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Let M be a once-punctured torus bundle over S1 with
monodromy h. We show that, under certain hypotheses on
h, “most” Dehn-fillings of M (in some cases all but finitely
many) are virtually Z-representable. We apply our results to
show that even surgeries on the figure eight knot are virtually
Z-representable.

1. Introduction.

Embedded incompressible surfaces are fundamental in the study of 3-mani-
folds. Accordingly, the following conjecture of Waldhausen and Thurston
has attracted much attention:

Conjecture 1.1. Let M be a closed, irreducible 3-manifold with infinite π1.
Then M has a finite cover which is Haken.

The focus of this paper is the following, stronger, conjecture:

Conjecture 1.2. Let M be as above. Then M has a finite cover M̃ with
H1(M̃, Z) infinite.

If M is a compact 3-manifold, we say that M is Z-representable if
H1(M, Z) is infinite. If M satisfies the conclusion of Conjecture 1.2, we
say that M is virtually Z-representable.

We shall give what appear to be the first examples of 3-manifolds with
torus boundary for which all but finitely many fillings are virtually Z-
representable, but not Z-representable (in fact non-Haken). Boyer and
Zhang have independently given examples of knot complements for which
all but finitely many fillings are virtually Haken, but non-Haken [BZ].

Before we can state our results, we must establish some notation. Let F
be a once-punctured torus with π1(F ) = 〈[x], [y]〉, and basepoint x0 ∈ ∂F
(see Fig. 1).

Any orientation-preserving homeomorphism h : F → F is isotopic to one
of the form h = Dr1

x Ds1
y · · ·Drk

x Dsk
y . Here Dx and Dy are Dehn twists along

simple closed curves homologous to x and y, respectively. The twists Dx
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Figure 1. Notation for the once-punctured torus bundle M .

and Dy induce the following actions on π1(F ):

Dx](x) = x

Dx](y) = yx

Dy](x) = yx

Dy](y) = y.

We may assume h fixes ∂F . Let Mh = (F × I)/h be the once-punctured
torus bundle with monodromy h. We specify a framing for H1(∂Mh, Z) by
setting the longitude β = ∂F oriented counter-clockwise, and the meridian
α = (x0×I)/h, where x0 is some point on ∂F , and α is oriented as in Fig. 1.
Then, for coprime integers (µ, λ), Mh(µ, λ) denotes the manifold obtained
by gluing a solid torus to Mh in such a way that the curve αµβλ becomes
homotopically trivial.

We shall prove:

Theorem 1.3. Let Mh be a once-punctured torus bundle over S1, with
monodromy h = Dr1

x Ds1
y · · ·Drk

x Dsk
y , and let n = g.c.d{s1, . . . , sk}, R =

r1 + · · ·+ rk.
(i) If n is divisible by some m such that m ≥ 6 and m is even or m = 7,

and if |λ| > 1, then all but finitely many Dehn-fillings Mh(µ, λ) are
virtually Z-representable.

(ii) If n is divisible by some m such that m ≥ 5, m is odd, and m 6= 7,
and if 1/|Rµ−λ|+1/|Rµ− 2λ|+1/|λ| < 1, then Mh(µ, λ) is virtually
Z-representable.

(iii) If n is divisible by 4, and if 2/|Rµ− 2λ|+ 1/|λ| < 1, then Mh(µ, λ) is
virtually Z-representable.
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Remarks. 1. Analogous results hold if we replace n by gcd{r1, . . . , rk} and
R by s1 + · · ·+ sk.

2. It was shown in [B1] that if m ≥ 2, n ≥ 2 and mn ≥ 8 but mn 6= 9,
then all non-integral surgeries are virtually Z-representable. In [B2] it was
shown that if 4|n, then for each µ, Mh(µ, λ) is virtually Z-representable for
all but finitely many λ coprime to µ.

3. From [CJR] and [FH], all but finitely many surgeries on a once-
punctured torus bundle over S1 yield non-Haken manifolds.

Theorem 1.3 may be used to show that, for certain choices of f , all but
finitely many surgeries on Mf are virtually Z-representable. For example:

Theorem 1.4. Let f = (DxDy)18. Then every surgery on Mf is virtually
Z-representable.

The proof of Theorem 1.4 appears in Section 3.
In order to state the next theorem, we require some notation. Let −1 =

(DxD−1
y Dx)2, the central involution on the punctured torus. If h is a home-

omorphism of the punctured torus, −h stands for (−1)h.

Theorem 1.5. Let N = M−DxDy (also known as “the figure eight knot’s
sister”). Then if 1/|µ − λ| + 1/|µ − 2λ| + 1/|λ| < 1, N(µ, λ) is virtually
Z-representable.

Theorem 1.6. Let K denote the figure-eight knot and let M denote S3−K.
Then, with respect to the canonical framing of knots in S3, any surgery of
the form M(2µ, λ) is virtually Z-representable.

Other results on virtually Z-representable figure-eight knot surgeries may
be found in [M], [KL], [H], [N] and [B3]. In particular, it was shown in [KL]
and [B3] that surgeries of the form M(4µ, λ) are virtually Z-representable.
It was also shown in [B3] that surgeries of the form M(2µ, λ) are virtually
Z-representable if λ = ±7µ (mod 15). Finally, it was shown in [Bart] that
every non-trivial surgery of M contains an immersed incompressible surface.

Our techniques are extensions of Baker’s. The main new ingredient is the
use of group theory to encode the combinatorics of cutting and pasting.

I would like to thank Professor Alan Reid for his help and patience.

2. Construction of covers.

We begin by recalling Baker’s construction of covering spaces of Mh(µ, λ)
(see [B1], [B2]). Let n be as in the statement of Theorem 1.3, and let F̂
be the kn-fold cover of F associated to the kernel of the map φ : π1(F ) →
Zk × Zn, with φ([x]) = (1, 0) and φ([y]) = (0, 1) (see Fig. 2).

Now create a new cover, F̃ , of F by making vertical cuts in each row of
F̂ , and gluing the left side of each cut to the right side of another cut in the
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Figure 2. The cover F̂ of F .

same row. An example is pictured in Figure 3, where the numbers in each
row indicate how the edges are glued.

If h lifts to a map h̃ : F̃ → F̃ , then the mapping cylinder M̃h = F̃ /h̃ is
a cover of Mh. Furthermore, if the loop αµβλ lifts to loops in M̃h, then the
cover extends to a cover M̃h(µ, λ) of Mh(µ, λ).

If the cover M̃h exists, then we may compute its first Betti number with
the formula b1(M̃h) = rank (fix(h̃∗)), where h̃∗ is the map on H1(M̃, Z)
induced by h̃, and fix(h̃∗) is the subgroup of H1(M̃, Z) fixed by h̃∗ (see [H]
for a proof). We shall use this formula to prove that, in some cases, b1(M̃)
is greater than the number of boundary components of M̃ , which ensures
that b1(M̃(µ, λ)) > 0.

We now introduce some notation to describe the cuts of F̃ (see Fig. 3). F̃
is naturally divided into rows, which we label 1, . . . , n. The cuts divide each
row into pieces, each of which is a square minus two half-disks; we number
them 1, . . . , k. If we slide a point in the top half of the ith row through the
cut to its right, we induce a permutation on {1, . . . , k}, which we denote
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Piece 3, Row 1

1 3 4 65

1 2 3 4 5 6

1 2 3 4 5 6

6 2 1 5 2 3

2 3 4 5 6 1

3 6 2 1 4 5

1 3 2 6 3 2 4 1 5 4 56 σ  = (15)(2463)

σ  = (146235)

σ  =

1

2

3

Row 1

Row 2

Row 3

2

1

Figure 3. The permutations encode the combinatorics of
the gluing.

σi. Thus the cuts on F̃ may be encoded by elements σ1, . . . , σn ∈ Sk, the
permutation group on k letters.

Next, we find algebraic conditions on the σi’s which will guarantee that
the cover of F extends to a cover of M(µ, λ). We first must pick k, n, and
{σ1, . . . , σn} so that h lifts to F̃ .

Lemma 2.1. If
I. [σi, σ1σ2 · · ·σi−1] = 1 for all i and

II. σ1σ2 · · ·σn = 1
then h lifts to F̃ .

Proof. Note that Dn
y lifts to Dehn twists on F̃ . Therefore, we need only

ensure that Dx lifts. We shall attempt to lift Dx to a sequence of “fractional
Dehn twists” along the rows of F̃ . Let x̃i denote the disjoint union of the
lifts of x to the ith row of F̃ . We first attempt to lift Dx to row 1, twisting
1/kth of the way along x̃1. Considering the action on the bottom half of row
1, we find that the cuts are now matched up according to the permutation
σ−1

1 σ2σ1. Thus, for Dx to lift to row 1 we assume σ1 and σ2 commute.
We now twist along x̃2. The top halves of the squares in row 2 are moved
according to the permutation σ1σ2, and the lift will extend to all of row 2 if
and only if σ3 commutes with σ1σ2. We continue in this manner, obtaining
the conditions in I. After we twist through x̃n, we need to be back where we
started in row 1, so we require the additional condition σ1σ2 · · ·σn = 1. �

Note that the loop αµ lifts homeomorphicly to loops in M̃h if h̃µ = id, and
that the loop βλ lifts to loops in M̃h if (σi+1σ

−1
i )λ = id for all i = 1, . . . , n.

Then, by considering the action of h̃ on M̃h, the following condition for a
loop in ∂Mh to lift to M̃h is easily verified:
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Lemma 2.2. The loop αµβλ ⊂ ∂Mh lifts homeomorphicly to loops in M̃h

if and only if
III. (σ1 · · ·σi)Rµ(σi+1σ

−1
i )λ = 1, for i = 1, . . . , n.

Therefore we may construct covers of Mh(µ, λ) simply by finding permu-
tations satisfying conditions I-III.

Proof of Theorem 1.3.

Case 1. m = 4.

Construction of the cover of Mh(µ, λ).
To construct a cover of Mh(µ, λ), we must first construct a cover of F .

It was shown in the discussion prior to Lemma 2.1 that there is a unique
such cover associated to any four permutations σ1, σ2, σ3 and σ4 in any
permutation group Sk.

To ensure that the cover of F extends to a cover of Mh, we shall set
σ2 = σ−1

1 and σ4 = σ−1
3 (see Fig. 4a). Then conditions I and II of Lemma

2.1 are satisfied automatically, so that any choice of σ1 and σ3 will determine
a cover of Mh.

To ensure that the cover extends to Mh(µ, λ), we must arrange for the
surgery curve αµβλ to lift to M̃h. By Lemma 2.2, αµβλ will lift provided
that σ1, . . . , σ4 satisfy condition III, which reduces to:

σRµ−2λ
1 = 1(1)

(σ3σ1)λ = 1(2)

σRµ−2λ
3 = 1(3)

(σ1σ3)λ = 1.(4)

Any pair of permutations σ1 and σ3 satisfying Equations (1)-(4) deter-
mines a unique cover of Mh(µ, λ). We now turn our attention to the con-
struction of such permutations.

Consider the abstract group G generated by the symbols σ̄1 and σ̄3, satis-
fying relations (1)-(4). G is a (|Rµ− 2λ|, |Rµ− 2λ|, |λ|)-triangle group. It is
well-known that if 1/|Rµ−2λ|+1/|Rµ−2λ|+1/|λ| < 1, then G is residually
finite, and hence surjects a finite group H such that the images of σ̄1, σ̄3,
and σ̄3σ̄1 have order |Rµ − 2λ|. By taking the permutation representation
of H, we then obtain permutations σ1 and σ3 satisfying conditions (1)-(4).
Note that the permutations act on |H| letters, so M̃ is a 4|H|-fold cover of
Mh.

Associated with the permutations σ1 and σ3 we have covers M̃h and F̃ of
Mh and F , and a cover M̃h(µ, λ) of Mh(µ, λ);

Claim. b1(M̃h(µ, λ)) > 0.
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Figure 4

a. The cover when n = 4. b. The cover when n = 5.

Proof of claim. It suffices to show that h̃∗ has a non-peripheral class [δ] ∈
H1(F̃ ) with h̃∗([δ]) = [δ]. To construct this element, we shall first find a
non-peripheral class [δ2] in row 2, as follows.

σ1
−1

σ3

Figure 5. The surface F̃2 (with |H| = 4).

Consider the sub-surface F̃2 obtained by deleting rows 1, 3 and 4 from F̃
(see Fig. 5). The punctures of F̃2 are in 1-1 correspondence with the cycles
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of σ1, σ3 and σ3σ1. Any permutation τ coming from the permutation repre-
sentation of H decomposes as a product of |H|/order(τ) disjoint order(τ)-
cycles. Therefore F̃2 has |H|(1/order(σ1)+1/order(σ3)+1/order(σ3σ1)) <

|H| punctures. Since χ(F̃2) = −|H|, we deduce that F̃2 contains a non-
peripheral class [δ2]. The class δ2 also represents a non-peripheral class in
F̃ , since it has non-zero intersection number with a class of F̃ in row 2.

We may find a corresponding non-peripheral loop δ4 in row 4, such that
I([δ2 + δ4], [ỹi]) = 0 for all i (see Fig. 6 for the notation and the idea of
the proof). Let [δ] = [δ2 + δ4]. Then, since [δ] has non-zero intersection
number with classes in row 2 and row 4, it is a non-peripheral class. We
have I[δ, ỹi] = 0 for all i (where I(., .) denotes oriented intersection number);
therefore [δ] is fixed by D̃4

y∗, and since D̃x fixes rows 2 and 4, it is fixed by
D̃x∗. Therefore it is fixed by h̃∗, concluding the proof of the claim, and of
Case 1.

Case 2. m ≥ 5 and m is odd.

Case 2a. m = 5.
The construction proceeds analogously to the case m = 4. We require per-

mutations σ1, . . . , σ5 satisfying conditions I-III. Again, to simplify matters,
we shall impose some extra conditions: σ2 = id, σ3 = σ−1

1 , and σ5 = σ−1
4

(see Fig. 4). Then conditions I-III reduce to:

σRµ−λ
1 = 1

(σ1σ4)λ = (σ4σ1)λ = 1

σRµ−2λ
4 = 1.

Again, these relations determine a triangle group, which, under the hypothe-
ses on µ and λ, is hyperbolic. The rest of the proof is identical to Case 1,
except that now the fixed class is in rows 3 and 5.

Case 2b. m ≥ 9 and m is odd.
Consider the cover obtained by setting σ2 = σ−1

1 , σ4 = id, σ5 = σ−1
3 ,

σ6 = σ1, σ7 = σ−1
1 , and for i = 4, . . . , k, σ2i+1 = σ−1

2i (see Fig. 7a). �

The corresponding relations are:

σRµ−2λ
1 = 1(5)

σRµ−λ
3 = 1(6)

(σ3σ1)λ = (σ1σ3)λ = 1(7)

(σ8σ1)λ = 1(8)

σRµ−2λ
2i = 1 for i = 4, . . . , k(9)

(σ2i+2σ2i)λ = 1 for i = 4, . . . , k − 1(10)

(σ1σ2k)λ = 1.(11)
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Figure 6. How to find cancelling loops in rows 2 and 4.

These relations again determine a Coxeter group. It is well-known (see
[V]) that any such group surjects a finite group “without collapsing”– i.e.,
such that the orders of the images of the σi’s and σiσj ’s are as given in
(5)-(11). Then, arguing as in Case 1, we may find a non-peripheral fixed
class in rows 2 and 5.
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Figure 7. a. The cover for n = 2k + 1 ≥ 9. b. The cover
for n = 2k ≥ 8.

Case 3. n = 6

Case 3a. 2/|Rµ− λ|+ 1/|λ| < 1.
Again, we need permutations σ1, . . . , σ6 satisfying I-III. In this case we

impose the additional conditions σ2 = id, σ3 = σ−1
1 , σ5 = id, and σ6 = σ−1

4 .
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Then conditions I-III reduce to:

σRµ−λ
1 = 1

(σ1σ4)λ = (σ4σ1)λ = 1

σRµ−λ
4 = 1.

These relations determine a triangle group, and we find a fixed class in
rows 3 and 6.

Case 3b. |λ| > 2 and |Rµ−3λ| ≥ |λ|, or λ is even (non-zero) and |Rµ−3λ| ≥
4.

When n = 3, conditions I-III may be abelianized to obtain a cyclic
group of order |Rµ − 3λ|. Specifically, they are satisfied by setting σ1 =
(1, 2, . . . , Rµ − 3λ), σ2 = σ−2

1 , and σ3 = σ1. For n = 6, we may “double”
this cover: That is take σ1, σ2, σ3 as above, and then set σ4 = σ1, σ5 = σ2,
and σ6 = σ3. Then we modify the corresponding cover M̃(µ, λ) of M(µ, λ)
by making horizontal cuts in adjacent squares of row 3 and gluing the flaps
back together as indicated by Fig. 8. If λ is even, we make two non-adjacent
cuts and glue the top of one to the bottom of the other. If λ is odd, we
make (|λ|−1)/2 pairs of adjacent cuts and glue the top of the one cut to the
bottom of the other cut in its pair. Now make the same cuts in row 6, with
the same identifications. Since rows 3 and 6 are fixed by D̃x, Dx still lifts
to the modified M̃h(µ, λ), and since the ỹ’s still project 6 to 1 onto y, Dy

lifts also; so h lifts. Also, one may check that αµβλ still lifts, so M̃h(µ, λ)
remains a cover of Mh(µ, λ).

To see that b1(M̃h(µ, λ)) > 0, note that D̃x fixes rows 3 and 6, so it is
enough to find a non-peripheral loop in row 3 and add it to the corresponding
loop in row 6 with opposite orientation. As in Case 1, the existence of such
a non-peripheral loop follows from an Euler characteristic argument (or see
Fig. 8).

Note that Case 3a or 3b applies to all but finitely many (µ, λ) with |λ| > 1.

Case 4. n = 2k ≥ 8.

Case 4a. 2/|Rµ − 2λ| + 1/|λ| < 1. Set σ2 = σ−1
1 , σ4 = σ−1

3 , σ5 = σ1,
σ6 = σ−1

1 , and σ2i = σ−1
2i−1 for i = 4, . . . , k (see Fig. 7b). Then, as in Case

2, these relations determine a Coxeter group. We may find a non-peripheral
fixed class in rows 2 and 4.

Case 4b. |Rµ − λ| ≤ 2 We cannot guarantee, in this case, that there will
always be a cover with b1 > 0, but we shall show that there are at most
finitely many exceptions.

We argue as in Case 3b. Take permutations σ1, . . . , σk, and consider the
relations obtained by abelianizing conditions I-III. We claim that they can
be satisfied by setting σ1 = (1, 2, 3, . . . , N), for some N, and setting each
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Figure 8. a. The cover and fixed class for n = 6, Rµ−3λ =
4, λ = 3. b. The cover and fixed class for n = 6, Rµ− 3λ =
4, λ = 2.

σi to an appropriate power of σ1. We have already seen that this may be
done when k = 3.

The σi’s must satisfy the following conditions:

σRµ−λ
1 σλ

2 = 1(12)

σRµ
1 σRµ−λ

2 σλ
3 = 1(13)

.

.

.

σRµ
1 σRµ

2 · · ·σRµ
k−2(14)

σRµ−λ
k−1 σλ

k = 1(15)

σRµ+λ
1 σRµ

2 · · ·σRµ
k−1(16)

σRµ−λ
k = 1(17)

σ1σ2 · · ·σk = 1.(18)
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We shall assume that this system has a cyclic solution, so we may sub-
stitute σi = σei

1 . Then, Equations (12)-(18) are equivalent to the following
conditions on the exponents (all of the following equations in this case are
taken mod N):

Rµ− λ + λe2 = 0(19)

Rµ + (Rµ− λ)e2 + λe3 = 0(20)

...

Rµ + Rµe2 + · · ·+ Rµek−2 + (Rµ− λ)ek−1 + λek = 0(21)

Rµ + λ + Rµe2 + · · ·+ Rµek−1 + (Rµ− λ)ek = 0(22)

1 + e2 + · · ·+ ek = 0(23)

(22) and (23) imply that λ = λek. Let us set ek = 1, eliminating Equation
(22). Then, using (23), we may pair off (19) and (21) to deduce that λe2 =
λek−1, and we set e2 = ek−1 to eliminate (21). Similarly, we set e3 = ek−2,
and so on. If k is even, we are left with equations:

Rµ− λ + λe2 = 0(24)

Rµ + (Rµ− λ)e2 + λe3 = 0(25)

...

Rµ + Rµe2 + · · ·+ (Rµ− λ)ek/2−1 + λek/2 = 0(26)

Rµ + Rµe2 + · · ·+ (Rµ− λ)ek/2 + λek/2 = 0(27)

2 + 2e2 + · · ·+ 2ek/2 = 0.(28)

If we replace (28) by

1 + e2 + · · ·+ ek/2 = 0(29)

then we may eliminate (27). Then solve for λe2, λ
2e3, . . . , λk/2−1ek/2. By

(29), we have:

λk/2−1 + λk/2−2(λe2) + λk/2−3(λ2e3) + · · ·+ λk/2−1ek/2 = 0.(30)

Substituting our solutions for λe2, λ
2e3 and so on, we get the equation N = 0

for some integer N ; the system has a solution in Z/NZ.
If k is odd, then our reduced system looks like:

Rµ− λ + λe2 = 0(31)

Rµ + (Rµ− λ)e2 + λe3 = 0(32)
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...

Rµ + Rµe2 + · · ·+ (Rµ− λ)e(k−1)/2 + λe(k+1)/2 = 0(33)

Rµ + Rµe2 + · · ·+ (Rµ− λ)e(k+1)/2 + λe(k−1)/2 = 0(34)

2 + 2e2 + · · ·+ 2e(k−1)/2 + e(k+1)/2 = 0.(35)

Adding (33) and (34) gives a multiple of (35), so we may eliminate (34).
Then we solve for λe2, λ

2e3, . . . , λ(k−1)/2e(k+1)/2. By (35), we have:

2λ(k−1)/2 + 2λ(k−3)/2(λe2) + 2λk−5/2(λ2e3) + · · ·
+2λ(λ(k−3)/2e(k−1)/2) + λ(k−1)/2e(k+1)/2 = 0.

And again we get a solution in Z/NZ for some N .
Then, as in Case 3b, M(µ, λ) will have a cover with b1 > 0, provided that

|N | ≥ |λ| and |λ| > 2. Solving for N , if k is even, gives:

N = λk/2−1 + λk/2−2(λ−Rµ) + λk/2−3[(λ−Rµ)2 −Rµλ](36)

+λk/2−4[(λ−Rµ)((λ−Rµ)2 −Rµλ)−Rµλ(λ−Rµ)−Rµλ2] + · · ·
and if k is odd:

N = 2λ(k−1)/2 + 2λ(k−3)/2(λ−Rµ) + 2λ(k−5)/2[(λ−Rµ)2 −Rµλ](37)

+2λ(k−7)/2[(λ−Rµ)((λ−Rµ)2 −Rµλ)−Rµλ(λ−Rµ)−Rµλ2]
+ · · ·+ 1[..].

We are supposing that |Rµ − λ| ≤ 2. So for large µ or λ, Rµ/λ → 1, and
for k even,

N = o[λk/2−1 + λk/2−3(−λ2) + λk/2−4(−λ3) + · · · ]
= o[λk/2−1 − λk/2−1 − λk/2−1 − · · · ].

So if k is even and k ≥ 8, then for all but finitely many µ and λ, |N | > |λ|,
and we are done. Similarly, if k is odd and k ≥ 7, then we are done. In the
remaining cases, |N | is given by:

k = 4, |N | = |Rµ− 2λ|
k = 5, |N | = |(Rµ)2 − 5Rµλ + 5λ2|
k = 6, |N | = |(Rµ)2 − 4Rµλ + 3λ2|.

One may check that each condition is satisfied by only finitely many rela-
tively prime pairs (µ, λ) with |Rµ−λ| ≤ 2. This concludes the proof in Case
4b.

Case 5. n = 7, and |λ| > 1.

Case 5a. 1/|Rµ− λ|+ 1/|λ| < 2/3 and |(Rµ− 2λ)2 − 2λ2| > 2|R|.
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We shall consider covers with σ2 = id, σ3 = σ−1
1 , σ6 = σ−1

5 , and σ7 = σ−1
4

(see Fig. 9a).

σ1

σ

σ

σ

id

σ

2
−1

σ1
−1

6

6
−1

2

b

σ1

σ

σ

σ

σ

−1

σ

id

1
−1

4

5

4

5
−1

a
Figure 9. Two covers for n = 7.

We obtain conditions:

[σ4, σ5] = 1(38)

σRµ−λ
1 = 1(39)

(σ4σ1)λ = 1(40)
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σRµ
4 (σ5σ

−1
4 )λ = 1(41)

(σ4σ5)Rµσ−2λ
5 = 1(42)

(σ1σ4)λ = 1.(43)

Let us also assume for simplicity that σ5 commutes with σ1. Equations (38),
(41) and (42) determine an abelian group A of order |(Rµ− 2λ)2 − 2λ2|; we
must show that σ2

4 is non-trivial in A. The elements σ2
4 and σ5 generate a

subgroup H of A of index at most 2. If σ2
4 = id, then H is cyclic of order

gcd(|λ|, |Rµ−2λ|). Then |(Rµ−2λ)2−2λ2| = |A| ≤ 2|H| = 2gcd(|λ|, |Rµ−
2λ|) = 2gcd(|λ|, |R|) ≤ 2|R|. So if

|(Rµ− 2λ)2 − 2λ2| > 2|R|(44)

then σ2
4 6= id. Therefore, under our hypotheses, the relations generate a

group which is isomorphic to the direct sum of a cyclic group with a hy-
perbolic triangle group. As in the previous cases, we may then find a non-
peripheral fixed class (in rows 3 and 7), and we are done.

However, note that if R = 1, then Equation (44) is false for all (µ, λ)
satisfying

(µ + 2λ)2 − 2λ2 = 1.

This is an example of Pell’s equation, which has infinitely many solutions,
and hence (44) may be false infinitely often.

Case 5b. 1/|Rµ− 2λ|+ 1/|λ| < 2/3 and |(Rµ− λ)2 − 2λ2| > 2|R|.

Let σ3 = id, σ4 = σ−1
2 , σ5 = σ−1

1 , and σ7 = σ−1
6 (see Fig. 9b). The

conditions for a cover are:

[σ1, σ2] = 1(45)

σRµ
1 (σ2σ

−1
1 )λ = 1(46)

(σ1σ2)Rµσ−λ
2 = 1(47)

(σ6σ1)λ = 1(48)

σRµ−2λ
6 = 1(49)

(σ1σ6)λ = 1.(50)

For simplicity, suppose also that σ2 commutes with σ6. Then (45), (46), (47)
determine an abelian group B of order |(Rµ − λ)2 − Rµλ|. If σ2

1 = 1, then
|B| ≤ 2gcd(|λ|, |Rµ − λ|) = 2gcd(|λ|, |R|) ≤ 2|R|. Therefore, in this case,
the group determined by conditions (45)-(50) is again the direct product



VIRTUAL HOMOLOGY OF SURGERED TORUS BUNDLES 221

of an abelian group with a hyperbolic triangle group, and we may find a
non-peripheral fixed class in rows 5 and 7.

Note that Case 5a or 5b applies to all but finitely many surgeries where
|λ| > 1.

This concludes the proof of Theorem 1.3. �

3. Examples.

We begin with the proof of Theorems 1.5 and 1.6 (see Section 1 for notation).

Lemma 3.1. Let g = D5
yD

−1
x and h = DxDy. Then M−h(µ, λ) ∼= Mg(µ, λ−

µ), and Mh2(µ, λ) ∼= M(−h)2(µ, λ + µ) ∼= Mg2(µ, λ− µ).

Proof. Recall that the mapping class group of the once-punctured torus
is isomorphic to SL2(Z), under the identifications Dx → R = [10

1
1 ] and

Dy → L = [11
0
1 ]. Under these identifications, we compute that h has mon-

odromy matrix [21
1
1 ], (−1) has monodromy matrix [−1

0
0
−1 ], and g has mon-

odromy matrix [15
−1
−4 ]. The homeomorphisms h2 and (−h)2 have the same

monodromy matrix, and hence are isotopic. Therefore Mh2
∼= M(−h)2 . Also,

[−1
−2

1
1 ](−RL)[−1

−2
1
1 ]−1 = L5R−1, so g and −h have conjugate monodromy

matrices. It follows that M−h
∼= Mg, and M(−h)2

∼= Mg2 .
It remains to determine the effect of these homeomorphisms on the fram-

ings. Computing the maps on π1(F ) gives:

(−h)2] = (x−1yxy−1)(h2
] )(x

−1yxy−1)−1.

Therefore the isotopy which takes h2 to (−h)2 twists ∂F once in a counter-
clockwise manner, so the induced bundle homeomorphism sends Mh2(µ, λ)
to M(−h)2(µ, λ + µ).

Let f = D2
yD

−1
x . The bundle homeomorphism induced by conjugation

preserves the framing, so M−h(µ, λ) ∼= Mf(−h)f−1(µ, λ). The homeomor-
phisms f(−h)f−1 and g have identical monodromy matrices, and hence
are isotopic. We compute g] = (yx−1y−1x)f(−h)f−1

] (yx−1y−1x)−1 so the
isotopy from f(−h)f−1 to g twists ∂F once in a clockwise manner. The
induced bundle homeomorphism sends Mf(−h)f−1(µ, λ) to Mg(µ, λ− µ). So
M−h(µ, λ) ∼= Mg(µ, λ− µ).

Likewise, Mf(−h)2f−1(µ, λ) ∼= Mg2(µ, λ− 2µ). Thus

Mh2(µ, λ) ∼= M(−h)2(µ, λ + µ) ∼= Mf(−h)2f−1(µ, λ + µ) ∼= Mg2(µ, λ− µ).

�

Proof of Theorem 1.5. This is an immediate consequence of Lemma 3.1 and
Theorem 1.3. �
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Proof of Theorem 1.6. We have M(2µ, λ) ∼= Mh(2µ, λ), which is double cov-
ered by Mh2(µ, λ) ∼= Mg2(µ, λ−µ). So it is enough to show that Mg2(µ, λ−µ)
is virtually Z-representable. By Theorem 1.3, we are done unless

1/| − 2µ− (λ− µ)|+ 1/| − 2µ− 2(λ− µ)|+ 1/|λ− µ| ≥ 1

or, simplifying:

1/|µ + λ|+ 1/|2λ|+ 1/|µ− λ| ≥ 1.(51)

By [B3], M(2µ, λ) is virtually Z-representable if 2µ is divisible by 4; hence
we may assume µ is odd. Also, since gcd(2µ, λ) = 1, we may assume λ is
odd, and, assuming (µ, λ) 6= (±1, 1), |λ| 6= |µ|. It follows that

|µ− λ| ≥ 2(52)

|µ + λ| ≥ 2.(53)

The only simultaneous solutions to inequalities (51), (52) and (53) with
µ and λ odd are: (µ, λ) = ±(−3, 1) and ±(3, 1). So the only possible
exceptions to Theorem 1.6 are M(−6, 1) ∼= M(6, 1) and M(2, 1) ∼= M(−2, 1).
The virtual Z-representability of these manifolds may be verified with either
of the computer programs GAP or Snappea. �

We now turn to the proof of Theorem 1.4.

Proof of Theorem 1.4. Let g and h be as in the statement of Lemma 3.1,
let f = h18, and let i = D2

xD−4
y DxD−4

y Dx. Both h3 and i have monodromy
matrix [13

8
8
5 ]; hence h3 and i are isotopic. By arguments similar to those

used in the proof of Lemma 3.1, we compute that Mh3(µ, λ) ∼= Mi(µ, µ+λ).
Therefore Mf (µ, λ) ∼= Mi6(µ, λ + 6µ). Hence by Theorem 1.3 iii, Mf (µ, λ)
is virtually Z-representable if

1/|6µ− λ|+ 1/|6µ + λ| < 1.(54)

By Lemma 3.1 we have Mf (µ, λ) ∼= Mg18(µ, λ − 9µ). Hence by Theo-
rem 1.3 ii, Mf (µ, λ) is virtually Z-representable if

1/|9µ + λ|+ 1/|2λ|+ 1/|9µ− λ| < 1.(55)

The only simultaneous solutions to the inequalities 54 and 55 have µ =
0. The proof is completed by noting that M(0, 1) has positive first Betti
number, as it is a torus bundle over S1. �

We remark that the same methods may be applied to many other ex-
amples of once-punctured torus bundles, to show that all but finitely many
surgeries are virtually Z-representable. The idea is to start with a mon-
odromy f to which Theorem 1.3 i or ii applies. Since L4 and R generate
a finite-index subgroup of SL2(Z), there exists an integer ` such that f ` is
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isotopic to a g satisfying the hypotheses of Theorem 1.3 iii. Usually The-
orem 1.3 will then imply that all but finitely many surgeries on Mf` are
virtually Z-representable.
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