Pacific Journal of Mathematics

VIRTUAL HOMOLOGY OF SURGERED TORUS BUNDLES Joseph D. Masters

VIRTUAL HOMOLOGY OF SURGERED TORUS BUNDLES

Joseph D. Masters

Let M be a once-punctured torus bundle over S^{1} with monodromy h. We show that, under certain hypotheses on h, "most" Dehn-fillings of M (in some cases all but finitely many) are virtually \mathbb{Z}-representable. We apply our results to show that even surgeries on the figure eight knot are virtually \mathbb{Z}-representable.

1. Introduction.

Embedded incompressible surfaces are fundamental in the study of 3-manifolds. Accordingly, the following conjecture of Waldhausen and Thurston has attracted much attention:

Conjecture 1.1. Let M be a closed, irreducible 3-manifold with infinite π_{1}. Then M has a finite cover which is Haken.

The focus of this paper is the following, stronger, conjecture:
Conjecture 1.2. Let M be as above. Then M has a finite cover \tilde{M} with $H_{1}(\tilde{M}, \mathbb{Z})$ infinite.

If M is a compact 3 -manifold, we say that M is \mathbb{Z}-representable if $H_{1}(M, \mathbb{Z})$ is infinite. If M satisfies the conclusion of Conjecture 1.2, we say that M is virtually \mathbb{Z}-representable.

We shall give what appear to be the first examples of 3 -manifolds with torus boundary for which all but finitely many fillings are virtually \mathbb{Z} representable, but not \mathbb{Z}-representable (in fact non-Haken). Boyer and Zhang have independently given examples of knot complements for which all but finitely many fillings are virtually Haken, but non-Haken [BZ].

Before we can state our results, we must establish some notation. Let F be a once-punctured torus with $\pi_{1}(F)=\langle[x],[y]\rangle$, and basepoint $x_{0} \in \partial F$ (see Fig. 1).

Any orientation-preserving homeomorphism $h: F \rightarrow F$ is isotopic to one of the form $h=D_{x}^{r_{1}} D_{y}^{s_{1}} \cdots D_{x}^{r_{k}} D_{y}^{s_{k}}$. Here D_{x} and D_{y} are Dehn twists along simple closed curves homologous to x and y, respectively. The twists D_{x}

Figure 1. Notation for the once-punctured torus bundle M.
and D_{y} induce the following actions on $\pi_{1}(F)$:

$$
\begin{aligned}
D_{x \sharp}(x) & =x \\
D_{x \sharp}(y) & =y x \\
D_{y \sharp}(x) & =y x \\
D_{y \sharp}(y) & =y .
\end{aligned}
$$

We may assume h fixes ∂F. Let $M_{h}=(F \times I) / h$ be the once-punctured torus bundle with monodromy h. We specify a framing for $H_{1}\left(\partial M_{h}, \mathbb{Z}\right)$ by setting the longitude $\beta=\partial F$ oriented counter-clockwise, and the meridian $\alpha=\left(x_{0} \times I\right) / h$, where x_{0} is some point on ∂F, and α is oriented as in Fig. 1. Then, for coprime integers $(\mu, \lambda), M_{h}(\mu, \lambda)$ denotes the manifold obtained by gluing a solid torus to M_{h} in such a way that the curve $\alpha^{\mu} \beta^{\lambda}$ becomes homotopically trivial.

We shall prove:
Theorem 1.3. Let M_{h} be a once-punctured torus bundle over S^{1}, with monodromy $h=D_{x}^{r_{1}} D_{y}^{s_{1}} \cdots D_{x}^{r_{k}} D_{y}^{s_{k}}$, and let $n=$ g.c.d $\left\{s_{1}, \ldots, s_{k}\right\}, R=$ $r_{1}+\cdots+r_{k}$.
(i) If n is divisible by some m such that $m \geq 6$ and m is even or $m=7$, and if $|\lambda|>1$, then all but finitely many Dehn-fillings $M_{h}(\mu, \lambda)$ are virtually \mathbb{Z}-representable.
(ii) If n is divisible by some m such that $m \geq 5, m$ is odd, and $m \neq 7$, and if $1 /|R \mu-\lambda|+1 /|R \mu-2 \lambda|+1 /|\lambda|<1$, then $M_{h}(\mu, \lambda)$ is virtually \mathbb{Z}-representable.
(iii) If n is divisible by 4 , and if $2 /|R \mu-2 \lambda|+1 /|\lambda|<1$, then $M_{h}(\mu, \lambda)$ is virtually \mathbb{Z}-representable.

Remarks. 1. Analogous results hold if we replace n by $\operatorname{gcd}\left\{r_{1}, \ldots, r_{k}\right\}$ and R by $s_{1}+\cdots+s_{k}$.
2. It was shown in [B1] that if $m \geq 2, n \geq 2$ and $m n \geq 8$ but $m n \neq 9$, then all non-integral surgeries are virtually \mathbb{Z}-representable. In [B2] it was shown that if $4 \mid n$, then for each $\mu, M_{h}(\mu, \lambda)$ is virtually \mathbb{Z}-representable for all but finitely many λ coprime to μ.
3. From [CJR] and $[\mathbf{F H}]$, all but finitely many surgeries on a oncepunctured torus bundle over S^{1} yield non-Haken manifolds.

Theorem 1.3 may be used to show that, for certain choices of f, all but finitely many surgeries on M_{f} are virtually \mathbb{Z}-representable. For example:

Theorem 1.4. Let $f=\left(D_{x} D_{y}\right)^{18}$. Then every surgery on M_{f} is virtually \mathbb{Z}-representable.

The proof of Theorem 1.4 appears in Section 3.
In order to state the next theorem, we require some notation. Let $-1=$ $\left(D_{x} D_{y}^{-1} D_{x}\right)^{2}$, the central involution on the punctured torus. If h is a homeomorphism of the punctured torus, $-h$ stands for $(-1) h$.

Theorem 1.5. Let $N=M_{-D_{x} D_{y}}$ (also known as "the figure eight knot's sister"). Then if $1 /|\mu-\lambda|+1 /|\mu-2 \lambda|+1 /|\lambda|<1, N(\mu, \lambda)$ is virtually \mathbb{Z}-representable.
Theorem 1.6. Let K denote the figure-eight knot and let M denote $S^{3}-K$. Then, with respect to the canonical framing of knots in S^{3}, any surgery of the form $M(2 \mu, \lambda)$ is virtually \mathbb{Z}-representable.

Other results on virtually \mathbb{Z}-representable figure-eight knot surgeries may be found in $[\mathbf{M}],[\mathbf{K L}],[\mathbf{H}],[\mathbf{N}]$ and $[\mathbf{B 3}]$. In particular, it was shown in $[\mathbf{K L}]$ and $[\mathbf{B 3}]$ that surgeries of the form $M(4 \mu, \lambda)$ are virtually \mathbb{Z}-representable. It was also shown in $[\mathbf{B 3}]$ that surgeries of the form $M(2 \mu, \lambda)$ are virtually \mathbb{Z}-representable if $\lambda= \pm 7 \mu(\bmod 15)$. Finally, it was shown in [Bart] that every non-trivial surgery of M contains an immersed incompressible surface.

Our techniques are extensions of Baker's. The main new ingredient is the use of group theory to encode the combinatorics of cutting and pasting.

I would like to thank Professor Alan Reid for his help and patience.

2. Construction of covers.

We begin by recalling Baker's construction of covering spaces of $M_{h}(\mu, \lambda)$ (see [B1], [B2]). Let n be as in the statement of Theorem 1.3, and let \hat{F} be the $k n$-fold cover of F associated to the kernel of the map $\phi: \pi_{1}(F) \rightarrow$ $\mathbb{Z}_{k} \times \mathbb{Z}_{n}$, with $\phi([x])=(1,0)$ and $\phi([y])=(0,1)$ (see Fig. 2).

Now create a new cover, \tilde{F}, of F by making vertical cuts in each row of \hat{F}, and gluing the left side of each cut to the right side of another cut in the

Figure 2. The cover \hat{F} of F.
same row. An example is pictured in Figure 3, where the numbers in each row indicate how the edges are glued.

If h lifts to a map $\tilde{h}: \tilde{F} \rightarrow \tilde{F}$, then the mapping cylinder $\tilde{M}_{h}=\tilde{F} / \tilde{h}$ is a cover of M_{h}. Furthermore, if the loop $\alpha^{\mu} \beta^{\lambda}$ lifts to loops in \tilde{M}_{h}, then the cover extends to a cover $\tilde{M}_{h}(\mu, \lambda)$ of $M_{h}(\mu, \lambda)$.

If the cover $\tilde{M}_{\tilde{\sim}}$ exists, then we may compute its first Betti number with the formula $b_{1}\left(\tilde{M}_{h}\right)=\operatorname{rank}\left(\operatorname{fix}\left(\tilde{h}_{*}\right)\right)$, where \tilde{h}_{*} is the map on $H_{1}(\tilde{M}, \mathbb{Z})$ induced by \tilde{h}, and $f i x\left(\tilde{h}_{*}\right)$ is the subgroup of $H_{1}(\tilde{M}, \mathbb{Z})$ fixed by \tilde{h}_{*} (see $[\mathbf{H}]$ for a proof). We shall use this formula to prove that, in some cases, $b_{1}(\tilde{M})$ is greater than the number of boundary components of \tilde{M}, which ensures that $b_{1}(\tilde{M}(\mu, \lambda))>0$.

We now introduce some notation to describe the cuts of \tilde{F} (see Fig. 3). \tilde{F} is naturally divided into rows, which we label $1, \ldots$, n. The cuts divide each row into pieces, each of which is a square minus two half-disks; we number them $1, \ldots, k$. If we slide a point in the top half of the $i^{t h}$ row through the cut to its right, we induce a permutation on $\{1, \ldots, k\}$, which we denote

Figure 3. The permutations encode the combinatorics of the gluing.
σ_{i}. Thus the cuts on \tilde{F} may be encoded by elements $\sigma_{1}, \ldots, \sigma_{n} \in S_{k}$, the permutation group on k letters.

Next, we find algebraic conditions on the σ_{i} 's which will guarantee that the cover of F extends to a cover of $M(\mu, \lambda)$. We first must pick k, n, and $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ so that h lifts to \tilde{F}.

Lemma 2.1. If
I. $\left[\sigma_{i}, \sigma_{1} \sigma_{2} \cdots \sigma_{i-1}\right]=1$ for all i and
II. $\sigma_{1} \sigma_{2} \cdots \sigma_{n}=1$
then h lifts to \tilde{F}.
Proof. Note that D_{y}^{n} lifts to Dehn twists on \tilde{F}. Therefore, we need only ensure that D_{x} lifts. We shall attempt to lift D_{x} to a sequence of "fractional Dehn twists" along the rows of \tilde{F}. Let \tilde{x}_{i} denote the disjoint union of the lifts of x to the $i^{t h}$ row of \tilde{F}. We first attempt to lift D_{x} to row 1 , twisting $1 / k^{t h}$ of the way along \tilde{x}_{1}. Considering the action on the bottom half of row 1 , we find that the cuts are now matched up according to the permutation $\sigma_{1}^{-1} \sigma_{2} \sigma_{1}$. Thus, for D_{x} to lift to row 1 we assume σ_{1} and σ_{2} commute. We now twist along \tilde{x}_{2}. The top halves of the squares in row 2 are moved according to the permutation $\sigma_{1} \sigma_{2}$, and the lift will extend to all of row 2 if and only if σ_{3} commutes with $\sigma_{1} \sigma_{2}$. We continue in this manner, obtaining the conditions in I. After we twist through \tilde{x}_{n}, we need to be back where we started in row 1 , so we require the additional condition $\sigma_{1} \sigma_{2} \cdots \sigma_{n}=1$.

Note that the loop α^{μ} lifts homeomorphicly to loops in \tilde{M}_{h} if $\tilde{h}^{\mu}=i d$, and that the loop β^{λ} lifts to loops in \tilde{M}_{h} if $\left(\sigma_{i+1} \sigma_{i}^{-1}\right)^{\lambda}=i d$ for all $i=1, \ldots, n$. Then, by considering the action of \tilde{h} on \tilde{M}_{h}, the following condition for a loop in ∂M_{h} to lift to \tilde{M}_{h} is easily verified:

Lemma 2.2. The loop $\alpha^{\mu} \beta^{\lambda} \subset \partial M_{h}$ lifts homeomorphicly to loops in \tilde{M}_{h} if and only if
III. $\left(\sigma_{1} \cdots \sigma_{i}\right)^{R \mu}\left(\sigma_{i+1} \sigma_{i}^{-1}\right)^{\lambda}=1$, for $i=1, \ldots, n$.

Therefore we may construct covers of $M_{h}(\mu, \lambda)$ simply by finding permutations satisfying conditions I-III.

Proof of Theorem 1.3.
Case 1. $m=4$.
Construction of the cover of $M_{h}(\mu, \lambda)$.
To construct a cover of $M_{h}(\mu, \lambda)$, we must first construct a cover of F. It was shown in the discussion prior to Lemma 2.1 that there is a unique such cover associated to any four permutations $\sigma_{1}, \sigma_{2}, \sigma_{3}$ and σ_{4} in any permutation group S_{k}.

To ensure that the cover of F extends to a cover of M_{h}, we shall set $\sigma_{2}=\sigma_{1}^{-1}$ and $\sigma_{4}=\sigma_{3}^{-1}$ (see Fig. 4a). Then conditions I and II of Lemma 2.1 are satisfied automatically, so that any choice of σ_{1} and σ_{3} will determine a cover of M_{h}.

To ensure that the cover extends to $M_{h}(\mu, \lambda)$, we must arrange for the surgery curve $\alpha^{\mu} \beta^{\lambda}$ to lift to \tilde{M}_{h}. By Lemma 2.2, $\alpha^{\mu} \beta^{\lambda}$ will lift provided that $\sigma_{1}, \ldots, \sigma_{4}$ satisfy condition III, which reduces to:

$$
\begin{gather*}
\sigma_{1}^{R \mu-2 \lambda}=1 \tag{1}\\
\left(\sigma_{3} \sigma_{1}\right)^{\lambda}=1 \tag{2}\\
\sigma_{3}^{R \mu-2 \lambda}=1 \tag{3}\\
\left(\sigma_{1} \sigma_{3}\right)^{\lambda}=1 \tag{4}
\end{gather*}
$$

Any pair of permutations σ_{1} and σ_{3} satisfying Equations (1)-(4) determines a unique cover of $M_{h}(\mu, \lambda)$. We now turn our attention to the construction of such permutations.

Consider the abstract group G generated by the symbols $\bar{\sigma}_{1}$ and $\bar{\sigma}_{3}$, satisfying relations (1)-(4). G is a $(|R \mu-2 \lambda|,|R \mu-2 \lambda|,|\lambda|)$-triangle group. It is well-known that if $1 /|R \mu-2 \lambda|+1 /|R \mu-2 \lambda|+1 /|\lambda|<1$, then G is residually finite, and hence surjects a finite group H such that the images of $\bar{\sigma}_{1}, \bar{\sigma}_{3}$, and $\overline{\sigma_{3}} \overline{\sigma_{1}}$ have order $|R \mu-2 \lambda|$. By taking the permutation representation of H, we then obtain permutations σ_{1} and σ_{3} satisfying conditions (1)-(4). Note that the permutations act on $|H|$ letters, so \tilde{M} is a $4|H|$-fold cover of M_{h}.

Associated with the permutations σ_{1} and σ_{3} we have covers \tilde{M}_{h} and \tilde{F} of M_{h} and F, and a cover $\tilde{M}_{h}(\mu, \lambda)$ of $M_{h}(\mu, \lambda)$;

Claim. $b_{1}\left(\tilde{M}_{h}(\mu, \lambda)\right)>0$.

Figure 4
a. The cover when $n=4$.
b. The cover when $n=5$.

Proof of claim. It suffices to show that \tilde{h}_{*} has a non-peripheral class $[\delta] \in$ $H_{1}(\tilde{F})$ with $\tilde{h}_{*}([\delta])=[\delta]$. To construct this element, we shall first find a non-peripheral class $\left[\delta_{2}\right]$ in row 2 , as follows.

Figure 5. The surface \tilde{F}_{2} (with $|H|=4$).

Consider the sub-surface \tilde{F}_{2} obtained by deleting rows 1,3 and 4 from \tilde{F} (see Fig. 5). The punctures of \tilde{F}_{2} are in 1-1 correspondence with the cycles
of σ_{1}, σ_{3} and $\sigma_{3} \sigma_{1}$. Any permutation τ coming from the permutation representation of H decomposes as a product of $|H| / \operatorname{order}(\tau)$ disjoint $\operatorname{order}(\tau)$ cycles. Therefore \tilde{F}_{2} has $|\underset{\tilde{F}}{ }|\left(1 / \operatorname{order}\left(\sigma_{1}\right)+1 / \operatorname{order}\left(\sigma_{3}\right)+1 / \operatorname{order}\left(\sigma_{3} \sigma_{1}\right)\right)<$ $|H|$ punctures. Since $\chi\left(\tilde{F}_{2}\right)=-|H|$, we deduce that \tilde{F}_{2} contains a nonperipheral class $\left[\delta_{2}\right]$. The class δ_{2} also represents a non-peripheral class in \tilde{F}, since it has non-zero intersection number with a class of \tilde{F} in row 2 .

We may find a corresponding non-peripheral loop δ_{4} in row 4 , such that $I\left(\left[\delta_{2}+\delta_{4}\right],\left[\tilde{y}_{i}\right]\right)=0$ for all i (see Fig. 6 for the notation and the idea of the proof). Let $[\delta]=\left[\delta_{2}+\delta_{4}\right]$. Then, since $[\delta]$ has non-zero intersection number with classes in row 2 and row 4 , it is a non-peripheral class. We have $I\left[\delta, \tilde{y}_{i}\right]=0$ for all i (where $I(.,$.$) denotes oriented intersection number);$ therefore $[\delta]$ is fixed by $\tilde{D}_{y_{*}}^{4}$, and since \tilde{D}_{x} fixes rows 2 and 4 , it is fixed by $\tilde{D}_{x *}$. Therefore it is fixed by \tilde{h}_{*}, concluding the proof of the claim, and of Case 1.
Case 2. $m \geq 5$ and m is odd.

Case 2a. $m=5$.

The construction proceeds analogously to the case $\mathrm{m}=4$. We require permutations $\sigma_{1}, \ldots, \sigma_{5}$ satisfying conditions I-III. Again, to simplify matters, we shall impose some extra conditions: $\sigma_{2}=i d, \sigma_{3}=\sigma_{1}^{-1}$, and $\sigma_{5}=\sigma_{4}^{-1}$ (see Fig. 4). Then conditions I-III reduce to:

$$
\begin{aligned}
\sigma_{1}^{R \mu-\lambda} & =1 \\
\left(\sigma_{1} \sigma_{4}\right)^{\lambda}=\left(\sigma_{4} \sigma_{1}\right)^{\lambda} & =1 \\
\sigma_{4}^{R \mu-2 \lambda} & =1
\end{aligned}
$$

Again, these relations determine a triangle group, which, under the hypotheses on μ and λ, is hyperbolic. The rest of the proof is identical to Case 1, except that now the fixed class is in rows 3 and 5 .
Case 2 b . $m \geq 9$ and m is odd.
Consider the cover obtained by setting $\sigma_{2}=\sigma_{1}^{-1}, \sigma_{4}=i d, \sigma_{5}=\sigma_{3}^{-1}$, $\sigma_{6}=\sigma_{1}, \sigma_{7}=\sigma_{1}^{-1}$, and for $i=4, \ldots, k, \sigma_{2 i+1}=\sigma_{2 i}^{-1}$ (see Fig. 7a).

The corresponding relations are:

$$
\begin{gather*}
\sigma_{1}^{R \mu-2 \lambda}=1 \tag{5}\\
\sigma_{3}^{R \mu-\lambda}=1 \tag{6}\\
\left(\sigma_{3} \sigma_{1}\right)^{\lambda}=\left(\sigma_{1} \sigma_{3}\right)^{\lambda}=1 \tag{7}\\
\left(\sigma_{8} \sigma_{1}\right)^{\lambda}=1 \tag{8}\\
\sigma_{2 i}^{R \mu-2 \lambda}=1 \text { for } i=4, \ldots, k \tag{9}\\
\left(\sigma_{2 i+2} \sigma_{2 i}\right)^{\lambda}=1 \text { for } i=4, \ldots, k-1 \tag{10}\\
\left(\sigma_{1} \sigma_{2 k}\right)^{\lambda}=1 \tag{11}
\end{gather*}
$$

\downarrow

Figure 6. How to find cancelling loops in rows 2 and 4.

These relations again determine a Coxeter group. It is well-known (see $[\mathbf{V}])$ that any such group surjects a finite group "without collapsing" - i.e., such that the orders of the images of the σ_{i} 's and $\sigma_{i} \sigma_{j}$'s are as given in (5)-(11). Then, arguing as in Case 1, we may find a non-peripheral fixed class in rows 2 and 5 .

Figure 7. a. The cover for $n=2 k+1 \geq 9$.
b. The cover for $n=2 k \geq 8$.

Case 3. $n=6$

Case 3a. $2 /|R \mu-\lambda|+1 /|\lambda|<1$.
Again, we need permutations $\sigma_{1}, \ldots, \sigma_{6}$ satisfying I-III. In this case we impose the additional conditions $\sigma_{2}=i d, \sigma_{3}=\sigma_{1}^{-1}, \sigma_{5}=i d$, and $\sigma_{6}=\sigma_{4}^{-1}$.

Then conditions I-III reduce to:

$$
\begin{array}{r}
\sigma_{1}^{R \mu-\lambda}=1 \\
\left(\sigma_{1} \sigma_{4}\right)^{\lambda}=\left(\sigma_{4} \sigma_{1}\right)^{\lambda}=1 \\
\sigma_{4}^{R \mu-\lambda}=1
\end{array}
$$

These relations determine a triangle group, and we find a fixed class in rows 3 and 6 .
Case 3b. $|\lambda|>2$ and $|R \mu-3 \lambda| \geq|\lambda|$, or λ is even (non-zero) and $|R \mu-3 \lambda| \geq$ 4.

When $n=3$, conditions I-III may be abelianized to obtain a cyclic group of order $|R \mu-3 \lambda|$. Specifically, they are satisfied by setting $\sigma_{1}=$ $(1,2, \ldots, R \mu-3 \lambda), \sigma_{2}=\sigma_{1}^{-2}$, and $\sigma_{3}=\sigma_{1}$. For $n=6$, we may "double" this cover: That is take $\sigma_{1}, \sigma_{2}, \sigma_{3}$ as above, and then set $\sigma_{4}=\sigma_{1}, \sigma_{5}=\sigma_{2}$, and $\sigma_{6}=\sigma_{3}$. Then we modify the corresponding cover $\tilde{M}(\mu, \lambda)$ of $M(\mu, \lambda)$ by making horizontal cuts in adjacent squares of row 3 and gluing the flaps back together as indicated by Fig. 8. If λ is even, we make two non-adjacent cuts and glue the top of one to the bottom of the other. If λ is odd, we make $(|\lambda|-1) / 2$ pairs of adjacent cuts and glue the top of the one cut to the bottom of the other cut in its pair. Now make the same cuts in row 6 , with the same identifications. Since rows 3 and 6 are fixed by \tilde{D}_{x}, D_{x} still lifts to the modified $\tilde{M}_{h}(\mu, \lambda)$, and since the \tilde{y} 's still project 6 to 1 onto y, D_{y} lifts also; so h lifts. Also, one may check that $\alpha^{\mu} \beta^{\lambda}$ still lifts, so $\tilde{M}_{h}(\mu, \lambda)$ remains a cover of $M_{h}(\mu, \lambda)$.

To see that $b_{1}\left(\tilde{M}_{h}(\mu, \lambda)\right)>0$, note that \tilde{D}_{x} fixes rows 3 and 6 , so it is enough to find a non-peripheral loop in row 3 and add it to the corresponding loop in row 6 with opposite orientation. As in Case 1, the existence of such a non-peripheral loop follows from an Euler characteristic argument (or see Fig. 8).

Note that Case 3a or 3b applies to all but finitely many (μ, λ) with $|\lambda|>1$.
Case 4. $n=2 k \geq 8$.
Case 4a. $2 /|R \mu-2 \lambda|+1 /|\lambda|<1$. Set $\sigma_{2}=\sigma_{1}^{-1}, \sigma_{4}=\sigma_{3}^{-1}, \sigma_{5}=\sigma_{1}$, $\sigma_{6}=\sigma_{1}^{-1}$, and $\sigma_{2 i}=\sigma_{2 i-1}^{-1}$ for $i=4, \ldots, k$ (see Fig. 7b). Then, as in Case 2 , these relations determine a Coxeter group. We may find a non-peripheral fixed class in rows 2 and 4.
Case $4 \mathrm{~b} .|R \mu-\lambda| \leq 2$ We cannot guarantee, in this case, that there will always be a cover with $b_{1}>0$, but we shall show that there are at most finitely many exceptions.

We argue as in Case 3b. Take permutations $\sigma_{1}, \ldots, \sigma_{k}$, and consider the relations obtained by abelianizing conditions I-III. We claim that they can be satisfied by setting $\sigma_{1}=(1,2,3, \ldots, N)$, for some N , and setting each

\bigcirc_{1}	\bigodot_{2}	\bigcirc_{3}	\bigcirc_{4}
\bigcirc	0		\bigcirc
$\bigcirc \frac{a}{b}$	- $\frac{b}{a}$	\bigcirc	\bigcirc
\bigcirc_{1}	\bigcap_{2}	\bigcap_{3}	\bigcirc_{4}
0	0	0	\bigcirc
$\bigcirc \frac{c}{d}$	$\rho \frac{d}{c}$	0	\bigcirc

a

b

Figure 8. a. The cover and fixed class for $n=6, R \mu-3 \lambda=$ $4, \lambda=3$. b. The cover and fixed class for $n=6, R \mu-3 \lambda=$ $4, \lambda=2$.
σ_{i} to an appropriate power of σ_{1}. We have already seen that this may be done when $k=3$.

The σ_{i} 's must satisfy the following conditions:

$$
\begin{gather*}
\sigma_{1}^{R \mu-\lambda} \sigma_{2}^{\lambda}=1 \tag{12}\\
\sigma_{1}^{R \mu} \sigma_{2}^{R \mu-\lambda} \sigma_{3}^{\lambda}=1 \tag{13}\\
\vdots \tag{14}\\
\sigma_{1}^{R \mu} \sigma_{2}^{R \mu} \cdots \sigma_{k-2}^{R \mu} \tag{15}\\
\sigma_{k-1}^{R \mu-\lambda} \sigma_{k}^{\lambda}=1 \tag{16}\\
\sigma_{1}^{R \mu+\lambda} \sigma_{2}^{R \mu} \cdots \sigma_{k-1}^{R \mu} \tag{17}\\
\sigma_{k}^{R \mu-\lambda}=1 \tag{18}\\
\sigma_{1} \sigma_{2} \cdots \sigma_{k}=1 .
\end{gather*}
$$

We shall assume that this system has a cyclic solution, so we may substitute $\sigma_{i}=\sigma_{1}^{e_{i}}$. Then, Equations (12)-(18) are equivalent to the following conditions on the exponents (all of the following equations in this case are taken $\bmod \mathrm{N}$):

$$
\begin{gather*}
R \mu-\lambda+\lambda e_{2}=0 \tag{19}\\
R \mu+(R \mu-\lambda) e_{2}+\lambda e_{3}=0 \tag{20}\\
\vdots \\
R \mu+R \mu e_{2}+\cdots+R \mu e_{k-2}+(R \mu-\lambda) e_{k-1}+\lambda e_{k}=0 \tag{21}\\
R \mu+\lambda+R \mu e_{2}+\cdots+R \mu e_{k-1}+(R \mu-\lambda) e_{k}=0 \tag{22}\\
1+e_{2}+\cdots+e_{k}=0 \tag{23}
\end{gather*}
$$

(22) and (23) imply that $\lambda=\lambda e_{k}$. Let us set $e_{k}=1$, eliminating Equation (22). Then, using (23), we may pair off (19) and (21) to deduce that $\lambda e_{2}=$ λe_{k-1}, and we set $e_{2}=e_{k-1}$ to eliminate (21). Similarly, we set $e_{3}=e_{k-2}$, and so on. If k is even, we are left with equations:

$$
\begin{gather*}
R \mu-\lambda+\lambda e_{2}=0 \tag{24}\\
R \mu+(R \mu-\lambda) e_{2}+\lambda e_{3}=0 \tag{25}
\end{gather*}
$$

$$
\vdots
$$

$$
\begin{gather*}
R \mu+R \mu e_{2}+\cdots+(R \mu-\lambda) e_{k / 2-1}+\lambda e_{k / 2}=0 \tag{26}\\
R \mu+R \mu e_{2}+\cdots+(R \mu-\lambda) e_{k / 2}+\lambda e_{k / 2}=0 \tag{27}\\
2+2 e_{2}+\cdots+2 e_{k / 2}=0 \tag{28}
\end{gather*}
$$

If we replace (28) by

$$
\begin{equation*}
1+e_{2}+\cdots+e_{k / 2}=0 \tag{29}
\end{equation*}
$$

then we may eliminate (27). Then solve for $\lambda e_{2}, \lambda^{2} e_{3}, \ldots, \lambda^{k / 2-1} e_{k / 2}$. By (29), we have:

$$
\begin{equation*}
\lambda^{k / 2-1}+\lambda^{k / 2-2}\left(\lambda e_{2}\right)+\lambda^{k / 2-3}\left(\lambda^{2} e_{3}\right)+\cdots+\lambda^{k / 2-1} e_{k / 2}=0 \tag{30}
\end{equation*}
$$

Substituting our solutions for $\lambda e_{2}, \lambda^{2} e_{3}$ and so on, we get the equation $N=0$ for some integer N; the system has a solution in $\mathbb{Z} / N \mathbb{Z}$.

If k is odd, then our reduced system looks like:

$$
\begin{gather*}
R \mu-\lambda+\lambda e_{2}=0 \tag{31}\\
R \mu+(R \mu-\lambda) e_{2}+\lambda e_{3}=0 \tag{32}
\end{gather*}
$$

$$
\begin{gather*}
R \mu+R \mu e_{2}+\cdots+(R \mu-\lambda) e_{(k-1) / 2}+\lambda e_{(k+1) / 2}=0 \tag{33}\\
R \mu+R \mu e_{2}+\cdots+(R \mu-\lambda) e_{(k+1) / 2}+\lambda e_{(k-1) / 2}=0 \tag{34}\\
2+2 e_{2}+\cdots+2 e_{(k-1) / 2}+e_{(k+1) / 2}=0 \tag{35}
\end{gather*}
$$

Adding (33) and (34) gives a multiple of (35), so we may eliminate (34). Then we solve for $\lambda e_{2}, \lambda^{2} e_{3}, \ldots, \lambda^{(k-1) / 2} e_{(k+1) / 2}$. By (35), we have:

$$
\begin{aligned}
& 2 \lambda^{(k-1) / 2}+2 \lambda^{(k-3) / 2}\left(\lambda e_{2}\right)+2 \lambda^{k-5 / 2}\left(\lambda^{2} e_{3}\right)+\cdots \\
& \quad+2 \lambda\left(\lambda^{(k-3) / 2} e_{(k-1) / 2}\right)+\lambda^{(k-1) / 2} e_{(k+1) / 2}=0
\end{aligned}
$$

And again we get a solution in $\mathbb{Z} / N \mathbb{Z}$ for some N.
Then, as in Case 3b, $M(\mu, \lambda)$ will have a cover with $b_{1}>0$, provided that $|N| \geq|\lambda|$ and $|\lambda|>2$. Solving for N, if k is even, gives:

$$
\begin{equation*}
N=\lambda^{k / 2-1}+\lambda^{k / 2-2}(\lambda-R \mu)+\lambda^{k / 2-3}\left[(\lambda-R \mu)^{2}-R \mu \lambda\right] \tag{36}
\end{equation*}
$$

$$
+\lambda^{k / 2-4}\left[(\lambda-R \mu)\left((\lambda-R \mu)^{2}-R \mu \lambda\right)-R \mu \lambda(\lambda-R \mu)-R \mu \lambda^{2}\right]+\cdots
$$

and if k is odd:

$$
\begin{align*}
& N=2 \lambda^{(k-1) / 2}+2 \lambda^{(k-3) / 2}(\lambda-R \mu)+2 \lambda^{(k-5) / 2}\left[(\lambda-R \mu)^{2}-R \mu \lambda\right] \tag{37}\\
& +2 \lambda^{(k-7) / 2}\left[(\lambda-R \mu)\left((\lambda-R \mu)^{2}-R \mu \lambda\right)-R \mu \lambda(\lambda-R \mu)-R \mu \lambda^{2}\right] \\
& +\cdots+1[. .]
\end{align*}
$$

We are supposing that $|R \mu-\lambda| \leq 2$. So for large μ or $\lambda, R \mu / \lambda \rightarrow 1$, and for k even,

$$
\begin{aligned}
N=o\left[\lambda^{k / 2-1}\right. & \left.+\lambda^{k / 2-3}\left(-\lambda^{2}\right)+\lambda^{k / 2-4}\left(-\lambda^{3}\right)+\cdots\right] \\
& =o\left[\lambda^{k / 2-1}-\lambda^{k / 2-1}-\lambda^{k / 2-1}-\cdots\right]
\end{aligned}
$$

So if k is even and $k \geq 8$, then for all but finitely many μ and $\lambda,|N|>|\lambda|$, and we are done. Similarly, if k is odd and $k \geq 7$, then we are done. In the remaining cases, $|N|$ is given by:

$$
\begin{array}{r}
k=4,|N|=|R \mu-2 \lambda| \\
k=5, \quad|N|=\left|(R \mu)^{2}-5 R \mu \lambda+5 \lambda^{2}\right| \\
k=6, \quad|N|=\left|(R \mu)^{2}-4 R \mu \lambda+3 \lambda^{2}\right| .
\end{array}
$$

One may check that each condition is satisfied by only finitely many relatively prime pairs (μ, λ) with $|R \mu-\lambda| \leq 2$. This concludes the proof in Case 4b.

Case 5. $n=7$, and $|\lambda|>1$.
Case 5a. $1 /|R \mu-\lambda|+1 /|\lambda|<2 / 3$ and $\left|(R \mu-2 \lambda)^{2}-2 \lambda^{2}\right|>2|R|$.

We shall consider covers with $\sigma_{2}=i d, \sigma_{3}=\sigma_{1}^{-1}, \sigma_{6}=\sigma_{5}^{-1}$, and $\sigma_{7}=\sigma_{4}^{-1}$ (see Fig. 9a).

Figure 9. Two covers for $n=7$.

We obtain conditions:

$$
\begin{align*}
& {\left[\sigma_{4}, \sigma_{5}\right]=1} \tag{38}\\
& \sigma_{1}^{R \mu-\lambda}=1 \\
& \left(\sigma_{4} \sigma_{1}\right)^{\lambda}=1
\end{align*}
$$

$$
\begin{gather*}
\sigma_{4}^{R \mu}\left(\sigma_{5} \sigma_{4}^{-1}\right)^{\lambda}=1 \tag{41}\\
\left(\sigma_{4} \sigma_{5}\right)^{R \mu} \sigma_{5}^{-2 \lambda}=1 \tag{42}\\
\left(\sigma_{1} \sigma_{4}\right)^{\lambda}=1 \tag{43}
\end{gather*}
$$

Let us also assume for simplicity that σ_{5} commutes with σ_{1}. Equations (38), (41) and (42) determine an abelian group A of order $\left|(R \mu-2 \lambda)^{2}-2 \lambda^{2}\right|$; we must show that σ_{4}^{2} is non-trivial in A. The elements σ_{4}^{2} and σ_{5} generate a subgroup H of A of index at most 2. If $\sigma_{4}^{2}=i d$, then H is cyclic of order $\operatorname{gcd}(|\lambda|,|R \mu-2 \lambda|)$. Then $\left|(R \mu-2 \lambda)^{2}-2 \lambda^{2}\right|=|A| \leq 2|H|=2 g c d(|\lambda|, \mid R \mu-$ $2 \lambda \mid)=2 g c d(|\lambda|,|R|) \leq 2|R|$. So if

$$
\begin{equation*}
\left|(R \mu-2 \lambda)^{2}-2 \lambda^{2}\right|>2|R| \tag{44}
\end{equation*}
$$

then $\sigma_{4}^{2} \neq i d$. Therefore, under our hypotheses, the relations generate a group which is isomorphic to the direct sum of a cyclic group with a hyperbolic triangle group. As in the previous cases, we may then find a nonperipheral fixed class (in rows 3 and 7), and we are done.

However, note that if $R=1$, then Equation (44) is false for all (μ, λ) satisfying

$$
(\mu+2 \lambda)^{2}-2 \lambda^{2}=1
$$

This is an example of Pell's equation, which has infinitely many solutions, and hence (44) may be false infinitely often.
Case 5b. $1 /|R \mu-2 \lambda|+1 /|\lambda|<2 / 3$ and $\left|(R \mu-\lambda)^{2}-2 \lambda^{2}\right|>2|R|$.
Let $\sigma_{3}=i d, \sigma_{4}=\sigma_{2}^{-1}, \sigma_{5}=\sigma_{1}^{-1}$, and $\sigma_{7}=\sigma_{6}^{-1}$ (see Fig. 9b). The conditions for a cover are:

$$
\begin{gather*}
{\left[\sigma_{1}, \sigma_{2}\right]=1} \tag{45}\\
\sigma_{1}^{R \mu}\left(\sigma_{2} \sigma_{1}^{-1}\right)^{\lambda}=1 \tag{46}\\
\left(\sigma_{1} \sigma_{2}\right)^{R \mu} \sigma_{2}^{-\lambda}=1 \tag{47}\\
\left(\sigma_{6} \sigma_{1}\right)^{\lambda}=1 \tag{48}\\
\sigma_{6}^{R \mu-2 \lambda}=1 \tag{49}\\
\left(\sigma_{1} \sigma_{6}\right)^{\lambda}=1 . \tag{50}
\end{gather*}
$$

For simplicity, suppose also that σ_{2} commutes with σ_{6}. Then (45), (46), (47) determine an abelian group B of order $\left|(R \mu-\lambda)^{2}-R \mu \lambda\right|$. If $\sigma_{1}^{2}=1$, then $|B| \leq 2 g c d(|\lambda|,|R \mu-\lambda|)=2 g c d(|\lambda|,|R|) \leq 2|R|$. Therefore, in this case, the group determined by conditions (45)-(50) is again the direct product
of an abelian group with a hyperbolic triangle group, and we may find a non-peripheral fixed class in rows 5 and 7 .

Note that Case 5a or 5b applies to all but finitely many surgeries where $|\lambda|>1$.

This concludes the proof of Theorem 1.3.

3. Examples.

We begin with the proof of Theorems 1.5 and 1.6 (see Section 1 for notation).
Lemma 3.1. Let $g=D_{y}^{5} D_{x}^{-1}$ and $h=D_{x} D_{y}$. Then $M_{-h}(\mu, \lambda) \cong M_{g}(\mu, \lambda-$ $\mu)$, and $M_{h^{2}}(\mu, \lambda) \cong M_{(-h)^{2}}(\mu, \lambda+\mu) \cong M_{g^{2}}(\mu, \lambda-\mu)$.

Proof. Recall that the mapping class group of the once-punctured torus is isomorphic to $S L_{2}(\mathbb{Z})$, under the identifications $D_{x} \rightarrow R=\left[\begin{array}{lll}1 & 1 \\ 0 & 1\end{array}\right]$ and $D_{y} \rightarrow L=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$. Under these identifications, we compute that h has monodromy matrix $\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right],(-1)$ has monodromy matrix $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$, and g has monodromy matrix $\left[\begin{array}{ll}1 & -1 \\ 5 & -4\end{array}\right]$. The homeomorphisms h^{2} and $(-h)^{2}$ have the same monodromy matrix, and hence are isotopic. Therefore $M_{h^{2}} \cong M_{(-h)^{2}}$. Also, $\left[\begin{array}{cc}-1 & 1 \\ -2 & 1\end{array}\right](-R L)\left[\begin{array}{cc}-1 & 1 \\ -2 & 1\end{array}\right]^{-1}=L^{5} R^{-1}$, so g and $-h$ have conjugate monodromy matrices. It follows that $M_{-h} \cong M_{g}$, and $M_{(-h)^{2}} \cong M_{g^{2}}$.

It remains to determine the effect of these homeomorphisms on the framings. Computing the maps on $\pi_{1}(F)$ gives:

$$
(-h)_{\sharp}^{2}=\left(x^{-1} y x y^{-1}\right)\left(h_{\sharp}^{2}\right)\left(x^{-1} y x y^{-1}\right)^{-1} .
$$

Therefore the isotopy which takes h^{2} to $(-h)^{2}$ twists ∂F once in a counterclockwise manner, so the induced bundle homeomorphism sends $M_{h^{2}}(\mu, \lambda)$ to $M_{(-h)^{2}}(\mu, \lambda+\mu)$.

Let $f=D_{y}^{2} D_{x}^{-1}$. The bundle homeomorphism induced by conjugation preserves the framing, so $M_{-h}(\mu, \lambda) \cong M_{f(-h) f^{-1}}(\mu, \lambda)$. The homeomorphisms $f(-h) f^{-1}$ and g have identical monodromy matrices, and hence are isotopic. We compute $g_{\sharp}=\left(y x^{-1} y^{-1} x\right) f(-h) f_{\sharp}^{-1}\left(y x^{-1} y^{-1} x\right)^{-1}$ so the isotopy from $f(-h) f^{-1}$ to g twists ∂F once in a clockwise manner. The induced bundle homeomorphism sends $M_{f(-h) f^{-1}}(\mu, \lambda)$ to $M_{g}(\mu, \lambda-\mu)$. So $M_{-h}(\mu, \lambda) \cong M_{g}(\mu, \lambda-\mu)$.

Likewise, $M_{f(-h)^{2} f^{-1}}(\mu, \lambda) \cong M_{g^{2}}(\mu, \lambda-2 \mu)$. Thus

$$
M_{h^{2}}(\mu, \lambda) \cong M_{(-h)^{2}}(\mu, \lambda+\mu) \cong M_{f(-h)^{2} f^{-1}}(\mu, \lambda+\mu) \cong M_{g^{2}}(\mu, \lambda-\mu)
$$

Proof of Theorem 1.5. This is an immediate consequence of Lemma 3.1 and Theorem 1.3.

Proof of Theorem 1.6. We have $M(2 \mu, \lambda) \cong M_{h}(2 \mu, \lambda)$, which is double covered by $M_{h^{2}}(\mu, \lambda) \cong M_{g^{2}}(\mu, \lambda-\mu)$. So it is enough to show that $M_{g^{2}}(\mu, \lambda-\mu)$ is virtually \mathbb{Z}-representable. By Theorem 1.3 , we are done unless

$$
1 /|-2 \mu-(\lambda-\mu)|+1 /|-2 \mu-2(\lambda-\mu)|+1 /|\lambda-\mu| \geq 1
$$

or, simplifying:

$$
\begin{equation*}
1 /|\mu+\lambda|+1 /|2 \lambda|+1 /|\mu-\lambda| \geq 1 \tag{51}
\end{equation*}
$$

By [B3], $M(2 \mu, \lambda)$ is virtually \mathbb{Z}-representable if 2μ is divisible by 4 ; hence we may assume μ is odd. Also, since $\operatorname{gcd}(2 \mu, \lambda)=1$, we may assume λ is odd, and, assuming $(\mu, \lambda) \neq(\pm 1,1),|\lambda| \neq|\mu|$. It follows that

$$
\begin{align*}
& |\mu-\lambda| \geq 2 \tag{52}\\
& |\mu+\lambda| \geq 2 \tag{53}
\end{align*}
$$

The only simultaneous solutions to inequalities (51), (52) and (53) with μ and λ odd are: $(\mu, \lambda)= \pm(-3,1)$ and $\pm(3,1)$. So the only possible exceptions to Theorem 1.6 are $M(-6,1) \cong M(6,1)$ and $M(2,1) \cong M(-2,1)$. The virtual \mathbb{Z}-representability of these manifolds may be verified with either of the computer programs GAP or Snappea.

We now turn to the proof of Theorem 1.4.
Proof of Theorem 1.4. Let g and h be as in the statement of Lemma 3.1, let $f=h^{18}$, and let $i=D_{x}^{2} D_{y}^{-4} D_{x} D_{y}^{-4} D_{x}$. Both h^{3} and i have monodromy matrix $\left[\begin{array}{cc}13 & 8 \\ 8 & 5\end{array}\right]$; hence h^{3} and i are isotopic. By arguments similar to those used in the proof of Lemma 3.1, we compute that $M_{h^{3}}(\mu, \lambda) \cong M_{i}(\mu, \mu+\lambda)$. Therefore $M_{f}(\mu, \lambda) \cong M_{i^{6}}(\mu, \lambda+6 \mu)$. Hence by Theorem 1.3 iii, $M_{f}(\mu, \lambda)$ is virtually \mathbb{Z}-representable if

$$
\begin{equation*}
1 /|6 \mu-\lambda|+1 /|6 \mu+\lambda|<1 \tag{54}
\end{equation*}
$$

By Lemma 3.1 we have $M_{f}(\mu, \lambda) \cong M_{g^{18}}(\mu, \lambda-9 \mu)$. Hence by Theorem $1.3 \mathrm{ii}, M_{f}(\mu, \lambda)$ is virtually \mathbb{Z}-representable if

$$
\begin{equation*}
1 /|9 \mu+\lambda|+1 /|2 \lambda|+1 /|9 \mu-\lambda|<1 \tag{55}
\end{equation*}
$$

The only simultaneous solutions to the inequalities 54 and 55 have $\mu=$ 0 . The proof is completed by noting that $M(0,1)$ has positive first Betti number, as it is a torus bundle over S^{1}.

We remark that the same methods may be applied to many other examples of once-punctured torus bundles, to show that all but finitely many surgeries are virtually \mathbb{Z}-representable. The idea is to start with a monodromy f to which Theorem 1.3 i or ii applies. Since L^{4} and R generate a finite-index subgroup of $S L_{2}(\mathbb{Z})$, there exists an integer ℓ such that f^{ℓ} is
isotopic to a g satisfying the hypotheses of Theorem 1.3 iii. Usually Theorem 1.3 will then imply that all but finitely many surgeries on $M_{f \ell}$ are virtually \mathbb{Z}-representable.

References

[B1] M. Baker, Covers of Dehn fillings on once-punctured torus bundles, Proc. Amer. Math. Soc., 105 (1989), 747-754.
[B2] , Covers of Dehn fillings on once-punctured torus bundles II, Proc. Amer. Math. Soc., 110 (1990), 1099-1108.
[B3] , On coverings of figure eight-knot surgeries, Pacific J. Math., 150 (1991), 215-228.
[Bart] A. Bart, Surface groups in surgered manifolds, to appear in Topology.
[BZ] S. Boyer and X. Zhang, Virtual Haken 3-manifolds and Dehn filling, Topology, 39 (2000), 103-114.
[CJR] M. Culler, W. Jaco and H. Rubinstein, Incompressible surfaces in once-punctured torus bundles, Proc. London Math. Soc., 45(3) (1982), 385-419.
[FH] W. Floyd and A. Hatcher, Incompressible surfaces in punctured torus bundles, Topology and it Applications, 13 (1982), 263-282.
[H] J. Hempel, Coverings of Dehn fillings of surface bundles, Topology and its Applications, 24 (1986), 157-170.
[KL] S. Kojima and D. Long, Virtual Betti numbers of some hyperbolic 3-manifolds, A Fete of Topology, Academic Press, 1988.
[M] S. Morita, Finite coverings of punctured torus bundles and the first Betti number, Sci. Papers College Arts Sci., Univ Tokyo, 35 (1986), 109-121.
[N] A. Nicas, An infinite family of hyperbolic non-Haken 3-manifolds with vanishing Whitehead groups, Math. Proc. Camb. Phil. Soc., 99 (1986), 239-246.
[V] E.B. Vinberg, Groups defined by periodic paired relations, Sbornik: Mathematics, 188 (1997), 1269-1278.

Received June 15, 1998.
University of Texas at Austin
Austin, Texas 78712
Rice University
Houston, Texas 77005-1892
E-mail address: mastersj@rice.edu

