(b′)

)
we conclude equality of dimensions and hence

γ−W ′∗
z = W ∗

z .

Now K(`)

λ(0) is covered by a union of spaces W ∗
z and hence by γ− (finite

union of spaces W ′∗
z ) which lies in γ−K′(`

′)

λ(0) for suitable `′.

Conclusion. γ− gives a bijection of K′(∞)

λ(0) onto K(∞)

λ(0) provided λ(0) is alge-
braic over Q.

We propose to remove the restriction that λ(0) be algebraic. Again let
λ(0) ∈ V be an algebraic point, ρ0(λ(0), A) 6= 0. Excluding a finite set of
primes of Q(λ(0)) we choose λ generic point of V close to λ(0).

If ξ∗ ∈ K′(∞)

λ(0) , then γ−ξ∗ ∈ K(`)

λ(0) for some ` and hence γ−ξ∗ is a finite
sum of elements of spaces W ∗

z and hence is the image under γ− of a finite
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sum of elements of spaces W ′∗
z . But γ− is injective, and hence ξ∗ is a

sum of elements of spaces W ′∗
z . Thus for almost all valuations of Q(λ(0)),

ξ∗ ∈ L′∗(b′), b′ < p−1
p . More precisely K′(∞)

λ(0) lies in L′∗(b′) for all b′ > 0
and almost all primes of Q. Hence for almost all primes multiplication
by expπx0

(
h(λ, x)− h(λ(0), x)

)
provides an isomorphism T ′

λ(0),λ
of K′(∞)

λ(0)

with K′(∞)
λ . On the other hand, Tλ(0),λ = γ− ◦ T ′

λ(0),λ
gives an isomorphism

between K(∞)

λ(0) and K(∞)
λ

K′(∞)

λ(0)

T ′
λ(0),λ−−−−→ K′(∞)

λyγ−

yγ−

K(∞)

λ(0) −−−−→
T

λ(0),λ

K(∞)
λ .

The horizontal arrows of this commutative diagram are isomorphisms.
The first vertical arrow is also an isomorphism. It follows that the second
vertical arrow is also an isomorphism. This completes the proof.

Note. The purpose of the argument involving λ(0) is to show that γ− is
injective on K′(∞)

λ .

References

[B1] C. Bertolin, G-fonctions et cohomologie des hypersurfaces singulières, Bull. Aus-
tralian Math. Soc., 55 (1997), 353-383.

[B2] , G-fonctions et cohomologie des hypersurfaces singulières II, Bull. Aus-
tralian Math. Soc., 58 (1998), 189-198.

[D1] B. Dwork, B. On the zeta function of a hypersurface III, Ann. Math., 83 (1966),
457-519.

[D2] , Generalized hypergeometric functions, Clarendon Press, Oxford, 1990.

[DGS] B. Dwork, G. Gerotto and F. Sullivan, An Introduction to G-functions, Annals of
Math Studies, 133 (1994), Princeton Univ. Press.

[H] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York-Heidelberg-Berlin,
1977.

Received October 28, 1998.

Universita degli Studi di Pavoda
35131 Padova
Italy
E-mail address: baldassa@math.unipd.it




