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RICHARD FRIEDERICH ARENS
(1919–2000)

Richard Friederich Arens, who made fundamental contributions to many
areas of mathematics and mathematical physics, and who was the managing
editor of the Pacific Journal of Mathematics for many years, passed away on
May 3, 2000. His many friends and colleagues from UCLA and the Pacific
Journal mourn his passing away, and remember him as a wonderful human
being, full of charm and wit, serene till the end, and above all, a great master
of mathematics.

Arens was born in Germany in 1919 and emigrated to the United States in
1925. He attended public schools in Pasadena, California and enrolled at the
University of California Los Angeles in 1937. In 1940 Arens won a full schol-
arship to Harvard University by placing first in the national William Lowell
Putnam mathematics competition for college students. After his Ph.D at
Harvard under Garrett Birkhoff, Arens went to the Institute for Advanced
Study at Princeton as an assistant to Marston Morse. In 1947 he joined
the department of mathematics at UCLA. He served with distinction till
his retirement in 1989. His work on functional analysis, on Banach algebras
and their deep connections with several complex variables, on relativistic
particle interactions, on geometric quantization, on Noether currents and
other differential geometric aspects of classical field theories, became widely
known and established him as a mathematician of the first rank.

He became a member of the editorial board of the Pacific Journal in 1965
and was formally named as the managing editor in 1973, a position he held
until 1979. It was during his long stewardship during the years 1965–79 that
the Pacific Journal grew out of its local roots and became an internationally
recognized mathematics journal of distinction and quality. This transforma-
tion of the Pacific Journal was almost entirely due to his broad vision and
the unlimited energy with which he looked after the Journal. Even after he
left the managing editorship his advice was always available for and eagerly
sought after by his successors. His way of running the Journal was relaxed,
but there was no compromise with quality. In his dealings with authors,
referees, editors and others connected with the operation of the Journal, he
was gentle, often humorous, never condescending, and above all, completely
human.

The range and depth of what he knew and understood, not only in math-
ematics but outside of it, were truly astonishing. Yet he wore his distinction
lightly. During the memorial service held at UCLA in June a friend remarked
to me that after we have said everything his personality still remains elusive.
He was truly sui generis.

V. S. Varadarajan
Managing Editor
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K1 OF SEPARATIVE EXCHANGE RINGS AND
C*-ALGEBRAS WITH REAL RANK ZERO

P. Ara, K.R. Goodearl, K.C. O’Meara, and R. Raphael

For any (unital) exchange ring R whose finitely generated
projective modules satisfy the separative cancellation prop-
erty (A ⊕ A ∼= A ⊕ B ∼= B ⊕ B =⇒ A ∼= B), it is shown
that all invertible square matrices over R can be diagonalized
by elementary row and column operations. Consequently, the
natural homomorphism GL1(R) → K1(R) is surjective. In
combination with a result of Huaxin Lin, it follows that for any
separative, unital C*-algebra A with real rank zero, the topo-
logical K1(A) is naturally isomorphic to the unitary group
U(A) modulo the connected component of the identity. This
verifies, in the separative case, a conjecture of Shuang Zhang.

Introduction.

The extent to which matrices over a ring R can be diagonalized is a measure
of the complexity of R, as well as a source of computational information
about R and its free modules. Two natural properties offer themselves as
“best possible”: (1) That an arbitrary matrix can be reduced to a diagonal
matrix on left and right multiplication by suitable invertible matrices, or
(2) that an arbitrary invertible matrix can be reduced to a diagonal one
by suitable elementary row and column operations. The second property
has an immediate K-theoretic benefit, in that it implies that the Whitehead
group K1(R) is a natural quotient of the group of units of R. Our main goal
here is to prove property (2) for exchange rings (definition below) satisfy-
ing a cancellation condition which holds very widely (and conceivably for
all exchange rings). This theorem, when applied to C*-algebras with real
rank zero (also defined below), verifies a conjecture of Shuang Zhang in an
extensive class of C*-algebras.

The class of exchange rings has recently taken on a unifying role for certain
direct sum cancellation problems in ring theory and operator algebra. In
particular, exchange rings encompass both (von Neumann) regular rings
(this is an old and easy observation) on the one hand, and C*-algebras
with real rank zero [3, Theorem 7.2] on the other. Within this class, a
unifying theme for a number of open problems is the property of separative
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262 P. ARA, K.R. GOODEARL, K.C. O’MEARA, AND R. RAPHAEL

cancellation for finitely generated projective modules, namely the condition

A⊕A ∼= A⊕B ∼= B ⊕B =⇒ A ∼= B

(see [2, 3]). For example, if R is a separative exchange ring, then the (K-
theoretic) stable rank of R can only be 1, 2, or∞ [3, Theorem 3.3], and every
regular square matrix over R is equivalent (via multiplication by invertible
matrices) to a diagonal matrix [2, Theorem 2.4]. We prove below that
invertible matrices over separative exchange rings can be diagonalized via
elementary row and column operations. Recently, Perera [25] has applied
our methods to the problem of lifting units modulo an ideal I in a ring R,
assuming that I satisfies non-unital versions of separativity and the exchange
property. In this case, a unit u of R/I lifts to a unit of R if and only if the
class of u in K1(R/I) is in the kernel of the connecting homomorphism
K1(R/I)→ K0(I) [25, Theorem 3.1].

We defer discussion of the C*-algebraic aspects of our results to Section
3, except for the following remark. While earlier uses of the exchange prop-
erty and separativity for C*-algebras can easily be written out in standard
C*-theoretic terms – e.g., with direct sums and isomorphisms of finitely
generated projective modules replaced by orthogonal sums and Murray-von
Neumann equivalences of projections – our present methods do not lend
themselves to such a translation. In particular, although our main C*-
algebraic application may be stated as a diagonalization result for unitary
matrices, all of the steps in our proofs involve manipulations with non-
unitary matrices.

Throughout the paper, we consider only unital rings and C*-algebras. We
reserve the term elementary operation for the row (respectively, column) op-
eration in which a left (respectively, right) multiple of one row (respectively,
column) of a matrix is added to a different row (respectively, column). Sim-
ilarly, we reserve the name elementary matrix for a transvection I + reij
where I is an identity matrix, eij is one of the usual matrix units for some
i 6= j, and r is an element of the base ring. Thus, as usual, an elementary row
(respectively, column) operation on a matrix A corresponds to multiplying
A on the left (respectively, right) by an elementary matrix.

Note that while odd permutation matrices usually cannot be expressed as
products of elementary matrices, certain signed permutation matrices can
be. For example, [

0 1
−1 0

]
=
[
1 1
0 1

] [
1 0
−1 1

] [
1 1
0 1

]
.

In particular, the operation of replacing rows Ri and Rj (respectively,
columns Ci and Cj) with the rows Rj and −Ri (respectively, the columns
Cj and −Ci) can be achieved as a sequence of three elementary operations.
Therefore any entry of a matrix can be moved to any other position by a
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sequence of elementary row and column operations, at the possible expense
of moving other entries and multiplying some by −1.

For any ring R, let En(R) denote the subgroup of GLn(R) generated by
the elementary matrices. If GLn(R) is generated by En(R) together with
the subgroup Dn(R) of invertible diagonal matrices, then R is said to be
a GEn-ring [10, p. 5]. Further, R is a GE-ring provided it is a GEn-ring
for all n. If R is a GEn-ring then En(R) is a normal subgroup of GLn(R),
and so GLn(R) = Dn(R)En(R) = En(R)Dn(R). Of course, this means that
every invertible n×n matrix over a GEn-ring can be diagonalized using only
elementary row (respectively, column) operations.

It is easy to check that all rings with stable rank 1 are GE-rings. Note
that if R is a GE-ring, then the natural homomorphism from GL1(R), the
group of units of R, to K1(R) is surjective. For comparison, we recall the
well-known fact that if R has stable rank d, then the natural map GLd(R)→
K1(R) is surjective (e.g., [12, Theorem 40.42]).

1. Exchange rings and separativity.

Although our notions and results will be right-left symmetric, all modules
considered in this paper will be right modules. A module M over a ring
R has the finite exchange property [11] if for every R-module A and any
decompositions

A = M ′ ⊕N = A1 ⊕ · · · ⊕An

with M ′ ∼= M , there exist submodules A′i ⊆ Ai such that

A = M ′ ⊕A′1 ⊕ · · · ⊕A′n.

(It follows from the modular law that A′i must be a direct summand of Ai

for all i.) It should be emphasized that the direct sums in this definition
are internal direct sums of submodules of A. One advantage of the result-
ing internal direct sum decompositions (as opposed to isomorphisms with
external direct sums) rests on the fact that direct summands with common
complements are isomorphic – e.g., N ∼=

⊕n
i=1A

′
i above since each of these

summands of A has M ′ as a complementary summand.
Following Warfield [29], we say that R is an exchange ring if RR satisfies

the finite exchange property. By [29, Corollary 2], this definition is left-right
symmetric. If R is an exchange ring, then every finitely generated projective
R-module has the finite exchange property (by [11, Lemma 3.10], the finite
exchange property passes to finite direct sums and to direct summands), and
so the endomorphism ring of any such module is an exchange ring. Further,
idempotents lift modulo all ideals of an exchange ring [24, Theorem 2.1,
Corollary 1.3].
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The class of exchange rings is quite large. It includes all semiregular rings
(i.e., rings which modulo the Jacobson radical are (von Neumann) regular
and have idempotent-lifting), all π-regular rings, and more; see [1, 28, 29].
Further, all unital C*-algebras with real rank zero are exchange rings [3,
Theorem 7.2].

The following criterion for exchange rings was obtained independently by
Nicholson and the second author.

Lemma 1.1 ([17, p. 167]; [24, Theorem 2.1]). A ring R is an exchange
ring if and only if for every element a ∈ R there exists an idempotent e ∈ R
such that e ∈ aR and 1− e ∈ (1− a)R.

In the above lemma, it is equivalent to ask that for any a1, a2 ∈ R with
a1R+ a2R = R, there exists an idempotent e ∈ a1R such that 1− e ∈ a2R.
We shall also need the analogous property corresponding to sums of more
than two right ideals:

Lemma 1.2 ([24, Theorem 2.1, Proposition 1.11]). Let R be an exchange
ring. If I1, . . . , In are right ideals of R such that I1 + · · · + In = R, then
there exist orthogonal idempotents e1, . . . , en ∈ R such that e1 + · · ·+ en = 1
and ej ∈ Ij for all j.

We reiterate that a ring R is separative provided the following cancellation
property holds for finitely generated projective right (equivalently, left) R-
modules A and B:

A⊕A ∼= A⊕B ∼= B ⊕B =⇒ A ∼= B.

See [3] for the origin of this terminology and for a number of equivalent
conditions. We shall need the following one:

Lemma 1.3 ([2, Proposition 1.2]; [3, Lemma 2.1]). A ring R is separative
if and only if whenever A,B,C are finitely generated projective right R-
modules such that A⊕C ∼= B ⊕C and C is isomorphic to direct summands
of both An and Bn for some n, then A ∼= B.

Note, in particular, that if R is separative and A,B,C are finitely gen-
erated projective right R-modules, then we can certainly cancel C from
A⊕ C ∼= B ⊕ C whenever A and B are generators in Mod-R.

Separativity seems to hold quite widely within the class of exchange rings;
for instance, it holds for all known classes of regular rings (cf. [3]). In fact,
the existence of non-separative exchange rings is an open problem.

It is clear from either form of the condition that a ring R is separative
in case the finitely generated projective R-modules enjoy cancellation with
respect to direct sums, which in turn holds in case R has stable rank 1. In
fact, for exchange rings, cancellation of finitely generated projective modules
is equivalent to stable rank 1 [31, Theorem 9]. Separativity, however, is much
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weaker than stable rank 1. For example, any regular right self-injective
ring is separative (e.g., [15, Theorem 10.34(b)]), but such rings can have
infinite stable rank – e.g., the ring of all linear transformations on an infinite
dimensional vector space.

2. K1 of separative exchange rings.

We use the notation A .⊕ B to denote that a module A is isomorphic to a
direct summand of a module B.

Lemma 2.1. Let R be an exchange ring and e1, . . . , en ∈ R idempotents.
Then there exists an idempotent e ∈ e1R + · · · + enR such that e1R ≤ eR
and eiR .⊕ eR for all i. In particular, ReR = Re1R+ · · ·+RenR.

Proof. By induction, it suffices to do the case n = 2. Now

R = e1R⊕ (1− e1)R = e2R⊕ (1− e2)R

and e1R has the finite exchange property, so there exist decompositions
e2R = A⊕ B and (1− e2)R = A′ ⊕ B′ such that R = e1R ⊕ A⊕ A′. Then
we can choose an idempotent e ∈ R such that eR = e1R ⊕ A. Obviously
e1R ≤ eR, and since

e1R ∼= R/(A⊕A′) ∼= B ⊕B′,

we have e2R .⊕ A⊕ e1R = eR. �

Corollary 2.2. Let R be an exchange ring and a ∈ R such that RaR = R.
Then there exist idempotents e ∈ aR and f ∈ Ra such that ReR = RfR =
R.

Proof. Write R =
∑n

i=1 xiaR for some xi. By Lemma 1.2, there exist orthog-
onal idempotents g1, . . . , gn ∈ R such that g1 + · · · + gn = 1 and gi ∈ xiaR
for all i. Set gi = xiayi with yi = yigi. Then ei := ayixi is an idempotent in
aR and eiR ∼= giR. By Lemma 2.1, there exists an idempotent e ∈

∑n
i=1 eiR

such that eiR .⊕ eR for all i. Then e ∈ aR and giR .⊕ eR for all i, so all
gi ∈ ReR, and thus ReR = R.

The existence of f follows by symmetry. �

Lemma 2.3. Let R be any ring and A ∈ GLn(R). If A has an idempotent
entry, then A can be reduced by elementary row and column operations to
the form 

1 0 · · · 0
0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗

 .
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Proof. By elementary operations, we can move the idempotent entry, call it
e, into the 1, 1 position. If n = 1, then e is invertible, so e = 1 and we are
done. Now assume that n > 1, and let[

e b2 b3 · · · bn
]

be the first row of A. By elementary column operations, we can subtract ebi
from the i-th entry for each i ≥ 2. Thus, we can assume that b2, . . . , bn ∈
(1− e)R. Since A is invertible, eR+ b2R+ · · ·+ bnR = R, and so it follows
that b2R + · · ·+ bnR = (1− e)R. Hence, by elementary column operations
we can add 1 − e to the first entry. Now we have a 1 in the 1, 1 position,
and the rest is routine. �

Since we shall need to perform a number of operations on the top rows
of invertible matrices, it is convenient to work with the rows alone. Recall
that any row

[
a1 a2 · · · an

]
of an invertible matrix over a ring R is right

unimodular , that is,
∑n

i=1 aiR = R. Elementary column operations apply
to such a row just by viewing it as a 1× n matrix. Such operations amount
to multiplying the row on the right by an elementary matrix. Since our rings
need not be commutative, elementary column operations can only introduce
right-hand coefficients.

Lemma 2.4. Let R be an exchange ring and α =
[
a1 a2 · · · an

]
a right

unimodular row over R. Then α can be transformed by elementary column
operations to a row

[
b1 b2 · · · bn

]
such that R = b1R ⊕ · · · ⊕ bnR and

each bi ∈ aiRai.

Proof. Since
∑n

i=1 aiR = R, Lemma 1.2 gives us orthogonal idempotents
e1, . . . , en ∈ R such that e1 + · · · + en = 1 and ei ∈ aiR for all i, say
ei = airi. By elementary column operations, we can subtract eia1 =
airia1 from the first entry of α for each i ≥ 2. This transforms α to
α′ =

[
e1a1 a2 a3 · · · an

]
. Note that e1 ∈ e1a1R. Thus, we can

repeat the above process for each entry, and transform α′ to the row[
e1a1 e2a2 · · · enan

]
, with entries eiai ∈ aiRai. Moreover, eiaiR = eiR,

and therefore R =
⊕n

i=1 eiaiR. �

Corollary 2.5. Let R be an exchange ring and α =
[
a1 a2 · · · an

]
a

right unimodular row over R, with n ≥ 2. Then α can be transformed by
elementary column operations to a row

[
b1 b2 · · · bn

]
such that Rb1R =

R and bi ∈ aiRai for all i ≥ 2.

Proof. By Lemma 2.4, we may assume that R =
⊕n

i=1 aiR. It follows that
all ai ∈ Rb1 where b1 = a1+· · ·+an (multiply b1 on the left by the orthogonal
idempotents arising from the given decomposition of RR). Thus Rb1R = R.
By elementary column operations, we can add a2, . . . , an to the first entry
of α, and thus transform it to

[
b1 a2 · · · an

]
. �
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Recall that an element x in a ring R is (von Neumann) regular provided
there exists an element y ∈ R such that xyx = x, equivalently, provided xR
is a direct summand of RR. If y can be chosen to be a unit in R, then x is
said to be unit-regular . A regular element x ∈ R is unit-regular if and only
if R/xR ∼= r.ann(x), where r.ann(x) denotes the right annihilator of x in R
(cf. [15, Proof of Theorem 4.1]).

Corollary 2.6. Let R be an exchange ring and α =
[
a1 a2 · · · an

]
a

right unimodular row over R, with n ≥ 2. Then α can be transformed by
elementary column operations to a row

[
c1 c2 · · · cn

]
such that c2 is a

regular element, c2 ∈ Ra2, and c2R = (1 − g)R for an idempotent g with
RgR = R.

Proof. By Corollary 2.5, we may assume that Ra1R = R. By Corollary 2.2,
there exists an idempotent e ∈ a1R such that ReR = R. By elementary
column operations, we can subtract ea2 from the second entry of α, so there
is no loss of generality in assuming that a2 ∈ (1 − e)R. (At this stage,
our current a2 is only a left multiple of the original a2. This is why the
conclusions of the lemma state c2 ∈ Ra2 rather than c2 ∈ a2Ra2.) Now
using Lemma 2.4, we can transform α to a row

[
c1 c2 · · · cn

]
such that

R =
⊕n

i=1 ciR and c2 ∈ a2Ra2. Then c2R = (1− g)R for some idempotent
g, and c2 is regular. Moreover, (1 − g)R = c2R ⊆ a2R ⊆ (1 − e)R and so
Re ⊆ Rg. Therefore RgR = R. �

Lemma 2.7. Let R be an exchange ring and A ∈ GLn(R), with n ≥ 2.
Then A can be transformed by elementary row and column operations to a
matrix whose 1, 1 entry d is regular, with dR = (1− p)R and Rd = R(1− q)
for some idempotents p, q such that RpR = RqR = R.

Proof. By Corollary 2.6, we can assume that the 1, 2 entry of A is a regular
element c such that cR = (1 − g)R for some idempotent g with RgR = R.
With elementary operations, we can move c to the 2, 1 position.

Now apply the transpose of Corollary 2.6 to the first column of A. Thus,
A can be transformed by elementary row operations to a matrix whose 2, 1
entry is a regular element d such that d ∈ cR and Rd = R(1 − q) for some
idempotent q with RqR = R. Since d is regular, dR = (1 − p)R for some
idempotent p. Then (1−p)R ⊆ (1−g)R, whence Rg ⊆ Rp and so RpR = R.

Finally, use elementary operations to move d to the 1, 1 position. �

Theorem 2.8. If R is a separative exchange ring, then R is a GE-ring,
and so the natural homomorphism GL1(R)→ K1(R) is surjective.

Proof. We need to show that R is a GEn-ring for all n. This is trivial for
n = 1, hence we assume, by induction, that n ≥ 2 and R is a GEn−1-ring.
Let A be an arbitrary invertible n× n matrix over R.
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By Lemma 2.7, we may assume that the 1, 1 entry d of A is regular, with
dR = (1 − p)R and Rd = R(1 − q) for some idempotents p, q such that
RpR = RqR = R. We claim that d is unit-regular. Note that because
RpR = RqR = R, the projective modules pR and qR are generators.

Now R = r.ann(d) ⊕ B = dR ⊕ C for some B,C, and we have to prove
that r.ann(d) ∼= C. Since B ∼= dB = dR, we have r.ann(d) ⊕ B ∼= C ⊕ B.
From Rd = R(1 − q), we get r.ann(d) = qR and so r.ann(d) is a generator.
Since C ∼= R/dR ∼= pR, we see that C is a generator too. By Lemma 1.3,
r.ann(d) ∼= C as desired.

The unit-regularity of d gives d = ue for some unit u and idempotent e.
Set

U =


u 0 · · · 0
0 1 · · · 0

. . .
0 0 · · · 1

 ;

then the matrix U−1A has an idempotent entry. By Lemma 2.3, there exist
E,F ∈ En(R) such that

EU−1AF =
[
1 0
0 A′

]
where A′ ∈ GLn−1(R). By our induction hypothesis, A′∈ En−1(R)Dn−1(R).
It follows that

A ∈ Dn(R)En(R)Dn(R)En(R),

and therefore we have shown that R is a GEn-ring. This establishes the
induction step and completes the proof. �

Remarks 2.9. (a) Observe that the proof of Theorem 2.8 did not use the
full force of separativity, only the cancellation property (A⊕C ∼= B⊕C =⇒
A ∼= B) for finitely generated projective R-modules A,B,C with A and B
generators.

(b) Theorem 2.8 includes, in particular, the result of Menal and Moncasi
that every factor ring of a right self-injective ring is a GE-ring [22, Theorem
2.2]. To make the connection explicit, recall that right self-injective rings
are semiregular (e.g., [13, Theorem 2.16, Lemma 2.18]) and hence exchange;
thus, all their factor rings are exchange rings. Further, any right self-injective
ring is separative (e.g., [14, Theorem 3]). It follows that factor rings of right
self-injective rings are separative [3, Theorem 4.2].

(c) As a special case of Theorem 2.8, we obtain that any separative regular
ring is a GE-ring, which gives a partial affirmative answer to a question of
Moncasi [23, Questió 5].
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(d) In the situation of Theorem 2.8, one naturally asks for a description
of the kernel of the epimorphism GL1(R) → K1(R). This has been an-
swered for unit-regular rings and regular right-self-injective rings by Menal
and Moncasi [22, Theorems 1.6, 2.6], and for exchange rings with primitive
factors artinian by Chen and Li [9, Theorem 3]. In all the above cases,
K1(R) ∼= GL1(R)ab provided 1

2 ∈ R [22, Theorems 1.7, 2.6]; [9, Corollary
7]. Further, K1(R) ∼= GL1(R)ab when R is either a C*-algebra with unitary
1-stable range or an AW*-algebra [22, Theorem 1.3, Corollary 2.11] (here
the algebraic K1 is meant). The unit-regular and AW* results correct and
extend earlier work of Handelman [18, Theorem 2.4]; [19, Theorem 7].

Theorem 2.10. If R is a separative exchange ring and A is a
(von Neumann) regular n × n matrix over R, then A can be diagonalized
using elementary row and column operations.

Proof. By [2, Theorem 2.4], there exist P,Q ∈ GLn(R) such that PAQ is
diagonal. By Theorem 2.8, P = U1V1 and Q = V2U2, where U1, U2 ∈ Dn(R)
and V1, V2 ∈ En(R). So V1AV2 is a diagonal matrix obtained from A by
elementary row and column operations. �

Remark 2.11. When applying Theorem 2.10, note the distinction between
invertible matrices and general matrices. An invertible matrix over a separ-
ative exchange ring can be diagonalized from either side (by Theorem 2.8),
whereas the diagonalization of a general regular matrix sometimes requires
elementary operations on both the rows and the columns. For example, the
2× 2 matrix [ 1 1

0 0 ] over a field cannot be diagonalized using only elementary
row operations.

Example 2.12. Non-regular matrices over separative exchange rings need
not be diagonalizable by elementary operations, even over finite dimensional
algebras. For example, choose a field F and let

R = F [x1, x2, x3, x4]/〈x1, x2, x3, x4〉2.
Then R has a basis 1, a1, a2, a3, a4 such that aiaj = 0 for all i, j. Since R is
clearly semiregular, it is an exchange ring; separativity is an easy exercise.
In fact, since R is artinian, it has stable rank 1. Recall that this also implies
that R is a GE-ring. Observe that every element of R is a sum of a scalar
plus a nilpotent element, and that the product of any two nilpotent elements
of R is zero.

Now consider the matrix A = [ a1 a2
a3 a4 ], whose entries are linearly indepen-

dent nilpotent elements of R. We claim that any sequence of elementary
row or column operations on A can only produce a matrix whose entries are
linearly independent nilpotent elements. For instance, consider a product[

1 b
0 1

] [
c11 c12
c21 c22

]
=
[
c11 + bc21 c12 + bc22

c21 c22

]
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where c11, c12, c21, c22 are linearly independent nilpotent elements. Then
b = β+n for some β ∈ F and some nilpotent element n, whence bc21 = βc21
and bc22 = βc22, and so the entries in the matrix product above are linearly
independent (they are clearly nilpotent). The same thing happens with
other elementary operations, establishing the claim.

Therefore no sequence of elementary operations on A can produce a ma-
trix with a zero entry. In particular, A cannot be diagonalized by elementary
operations. Since R is a GE-ring, it follows that A cannot be diagonalized
by invertible matrices either, i.e., there do not exist X,Y ∈ GL2(R) such
that XAY is diagonal. Thus the first of the natural properties discussed in
the introduction is not implied by the second.

3. K1 of separative C*-algebras with real rank zero.

In connection with his work on the structure of multiplier algebras (e.g.,
[32, 33, 34]), Shuang Zhang has conjectured [unpublished] that if A is any
unital C*-algebra with real rank zero, the topological K1(A) is isomorphic
to the unitary group U(A) modulo the connected component of the identity,
U(A)◦. We confirm this conjecture in case A is separative, which at the same
time provides a unified approach to all known cases of the conjecture. The
main interest of Zhang’s conjecture is in the case when the stable rank of A
is greater than 1, since it has long been known that Ktop

1 (A) ∼= U(A)/U(A)◦

for all unital C*-algebras A with stable rank 1 (e.g., this is equivalent to
[26, Theorem 2.10]).

We consider only unital, complex C*-algebras in this section, and we
refer the reader to [4, 30] for background and notation for C*-algebras.
In particular, we use ∼ and . to denote Murray-von Neumann equivalence
and subequivalence of projections, and we write M∞(A) for the (non-unital)
algebra of ω × ω matrices with only finitely many nonzero entries from an
algebra A. We write U(A) for the unitary group of a unital C*-algebra A,
and U(A)◦ for the connected component of the identity in U(A).

In the theory of operator algebras, it is customary to write K1(A) for the
topological K1-group of A (e.g., [4, Definition 8.1.1]; [30, Definition 7.1.1]),
and we shall follow that practice here. Thus, K1(A) = GL∞(A)/GL∞(A)◦.
We then use the notation Kalg

1 (A) to denote the algebraic K1-group of
A. Since Kalg

1 (A) is the abelianization of GL∞(A) (e.g., [27, Proposi-
tion 2.1.4, Definition 2.1.5]) and K1(A) is abelian (e.g., [4, Proposition
8.1.3]; [30, Proposition 7.1.2]), there is a natural surjective homomorphism
Kalg

1 (A) → K1(A). Finally, following Brown [5, p. 116], we say that A
has K1-surjectivity (respectively, K1-injectivity) provided the natural ho-
momorphism U(A)/U(A)◦ → K1(A) is surjective (respectively, injective).
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The concept of real rank zero for a C*-algebra A has a number of equiva-
lent characterizations (see [6]). One is the requirement that each self-adjoint
element of A can be approximated arbitrarily closely by real linear combi-
nations of orthogonal projections. (This is usually phrased as saying that
the set of self-adjoint elements of A with finite spectrum is dense in the set
of all self-adjoint elements.) It was proved in [3, Theorem 7.2] that A has
real rank zero if and only if it is an exchange ring. Hence, the C*-algebras
with real rank zero are exactly the C*-algebras to which our results above
can be applied.

Given a C*-algebra A, all idempotents in matrix algebras Mn(A) are
equivalent to projections (e.g.,[4, Proposition 4.6.2]; [27, Proposition 6.3.12]).
Hence, A is separative if and only if

p⊕ p ∼ p⊕ q ∼ q ⊕ q =⇒ p ∼ q

for projections p, q ∈M∞(A). An equivalent condition (analogous to Lemma
1.3) is that p⊕ r ∼ q⊕ r =⇒ p ∼ q whenever r . n.p and r . n.q for some
n. Separativity in A is equivalent to the requirement that all matrix algebras
Mn(A) satisfy the weak cancellation introduced by Brown and Pedersen [5,
p. 116]; [7, p. 114]. They have shown that every extremally rich C*-algebra
(see [7, p. 125]) with real rank zero is separative ([8], announced in [5, p.
116]). We would like to emphasize the question of whether non-separative
exchange rings exist by focusing on the C* case:

Problem. Is every C*-algebra with real rank zero separative?

By combining Theorem 2.8 with a result of Lin, we obtain the following
theorem.

Theorem 3.1. If A is a separative, unital C*-algebra with real rank zero,
then the natural map U(A)/U(A)◦ → K1(A) is an isomorphism.

Proof. Lin proved K1-injectivity for C*-algebras with real rank zero in [20,
Lemma 2.2]. Hence, it only remains to show K1-surjectivity. It is a standard
fact that U(A) and GL1(A) have the same image in K1(A) (e.g., [4, pp. 66,
67] or [30, Proof of Proposition 4.2.6]). Now the natural map GL1(A) →
K1(A) factors as the composition of natural maps GL1(A) → Kalg

1 (A) →
K1(A), the second of which is surjective. Since A has real rank zero, it is an
exchange ring, and so the map GL1(A)→ Kalg

1 (A) is surjective by Theorem
2.8. Therefore the image of U(A) in K1(A) is all of K1(A), as desired. �
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Brown and Pedersen have proved that every separative, extremally rich
C*-algebra has K1-surjectivity ([8], announced in [5, p. 116]; [7, p. 114]).
Since there are C*-algebras with real rank zero that are not extremally rich
[5, Example, p. 117], Theorem 3.1 can be viewed as a partial extension of
the Brown-Pedersen result within the class of C*-algebras with real rank
zero.

We thank the referee for the following remark.

Remark 3.2. While Theorem 3.1 is neither unexpected nor new in the case
of stable rank 1 (cf. the result of Rieffel cited above), it is perhaps surprising
that there are many C*-algebras of real rank zero and stable rank 2 to which
the theorem applies. To see this, consider C*-algebra extensions

0→ I → A→ B → 0

in which I and B have real rank zero and A is unital. By theorems of
Zhang ([35, Lemma 2.4]; cf. [6, Theorem 3.14]) and Lin and Rørdam [21,
Proposition 4], A has real rank zero if and only if projections lift from B to
A, if and only if the connecting map K0(B)→ K1(I) in topological K-theory
vanishes. In this case, by [3, Theorem 7.5], A will be separative provided I
and B are both separative, and in particular if I and B have stable rank 1.
However, by [21, Proposition 4], if I and B have stable rank 1, then A will
have stable rank 2 provided the connecting map K1(B) → K0(I) does not
vanish. It is easy to find specific extensions satisfying the above conditions,
such as the examples analyzed in [21, End of Section 1] or [16].

We conclude with an application of Theorem 3.1 that extends an argument
of Brown [5, Theorem 1], relating homotopy and unitary equivalence of
projections, to a wider context within real rank zero. Projections p and q
in a C*-algebra A are unitarily equivalent provided there exists a unitary
element u ∈ A such that upu∗ = q; they are homotopic provided there is
a continuous path f : [0, 1] → {projections in A} such that f(0) = p and
f(1) = q. It is a standard fact that homotopic projections are unitarily
equivalent (e.g., [4, Propositions 4.3.3, 4.6.5]; [30, Proposition 5.2.10]).

Theorem 3.3. Let A be a separative, unital C*-algebra with real rank zero,
let p, q ∈ A be projections, and let B = ApA + C · 1. Then p and q are
homotopic in A if and only if q ∈ B and p, q are unitarily equivalent in B.

Proof. If p and q are homotopic in A, they are connected by a path of
projections within A. Each projection along this path is homotopic to p and
hence is unitarily equivalent to p. Thus, these projections all lie in ApA. In
particular, q ∈ B, and p and q are homotopic in B. Consequently, p and q
must be unitarily equivalent in B.

Conversely, assume that q ∈ B and p, q are unitarily equivalent in B. By
[6, Corollary 2.8, Theorem 2.5], the closed ideal I = ApA has real rank zero



K1 OF SEPARATIVE RINGS AND C*-ALGEBRAS 273

(as a non-unital C*-algebra), and so the unital C*-algebras B and pIp have
real rank zero. We do not need separativity for B, just K1-injectivity (by
Lin’s result). Since I is an ideal of A, any projections in M∞(I) which are
(Murray-von Neumann) equivalent in M∞(A) are also equivalent in M∞(I)
(any implementing partial isometry necessarily lies in M∞(I)). Hence, the
separativity of A implies that I is separative, and so pIp is separative.
Therefore, by Theorem 3.1, pIp has K1-surjectivity.

With the above information in hand, Brown’s proof [5, Theorem 1] carries
through in the present setting. We sketch the details for the reader’s conve-
nience. By hypothesis, q = upu∗ for some unitary u ∈ U(B); let α denote the
image of u in K1(B). Now K1(B) = K1(I∼) = K1(I), and because pIp is a
full hereditary sub-C*-algebra of I, the natural map K1(pIp)→ K1(I) is an
isomorphism [5, Remark, p. 117]. Thus α is the image of some β ∈ K1(pIp).
Since pIp has K1-surjectivity, β is the image of some unitary v1 ∈ U(pIp).
Let v = v1 + 1 − p and w = uv∗. Then w is a unitary in B such that
q = wpw∗, and the image of w in K1(B) is zero. Since B has K1-injectivity,
w ∈ U(B)◦, from which it follows that p and q are homotopic. �
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Barcelona, 1984.

[24] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc.,
229 (1977), 269-278.

[25] F. Perera, Lifting units modulo exchange ideals and C*-algebras with real rank zero,
J. Reine Angew. Math., to appear.

[26] M.A. Rieffel, The homotopy groups of the unitary groups of non-commutative tori, J.
Operator Theory, 17 (1987), 237-254.

[27] J. Rosenberg, Algebraic K-Theory and Its Applications, Grad. Texts in Math., 147,
New York, 1994, Springer-Verlag.

[28] J. Stock, On rings whose projective modules have the exchange property, J. Algebra,
103 (1986), 437-453.

[29] R.B. Warfield, Jr., Exchange rings and decompositions of modules, Math. Ann., 199
(1972), 31-36.

[30] N.E. Wegge-Olsen, K-Theory and C*-Algebras, Oxford, 1993, Oxford Univ. Press.

[31] H.-P. Yu, Stable range one for exchange rings, J. Pure Appl. Algebra, 98 (1995),
105-109.

[32] S. Zhang, A Riesz decomposition property and ideal structure of multiplier algebras,
J. Operator Theory, 24 (1990), 204-225.

[33] , Diagonalizing projections in multiplier algebras and in matrices over a C*-
algebra, Pacific J. Math., 145 (1990), 181-200.

[34] , K1-groups, quasidiagonality and interpolation by multiplier projections,
Trans. Amer. Math. Soc., 325 (1991), 793-818.



K1 OF SEPARATIVE RINGS AND C*-ALGEBRAS 275

[35] , Certain C*-algebras with real rank zero and their corona and multiplier al-
gebras, Part I, Pacific J. Math., 155 (1992), 169-197.

Received November 2, 1998 and revised June 25, 1999. The research of the first author
was partially supported by grants from the DGICYT (Spain) and the Comissionat per
Universitats i Recerca de la Generalitat de Catalunya, that of the second by a grant from
the NSF (USA), and that of the fourth by a grant from the NSERC (Canada).

Departament de Matemàtiques
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K1 OF SEPARATIVE EXCHANGE RINGS AND
C*-ALGEBRAS WITH REAL RANK ZERO

P. Ara, K.R. Goodearl, K.C. O’Meara, and R. Raphael

For any (unital) exchange ring R whose finitely generated
projective modules satisfy the separative cancellation prop-
erty (A ⊕ A ∼= A ⊕ B ∼= B ⊕ B =⇒ A ∼= B), it is shown
that all invertible square matrices over R can be diagonalized
by elementary row and column operations. Consequently, the
natural homomorphism GL1(R) → K1(R) is surjective. In
combination with a result of Huaxin Lin, it follows that for any
separative, unital C*-algebra A with real rank zero, the topo-
logical K1(A) is naturally isomorphic to the unitary group
U(A) modulo the connected component of the identity. This
verifies, in the separative case, a conjecture of Shuang Zhang.

Introduction.

The extent to which matrices over a ring R can be diagonalized is a measure
of the complexity of R, as well as a source of computational information
about R and its free modules. Two natural properties offer themselves as
“best possible”: (1) That an arbitrary matrix can be reduced to a diagonal
matrix on left and right multiplication by suitable invertible matrices, or
(2) that an arbitrary invertible matrix can be reduced to a diagonal one
by suitable elementary row and column operations. The second property
has an immediate K-theoretic benefit, in that it implies that the Whitehead
group K1(R) is a natural quotient of the group of units of R. Our main goal
here is to prove property (2) for exchange rings (definition below) satisfy-
ing a cancellation condition which holds very widely (and conceivably for
all exchange rings). This theorem, when applied to C*-algebras with real
rank zero (also defined below), verifies a conjecture of Shuang Zhang in an
extensive class of C*-algebras.

The class of exchange rings has recently taken on a unifying role for certain
direct sum cancellation problems in ring theory and operator algebra. In
particular, exchange rings encompass both (von Neumann) regular rings
(this is an old and easy observation) on the one hand, and C*-algebras
with real rank zero [3, Theorem 7.2] on the other. Within this class, a
unifying theme for a number of open problems is the property of separative
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cancellation for finitely generated projective modules, namely the condition

A⊕A ∼= A⊕B ∼= B ⊕B =⇒ A ∼= B

(see [2, 3]). For example, if R is a separative exchange ring, then the (K-
theoretic) stable rank of R can only be 1, 2, or∞ [3, Theorem 3.3], and every
regular square matrix over R is equivalent (via multiplication by invertible
matrices) to a diagonal matrix [2, Theorem 2.4]. We prove below that
invertible matrices over separative exchange rings can be diagonalized via
elementary row and column operations. Recently, Perera [25] has applied
our methods to the problem of lifting units modulo an ideal I in a ring R,
assuming that I satisfies non-unital versions of separativity and the exchange
property. In this case, a unit u of R/I lifts to a unit of R if and only if the
class of u in K1(R/I) is in the kernel of the connecting homomorphism
K1(R/I)→ K0(I) [25, Theorem 3.1].

We defer discussion of the C*-algebraic aspects of our results to Section
3, except for the following remark. While earlier uses of the exchange prop-
erty and separativity for C*-algebras can easily be written out in standard
C*-theoretic terms – e.g., with direct sums and isomorphisms of finitely
generated projective modules replaced by orthogonal sums and Murray-von
Neumann equivalences of projections – our present methods do not lend
themselves to such a translation. In particular, although our main C*-
algebraic application may be stated as a diagonalization result for unitary
matrices, all of the steps in our proofs involve manipulations with non-
unitary matrices.

Throughout the paper, we consider only unital rings and C*-algebras. We
reserve the term elementary operation for the row (respectively, column) op-
eration in which a left (respectively, right) multiple of one row (respectively,
column) of a matrix is added to a different row (respectively, column). Sim-
ilarly, we reserve the name elementary matrix for a transvection I + reij
where I is an identity matrix, eij is one of the usual matrix units for some
i 6= j, and r is an element of the base ring. Thus, as usual, an elementary row
(respectively, column) operation on a matrix A corresponds to multiplying
A on the left (respectively, right) by an elementary matrix.

Note that while odd permutation matrices usually cannot be expressed as
products of elementary matrices, certain signed permutation matrices can
be. For example, [

0 1
−1 0

]
=
[
1 1
0 1

] [
1 0
−1 1

] [
1 1
0 1

]
.

In particular, the operation of replacing rows Ri and Rj (respectively,
columns Ci and Cj) with the rows Rj and −Ri (respectively, the columns
Cj and −Ci) can be achieved as a sequence of three elementary operations.
Therefore any entry of a matrix can be moved to any other position by a
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sequence of elementary row and column operations, at the possible expense
of moving other entries and multiplying some by −1.

For any ring R, let En(R) denote the subgroup of GLn(R) generated by
the elementary matrices. If GLn(R) is generated by En(R) together with
the subgroup Dn(R) of invertible diagonal matrices, then R is said to be
a GEn-ring [10, p. 5]. Further, R is a GE-ring provided it is a GEn-ring
for all n. If R is a GEn-ring then En(R) is a normal subgroup of GLn(R),
and so GLn(R) = Dn(R)En(R) = En(R)Dn(R). Of course, this means that
every invertible n×n matrix over a GEn-ring can be diagonalized using only
elementary row (respectively, column) operations.

It is easy to check that all rings with stable rank 1 are GE-rings. Note
that if R is a GE-ring, then the natural homomorphism from GL1(R), the
group of units of R, to K1(R) is surjective. For comparison, we recall the
well-known fact that if R has stable rank d, then the natural map GLd(R)→
K1(R) is surjective (e.g., [12, Theorem 40.42]).

1. Exchange rings and separativity.

Although our notions and results will be right-left symmetric, all modules
considered in this paper will be right modules. A module M over a ring
R has the finite exchange property [11] if for every R-module A and any
decompositions

A = M ′ ⊕N = A1 ⊕ · · · ⊕An

with M ′ ∼= M , there exist submodules A′i ⊆ Ai such that

A = M ′ ⊕A′1 ⊕ · · · ⊕A′n.

(It follows from the modular law that A′i must be a direct summand of Ai

for all i.) It should be emphasized that the direct sums in this definition
are internal direct sums of submodules of A. One advantage of the result-
ing internal direct sum decompositions (as opposed to isomorphisms with
external direct sums) rests on the fact that direct summands with common
complements are isomorphic – e.g., N ∼=

⊕n
i=1A

′
i above since each of these

summands of A has M ′ as a complementary summand.
Following Warfield [29], we say that R is an exchange ring if RR satisfies

the finite exchange property. By [29, Corollary 2], this definition is left-right
symmetric. If R is an exchange ring, then every finitely generated projective
R-module has the finite exchange property (by [11, Lemma 3.10], the finite
exchange property passes to finite direct sums and to direct summands), and
so the endomorphism ring of any such module is an exchange ring. Further,
idempotents lift modulo all ideals of an exchange ring [24, Theorem 2.1,
Corollary 1.3].
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The class of exchange rings is quite large. It includes all semiregular rings
(i.e., rings which modulo the Jacobson radical are (von Neumann) regular
and have idempotent-lifting), all π-regular rings, and more; see [1, 28, 29].
Further, all unital C*-algebras with real rank zero are exchange rings [3,
Theorem 7.2].

The following criterion for exchange rings was obtained independently by
Nicholson and the second author.

Lemma 1.1 ([17, p. 167]; [24, Theorem 2.1]). A ring R is an exchange
ring if and only if for every element a ∈ R there exists an idempotent e ∈ R
such that e ∈ aR and 1− e ∈ (1− a)R.

In the above lemma, it is equivalent to ask that for any a1, a2 ∈ R with
a1R+ a2R = R, there exists an idempotent e ∈ a1R such that 1− e ∈ a2R.
We shall also need the analogous property corresponding to sums of more
than two right ideals:

Lemma 1.2 ([24, Theorem 2.1, Proposition 1.11]). Let R be an exchange
ring. If I1, . . . , In are right ideals of R such that I1 + · · · + In = R, then
there exist orthogonal idempotents e1, . . . , en ∈ R such that e1 + · · ·+ en = 1
and ej ∈ Ij for all j.

We reiterate that a ring R is separative provided the following cancellation
property holds for finitely generated projective right (equivalently, left) R-
modules A and B:

A⊕A ∼= A⊕B ∼= B ⊕B =⇒ A ∼= B.

See [3] for the origin of this terminology and for a number of equivalent
conditions. We shall need the following one:

Lemma 1.3 ([2, Proposition 1.2]; [3, Lemma 2.1]). A ring R is separative
if and only if whenever A,B,C are finitely generated projective right R-
modules such that A⊕C ∼= B ⊕C and C is isomorphic to direct summands
of both An and Bn for some n, then A ∼= B.

Note, in particular, that if R is separative and A,B,C are finitely gen-
erated projective right R-modules, then we can certainly cancel C from
A⊕ C ∼= B ⊕ C whenever A and B are generators in Mod-R.

Separativity seems to hold quite widely within the class of exchange rings;
for instance, it holds for all known classes of regular rings (cf. [3]). In fact,
the existence of non-separative exchange rings is an open problem.

It is clear from either form of the condition that a ring R is separative
in case the finitely generated projective R-modules enjoy cancellation with
respect to direct sums, which in turn holds in case R has stable rank 1. In
fact, for exchange rings, cancellation of finitely generated projective modules
is equivalent to stable rank 1 [31, Theorem 9]. Separativity, however, is much
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weaker than stable rank 1. For example, any regular right self-injective
ring is separative (e.g., [15, Theorem 10.34(b)]), but such rings can have
infinite stable rank – e.g., the ring of all linear transformations on an infinite
dimensional vector space.

2. K1 of separative exchange rings.

We use the notation A .⊕ B to denote that a module A is isomorphic to a
direct summand of a module B.

Lemma 2.1. Let R be an exchange ring and e1, . . . , en ∈ R idempotents.
Then there exists an idempotent e ∈ e1R + · · · + enR such that e1R ≤ eR
and eiR .⊕ eR for all i. In particular, ReR = Re1R+ · · ·+RenR.

Proof. By induction, it suffices to do the case n = 2. Now

R = e1R⊕ (1− e1)R = e2R⊕ (1− e2)R

and e1R has the finite exchange property, so there exist decompositions
e2R = A⊕ B and (1− e2)R = A′ ⊕ B′ such that R = e1R ⊕ A⊕ A′. Then
we can choose an idempotent e ∈ R such that eR = e1R ⊕ A. Obviously
e1R ≤ eR, and since

e1R ∼= R/(A⊕A′) ∼= B ⊕B′,

we have e2R .⊕ A⊕ e1R = eR. �

Corollary 2.2. Let R be an exchange ring and a ∈ R such that RaR = R.
Then there exist idempotents e ∈ aR and f ∈ Ra such that ReR = RfR =
R.

Proof. Write R =
∑n

i=1 xiaR for some xi. By Lemma 1.2, there exist orthog-
onal idempotents g1, . . . , gn ∈ R such that g1 + · · · + gn = 1 and gi ∈ xiaR
for all i. Set gi = xiayi with yi = yigi. Then ei := ayixi is an idempotent in
aR and eiR ∼= giR. By Lemma 2.1, there exists an idempotent e ∈

∑n
i=1 eiR

such that eiR .⊕ eR for all i. Then e ∈ aR and giR .⊕ eR for all i, so all
gi ∈ ReR, and thus ReR = R.

The existence of f follows by symmetry. �

Lemma 2.3. Let R be any ring and A ∈ GLn(R). If A has an idempotent
entry, then A can be reduced by elementary row and column operations to
the form 

1 0 · · · 0
0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗

 .
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Proof. By elementary operations, we can move the idempotent entry, call it
e, into the 1, 1 position. If n = 1, then e is invertible, so e = 1 and we are
done. Now assume that n > 1, and let[

e b2 b3 · · · bn
]

be the first row of A. By elementary column operations, we can subtract ebi
from the i-th entry for each i ≥ 2. Thus, we can assume that b2, . . . , bn ∈
(1− e)R. Since A is invertible, eR+ b2R+ · · ·+ bnR = R, and so it follows
that b2R + · · ·+ bnR = (1− e)R. Hence, by elementary column operations
we can add 1 − e to the first entry. Now we have a 1 in the 1, 1 position,
and the rest is routine. �

Since we shall need to perform a number of operations on the top rows
of invertible matrices, it is convenient to work with the rows alone. Recall
that any row

[
a1 a2 · · · an

]
of an invertible matrix over a ring R is right

unimodular , that is,
∑n

i=1 aiR = R. Elementary column operations apply
to such a row just by viewing it as a 1× n matrix. Such operations amount
to multiplying the row on the right by an elementary matrix. Since our rings
need not be commutative, elementary column operations can only introduce
right-hand coefficients.

Lemma 2.4. Let R be an exchange ring and α =
[
a1 a2 · · · an

]
a right

unimodular row over R. Then α can be transformed by elementary column
operations to a row

[
b1 b2 · · · bn

]
such that R = b1R ⊕ · · · ⊕ bnR and

each bi ∈ aiRai.

Proof. Since
∑n

i=1 aiR = R, Lemma 1.2 gives us orthogonal idempotents
e1, . . . , en ∈ R such that e1 + · · · + en = 1 and ei ∈ aiR for all i, say
ei = airi. By elementary column operations, we can subtract eia1 =
airia1 from the first entry of α for each i ≥ 2. This transforms α to
α′ =

[
e1a1 a2 a3 · · · an

]
. Note that e1 ∈ e1a1R. Thus, we can

repeat the above process for each entry, and transform α′ to the row[
e1a1 e2a2 · · · enan

]
, with entries eiai ∈ aiRai. Moreover, eiaiR = eiR,

and therefore R =
⊕n

i=1 eiaiR. �

Corollary 2.5. Let R be an exchange ring and α =
[
a1 a2 · · · an

]
a

right unimodular row over R, with n ≥ 2. Then α can be transformed by
elementary column operations to a row

[
b1 b2 · · · bn

]
such that Rb1R =

R and bi ∈ aiRai for all i ≥ 2.

Proof. By Lemma 2.4, we may assume that R =
⊕n

i=1 aiR. It follows that
all ai ∈ Rb1 where b1 = a1+· · ·+an (multiply b1 on the left by the orthogonal
idempotents arising from the given decomposition of RR). Thus Rb1R = R.
By elementary column operations, we can add a2, . . . , an to the first entry
of α, and thus transform it to

[
b1 a2 · · · an

]
. �
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Recall that an element x in a ring R is (von Neumann) regular provided
there exists an element y ∈ R such that xyx = x, equivalently, provided xR
is a direct summand of RR. If y can be chosen to be a unit in R, then x is
said to be unit-regular . A regular element x ∈ R is unit-regular if and only
if R/xR ∼= r.ann(x), where r.ann(x) denotes the right annihilator of x in R
(cf. [15, Proof of Theorem 4.1]).

Corollary 2.6. Let R be an exchange ring and α =
[
a1 a2 · · · an

]
a

right unimodular row over R, with n ≥ 2. Then α can be transformed by
elementary column operations to a row

[
c1 c2 · · · cn

]
such that c2 is a

regular element, c2 ∈ Ra2, and c2R = (1 − g)R for an idempotent g with
RgR = R.

Proof. By Corollary 2.5, we may assume that Ra1R = R. By Corollary 2.2,
there exists an idempotent e ∈ a1R such that ReR = R. By elementary
column operations, we can subtract ea2 from the second entry of α, so there
is no loss of generality in assuming that a2 ∈ (1 − e)R. (At this stage,
our current a2 is only a left multiple of the original a2. This is why the
conclusions of the lemma state c2 ∈ Ra2 rather than c2 ∈ a2Ra2.) Now
using Lemma 2.4, we can transform α to a row

[
c1 c2 · · · cn

]
such that

R =
⊕n

i=1 ciR and c2 ∈ a2Ra2. Then c2R = (1− g)R for some idempotent
g, and c2 is regular. Moreover, (1 − g)R = c2R ⊆ a2R ⊆ (1 − e)R and so
Re ⊆ Rg. Therefore RgR = R. �

Lemma 2.7. Let R be an exchange ring and A ∈ GLn(R), with n ≥ 2.
Then A can be transformed by elementary row and column operations to a
matrix whose 1, 1 entry d is regular, with dR = (1− p)R and Rd = R(1− q)
for some idempotents p, q such that RpR = RqR = R.

Proof. By Corollary 2.6, we can assume that the 1, 2 entry of A is a regular
element c such that cR = (1 − g)R for some idempotent g with RgR = R.
With elementary operations, we can move c to the 2, 1 position.

Now apply the transpose of Corollary 2.6 to the first column of A. Thus,
A can be transformed by elementary row operations to a matrix whose 2, 1
entry is a regular element d such that d ∈ cR and Rd = R(1 − q) for some
idempotent q with RqR = R. Since d is regular, dR = (1 − p)R for some
idempotent p. Then (1−p)R ⊆ (1−g)R, whence Rg ⊆ Rp and so RpR = R.

Finally, use elementary operations to move d to the 1, 1 position. �

Theorem 2.8. If R is a separative exchange ring, then R is a GE-ring,
and so the natural homomorphism GL1(R)→ K1(R) is surjective.

Proof. We need to show that R is a GEn-ring for all n. This is trivial for
n = 1, hence we assume, by induction, that n ≥ 2 and R is a GEn−1-ring.
Let A be an arbitrary invertible n× n matrix over R.
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By Lemma 2.7, we may assume that the 1, 1 entry d of A is regular, with
dR = (1 − p)R and Rd = R(1 − q) for some idempotents p, q such that
RpR = RqR = R. We claim that d is unit-regular. Note that because
RpR = RqR = R, the projective modules pR and qR are generators.

Now R = r.ann(d) ⊕ B = dR ⊕ C for some B,C, and we have to prove
that r.ann(d) ∼= C. Since B ∼= dB = dR, we have r.ann(d) ⊕ B ∼= C ⊕ B.
From Rd = R(1 − q), we get r.ann(d) = qR and so r.ann(d) is a generator.
Since C ∼= R/dR ∼= pR, we see that C is a generator too. By Lemma 1.3,
r.ann(d) ∼= C as desired.

The unit-regularity of d gives d = ue for some unit u and idempotent e.
Set

U =


u 0 · · · 0
0 1 · · · 0

. . .
0 0 · · · 1

 ;

then the matrix U−1A has an idempotent entry. By Lemma 2.3, there exist
E,F ∈ En(R) such that

EU−1AF =
[
1 0
0 A′

]
where A′ ∈ GLn−1(R). By our induction hypothesis, A′∈ En−1(R)Dn−1(R).
It follows that

A ∈ Dn(R)En(R)Dn(R)En(R),

and therefore we have shown that R is a GEn-ring. This establishes the
induction step and completes the proof. �

Remarks 2.9. (a) Observe that the proof of Theorem 2.8 did not use the
full force of separativity, only the cancellation property (A⊕C ∼= B⊕C =⇒
A ∼= B) for finitely generated projective R-modules A,B,C with A and B
generators.

(b) Theorem 2.8 includes, in particular, the result of Menal and Moncasi
that every factor ring of a right self-injective ring is a GE-ring [22, Theorem
2.2]. To make the connection explicit, recall that right self-injective rings
are semiregular (e.g., [13, Theorem 2.16, Lemma 2.18]) and hence exchange;
thus, all their factor rings are exchange rings. Further, any right self-injective
ring is separative (e.g., [14, Theorem 3]). It follows that factor rings of right
self-injective rings are separative [3, Theorem 4.2].

(c) As a special case of Theorem 2.8, we obtain that any separative regular
ring is a GE-ring, which gives a partial affirmative answer to a question of
Moncasi [23, Questió 5].
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(d) In the situation of Theorem 2.8, one naturally asks for a description
of the kernel of the epimorphism GL1(R) → K1(R). This has been an-
swered for unit-regular rings and regular right-self-injective rings by Menal
and Moncasi [22, Theorems 1.6, 2.6], and for exchange rings with primitive
factors artinian by Chen and Li [9, Theorem 3]. In all the above cases,
K1(R) ∼= GL1(R)ab provided 1

2 ∈ R [22, Theorems 1.7, 2.6]; [9, Corollary
7]. Further, K1(R) ∼= GL1(R)ab when R is either a C*-algebra with unitary
1-stable range or an AW*-algebra [22, Theorem 1.3, Corollary 2.11] (here
the algebraic K1 is meant). The unit-regular and AW* results correct and
extend earlier work of Handelman [18, Theorem 2.4]; [19, Theorem 7].

Theorem 2.10. If R is a separative exchange ring and A is a
(von Neumann) regular n × n matrix over R, then A can be diagonalized
using elementary row and column operations.

Proof. By [2, Theorem 2.4], there exist P,Q ∈ GLn(R) such that PAQ is
diagonal. By Theorem 2.8, P = U1V1 and Q = V2U2, where U1, U2 ∈ Dn(R)
and V1, V2 ∈ En(R). So V1AV2 is a diagonal matrix obtained from A by
elementary row and column operations. �

Remark 2.11. When applying Theorem 2.10, note the distinction between
invertible matrices and general matrices. An invertible matrix over a separ-
ative exchange ring can be diagonalized from either side (by Theorem 2.8),
whereas the diagonalization of a general regular matrix sometimes requires
elementary operations on both the rows and the columns. For example, the
2× 2 matrix [ 1 1

0 0 ] over a field cannot be diagonalized using only elementary
row operations.

Example 2.12. Non-regular matrices over separative exchange rings need
not be diagonalizable by elementary operations, even over finite dimensional
algebras. For example, choose a field F and let

R = F [x1, x2, x3, x4]/〈x1, x2, x3, x4〉2.
Then R has a basis 1, a1, a2, a3, a4 such that aiaj = 0 for all i, j. Since R is
clearly semiregular, it is an exchange ring; separativity is an easy exercise.
In fact, since R is artinian, it has stable rank 1. Recall that this also implies
that R is a GE-ring. Observe that every element of R is a sum of a scalar
plus a nilpotent element, and that the product of any two nilpotent elements
of R is zero.

Now consider the matrix A = [ a1 a2
a3 a4 ], whose entries are linearly indepen-

dent nilpotent elements of R. We claim that any sequence of elementary
row or column operations on A can only produce a matrix whose entries are
linearly independent nilpotent elements. For instance, consider a product[

1 b
0 1

] [
c11 c12
c21 c22

]
=
[
c11 + bc21 c12 + bc22

c21 c22

]



270 P. ARA, K.R. GOODEARL, K.C. O’MEARA, AND R. RAPHAEL

where c11, c12, c21, c22 are linearly independent nilpotent elements. Then
b = β+n for some β ∈ F and some nilpotent element n, whence bc21 = βc21
and bc22 = βc22, and so the entries in the matrix product above are linearly
independent (they are clearly nilpotent). The same thing happens with
other elementary operations, establishing the claim.

Therefore no sequence of elementary operations on A can produce a ma-
trix with a zero entry. In particular, A cannot be diagonalized by elementary
operations. Since R is a GE-ring, it follows that A cannot be diagonalized
by invertible matrices either, i.e., there do not exist X,Y ∈ GL2(R) such
that XAY is diagonal. Thus the first of the natural properties discussed in
the introduction is not implied by the second.

3. K1 of separative C*-algebras with real rank zero.

In connection with his work on the structure of multiplier algebras (e.g.,
[32, 33, 34]), Shuang Zhang has conjectured [unpublished] that if A is any
unital C*-algebra with real rank zero, the topological K1(A) is isomorphic
to the unitary group U(A) modulo the connected component of the identity,
U(A)◦. We confirm this conjecture in case A is separative, which at the same
time provides a unified approach to all known cases of the conjecture. The
main interest of Zhang’s conjecture is in the case when the stable rank of A
is greater than 1, since it has long been known that Ktop

1 (A) ∼= U(A)/U(A)◦

for all unital C*-algebras A with stable rank 1 (e.g., this is equivalent to
[26, Theorem 2.10]).

We consider only unital, complex C*-algebras in this section, and we
refer the reader to [4, 30] for background and notation for C*-algebras.
In particular, we use ∼ and . to denote Murray-von Neumann equivalence
and subequivalence of projections, and we write M∞(A) for the (non-unital)
algebra of ω × ω matrices with only finitely many nonzero entries from an
algebra A. We write U(A) for the unitary group of a unital C*-algebra A,
and U(A)◦ for the connected component of the identity in U(A).

In the theory of operator algebras, it is customary to write K1(A) for the
topological K1-group of A (e.g., [4, Definition 8.1.1]; [30, Definition 7.1.1]),
and we shall follow that practice here. Thus, K1(A) = GL∞(A)/GL∞(A)◦.
We then use the notation Kalg

1 (A) to denote the algebraic K1-group of
A. Since Kalg

1 (A) is the abelianization of GL∞(A) (e.g., [27, Proposi-
tion 2.1.4, Definition 2.1.5]) and K1(A) is abelian (e.g., [4, Proposition
8.1.3]; [30, Proposition 7.1.2]), there is a natural surjective homomorphism
Kalg

1 (A) → K1(A). Finally, following Brown [5, p. 116], we say that A
has K1-surjectivity (respectively, K1-injectivity) provided the natural ho-
momorphism U(A)/U(A)◦ → K1(A) is surjective (respectively, injective).
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The concept of real rank zero for a C*-algebra A has a number of equiva-
lent characterizations (see [6]). One is the requirement that each self-adjoint
element of A can be approximated arbitrarily closely by real linear combi-
nations of orthogonal projections. (This is usually phrased as saying that
the set of self-adjoint elements of A with finite spectrum is dense in the set
of all self-adjoint elements.) It was proved in [3, Theorem 7.2] that A has
real rank zero if and only if it is an exchange ring. Hence, the C*-algebras
with real rank zero are exactly the C*-algebras to which our results above
can be applied.

Given a C*-algebra A, all idempotents in matrix algebras Mn(A) are
equivalent to projections (e.g.,[4, Proposition 4.6.2]; [27, Proposition 6.3.12]).
Hence, A is separative if and only if

p⊕ p ∼ p⊕ q ∼ q ⊕ q =⇒ p ∼ q

for projections p, q ∈M∞(A). An equivalent condition (analogous to Lemma
1.3) is that p⊕ r ∼ q⊕ r =⇒ p ∼ q whenever r . n.p and r . n.q for some
n. Separativity in A is equivalent to the requirement that all matrix algebras
Mn(A) satisfy the weak cancellation introduced by Brown and Pedersen [5,
p. 116]; [7, p. 114]. They have shown that every extremally rich C*-algebra
(see [7, p. 125]) with real rank zero is separative ([8], announced in [5, p.
116]). We would like to emphasize the question of whether non-separative
exchange rings exist by focusing on the C* case:

Problem. Is every C*-algebra with real rank zero separative?

By combining Theorem 2.8 with a result of Lin, we obtain the following
theorem.

Theorem 3.1. If A is a separative, unital C*-algebra with real rank zero,
then the natural map U(A)/U(A)◦ → K1(A) is an isomorphism.

Proof. Lin proved K1-injectivity for C*-algebras with real rank zero in [20,
Lemma 2.2]. Hence, it only remains to show K1-surjectivity. It is a standard
fact that U(A) and GL1(A) have the same image in K1(A) (e.g., [4, pp. 66,
67] or [30, Proof of Proposition 4.2.6]). Now the natural map GL1(A) →
K1(A) factors as the composition of natural maps GL1(A) → Kalg

1 (A) →
K1(A), the second of which is surjective. Since A has real rank zero, it is an
exchange ring, and so the map GL1(A)→ Kalg

1 (A) is surjective by Theorem
2.8. Therefore the image of U(A) in K1(A) is all of K1(A), as desired. �
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Brown and Pedersen have proved that every separative, extremally rich
C*-algebra has K1-surjectivity ([8], announced in [5, p. 116]; [7, p. 114]).
Since there are C*-algebras with real rank zero that are not extremally rich
[5, Example, p. 117], Theorem 3.1 can be viewed as a partial extension of
the Brown-Pedersen result within the class of C*-algebras with real rank
zero.

We thank the referee for the following remark.

Remark 3.2. While Theorem 3.1 is neither unexpected nor new in the case
of stable rank 1 (cf. the result of Rieffel cited above), it is perhaps surprising
that there are many C*-algebras of real rank zero and stable rank 2 to which
the theorem applies. To see this, consider C*-algebra extensions

0→ I → A→ B → 0

in which I and B have real rank zero and A is unital. By theorems of
Zhang ([35, Lemma 2.4]; cf. [6, Theorem 3.14]) and Lin and Rørdam [21,
Proposition 4], A has real rank zero if and only if projections lift from B to
A, if and only if the connecting map K0(B)→ K1(I) in topological K-theory
vanishes. In this case, by [3, Theorem 7.5], A will be separative provided I
and B are both separative, and in particular if I and B have stable rank 1.
However, by [21, Proposition 4], if I and B have stable rank 1, then A will
have stable rank 2 provided the connecting map K1(B) → K0(I) does not
vanish. It is easy to find specific extensions satisfying the above conditions,
such as the examples analyzed in [21, End of Section 1] or [16].

We conclude with an application of Theorem 3.1 that extends an argument
of Brown [5, Theorem 1], relating homotopy and unitary equivalence of
projections, to a wider context within real rank zero. Projections p and q
in a C*-algebra A are unitarily equivalent provided there exists a unitary
element u ∈ A such that upu∗ = q; they are homotopic provided there is
a continuous path f : [0, 1] → {projections in A} such that f(0) = p and
f(1) = q. It is a standard fact that homotopic projections are unitarily
equivalent (e.g., [4, Propositions 4.3.3, 4.6.5]; [30, Proposition 5.2.10]).

Theorem 3.3. Let A be a separative, unital C*-algebra with real rank zero,
let p, q ∈ A be projections, and let B = ApA + C · 1. Then p and q are
homotopic in A if and only if q ∈ B and p, q are unitarily equivalent in B.

Proof. If p and q are homotopic in A, they are connected by a path of
projections within A. Each projection along this path is homotopic to p and
hence is unitarily equivalent to p. Thus, these projections all lie in ApA. In
particular, q ∈ B, and p and q are homotopic in B. Consequently, p and q
must be unitarily equivalent in B.

Conversely, assume that q ∈ B and p, q are unitarily equivalent in B. By
[6, Corollary 2.8, Theorem 2.5], the closed ideal I = ApA has real rank zero
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(as a non-unital C*-algebra), and so the unital C*-algebras B and pIp have
real rank zero. We do not need separativity for B, just K1-injectivity (by
Lin’s result). Since I is an ideal of A, any projections in M∞(I) which are
(Murray-von Neumann) equivalent in M∞(A) are also equivalent in M∞(I)
(any implementing partial isometry necessarily lies in M∞(I)). Hence, the
separativity of A implies that I is separative, and so pIp is separative.
Therefore, by Theorem 3.1, pIp has K1-surjectivity.

With the above information in hand, Brown’s proof [5, Theorem 1] carries
through in the present setting. We sketch the details for the reader’s conve-
nience. By hypothesis, q = upu∗ for some unitary u ∈ U(B); let α denote the
image of u in K1(B). Now K1(B) = K1(I∼) = K1(I), and because pIp is a
full hereditary sub-C*-algebra of I, the natural map K1(pIp)→ K1(I) is an
isomorphism [5, Remark, p. 117]. Thus α is the image of some β ∈ K1(pIp).
Since pIp has K1-surjectivity, β is the image of some unitary v1 ∈ U(pIp).
Let v = v1 + 1 − p and w = uv∗. Then w is a unitary in B such that
q = wpw∗, and the image of w in K1(B) is zero. Since B has K1-injectivity,
w ∈ U(B)◦, from which it follows that p and q are homotopic. �
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ON STEKLOFF EIGENVALUE PROBLEM

Roger Chen and Chiung-Jue Sung

Let (Mn, g) be a smooth compact Riemannian manifold
with boundary ∂M 6= ∅. In this article we discuss the first
positive eigenvalue of the Stekloff eigenvalue problem{

(−∆ + q)u(x) = 0 in M
∂u
∂ν

= λu on ∂M,

where q(x) is a C2 function defined on M, ∂νg is the normal
derivative with respect to the unit outward normal vector
on the boundary ∂M. In particular, when the boundary ∂M
satisfies the “interior rolling R−ball” condition, we obtain a
positive lower bound for the first nonzero eigenvalue in terms
of n, the diameter of M , R, the lower bound of the Ricci
curvature, the lower bound of the second fundamental form
elements, and the tangential derivatives of the second funda-
mental form elements.

1. Introduction.

Let (Mn, g) be a smooth compact Riemannian manifold with boundary
∂M 6= ∅. In local coordinates (x1, x2, . . . , xn), the Riemannian metric is
given by

ds2 =
n∑

i,j=1

gij dx
idxj ,

and the the Laplace operator is defined by

∆ =
1
√
g

n∑
i,j=1

∂

∂xi

(
√
ggij

∂

∂xj

)
,

where (gij) = (gij)−1 and g = det(gij). We consider the following Stekloff
eigenvalue problem:

(1.1)

{
(−∆ + q)u(x) = 0 in M
∂u
∂ν = λu on ∂M,

where q(x) is a C2 function defined on M, ∂νg is the normal derivative
with respect to the unit outward normal vector on the boundary ∂M. More
specifically, we shall find a lower estimate for the first eigenvalue of the

277



278 ROGER CHEN AND CHIUNG-JUE SUNG

problem (1.1) in terms of the dimension of M, the geometrical data of M
and ∂M, and the potential function q.

Problem (1.1) is known as the Stekloff problem as Stekloff first studied
it for bounded plane domains with potential function q ≡ 0, and he found
applications in physics. Also, it is important because the set of eigenvalues
for the Stekloff problem is the same as the set of eigenvalues of the well-
known Dirichlet-Neumann map. Also, it is well-known that when metrics on
manifolds with boundary are conformally deformed, the sign of the Sobolev
quotient Q(M) and Sobolev trace quotient Q(M,∂M) of the manifold M
are important conformal invariants and they can be characterized by the
sign of the first eigenvalue of the problems (see [E]){

Lu+ η1u = 0 in M
Bu = 0 on ∂M,

and {
Lu = 0 in M
Bu = λ1u on ∂M,

respectively, where L = ∆g−
[
(n−2)/4(n−1)

]
Rg is the conformal Laplacian,

B = (∂/∂νg) +
[
(n − 2)/2

]
hg is the boundary operator, hg denotes mean

curvature of the boundary ∂M with respect to νg, and Rg denotes the scalar
curvature on M. Hence, it is natural to study the first eigenvalue of the
associated equation (1.1) without the functions Rg and hg. From the analysis
viewpoint, this problem closely corresponds to the study of the following
Neumann eigenvalue.

(1.2)

{
(−∆ + η1)u(x) = 0 in M
∂u
∂ν = 0 on ∂M.

It is well known that the first nonzero Neumann eigenvalue of the Laplacian
onM will provide an optimal upper estimate for the Poincaré constant and it
is important from an analysis viewpoint to prove the Poincaré inequality on
the manifold M. Therefore, it is interesting to find a positive lower estimate
of the first nonzero eigenvalue, and this has been studied extensively by
many authors. We will simply refer the reader to [B], [Ch], [C], [C-L],
[L1], [L2], [L-T], [L-Y1], [L-Y2], [W] for further references. Analogously,
it is also interesting whether one may obtain a positive estimate for the lower
bound of the first eigenvalue of the problem (1.1).

In a recent paper [E], Escobar generalized problem (1.1) with q ≡ 0 to a
compact manifold (Mn, g) with boundary ∂M. In the two-dimensional case,
if M has nonnegative Gaussian curvature and the geodesic curvature kg of
∂M satisfies kg ≥ k0 > 0, then he proved that the first nonzero eigenvalue λ1

of the Stekloff problem satisfies λ1 ≥ k0. Also, he proved that the equality
holds only for the Euclidean ball of radius k−1

0 . In higher dimensional cases,
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if M has non-negative Ricci curvature then he proved that λ1 >
k0
2 , where

k0 > 0 is a lower bound for the second fundamental form elements of the
boundary. However, the lower bounds in the paper [E] will become zero
if one only assumes nonnegative geodesic curvature on the boundary for
dimension two case or nonnegative second fundamental form elements on
the boundary for higher dimension case.

From the interests of analysis, we shall try to obtain a positive lower
bound for λ1 of the Stekloff problem on a more general class of manifolds.
In particular, we shall follow a similar gradient estimate argument as in [C]
and [W] to prove a quantitative generalization of some results in [E].

Theorem 1.1. Let (Mn, g) be a compact Riemannian manifold with bound-
ary ∂M . Suppose that ∂M satisfies the “interior rolling R−ball” condition.
Let K, H and H̄ be nonnegative constants such that the Ricci curvature
RicM of M is bounded below by −(n− 1)K, the second fundamental form II
of ∂M is bounded below by −H and the absolute value of tangential deriva-
tives of II is bounded by H̄. By choosing R small, and for a = 1 or a = 3, we
have the following estimate for the first eigenvalue λ1 of the Stekloff problem
(1.1).

2(1 + C14)
1
2

2d2(n− 1)2(1 +H)2
exp

[
− 1−

(
1 + C14

) 1
2
](1.3)

≤ λa1
[
8(n− 1) + (n− 1)2(24 + 12H) + 3βmax

{
12n− 8 + 6H,

2(n− 1)
(√

(n− 1)K + (n− 2)KR +
1
R

+ 1
)}

+ β
√

2(n− 1)(96 + 6C1 + 2C4) +
β − 1
β

(
36n+ 28 + 12(n− 1)H

)]
+
[
3β sup |q|+ β

√
2(n− 1)δ sup |∇q| − 2(n− 1) inf q

]
,

where δ > 0 is any constant, C1, C4, C5, C6, are constants depending on n,
K, H, H̄, R, d = diameter of M,

β

β − 1
= exp

[
1 + (1 + C14)

1
2

]
,

C14 = d2(1 +H)2
[
3C5 + C6 + (n− 1)K +

1
2δ

]
,

and they can be explicitly computed.
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Remark. We shall choose the radius R < 1 of the interior rolling ball to
satisfy the following inequalities√

KR tan(R
√
KR) ≤ H

2
+

1
2
,

H√
KR

tan(R
√
KR) ≤ 1

2
,√

(n− 1)K + (n− 2)KR

e2R
√

(n−1)K+(n−2)KR − 1
> H

where KR denotes the upper bound of the radial curvatures in ∂M(R) =
{x ∈M ∪ ∂M |dist(x, ∂M) ≤ R}.

Corollary 1.2. Let (Mn, g) be as in Theorem 1.1 and let q ≡ 0 in (1.1).
By choosing R small, we have

λ1 ≥ C15,(1.4)

for some constant C15, depending on n, K, H, H̄, R, d = diameter of M,
and it can be explicitly computed.

Using the same technique, we may also obtain the following estimate for
η1 in (1.2).

Theorem 1.3. Let (Mn, g) be as in Theorem 1.1. By choosing R small, we
have

η1 ≥ C16,(1.5)

where C16 is a positive constant depending on n, K, H, R, d = diameter of
M and both can be explicitly computed as in (3.13).

Corollary 1.4. Let (Mn, g) be as in Theorem 1.1. Assume that the Ricci
curvature of M is nonnegative, the boundary ∂M is convex. By choosing R
small, we have

η1 ≥
C17

d2
(1.6)

where C17 is a positive constant depending only on n and it can be explicitly
computed as in (3.15).

Acknowledgments. We would like to thank Professor Jiaping Wang for
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was done while the first author was attending a workshop on analysis on
manifolds organized by the IMS at the Chinese University of Hong Kong
from 8 July to 29 July 1998. He would like to express his gratitude to
the organizers Professors Luen-Fai Tam and Tom Wan, and the IMS at the
Chinese University of Hong Kong for their hospitality.
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2. Main Lemma.

We recall the following definition from [C].

Definition 2.1. ∂M is said to satisfy the “interior rolling R-ball” condition

if for each point p ∈ ∂M there is a geodesic ball Bq

(
R

2

)
, centered at q ∈M

with radius R
2 , such that p = Bq(R2 ) ∩ ∂M and Bq(R2 ) ⊂M.

We may modify a gradient estimate method as in [C] and [W] to prove
our main lemma for a positive solution of the problem (1.1). In our case, we
need to define two functions on M by φ(x) = ϕ(r(x)) and ψ(x) = Ψ( r(x)R ),
where r(x) denotes the distance from x ∈M to ∂M and ϕ(r) and Ψ(r) are
nonnegative smooth functions defined on [0,∞) such that

(2.1)

{
ϕ(r) ≤ λ1R if r ∈ [0, R2 )
ϕ(r) = λ1R if r ∈ [R,∞)

and

(2.2)

{
Ψ(r) ≤ H if r ∈ [0, 1

2)
Ψ(r) = H if r ∈ [1,∞)

with

ϕ(0) = 0, 0 ≤ ϕ′(r) ≤ 2λ1, ϕ′(0) = λ1(2.3)

|ϕ′′(r)| ≤ 2λ1, |ϕ′′′(r)| ≤ 2λ1,

and

Ψ(0) = 0, 0 ≤ Ψ ′(r) ≤ 2H,(2.4)

Ψ ′(0) = H, Ψ ′′(r) ≥ −2H.

Letting

w = (1 + φ)u, f = log(1 + φ),

p = −q + |∇f |2 −∆f,

Equation (1.1) for u is transformed into the following equation for w.

(2.5)

{
∆w − 2〈∇f,∇w〉+ pw = 0 in M
∂w
∂ν = 0 on ∂M.

Lemma 2.2. Let (Mn, g) be as in Theorem 1.1. Normalize w such that
1 = supw. For a constant β > 1, we consider the function

(2.6) F (x) = (1 + ψ(x))2
|∇w|2

(β − w)2
.
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Assume that F (x0) = maxx∈M̄ F (x), and choose R small, we have

F (x0) ≤ (1 + ψ)2
[
(2n− 1)θ +

√
(2n− 1)γ
β − 1

]
(2.7)

≤ (1 +H)2
[
2(n− 1)C12 +

√
2(n− 1)C13

β − 1

]
,

where δ > 0 is any constant, and

C1 = (n− 1) max{3H + 1,
√

(n− 1)K + (n− 2)KR}
C2 = max{(3H + 1)2, (n− 1)K + (n− 2)KR}+KR

C3 = e
RC1
n−1

(
H̄ +Re

RC1
n−1 K̄R

)
C4 = max{C2, C3}

C5 =
4H2

R2

C6 =
2(n− 1)H(3H + 1)

R
− 2H

2R2

C7 = 4λ2
1

C8 = λ1 (8λ1 + 6H + 4)

C9 = 2λ1

(√
(n− 1)K + (n− 2)KR +

1
R

+ 1
)

C10 = max{C7 + (n− 1)C8, (n− 1)C9}
C11 = 64λ3

1 + 32λ2
1 + 2λ1(3C1 + C4)

C12 =
[− inf q + C7 + (n− 1)C8]β

β − w
+

(3n+ 13)C7

2(n− 1)

+ C8 + 3C5 + C6 + (n− 1)K +
1
2δ

C13 =
4

n− 1
[
sup |q|2 + C2

10

]
+ δ

[
sup |∇q|2 + C2

11

]
.

Proof. The proof we give may be divided into the following steps.
(1) In Step (1), we determine the location of the maximum point of x0 by

using a maximum principle.
(2) In Step (2), we apply the maximum principle to obtain an inequality

0 ≥ aF (x0)2 − bF (x0)− c

for F (x0), where a > 0, b, c ≥ 0 are constants.
(3) In Step (3), we shall find estimates of b and c which lead to an estimate

of F (x0).



ON STEKLOFF EIGENVALUE PROBLEM 283

Step (1). The point x0 is either a boundary point or an interior point of
M. Suppose that x0 ∈ ∂M, we let {ei} be a local orthonormal frame field of
Mn such that en = ∂

∂ν on ∂M. If we let hij denote the second fundamental
form elements of ∂M, then

0 ≤ ∂F

∂ν
(x0)

=
−2HR |∇w|

2 + 2
∑n−1

i=1 wiwin

(β − w)2

=
−2HR |∇w|

2 − 2
∑n−1

i,j=1 hijwiwj

(β − w)2

≤
−2HR |∇w|

2 + 2H|∇w|2

(β − w)2

< 0,

which is a contradiction, as we may choose R to be smaller than 1. Hence
F (x) cannot attain its maximum at the boundary point. Therefore x0 has
to be an interior point of M.

Step (2). Since F attains its maximum value at an point x0, we have

∇F (x0) = 0(2.8)

∆F (x0) ≤ 0.(2.9)

Note that

∇F ·
(
β − w
1 + ψ

)2

+ F · ∇
(
β − w
1 + ψ

)2

= ∇|∇w|2,(2.10)

and

∆F ·
(
β − w
1 + ψ

)2

+ 2∇F · ∇
(
β − w
1 + ψ

)2

+ F ·∆
(
β − w
1 + ψ

)2

= ∆|∇w|2

which implies that, at x0,

0 ≥ −F (x0)∆
(
β − w
1 + ψ

)2

(x0) + ∆|∇w|2(x0).(2.11)

We may choose an orthonormal frame field {ei} near x0 such that w1(x0) =
|∇w|(x0). Note that |∇w|(x0) 6= 0, otherwise F (x) = F (x0) = 0 for all
x ∈M which is a contradiction.

At x0, Equation (2.8) implies that

|∇w|2
(
− 2wj
β − w

− 2ψj
1 + ψ

)
= 2w1w1j
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for each j = 1, . . . , n. Therefore, at x0, we have

(2.12)

{
w11 = − w2

1
β−w −

w1ψ1

1+ψ

w1j = −w1ψj

1+ψ for j 6= 1.

Using the Ricci identity, wijk−wikj =
∑n

l=1wlRlijk and a direct calculation,
we get

1
2
∆|∇w|2 =

n∑
i,j=1

w2
ij +

n∑
j=1

wj(∆w)j +
n∑

i,j=1

Rijwiwj(2.13)

1
2
F ·∆

(
β − w
1 + ψ

)2

= |∇w|2
[
−∆w
β − w

+
|∇w|2

(β − w)2

+
2〈∇w∇ψ〉

(1 + ψ)(β − w)
− ∆ψ

1 + ψ
+

3|∇ψ|2

(1 + ψ)2

]
.

Substituting (2.13) into (2.11) and using a direct calculation, we have

0 ≥
n∑

i,j=1

w2
ij +

n∑
j=1

wj(∆w)j +
n∑

i,j=1

Rijwiwj − |∇w|2
[
−∆w
β − w

+
|∇w|2

(β − w)2

+
2〈∇w∇ψ〉

(1 + ψ)(β − w)
− ∆ψ

1 + ψ
+

3|∇ψ|2

(1 + ψ)2

]
.

Using (2.5), we have

=
n∑

i,j=1

w2
ij + 2w1

n∑
j=1

(fjwj)1 − w1(pw)1 +R11w1w1 − w2
1

[
pw

β − w

−2f1w1

β − w
+

w2
1

(β − w)2
+

2w1ψ1

(1 + ψ)(β − w)
− ∆ψ

1 + ψ
+ 3

|∇ψ|2

(1 + ψ)2

]
=

n∑
i,j=1

w2
ij + 2w2

1f11 + 2w1

n∑
j=1

fjwj1 − w2
1p− w1wp1 +R11w1w1

− w2
1

[
pw

β − w
− 2f1w1

β − w
+

w2
1

(β − w)2

+
2w1ψ1

(1 + ψ)(β − w)
− ∆ψ

1 + ψ
+ 3

|∇ψ|2

(1 + ψ)2

]
=

n∑
i,j=1

w2
ij −

w4
1

(β − w)2
− 2w3

1ψ1

(1 + ψ)(β − w)

+ 2w1

n∑
j=1

fjwj1 +
2f1w

3
1

β − w
− w1wp1
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− w2
1

[
pw

β − w
+ p− ∆ψ

1 + ψ
+ 3

|∇ψ|2

(1 + ψ)2
− 2f11 −R11

]
=

n∑
i,j=1

w2
ij −

w4
1

(β − w)2
− 2w3

1ψ1

(1 + ψ)(β − w)

+ 2w1

n∑
j=1

fjwj1 +
2f1w

3
1

β − w
− w1wp1

− w2
1

[
pβ

β − w
− ∆ψ

1 + ψ
+ 3

|∇ψ|2

(1 + ψ)2
− 2f11 −R11

]
.

Using (2.12), and the inequality x2 + y2 ≥ 2xy, it is easy to see that

w2
11 −

w4
1

(β − w)2
− 2w1ψ1

(β − w)(1 + ψ)
=

w2
1ψ

2
1

(1 + ψ)2

2f1w
3
1

β − w
+ 2f1w1w11 = −2w2

1f1ψ1

1 + ψ

2
n∑
j=2

w2
1j + 2w1

n∑
j=2

fjw1j ≥ −
w2

1

2

n∑
j=2

f2
j .

Putting these into the above, we have

0 ≥
n∑

i,j=2

w2
ij − p1ww1 +

w2
1ψ

2
1

(1 + ψ)2

(2.14)

− w2
1

[
pβ

β − w
+

1
2

n∑
2

f2
j − 2f11 −

∆ψ
1 + ψ

+
2f1ψ1

1 + ψ
+

2|∇ψ|2

(1 + ψ)2
−R11

]
.

To prove our claim, we shall find an inequality for F (x0) of the form

0 ≥ aF (x0)2 − bF (x0)− c
where a > 0, b, c are nonnegative constants. To obtain the quadratic term of
F (x0) with positive coefficient, we observe that Cauchy-Schwarz inequality
implies that

n∑
i,j=2

w2
ij +

w2
1ψ

2
1

(1 + ψ)2
≥

n∑
j=2

w2
jj +

w2
1ψ

2
1

(1 + ψ)2

≥ 1
n− 1

(w11 −∆w)2 +
w2

1ψ
2
1

(1 + ψ)2
.

Using (2.5), (2.12), and the inequality (x+y)2 ≥ 1
2x

2−y2, the above becomes

=
1

n− 1

(
w2

1

β − w
+
w1ψ1

1 + ψ
+ ∆w

)2

+
w2

1ψ
2
1

(1 + ψ)2
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≥ 1
2(n− 1)

(
w2

1

β − w
+
w1ψ1

1 + ψ

)2

− 1
n− 1

(∆w)2 +
w2

1ψ
2
1

(1 + ψ)2
.

Using the inequality (x+ y)2 ≥ 2(n−1)
2n−1 x

2 − 2(n− 1)y2, the above becomes

≥ 1
2n− 1

(
w4

1

(β − w)2
− w2

1ψ
2
1

(1 + ψ)2

)
− 1
n− 1

(∆w)2 +
w2

1ψ
2
1

(1 + ψ)2

=
1

2n− 1
w4

1

(β − w)2
− 1
n− 1

(∆w)2.

Using (2.5), and the inequality 2(x2 + y2) ≥ (x+ y)2, we get

n∑
i,j=2

w2
ij +

w2
1ψ

2
1

(1 + ψ)2
≥ 1

2n− 1
w4

1

(β − w)2
− 2
n− 1

(
p2w2 + 4f2

1w
2
1

)
.(2.15)

Substituting (2.15) into (2.14), we get

0 ≥ 1
2n− 1

w4
1

(β − w)2
− 2
n− 1

p2w2 − p1ww1 − w2
1

[
pβ

β − w
+

8
n− 1

f2
1

(2.16)

+
1
2

n∑
2

f2
j − 2f11 +

2f1ψ1

1 + ψ
− ∆ψ

1 + ψ
+

2|∇ψ|2

(1 + ψ)2
−R11

]

≥ 1
2n− 1

w4
1

(β − w)2
− 2
n− 1

p2w2 − δ

2
p2
1w

2 − 1
2δ
w2

1 − w2
1

[
pβ

β − w

+
8

n− 1
f2
1 +

1
2

n∑
2

f2
j − 2f11 +

2f1ψ1

1 + ψ
− ∆ψ

1 + ψ
+

2|∇ψ|2

(1 + ψ)2
−R11

]

=
1

2n− 1
w4

1

(β − w)2
−
[

2
n− 1

p2 +
δ

2
p2
1

]
w2 − w2

1

[
pβ

β − w
+

8
n− 1

f2
1

+
1
2

n∑
2

f2
j − 2f11 +

2f1ψ1

1 + ψ
− ∆ψ

1 + ψ
+

2|∇ψ|2

(1 + ψ)2
−R11 +

1
2δ

]
where δ is any positive constant. In order to see that we have almost ob-
tained the desired inequality for F (x0), we shall simplify the notations by
setting

(2.17) θ =
pβ

β − w
+

8
n− 1

f2
1 +

1
2

n∑
2

f2
j

− 2f11 +
2f1ψ1

1 + ψ
− ∆ψ

1 + ψ
+

2|∇ψ|2

(1 + ψ)2
−R11 +

1
2δ
,
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and

γ =
2

n− 1
p2 +

δ

2
p2
1.(2.18)

Also, note that if we set α = w
β−w , then we have

α =
w

β − w
≤ 1
β − w

≤ 1
β − 1

.(2.19)

Multiplying (2.16) through by
(1 + ψ)4

(β − w)2
and using (2.17)-(2.19), we obtain

0 ≥ 1
2n− 1

F 2 − θ(1 + ψ)2F − γ(1 + ψ)4α2.(2.20)

Step (3). In this step, we shall give estimates on θ(1+ψ)2 and γ(1+ψ)4α2

in (2.20). The inequality (2.20) implies that we have

F (x0) ≤ (1 + ψ)2
[

(2n− 1)θ
2

+

√
(2n− 1)2θ2

4
+ (2n− 1)γα2

]
(2.21)

≤ (1 + ψ)2
[
(2n− 1)θ +

√
(2n− 1)γα

]
.

In order to prove our claim, we shall estimate each term in (2.17) and (2.18)
of θ and γ, respectively. Since p = −q+|∇f |2−∆f and f = log(1+φ(r(x))),
we shall need to estimate ∆r and |∇∆r| near the boundary ∂M if we want
to estimate the term |∇p| in γ. Here, we shall first derive some estimates
for ∆r and |∇∆r|. Let {e1, . . . , en} be an orthonormal frame fields of Mn

in a neighborhood ∂M(R) = {x ∈ M ∪ ∂M |r(x) ≤ R} of ∂M such that
en = − ∂

∂ν , where ν is the unit outward normal vector to ∂M. For any
x ∈ ∂M × {r}, where ∂M × {r} = {x ∈ ∂M(R)|r(x) = r}, we have rn = 1,
and ra = 0 for a = 1, . . . , n− 1. When R is sufficiently small, we may write
each point x ∈ ∂M(R) as x = (y, r), where y ∈ ∂M and dist (x, y) = r(x).
A direct calculation shows that

rna = 0, rnn = 0, raa = −haa
for a = 1, . . . , n − 1, where haa is a second fundamental form element of
∂M×{r}. To estimate |∇∆r|, it suffices to obtain estimates of |en(∆r)| and
|ea(∆r)| for a = 1, . . . , n−1. Differentiating raa in the direction of en yields

en(raa) = raan −
n−1∑
b=1

r2ab

= rana +
n∑
l=1

rlRlaan −
n−1∑
b=1

r2ab
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= −
n−1∑
b=1

r2ab −Rnana,

where Rnana denotes the curvature tensor of M. Hence, we have

en(raa) = −
n−1∑
b=1

r2ab −Rnana(2.22)

for each x = (y, r) ∈ ∂M(R). Integrating (2.22) yields

raa(x) = raa(y) +
∫ r

0

(
n−1∑
b=1

r2ab −Rnana

)
(y, t)dt.(2.23)

Let KR and K̄R denote the upper bounds of the radial curvatures and of
the absolute value of covariant derivatives of radial curvatures, respectively,
in ∂M(R), i.e., KR = max {Rnana(x)|x ∈ ∂M(R), 1 ≤ a ≤ n − 1} and
K̄R = max {|Rnana,b(x)| |x ∈ ∂M(R), 1 ≤ a, b ≤ n}. Since the boundary
∂M satisfies the “interior rolling R−ball” condition, its second fundamental
form element II is bounded from above by 1

R and is bounded from below by
hypothesis. We shall follow an index comparison theorem [Wa] to obtain
estimates on raa for a = 1, . . . , n− 1. To apply it, we choose R small as in
[C] such that √

KR tan(R
√
KR) ≤ H

2
+

1
2
,

H√
KR

tan(R
√
KR) ≤ 1

2
,

and √
(n− 1)K + (n− 2)KR

e2R
√

(n−1)K+(n−2)KR − 1
> H.

Using an index comparison theorem, we have

raa ≥ −
H +

√
KR tan(R

√
KR)

1− H√
KR

tan(R
√
KR)

(2.24)

≥ −(3H + 1),

and if we set κ =
√

(n− 1)K + (n− 2)KR we have

raa ≤
κ
[(
e2κr(x) − 1

)
κ+

(
e2κr(x) + 1

)
1
R

](
e2κr(x) + 1

)
κ+

(
e2κr(x) − 1

)
1
R

(2.25)

≤
κ
[(
e2κR + 1

)
κR+

(
e2κR + 1

)](
e2κr(x) + 1

)
R

≤ κ+
1
R

=
√

(n− 1)K + (n− 2)KR +
1
R
,
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for a = 1, . . . , n− 1. Hence, we have

|∆r| ≤ (n− 1) max{3H + 1,
√

(n− 1)K + (n− 2)KR}(2.26)
= C1.

Combining (2.22), (2.24), and (2.25), we have

|en(∆r)| ≤ max{(3H + 1)2, (n− 1)K + (n− 2)KR}+KR(2.27)
= C2.

Differentiating (2.23), we get

raa,b(y, r) = raa,b(y, 0) +
∫ r

0

(
2
n−1∑
c=1

racrac,b −Rnana,b

)
(y, t)dt(2.28)

for b = 1, . . . , n − 1. We may assume that raa for a = 1, . . . , n − 1 denotes
an eigenvalue for the Hessian of r. Differentiating (2.28) with respect to r
and solving the first order differential equation

raa,b(y, r) = 2raaraa,b(y, r)−Rnana,b(y, r),
we have

|eb(∆r)|(x) ≤ e
RC1
n−1

(
H̄ +Re

RC1
n−1 K̄R

)
(2.29)

= C3.

Combining (2.26) and (2.29), we have

|∇∆r|(x) ≤ max{C2, C3}(2.30)
= C4.

We are now ready to give estimates for θ, γ in (2.17) and (2.18). Note that it
suffices to find estimates for terms |∇ψ| = Ψ ′, ∆ψ, |∇f |2 = |∇ log(1 + φ)|2,
fjj , p = −q + |∇f |2 − ∆f, and |∇p|. In the following, we shall give an
estimate for each of these terms. From the definition of ψ and (2.24), it is
easy to see that

|∇ψ|2 =
1
R2

Ψ ′
2 ≤ 4H2

R2
= C5(2.31)

and

∆ψ =
1
R
Ψ ′∆r +

1
R2

Ψ ′′|∇r|2(2.32)

≥ −2(n− 1)H(3H + 1)
R

− 2H
2R2

= −C6.

For the terms |∇f |2 = |∇ log(1 + φ)|2 and fjj , we apply (2.24), (2.25) to
obtain

|∇f |2 = |∇ log(1 + φ)|2 =
ϕ′

2

(1 + φ)2
≤ 4λ2

1 = C7,(2.33)
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fjj =
ϕ′rjj

(1 + φ)2
+

ϕ′′r2j
(1 + φ)2

−
2ϕ′

2
r2j

(1 + φ)3
(2.34)

≥ −2λ1(3H + 1)− 2λ1 − 8λ2
1

= −λ1 (8λ1 + 6H + 4) = −C8,

and

fjj ≤ 2λ1

(√
(n− 1)K + (n− 2)KR +

1
R

)
+ 2λ1(2.35)

= 2λ1

(√
(n− 1)K + (n− 2)KR +

1
R

+ 1
)

= C9.

For the term p = −q + |∇f |2 −∆f, we use (2.32)-(2.35) to get

p = −q + |∇f | −∆f ≤ − inf q + C7 + (n− 1)C8,(2.36)

p = −q + |∇f |2 −∆f ≥ − sup q − (n− 1)C9.(2.37)

Combining (2.36), (2.37), we get that

|p| ≤ sup |q|+ max{C7 + (n− 1)C8, (n− 1)C9} = sup |q|+ C10.(2.38)

For the term |∇p|, we note that

∇p = −∇q +∇

[
ϕ′

2

(1 + φ)2

]
−∇

[
ϕ′∆r

(1 + φ)2
+

ϕ′′

(1 + φ)2
− 2ϕ′

2

(1 + φ)3

]

= −∇q +
2ϕ′ϕ′′∇r
(1 + φ)2

− 2ϕ′
2∇r

(1 + φ)3
− ϕ′′∆r

(1 + φ)2
− ϕ′∇∆r

(1 + φ)2
+

2ϕ′∆r∇r
(1 + φ)3

− ϕ′′′∇r
(1 + φ)2

+
2ϕ′ϕ′′∇r
(1 + φ)3

+
4ϕ′ϕ′′∇r
(1 + φ)3

− 6ϕ′
3∇r

(1 + φ)4
.

Hence, we use (2.26)and (2.30) to get

|∇p| ≤ 64λ3
1 + 32λ2

1 + 2λ1(3C1 + C4) + sup |∇q| = C11 + sup |∇q|.(2.39)

Note that each constant C7, . . . , C11 contains a factor λ1. Combining esti-
mates (2.24)-(2.26) and (2.30)-(2.39), we have estimates for θ and γ.

θ =
pβ

β − w
+

8
n− 1

f2
1 +

1
2

n∑
2

f2
j

(2.40)

− 2f11 +
2f1ψ1

1 + ψ
− ∆ψ

1 + ψ
+

2|∇ψ|2

(1 + ψ)2
−R11 +

1
2δ

≤ [− inf q + C7 + (n− 1)C8]β
β − 1

+
(

8
n− 1

+
1
2

)
C7 + C8 + f2

1 +
ψ2

1

(1 + ψ)2

+
C6

1 + ψ
+

2C5

(1 + ψ)2
+ (n− 1)K +

1
2δ
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≤ [− inf q + C7 + (n− 1)C8]β
β − 1

+
(3n+ 13)C7

2(n− 1)

+ C8 + 3C5 + C6 + (n− 1)K +
1
2δ

= C12,

and

γ =
2

n− 1
p2 +

δ

2
p2
1(2.41)

≤ 4
n− 1

[
sup |q|2 + C2

10

]
+ δ

[
sup |∇q|2 + C2

11

]
= C13.

Finally, we may substitute (2.40), (2.41) into (2.21) to obtain

F (x0) ≤ (1 + ψ)2
[
(2n− 1)θ +

√
(2n− 1)γ
β − 1

]

≤ (1 +H)2
[
2(n− 1)C12 +

√
2(n− 1)C13

β − 1

]
.

This completes the proof of Lemma 2.2. �

3. Proof.

In this section, we shall utilize Lemma 2.2 to give a proof to Theorem 1.1,
1.3 and Corollary 1.2, 1.4.

Proof of Theorem 1.1. Using (2.7), we have

F (x) ≤ (1 + ψ)2
[
(2n− 1)θ +

√
(2n− 1)γ
β − 1

]

≤ (1 +H)2
[
2(n− 1)C12 +

√
2(n− 1)C13

β − 1

]
for any x ∈M ∪ ∂M. This implies that

|∇w|
β − w

≤ (1 +H)

[
2(n− 1)C12 +

√
2(n− 1)C13

β − 1

] 1
2

.(3.1)

Let x1, x2 be two points in M such that w(x1) = 0, w(x2) = supw = 1, and
let γ ⊂M be a minimal geodesic joining from x1 to x2. Then we have

log
β

β − 1
≤
∫
γ

|∇w|
β − w

(3.2)

≤ (1 +H)

[
2(n− 1)C12 +

√
2(n− 1)C13

β − 1

] 1
2

d



292 ROGER CHEN AND CHIUNG-JUE SUNG

where d denotes the diameter of M. Recall that constants C1, . . . , C6 do not
depend on λ1. We shall group them together. Hence, we have

1
d2(1 +H)2

(
log

β

β − 1

)2

(3.3)

≤ 2(n− 1)C12 +

√
2(n− 1)C13

β − 1

=
2(n− 1)β [− inf q + C7 + (n− 1)C8]

β − 1
+ (3n+ 13)C7

+ 2(n− 1)C8 + 2(n− 1)
[
3C5 + C6 + (n− 1)K +

1
2δ

]
+

8
[
sup |q|2 + C2

10

]
+ 2(n− 1)δ

[
sup |∇q|2 + C2

11

]
β − 1

≤
[
2(n− 1)β
β − 1

+ (3n+ 13)
]
C7 +

[
2(n− 1)2β
β − 1

+ (2n− 1)
]
C8

+
3C10

β − 1
+

√
2(n− 1)δC11

β − 1
+

3 sup |q|
β − 1

+

√
2(n− 1)δ sup |∇q|

β − 1

− 2(n− 1)β inf q
β − 1

+ 2(n− 1)
[
3C5 + C6 + (n− 1)K +

1
2δ

]
.

Multiplying (3.3) through by β−1
β , we have

β − 1
d2β(1 +H)2

(
log

β

β − 1

)2

(3.4)

≤
[
2(n− 1) +

(β − 1)(3n+ 13)
β

]
C7 +

[
2(n− 1)2 +

2(β − 1)(n− 1)
β

]
C8

+ 3βC10 + β
√

2(n− 1)δC11 + 3β sup |q|+ β
√

2(n− 1)δ sup |∇q|

− 2(n− 1) inf q + 2(n− 1)
β − 1
β

[
3C5 + C6 + (n− 1)K +

1
2δ

]
≤
[
2(n− 1)C7 + 2(n− 1)2C8 + 3βC10 + β

√
2(n− 1)δC11

]
+
β − 1
β

[(3n+ 13)C7 + 2(n− 1)C8]

+
[
3β sup |q|+ β

√
2(n− 1)δ sup |∇q| − 2(n− 1) inf q

]
+

2(n− 1)(β − 1)
β

[
3C5 + C6 + (n− 1)K +

1
2δ

]
.

To finish the proof, we shall estimate constants C7, . . . , C11 in terms of λ1.
Since we have either λ1 ≥ λ3

1 or λ3
1 ≥ λ1, we define a to be the number such
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that

λa = max{λ1, λ
3
1}.(3.5)

Using the definitions of the constants C7, . . . , C11 in Lemma 2.2, we have

C7 = 4λ2
1 ≤ 4λa1

(3.6)

C8 = λ1 (8λ1 + 6H + 4) ≤ (12 + 6H)λa1

C9 = 2λ1

(√
(n− 1)K + (n− 2)KR +

1
R

+ 1
)

≤ 2λa1

(√
(n− 1)K + (n− 2)KR +

1
R

+ 1
)

C10 = max{C7 + (n− 1)C8, (n− 1)C9}

≤ λa1 max
{
12n− 8 + 6H, 2(n−1)

(√
(n−1)K+(n− 2)KR +

1
R

+ 1
)}

C11 = 64λ3
1 + 32λ2

1 + 2λ1(3C1 + C4) ≤ λa1(96 + 6C1 + 2C4).

Substituting these into (3.4), we get

β − 1
d2β(1 +H)2

(
log

β

β − 1

)2

(3.7)

− 2(n− 1)(β − 1)
β

[
3C5 + C6 + (n− 1)K +

1
2δ

]
≤
[
2(n− 1)C7 + 2(n− 1)2C8 + 3βC10 + β

√
2(n− 1)δC11

]
+
β − 1
β

[(3n+ 13)C7 + 2(n− 1)C8]

+
[
3β sup |q|+ β

√
2(n− 1)δ sup |∇q| − 2(n− 1) inf q

]
≤ λa1

[
8(n− 1) + (n− 1)2(24 + 12H) + 3βmax

{
12n− 8 + 6H,

2(n− 1)
(√

(n− 1)K + (n− 2)KR +
1
R

+ 1
)}

+ β
√

2(n− 1)(96 + 6C1 + 2C4) +
β − 1
β

(
36n+ 28 + 12(n− 1)H

)]
+
[
3β sup |q|+ β

√
2(n− 1)δ sup |∇q| − 2(n− 1) inf q

]
.
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It is clear that the term

β − 1
d2β(1 +H)2

(
log

β

β − 1

)2

− 2(n− 1)(β − 1)
β

[
3C5 + C6 + (n− 1)K +

1
2δ

]
in (3.7) can be made to be positive by choosing β sufficiently close to 1. It
is easy to see that this term attains maximum value with

β

β − 1
= exp

[
1 + (1 + C14)

1
2

]
,(3.8)

where

C14 = 2d2(n− 1)2(1 +H)2
[
3C5 + C6 + (n− 1)K +

1
2δ

]
.(3.9)

Putting this into (3.7), we have

2(1 + C14)
1
2

d2(1 +H)2
exp

[
−1−

(
1 + C14

) 1
2

](3.10)

≤ λa1
[
8(n− 1) + (n− 1)2(24 + 12H) + 3βmax

{
12n− 8 + 6H,

2(n− 1)
(√

(n− 1)K + (n− 2)KR +
1
R

+ 1
)}

+ β
√

2(n− 1)(96 + 6C1 + 2C4) +
β − 1
β

(
36n+ 28 + 12(n− 1)H

)]
+
[
3β sup |q|+ β

√
2(n− 1)δ sup |∇q| − 2(n− 1) inf q

]
.

This completes the proof of Theorem 1.1. �

The proof for Corollary 1.2 is immediate by setting q = 0 in (3.10).

Proof of Theorem 1.3. In this case q = −η1 λ1 = 0, then we have φ(x) ≡
f(x) ≡ 0. Hence, the proof of Lemma 2.2 will be simplified by setting con-
stants C7, . . . , C11, and δ to be zero. Then (3.2) will take the form

log
β

β − 1
≤ (1 +H)

[
2(n− 1)C12 +

√
2(n− 1)C13

β − 1

] 1
2

d(3.11)

with

C12 =
η1β

β − 1
+ 2C5 + C6 + (n− 1)K(3.12)

C13 =
4η2

1

n− 1
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where C5, C6 are constants given in Lemma 2.2. Following the argument as
in the proof of Theorem 1.1, we obtain

2(1 + C14)
1
2

d2(1 +H)2
exp

[
−1−

(
1 + C14

) 1
2

]
≤ η1

[
2(n− 1) +

√
8β
]

(3.13)

where

C14 = 2d2(n− 1)(1 +H)2[2C5 + C6 + (n− 1)K]

β =
C14

C14 − 1
.(3.14)

�

When the Ricci curvature is nonnegative, the boundary is convex, q =
−η1, and λ = 0, it is easy to see that C5 = C6 = 0 and K = H = 0.
Therefore, one may apply (3.12) to obtain

e
1
2

4d2
≤ η1

[
2(n− 1) +

√
8β
]

(3.15)

where

β =
e

1
2

e
1
2 − 1

.(3.16)
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BIQUANTIZATION OF LIE BIALGEBRAS

Christian Kassel and Vladimir Turaev

For any finite-dimensional Lie bialgebra g, we construct
a bialgebra Au,v(g) over the ring C[u][[v]], which quantizes
simultaneously the universal enveloping bialgebra U(g), the
bialgebra dual to U(g∗), and the symmetric bialgebra S(g).
Following Turaev, we call Au,v(g) a biquantization of S(g). We
show that the bialgebra Au,v(g∗) quantizing U(g∗), U(g)∗, and
S(g∗) is essentially dual to the bialgebra obtained from Au,v(g)
by exchanging u and v. Thus, Au,v(g) contains all informa-
tion about the quantization of g. Our construction extends
Etingof and Kazhdan’s one-variable quantization of U(g).

Résumé. Etant donné une bigèbre de Lie g de dimension finie, nous con-
struisons une C[u][[v]]-bigèbre Au,v(g) qui quantifie simultanément la bigèbre
enveloppante U(g), la bigèbre duale de U(g∗) et la bigèbre symétrique S(g).
Suivant Turaev, nous appelons Au,v(g) une biquantification de S(g). Nous
montrons que la bigèbre Au,v(g∗) qui quantifie U(g∗), U(g)∗ et S(g∗) est en
dualité avec la bigèbre obtenue à partir de Au,v(g) en échangeant u et v. La
bigèbre Au,v(g) contient ainsi toutes les informations sur la quantification
de g. Notre construction généralise la quantification en une variable de U(g)
par Etingof et Kazhdan.

Introduction.

The notion of a Lie bialgebra was introduced by Drinfeld [Dri82], [Dri87] in
the framework of his algebraic formalism for the quantum inverse scattering
method. A Lie bialgebra is a Lie algebra g provided with a Lie cobracket g→
g⊗g which is related to the Lie bracket by a certain compatibility condition.
The notion of a Lie bialgebra is self-dual: If g is a finite-dimensional Lie
bialgebra over a field, then the dual g∗ is also a Lie bialgebra.

Drinfeld raised the question of quantizing Lie bialgebras (see loc. cit.
and [Dri92]). For any Lie bialgebra g, its universal enveloping algebra U(g)
is a co-Poisson bialgebra. The quantization problem for g consists in find-
ing a (topological) bialgebra structure on the module of formal power se-
ries U(g)[[h]] which induces the given bialgebra structure and Poisson co-
bracket on U(g) = U(g)[[h]]/(h). This problem is solved in the theory of

297
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quantum groups for certain semisimple g. Recently, P. Etingof and D. Kazh-
dan [EK96] quantized an arbitrary Lie bialgebra g over a field C of charac-
teristic zero. Their construction is based on a delicate analysis of Drinfeld
associators.

Besides U(g), there are other Poisson and co-Poisson bialgebras associated
with a Lie bialgebra g. One can consider, for instance, the (appropriately
defined) Poisson bialgebra U(g)∗ dual to U(g), as well as similar bialgebras
U(g∗), U(g∗)∗ associated with g∗. Note also that the symmetric algebra
S(g) =

⊕
n≥0 S

n(g) is a bialgebra with Poisson bracket and cobracket ex-
tending the Lie bracket and cobracket in g. The Etingof-Kazhdan theory
provides us with quantizations of U(g) and U(g∗) in the category of topo-
logical bialgebras. It is essentially clear that, taking the dual bialgebras, we
obtain quantizations of U(g)∗ and U(g∗)∗. The bialgebras S(g) and S(g∗)
stay apart and need to be considered separately. At this point, the relation-
ship between all these bialgebras and their quantizations looks a little messy
and needs clarification.

The aim of our paper is to sort out and unify these quantizations. We
shall show that there is a bialgebra A(g) quantizing simultaneously U(g),
U(g∗)∗, and S(g). Moreover, the bialgebra A(g∗) quantizing U(g∗), U(g)∗,
S(g∗) is essentially dual to A(g). Thus, we can view A(g) as a “master”
bialgebra containing all information about the quantization of g.

To formalize our results, we appeal to the notion of biquantization in-
troduced in [Tur89], [Tur91]. It was inspired by a topological study of
skein classes of links in the cylinder over a surface. The idea consists in in-
troducing two independent quantization variables, u and v, responsible for
the quantization of multiplication and comultiplication, respectively. Let us
illustrate this idea with the following construction. Let A be a bialgebra
over the ring of formal power series C[[u, v]]. Assume that A is topologi-
cally free as a C[[u, v]]-module, commutative modulo u, and cocommutative
modulo v. It is clear that A/uA is a commutative bialgebra with Poisson
bracket

{pu(a), pu(b)} = pu

(ab− ba
u

)
,

where a, b ∈ A and pu : A→ A/uA is the projection. The morphism pu is a
quantization of the Poisson bialgebra A/uA. Similarly, the comultiplication
∆ in A induces on A/vA the structure of a cocommutative bialgebra with
Poisson cobracket

δ(pv(a)) = (pv⊗pv)
(∆(a)−∆op(a)

v

)
,

where a ∈ A and pv : A → A/vA is the projection. The morphism
pv : A → A/vA is a quantization of the co-Poisson bialgebra A/vA. By
similar formulas, the quotient A/(u, v) = A/(uA+vA) acquires both a Pois-
son bracket and a Poisson cobracket, and becomes a bi-Poisson bialgebra.
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The projections of A/uA and A/vA onto A/(u, v) quantize the comultipli-
cation and the multiplication in A/(u, v), respectively. We sum up these
observations in the following commutative diagram of projections

(0.1)

A −−−→ A/uAy y
A/vA −−−→ A/(u, v)

called a biquantization square. This square involves four bialgebras and
four bialgebra morphisms quantizing either the multiplication or the comul-
tiplication in their targets. The bialgebra A appears as the summit of the
square, quantizing three other bialgebras. We say that A is a biquantization
of the bi-Poisson bialgebra A/(u, v). The notion of a biquantization allows
us to combine four quantizations of three bialgebras in a single bialgebra.
Note that instead of the ring C[[u, v]] one can use subrings containing u
and v. In this paper, as a ground ring for biquantization, we use the ring
C[u][[v]] consisting of the formal power series in v with coefficients in the
ring of polynomials C[u].

Our main result is that, for any finite-dimensional Lie bialgebra g over
a field C of characteristic zero, the bi-Poisson bialgebra S(g) admits a bi-
quantization. More precisely, we construct a topological C[u][[v]]-bialgebra
Au,v(g) biquantizing S(g). Specifically, Au,v(g) is free as a topological
C[u][[v]]-module, is commutative modulo u and cocommutative modulo v,
and Au,v(g)/(u, v) = S(g) as bi-Poisson bialgebras. This gives us a biquan-
tization square (0.1) with A = Au,v(g).

Our second result computes the left-bottom corner A/vA of the biquan-
tization square (0.1), where A = Au,v(g). Consider the C[u]-algebra Vu(g)
defined in the same way as the universal enveloping algebra U(g), except
that the identity xy − yx = [x, y] is replaced by xy − yx = u[x, y], where
x, y ∈ g. We view Vu(g) as a parametrized version of U(g); note that
Vu(g)/(u − 1) = U(g). Similarly to U(g), we provide Vu(g) with the struc-
ture of a co-Poisson bialgebra. We prove that Au,v(g)/vAu,v(g) = Vu(g)
as co-Poisson bialgebras. According to the remarks above, the projection
Au,v(g) → Au,v(g)/vAu,v(g) = Vu(g) is a quantization of Vu(g). This is a
refined version of the Etingof-Kazhdan quantization of U(g). Indeed, quo-
tienting both Au,v(g) and Vu(g) by u − 1, we obtain the Etingof-Kazhdan
quantization of U(g) (cf. Remark 8.4).

Our third result concerns the right-top corner A/uA of the biquantization
square for A = Au,v(g). Namely, we prove that A/uA is isomorphic to a
topological dual of Vv(g∗) consisting of C[v]-linear maps Vv(g∗) → C[[v]]
continuous with respect to the v-adic topology in C[[v]] and a suitable
topology in Vv(g∗). This dual is a Poisson bialgebra over C[[v]]. It is
isomorphic to the Poisson bialgebra Ev(g) of functions on the Poisson-Lie
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group associated with g∗⊗CC[[v]], cf. [Tur91, Sections 11-12]. (As an al-
gebra, Ev(g) = S(g)[[v]].) According to the remarks above, the projection
Au,v(g)→ Au,v(g)/uAu,v(g) ∼= Ev(g) is a quantization of Ev(g).

To sum up, the C[u][[v]]-bialgebra Au,v(g) quantizes S(g), Vu(g), and the
topological dual Ev(g) of Vv(g∗).

We can apply the same constructions to the dual Lie bialgebra g∗. It
is convenient to exchange u and v, i.e., to consider the C[v][[u]]-bialgebra
Av,u(g∗) obtained from Au,v(g∗) via an appropriate tensoring with C[v][[u]].
As above, Av,u(g∗) quantizes S(g∗), Vv(g∗), and the topological dual Eu(g∗)
of Vu(g). Observe that the three lower level corners of the biquantization
square for Av,u(g∗) are dual to the lower level corners of the biquantization
square for Au,v(g). We prove that the bialgebras Au,v(g) and Av,u(g∗) are
essentially dual to each other.

Our definition of Au,v(g) is obtained by an elaboration of Etingof and
Kazhdan’s quantization of U(g) and can be regarded as an extension of
their work. The definition goes in two steps. First we replace the variable h
by the product uv, which allows us to introduce two variables into the game.
In particular, the universal R-matrix Rh constructed in [EK96] gives rise
to a two-variable universal R-matrix Ru,v. Then we separate the variables
u, v in an expression for Ru,v by collecting all powers of u (resp. v) in the
first (resp. second) tensor factor. The algebra Au,v(g) is generated by the
first tensor factors appearing in such an expression.

The plan of the paper is as follows. In Section 1 we recall the notions
of Poisson, co-Poisson, and bi-Poisson bialgebras, as well as the definitions
of quantizations and biquantizations. In Section 2 we formulate the main
results of the paper (Theorems 2.3, 2.6, 2.9, and 2.11). In Section 3 we
recall a construction due to Drinfeld producing certain linear maps out of
a bialgebra comultiplication. We use these maps to show that every bialge-
bra over C[[u]] has a canonical subalgebra that is commutative modulo u.
In Section 4 we collect several useful facts concerning C[[u, v]]-modules. In
Section 5 we recall the basic facts concerning Etingof and Kazhdan’s quan-
tization Uh(g) of a Lie bialgebra g. In Section 6 we define Au,v(g) and show
that it is a topologically free module. The proof that Au,v(g) is an algebra
is also given in Section 6; it uses Lemma 6.10 whose proof is postponed to
Section 7. In Section 7 we introduce a completion Âu,v(g) of Au,v(g) and
define a bialgebra structure on Au,v(g). Section 8 is devoted to the proofs
of Theorems 2.3 and 2.6, and the first part of Theorem 2.9. In Section 9 we
investigate the two-variable universal R-matrix Ru,v and construct a nonde-
generate bialgebra pairing between Au,v(g) and a certain bialgebra Acop

− . In
Section 10, using the pairing of Section 9, we relate S(g)[[v]] to the topolog-
ical dual of Vv(g∗), which allows us to complete the proof of Theorem 2.9.
In Section 11 we compare Etingof and Kazhdan’s quantization for a Lie
bialgebra and the dual Lie bialgebra. In Section 12 we use the results of
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Section 11 to show that Acop
−
∼= Av,u(g∗) and prove Theorem 2.11. In the

appendix we describe explicitly the biquantization of a trivial Lie bialgebra.

We fix once and for all a field C of characteristic zero.

1. Poisson bialgebras and their quantizations.

We introduce the basic notions used throughout the paper. All objects will
be considered over a field C of characteristic zero. Given a commutative C-
algebra κ, we recall that a κ-bialgebra is an associative, unital κ-algebra A
equipped with morphisms of algebras ∆ : A→ A⊗κA, the comultiplication,
and ε : A→ κ, the counit, such that

(∆⊗idA)∆ = (idA⊗∆)∆ and (ε⊗idA)∆ = (idA⊗ε)∆ = idA,

where idA denotes the identity map of A. We shall also consider topological
bialgebras. A topological bialgebra A is defined in terms of a two-sided
ideal I ⊂ A. The definition is the same as for a κ-bialgebra, except that the
comultiplication takes values in the completed tensor product

A ⊗̂κA = lim←−
n

(
A/In⊗κA/In

)
.

The topological bialgebra A is equipped with the I-adic topology, namely
the linear topology for which the powers of I form a fundamental system of
neighbourhoods of 0 (see [Bou61, Chap. 3]).

1.1. Poisson Bialgebras. A Poisson bracket on a commutative algebra B
over the field C is a Lie bracket { , } : B × B → B satisfying the Leibniz
rule, i.e., such that for all a, b, c ∈ B we have

(1.1) {ab, c} = a{b, c}+ b{a, c}.

A Poisson bracket on B defines a Poisson bracket on B ⊗B by

(1.2) {a⊗ a′, b⊗ b′} = ab⊗ {a′, b′}+ {a, b} ⊗ a′b′

where a, a′, b, b′ ∈ B.
A Poisson bialgebra is a commutative C-bialgebra B equipped with a

Poisson bracket such that the comultiplication ∆ : B → B⊗B preserves the
Poisson bracket:

(1.3) ∆({a, b}) = {∆(a),∆(b)}

for all a, b ∈ B.
The following well-known construction yields examples of Poisson bialge-

bras. Let A be a bialgebra over the ring C[u] of polynomials in a variable u.
Assume that A is commutative modulo u in the sense that ab− ba ∈ uA for
all a, b ∈ A. If the multiplication by u is injective on A, then the quotient
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bialgebra A/uA is a Poisson bialgebra with Poisson bracket defined for all
a, b ∈ A by

(1.4) {p(a), p(b)} = p
(ab− ba

u

)
,

where p : A→ A/uA is the projection.
The inverse of this construction is called quantization. More precisely,

a quantization of a Poisson C-bialgebra B is a C[u]-bialgebra A which is
isomorphic as a C[u]-module to the module B[u] of polynomials in u with
coefficients in B, is commutative modulo u, and such that A/uA is iso-
morphic to B as a Poisson bialgebra. The latter condition implies that
Equality (1.4) holds for all a, b ∈ A, where p : A → A/uA ∼= B is the
projection and { , } is the Poisson bracket in B.

One can similarly define quantization over the ring C[[u]] of formal power
series. To shorten, we call C[[u]]-bialgebra a topological C[[u]]-algebra A
where the topology is the u-adic topology, i.e., is defined by the ideal uA.
In this case,

(1.5) A ⊗̂C[[u]]A = lim←−
n

(
A/unA⊗C[[u]]/(un)A/u

nA
)
.

A quantization over C[[u]] of a Poisson C-bialgebra B is a (topological)
C[[u]]-bialgebra A which is isomorphic as a C[[u]]-module to the module
B[[u]] of formal power series with coefficients in B, is commutative modulo u,
and such that A/uA = B as Poisson bialgebras.

1.2. Co-Poisson Bialgebras. It is straightforward to dualize the defini-
tions of Section 1.1. A Poisson cobracket on a cocommutative C-coalgebra
B is a Lie cobracket δ : B → B ⊗ B satisfying the Leibniz rule, i.e., such
that

(1.6) (id⊗∆)δ =
(
δ ⊗ id + (σ ⊗ id)(id⊗ δ)

)
∆,

where ∆ : B → B⊗B is the comultiplication of B and σ is the permutation
a⊗b 7→ b⊗a in B⊗B. Recall the notation ∆op = σ∆ for the opposite
comultiplication.

A co-Poisson bialgebra is a cocommutative C-bialgebra B equipped with
a Poisson cobracket δ such that

(1.7) δ(ab) = δ(a)∆(b) + ∆(a)δ(b)

for all a, b ∈ B.
We obtain co-Poisson bialgebras by dualizing the constructions of Sec-

tion 1.1. Here again we have the choice between the ring C[v] of poly-
nomials and the ring C[[v]] of formal power series in a variable v. In the
context of co-Poisson bialgebras, it will be more relevant to work with formal
power series. So let A be a bialgebra over C[[v]] in the sense of Section 1.1.
Assume that A is cocommutative modulo v, i.e., for all a ∈ A we have
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∆(a)−∆op(a) ∈ vA⊗̂C[[v]]A, where ∆ denotes the comultiplication and ∆op

the opposite comultiplication of A. If v acts injectively on A ⊗̂C[[v]]A, then
the quotient bialgebra A/vA is a co-Poisson bialgebra with cobracket

(1.8) δ(p(a)) = (p⊗p)
(∆(a)−∆op(a)

v

)
for a ∈ A, where p : A→ A/vA is the projection.

A coquantization of a co-Poisson C-bialgebra B is a C[[v]]-bialgebra A
which is isomorphic to B[[v]] as a C[[v]]-module, is cocommutative modulo v,
and such that A/vA is isomorphic to B as a co-Poisson bialgebra. This
implies that Formula (1.8) holds for any a ∈ A, where p : A → A/vA ∼= B
is the projection and δ is the Poisson cobracket in B.

1.3. Bi-Poisson Bialgebras. Following [Tur89, Tur91], we combine the
definitions given above and define the concepts of bi-Poisson bialgebras and
their biquantizations. A bi-Poisson bialgebra is a commutative and cocom-
mutative bialgebra B equipped with Poisson bracket { , } and Poisson co-
bracket δ turning B into a Poisson and co-Poisson bialgebra, and satisfying
the additional condition:

(1.9) δ({a, b}) = {δ(a),∆(b)}+ {∆(a), δ(b)}
for all a, b ∈ B.

In order to introduce biquantization, we use two variables u and v and the
ring C[u][[v]] which consists of formal power series in v whose coefficients
are polynomials in u. The following definitions can easily be adapted to the
rings C[u, v], C[[u, v]], and C[v][[u]].

By a C[u][[v]]-bialgebra A we mean a topological C[u][[v]]-algebra A,
where the topology is defined by the ideal vA, so that the comultiplication
takes values in

(1.10) A ⊗̂C[u][[v]]A = lim←−
n

(
A/vnA⊗C[u][[v]]/(vn)A/v

nA
)
.

Let A be a C[u][[v]]-bialgebra that is commutative modulo u and cocommu-
tative modulo v. If u and v act injectively on A, then the quotient bialgebra
A/(uA + vA) is a bi-Poisson bialgebra over C with Poisson bracket given
by (1.4) and Poisson cobracket given by (1.8), where p : A→ A/(uA+ vA)
is the projection. Inverting this construction, we obtain the following notion
of biquantization.

Definition 1.4. A biquantization of a bi-Poisson C-bialgebra B is a
C[u][[v]]-bialgebra A which is isomorphic to B[u][[v]] as a C[u][[v]]-module,
is commutative modulo u and cocommutative modulo v, and such that
A/(uA+ vA) = B as bi-Poisson bialgebras.

Any biquantization A gives rise to a “biquantization square” as follows.
Observe that A/vA is a cocommutative co-Poisson bialgebra over C[u] and
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that A/uA is a commutative Poisson bialgebra over C[[v]]. We form the
commutative square

(1.11)

A
pu−−−→ A/uA

pv

y yqv
A/vA

qu−−−→ B

where pu, pv, qu, qv are the natural projections. The morphisms pu and qu
are quantizations whereas pv and qv are coquantizations. The projection
p : A → B can therefore be factored in two ways as a composition of a
quantization and a coquantization: p = qvpu = qupv.

2. Statement of the main results.

Any Lie bialgebra g gives rise to a bi-Poisson bialgebra S(g). In this sec-
tion, after recalling the necessary facts on Lie bialgebras, we state our main
theorems concerning a biquantization of S(g).

2.1. Lie Bialgebras (cf. [Dri82]). A Lie cobracket on a vector space g
over C is a linear map δ : g→ g⊗ g such that

(2.1) σδ = −δ and (id + τ + τ2)(δ ⊗ id) = 0

where σ (resp. τ) is the automorphism of g ⊗ g (resp. of g ⊗ g ⊗ g) given
by σ(x ⊗ y) = y ⊗ x (resp. τ(x ⊗ y ⊗ z) = y ⊗ z ⊗ x). It is clear that the
transpose map δ∗ : g∗⊗g∗ ⊂ (g⊗g)∗ → g∗ is a Lie bracket in the dual space
g∗ = HomC(g,C).

A Lie bialgebra is a vector space over C equipped with a Lie bracket
[ , ] : g⊗ g→ g and a Lie cobracket δ : g→ g⊗ g such that

(2.2) δ([x, y]) = xδ(y)− yδ(x)

for all x, y ∈ g. Here g acts on g⊗ g by the adjoint action (x, z, z′ ∈ g):

x(z ⊗ z′) = [x, z]⊗ z′ + z ⊗ [x, z′].

Let g be a Lie bialgebra with Lie bracket [ , ] and Lie cobracket δ. It
is easy to check that, if we replace [ , ] by −[ , ] without changing the Lie
cobracket, then we obtain a new Lie bialgebra, which we denote gop. If we
leave the Lie bracket in g unaltered and replace δ by −δ, then we obtain
another Lie bialgebra denoted gcop. The opposite −idg of the identity map
of g is an isomorphism of Lie bialgebras gop → gcop and g→ (gop)cop.

When the Lie bialgebra g is finite-dimensional, then the dual vector space
g∗ with the transpose bracket and cobracket is also a Lie bialgebra. Clearly,
(g∗)op = (gcop)∗ and (g∗)cop = (gop)∗.
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2.2. A Bi-Poisson Bialgebra Associated to g (cf. [Tur89, Tur91]).
For any vector space g, the symmetric algebra S(g) =

⊕
n≥0 S

n(g) has
a structure of bialgebra with comultiplication ∆ determined by ∆(x) =
x⊗1+1⊗x for all x ∈ g = S1(g). If g is a Lie algebra with Lie bracket [ , ],
then S(g) is a Poisson bialgebra with Poisson bracket determined by

(2.3) {x, y} = [x, y]

for all x, y ∈ g. If g is a Lie coalgebra, then S(g) is a co-Poisson bialgebra
with the unique Poisson cobracket such that its restriction to S1(g) = g is
the Lie cobracket of g. If, furthermore, g is a Lie bialgebra, then S(g) is a
bi-Poisson bialgebra ([Tur91, Theorem 16.2.4]).

We now state our first main theorem.

Theorem 2.3. Given a finite-dimensional Lie bialgebra g, there exists a
biquantization Au,v(g) for S(g).

The construction of Au,v(g) will be given in Section 6. It is an extension
of Etingof and Kazhdan’s quantization of U(g), as constructed in [EK96].
As in loc. cit., our definition of Au,v(g) is based on the choice of a Drinfeld
associator. We nevertheless believe that it is unique up to isomorphism. We
shall not discuss this point in this paper.

The fundamental feature of our construction is that the bialgebras in the
lower left and the upper right corners in the biquantization square (1.11)
when A = Au,v(g) are closely related to the universal enveloping bialgebra
U(g) of g and to the dual of U(g∗). We shall give precise statements in the
remaining part of this section. We begin with a short discussion of U(g) and
its parametrized version Vu(g).

2.4. The Bialgebra Vu(g). Let g be a Lie algebra over C. Consider the
C[u]-algebra T (g)[u] of polynomials with coefficients in the tensor algebra
T (g) =

⊕
n≥0 g⊗n. Let Vu(g) be the quotient of T (g)[u] by the two-sided

ideal generated by the elements

x⊗ y − y ⊗ x− u[x, y],
where x, y ∈ g. The composition of the natural linear maps g = T 1(g) ⊂
T (g) ⊂ T (g)[u] → Vu(g) is an embedding whose image generates Vu(g) as
a C[u]-algebra. The algebra Vu(g) is a bialgebra with comultiplication ∆
determined by

(2.4) ∆(x) = x⊗ 1 + 1⊗ x
for all x ∈ g. Clearly, Vu(g)/(u− 1)Vu(g) = U(g) and Vu(g)/uVu(g) = S(g).

In this paper, we will use the fact that Vu(g) embeds in the polynomial
algebra U(g)[u]. The algebra U(g)[u] is equipped with a C[u]-bialgebra
structure whose comultiplication ∆ is also given by (2.4). Let i : Vu(g) →
U(g)[u] be the morphism of C[u]-bialgebras defined by i(x) = ux for all
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x ∈ g ⊂ Vu(g). Using the Poincaré-Birkhoff-Witt theorem (cf. [Dix74,
Chap. 2]), we see that Vu(g) is a free C[u]-module and that i is injective.
To describe its image, recall the standard filtration U0(g) = C ⊂ U1(g) ⊂
U2(g) ⊂ · · · of U(g): The subspace Um(g) is the image of

⊕m
k=0 g⊗k under

the projection T (g)→ U(g). Then

i(Vu(g)) =

∑
m≥0

amu
m ∈ U(g)[u] | am ∈ Um(g) for all m ≥ 0

 .

We also have Um(g)/Um−1(g) = Sm(g) for all m ≥ 0. From now on, we
identify Vu(g) with i(Vu(g)) and S(g) with the graded algebra⊕

m≥0

Um(g) /Um−1(g).

Under these identifications, the natural projection qu : Vu(g) → S(g) sends
any element

∑
m≥0 amu

m ∈ Vu(g) to
∑

m≥0 ām ∈ S(g), where ām ∈ Sm(g)
is the class of am ∈ Um(g) modulo Um−1(g). These observations lead to the
following easy fact.

Lemma 2.5. The C[u]-bialgebra Vu(g) is a quantization of the Poisson bial-
gebra S(g).

Suppose now that g is a Lie bialgebra with Lie cobracket δ. It was shown
in [Tur91, Theorem 7.4] that δ induces a co-Poisson bialgebra structure
on Vu(g) with Poisson cobracket δu determined for all x ∈ g by

(2.5) δu(ux) = u2δ(x) ∈ ug⊗ug ⊂ Vu(g)⊗C[u] Vu(g).

The projection qu : Vu(g) → S(g) preserves the co-Poisson structure; in
other words, Vu(g) is a quantization of S(g) in the category of co-Poisson
bialgebras.

Theorem 2.6. For the bialgebra Au,v(g) of Theorem 2.3, there is an iso-
morphism of co-Poisson C[u]-bialgebras

Au,v(g)/vAu,v(g) = Vu(g).

Theorem 2.6 will be proved in Section 8.

2.7. The Bialgebra Ev(g). Let g be a finite-dimensional Lie coalgebra
with Lie cobracket δ. By Section 2.2 the cobracket δ induces a co-Poisson
bialgebra structure on S(g).

Turaev ([Tur89, Sections 4-5] and [Tur91, Sections 11-12]) constructed
a (topological) C[[v]]-bialgebra Ev(g) which may be viewed as the bialgebra
of functions on the simply-connected Lie group associated to the dual Lie
algebra g∗. As an algebra, Ev(g) is the algebra of formal power series with
coefficients in S(g):

Ev(g) = S(g)[[v]].
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To define the comultiplication in Ev(g), consider the Campbell-Hausdorff
series

µ(X,Y ) = log(eXeY )(2.6)

= X + Y +
1
2

[X,Y ] +
1
12
(
[X, [X,Y ]] + [[X,Y ], Y ]

)
+ · · ·

where X,Y ∈ g∗. Let us multiply all Lie brackets of length n by vn. This
yields the modified Campbell-Hausdorff series

µv(X,Y ) =
1
v

log(evXevY )(2.7)

= X + Y +
v

2
[X,Y ] +

v2

12
(
[X, [X,Y ]] + [[X,Y ], Y ]

)
+ · · · .

The comultiplication ∆′ in Ev(g) is given by a 7→ a ◦ µv, which makes sense
when we identify elements of Ev(g) with C[[v]]-valued polynomial functions
on g∗. For x ∈ g ⊂ Ev(g) we have

(2.8) ∆′(x) = x⊗1+1⊗x+
v

2
δ(x)+

v2

12

∑
i

(x′ix
′′
i ⊗x′′′i +x′′′i ⊗x′ix′′i )+ · · · ,

where (id⊗ δ)δ(x) =
∑

i x
′
i ⊗ x′′i ⊗ x′′′i . For details, see loc. cit.

Let qv : Ev(g) → S(g) be the algebra morphism sending an element
of Ev(g) to its class modulo vEv(g). Formula (2.8) implies that the induced
map Ev(g)/vEv(g)→ S(g) is an isomorphism of co-Poisson bialgebras. This
leads to the following.

Lemma 2.8. The C[[v]]-bialgebra Ev(g) is a coquantization of the co-Pois-
son bialgebra S(g).

If the Lie coalgebra g has a Lie bracket [ , ] turning it into a Lie bialgebra,
then Ev(g) carries a structure of a Poisson bialgebra whose Poisson bracket
{ , } is uniquely determined by the condition

(2.9) {x1, x2} ≡ [x1, x2] mod
(⊕
n≥2

Sn(g)
)
[[v]],

for all x1, x2 ∈ g (cf. [Tur91, Theorem 11.4 and Remark 11.7]).

Theorem 2.9. For the bialgebra Au,v(g) of Theorem 2.3, there is an iso-
morphism of Poisson C[[v]]-bialgebras

Au,v(g)/uAu,v(g) = Ev(g).

Theorem 2.9 will be proved in two steps: In Section 8.2 we prove that
Au,v(g)/uAu,v(g) = S(g)[[v]] as an algebra; in Section 10.7 we determine its
coalgebra structure.
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2.10. Duality. By Theorem 2.3 we have a biquantization square

(2.10a)

Au,v(g)
pu−−−→ Au,v(g)/uAu,v(g)

pv

y yqv
Au,v(g)/vAu,v(g)

qu−−−→ S(g).

Replacing g by the Lie bialgebra g′ = (g∗)cop (see Section 2.1 for the nota-
tion) and exchanging u and v, we obtain the biquantization square

(2.10b)

Av,u(g′)
pv−−−→ Av,u(g′)/vAv,u(g′)

pu

y yqu
Av,u(g′)/uAv,u(g′)

qv−−−→ S(g′).
We prove that these squares are in duality as follows.

Let K be a commutative C-algebra together with two subalgebras K1

and K2. Given a K1-module A and a K2-module B, a C-bilinear map
( , ) : A×B → K will be called a pairing if

(λ1a, λ2b) = λ1λ2 (a, b)

for all λ1 ∈ K1 ⊂ K, λ2 ∈ K2 ⊂ K, a ∈ A, and b ∈ B. We say that the
pairing ( , ) is nondegenerate if both annihilators{
a ∈ A | (a, b) = 0 for all b ∈ B

}
and

{
b ∈ B | (a, b) = 0 for all a ∈ A

}
vanish. The pairing A × B → K induces a pairing ( , ) : (A⊗K1A) ×
(B⊗K2B)→ K by

(a⊗a′, b⊗b′) = (a, b) (a′, b′)
for all a, a′ ∈ A and b, b′ ∈ B. Suppose, in addition, that A and B are
bialgebras over K1 and K2, respectively. The pairing ( , ) : A × B → K is
a bialgebra pairing if

(a, bb′) = (∆(a), b⊗b′),(2.11)

(aa′, b) = (a⊗a′,∆(b)),

(a, 1) = ε(a),

(1, b) = ε(b)

for all a, a′ ∈ A and b, b′ ∈ B, where ∆ denotes the comultiplication and ε
the counit.

Theorem 2.11. Let g be a finite-dimensional Lie bialgebra and g′ = (g∗)cop.
Then there is a nondegenerate bialgebra pairing

Au,v(g)×Av,u(g′)→ C[[u, v]],

which induces the standard bialgebra pairing

S(g)× S(g′) = Au,v(g)/(u, v)×Av,u(g′)/(u, v)→ C,
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uniquely determined by (x, y) = 〈x, y〉 for all x ∈ g and y ∈ g′ = g∗, where
〈 , 〉 : g× g∗ → C is the evaluation pairing.

Theorem 2.11 will be proved in Section 12. Note that, quotienting by u
(resp. v), we obtain nondegenerate bialgebra pairings

Ev(g)× Vv(g′)→ C[[v]] and Vu(g)× Eu(g′)→ C[[u]].

3. The maps δn.

Let A be a C[[u]]-bialgebra in the sense of Section 1.1. In [Dri87, Section 7]
Drinfeld used a general procedure to construct a C[[u]]-subalgebra A′ of A.
In Drinfeld’s terms, if A is a quantized universal enveloping algebra, then
A′ is a quantized formal series Hopf algebra. The subalgebra A′ is defined
using a family of linear maps (δn : A → Ab⊗n)n≥0, whose definition will be
recalled below.

In this section, we prove that A′ is commutative modulo u. To this end,
we establish some properties of the maps δn.

3.1. Definition of δn. Starting from a bialgebra A over a commutative
ring κ with comultiplication ∆ and counit ε, we define for each n ≥ 0
a morphism of algebras ∆n : A → A⊗n as follows: ∆0 = ε : A → κ,
∆1 = idA : A → A, the map ∆2 : A → A⊗2 is the comultiplication ∆ and,
for n ≥ 3,

∆n = (∆⊗id⊗(n−2)
A )∆n−1.

Let us embed A⊗n into A⊗(n+1) by tensoring on the right by the unit 1 ∈
A. We thus get a direct system of algebras

A→ A⊗2 → A⊗3 → · · ·
whose limit we denote by A⊗∞. In this way, each A⊗n is naturally embedded
in A⊗∞.

Let I be a finite subset of the set of positive integers N′ = {1, 2, 3, . . . }.
If n = |I| is the cardinality of I, we define an algebra morphism jI :
A⊗n → A⊗∞ as follows. If I = {i1, . . . , in} with i1 < . . . < in, then
jI(a1⊗ · · ·⊗an) = b1⊗b2⊗ · · · , where bi = 1 if i /∈ I and bip = ap for
p = 1, . . . , n. If I = ∅, then jI : κ → A⊗∞ is the κ-linear map sending the
unit of κ to the unit of A⊗∞.

Suppose we have a κ-linear map f : A → A⊗n for some n ≥ 0. For
any set I ⊂ N′ of cardinality n, we define a linear map fI : A → A⊗∞ by
fI = jI ◦ f . If I = {1, . . . , n}, then fI is equal to f composed with the
standard embedding of A⊗n in A⊗∞. This shows that knowing the linear
map f : A→ A⊗n is equivalent to knowing the family of maps fI : A→ A⊗∞

indexed by the subsets I of N′ of cardinality n. In particular, from each
∆n : A→ A⊗n we obtain the family of linear maps (∆I) indexed by the sets
I ⊂ N′ of cardinality n and defined by ∆I = (∆n)I : A→ A⊗∞.
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After these preliminaries, we define the maps δn : A→ A⊗n for n ≥ 0 by
the following relation in terms of finite sets I ⊂ N′:

(3.1) δI =
∑
J⊂I

(−1)|I|−|J | ∆J .

By the inclusion-exclusion principle, we have the equivalent relation

(3.2) ∆I =
∑
J⊂I

δJ .

It follows immediately from (3.1) that

(3.3) δI(1) =

{
1 if I = ∅,
0 otherwise.

Lemma 3.2. Let a, b ∈ A and K be a finite subset of N′. Then

(3.4) δK(ab) =
∑

I,J⊂K
I∪J=K

δI(a)δJ(b).

Moreover, if K 6= ∅, then

(3.5) δK(ab− ba) =
∑

I,J⊂K
I∪J=K,I∩J 6=∅

(
δI(a)δJ(b)− δJ(b)δI(a)

)
.

Proof. In order to prove (3.4), we first observe that by (3.2),

(3.6)
∑
K′⊂K

δK′(ab) = ∆K(ab) = ∆K(a)∆K(b) =
∑
I,J⊂K

δI(a)δJ(b).

We rewrite (3.6) as follows:

(3.7)
∑
K′⊂K

δK′(ab) =
∑
K′⊂K

 ∑
I,J⊂K′
I∪J=K′

δI(a)δJ(b)

 .

Let us prove (3.4) by induction on the cardinality of K. If K = ∅, then
δK = j∅ ◦ ε, which is a morphism of algebras. Suppose now that (3.4) holds
for all sets of cardinality < |K|, in particular for all proper subsets K ′ of K.
Thus, the right-hand side of (3.7) equals∑

K′⊂K
K′ 6=K

δK′(ab) +
∑

I,J⊂K
I∪J=K

δI(a)δJ(b).

We get the desired formula by substracting the summands corresponding to
the proper subsets K ′ of K from both sides of (3.7).

Formula (3.5) follows from (3.4) and the fact that δI(a) and δJ(b) com-
mute when I ∩ J = ∅.
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3.3. Remark. Note that, if I and J ⊂ N′ are disjoint finite sets, then

(3.8) (δI ⊗ δJ) ◦∆ = δI∪J .

Eric Müller observed (private communication) that δn : A → A⊗n can also
be defined as δn = (idA − ε)⊗n ◦∆n.

3.4. Definition of A′. Let A be a bialgebra over C[[u]] in the sense of
Section 1.1. Using the comultiplication ∆ : A → A ⊗̂C[[u]]A, we define
C[[u]]-linear maps δn : A → Ab⊗n as in Section 3.1. Observe that Formulas
(3.1)-(3.5) hold in this setting as well. Following Drinfeld [Dri87, Section 7],
we introduce the submodule A′ of A by

(3.9) A′ =
{
a ∈ A | δn(a) ∈ unAb⊗n for all n > 0

}
.

It follows from (3.3) and (3.4) that A′ is a subalgebra of A.

Proposition 3.5. If the multiplication by u is injective on Ab⊗n for all n ≥
1, then the algebra A′ is commutative modulo u, i.e., ab − ba ∈ uA′ for all
a, b ∈ A′.

Proof. Let us first observe that there exists a1 ∈ A such that a = ua1+ε(a)1.
This follows from the fact that idA = ∆1 = δ1+δ0 = δ1+ε 1 and δ1(a) ∈ uA.
Similarly, there exists b1 ∈ A such that b = ub1 +ε(b)1. Hence, ab−ba = uc,
where c = u(a1b1 − b1a1). It suffices to show that c ∈ A′. To this end, it is
enough to check that δK(c) is divisible by u|K| for any nonempty finite subset
K of N′. Since the multiplication by u is injective on Ab⊗|K|, it is enough
to check that δK(ab − ba) is divisible by u|K|+1. We apply Formula (3.5).
Let I and J be subsets of K such that I ∪ J = K and I ∩ J 6= ∅. Then
|I| + |J | ≥ |K| + 1. Since δI(a) is divisible by u|I| and δJ(b) is divisible
by u|J |, it follows from (3.5) that δK(ab − ba) is divisible by u|I|+|J |, hence
by u|K|+1. �

3.6. Remark. IfA is topologically free, i.e., isomorphic to V [[u]] as a C[[u]]-
module for some vector space V , then so is A′. A similar, but more compli-
cated statement will be proved in Lemma 7.2.

3.7. Example. Consider a Lie algebra g and its universal enveloping bial-
gebra U(g). Let U(g)[[u]] be the C[[u]]-bialgebra consisting of the formal
power series over U(g), with comultiplication ∆ given by (2.4). Using the
notation of Section 2.4, we introduce a subalgebra V̂u(g) of U(g)[[u]] by

(3.10) V̂u(g) =

∑
m≥0

am u
m ∈ U(g)[[u]] | am ∈ Um(g) for all m ≥ 0

 .
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Clearly, Vu(g) ⊂ V̂u(g). Let Iu be the two-sided ideal of Vu(g) generated by
uVu(g) and by ug ⊂ uU1(g) ⊂ Vu(g); it is the kernel of the morphism of
algebras

Vu(g)
qu−→S(g)−→S(g)/

(⊕
n≥1

Sn(g)
)

= C,

cf. Section 2.4. It is easy to check that V̂u(g) is the Iu-adic completion
of Vu(g).

Proposition 3.8. If A = U(g)[[u]], then A′ = V̂u(g).

Proof. Let a =
∑

m≥0 am u
m be a formal power series with coefficients

in U(g). For n ≥ 1, the condition δn(a) ∈ unU(g)⊗n[[u]] implies that
δn(an−1) = 0. We claim that

(3.11) Ker
(
δn : U(g)→ U(g)⊗n

)
= Un−1(g)

for all n ≥ 1. It follows from this claim that an−1 ∈ Un−1(g), hence,
a ∈ V̂u(g).

Equality (3.11) is probably well known, but we give a proof for the sake of
completeness. The standard symmetrization map η : S(g)→ U(g) is known
to be an isomorphism of coalgebras (cf. [Dix74, Chap. 2]). Hence, η⊗nδn =
δnη, where δn stands for the corresponding maps both on S(g) and U(g).
Moreover, η−1(Un−1(g)) = ⊕n−1

k=0 S
k(g). Therefore, Equality (3.11) is equiv-

alent to

Ker
(
δn : S(g)→ S(g)⊗n

)
=

n−1⊕
k=0

Sk(g).

If (xi)i is a totally ordered basis of g, we get a basis of S(g) by taking
all words w = xi1 . . . xip such that xi1 ≤ · · · ≤ xip . We call subword of
a word w any word obtained from w by deleting some letters. With this
convention, the comultiplication ∆ of S(g) is given on a basis element w by
∆(w) =

∑
w1⊗w2, where the sum is over all subwords w1, w2 of w such

that w = w1w2. Iterating ∆, we get for all n ≥ 1

∆n(w) =
∑

w1⊗ · · ·⊗wn,

where the sum is over all subwords w1, . . . , wn of w such that w = w1 . . . wn.
This, together with (3.1) or (3.2), implies that

(3.12) δn(w) =
∑

w1⊗ · · ·⊗wn,

where the sum is now over all nonempty subwords w1, . . . , wn of w such that
w = w1 . . . wn. This shows that, if w is of length < n, then the right-hand
side of (3.12) is empty and δn(w) = 0. Therefore,

n−1⊕
k=0

Sk(g) ⊂ Ker(δn).
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To prove the opposite inclusion, it is enough to check that the restriction
of δn to the subspace ⊕k≥n Sk(g) is injective. This is a consequence of the
following observation: If w is a basis element of length ≥ n and µ is the
multiplication in S(g), then (3.12) implies that µδn(w) = ‖w‖w, where
‖w‖ > 0 is the number of summands on the right-hand side of (3.12). �

4. Topologically free C[[u, v]]-modules.

In this section, we establish a few technical results on modules over the ring
C[[u, v]] of formal power series in two commuting variables u and v with
coefficients in C. They are modelled on similar results for modules over the
ring C[[h]] of formal power series in h.

4.1. Modules over C[[h]]. We recall a few facts about C[[h]]-modules (see,
e. g., [Kas95, Sections XVI.2-3]). A C[[h]]-module M is called topologically
free if it is isomorphic to a module V [[h]] consisting of all formal power series
with coefficients in the vector space V . A C[[h]]-module M is topologically
free if and only if there is no nonzero element m ∈ M such that hm = 0
and the natural map M → lim←−n M/hnM is an isomorphism. We define a
topological tensor product ⊗̂C[[h]] for C[[h]]-modules M and N by

M ⊗̂C[[h]]N = lim←−
n

(
M/hnM ⊗C[[h]]/(hn)N/h

nN
)
.

For all vector spaces V , W , we have V [[h]] ⊗̂C[[h]]W [[h]] ∼= (V⊗CW )[[h]].
Let us extend these considerations to C[[u, v]]-modules.

4.2. Basic Definitions. Let M be a C[[u, v]]-module. We say that M is
u-torsion-free (resp. v-torsion-free) if there is no nonzero element m ∈ M
such that um = 0 (resp. such that vm = 0).

We say that M is admissible if any element divisible by both u and v
in M is divisible by uv in M . In other words, M is admissible if, for any
m ∈ M such that there exists m1,m2 ∈ M with m = um1 = vm2, there
exists m0 ∈M such that m = uvm0.

Observe that, if M is admissible and u-torsion-free, then any element of
M divisible by un and by v is divisible by unv, where n > 0.

We denote by M̂(u,v) the (u, v)-adic completion of M : It is the projective
limit of the projective system (M/(u, v)nM)n≥1, where (u, v)M = uM+vM .
The projections M → M/(u, v)nM induce a natural C[[u, v]]-linear map
i : M → M̂(u,v). The kernel of i is the intersection of the submodules
((u, v)nM)n≥1. We say that the module M is separated (resp. complete) if
the map i : M → M̂(u,v) is injective (resp. surjective).

Given a vector space V over C, consider the vector space V [[u, v]] con-
sisting of formal power series

∑
m,n≥0 xmn u

mvn, where the coefficients xmn
(m,n ≥ 0) are elements of V . The standard multiplication of formal power
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series endows V [[u, v]] with a C[[u, v]]-module structure. A C[[u, v]]-module
M isomorphic to a module of the form V [[u, v]] will be called topologically
free.

It is easy to check that a topologically free C[[u, v]]-module is u-torsion-
free, v-torsion-free, admissible, separated, and complete. We now prove the
converse.

Lemma 4.3. Any u-torsion-free, v-torsion-free, admissible, separated, com-
plete C[[u, v]]-module M is topologically free.

Proof. Let V be a vector subspace of M supplementary to the submodule
(u, v)M . We claim that for all n ≥ 0 we have the direct sum decomposition
of vector spaces

(4.1) (u, v)nM = (u, v)n+1M ⊕
⊕
k,`≥0

k+`=n

ukv`V.

From (4.1) we derive

M = (u, v)n+1M ⊕
⊕
k,`≥0

k+`≤n

ukv`V.

Consequently,

M/(u, v)n+1M =
⊕
k,`≥0

k+`≤n

ukv`V = V [[u, v]]/(u, v)n+1V [[u, v]].

Using the hypotheses, we get the following chain of C[[u, v]]-linear isomor-
phisms:

M ∼= M̂(u,v)
∼= ̂V [[u, v]](u,v) ∼= V [[u, v]].

It remains to check (4.1). We shall prove it by induction on n. If n = 0,
the identity (4.1) holds by definition of V . If n > 0, let us first show that

(4.2) (u, v)nM = (u, v)n+1M +
∑
k,`≥0

k+`=n

ukv`V.

Indeed, any element of (u, v)nM is of the form um′ + vm′′, where m′,m′′ ∈
(u, v)n−1M . By the induction hypothesis, m′ and m′′ belong to

(u, v)nM +
∑
k,`≥0

k+`=n−1

ukv`V.

This implies (4.2).
Suppose now that we have elements m ∈ (u, v)n+1M and x0, x1, . . . , xn ∈

V such that

(4.3) m+
n∑
k=0

ukvn−kxn−k = 0.
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We have to show that m = x0 = x1 = · · · = xn = 0. The element m ∈
(u, v)n+1M is of the form m = un+1m0 + vm′′, where m0 ∈ M and m′′ ∈
(u, v)nM . The element unx0 + un+1m0 = un(x0 + um0) is divisible by un.
It follows from (4.3) that it is also divisible by v. Since M is admissible
and u-torsion-free, there exists m1 ∈ M such that un(x0 + um0) = unvm1.
Hence, x0 + um0 − vm1 = 0. Now, x0 ∈ V and um0 − vm1 ∈ (u, v)M
belong to supplementary subspaces. Therefore, x0 = um0 − vm1 = 0 and
m = un+1m0 + vm′′ = vm′, where m′ = unm1 + m′′ ∈ (u, v)nM . Now,
(4.3) becomes v

(
m′ +

∑n−1
k=0 u

kvn−1−kxn−k
)

= 0. Since M is v-torsion-
free, we get m′ +

∑n−1
k=0 u

kvn−1−kxn−k = 0. By the induction hypothesis,
m′ = x1 = · · · = xn = 0. �

4.4. Topological Tensor Product. Given C[[u, v]]-modules M and N ,
we define their topological tensor product over C[[u, v]] by

M ⊗̂C[[u,v]]N = lim←−
n

(
M/(u, v)nM⊗C[[u,v]]/(u,v)nN/(u, v)nN

)
.

For example, M ⊗̂C[[u,v]] C[[u, v]] = M̂(u,v).

Lemma 4.5. (a) If M ∼= V [[u, v]] and N ∼= W [[u, v]] are topologically free
C[[u, v]]-modules, then M ⊗̂C[[u,v]]N is topologically free:

M ⊗̂C[[u,v]]N ∼= (V⊗CW )[[u, v]].

(b) If i : M ′ → M and j : N ′ → N are injective C[[u, v]]-maps of topo-
logically free modules, then so is the map i⊗j : M ′ ⊗̂C[[u,v]]N

′ →
M ⊗̂C[[u,v]]N .

Proof. (a) Proceed as in the proof of [Kas95, Proposition XVI.3.2].
(b) Since i⊗j = (id⊗j)(i⊗id), it is enough to prove Part (b) when N = N ′

or M = M ′. We give a proof for N = N ′.
Let V , V ′, W be vector spaces such that M = V [[u, v]], M ′ = V ′[[u, v]],

and N = W [[u, v]]. Take a basis (fm)m of W . By Part (a), any element
Y of M ⊗̂C[[u,v]]N can be uniquely written as Y =

∑
m Xm⊗fm, where

Xm ∈ M . Set jm(Y ) = Xm. This defines for all m a C[[u, v]]-linear map
jm : M ⊗̂C[[u,v]]N →M . Using the same basis of W , we define a linear map
j′m : M ′ ⊗̂C[[u,v]]N → M ′ similarly. Clearly, jm ◦ (i⊗id) = i ◦ j′m for all m.
Now, take Y ′ ∈ M ′ ⊗̂C[[u,v]]N such that (i⊗id)(Y ′) = 0. By the previous
equality, we have i(j′m(Y ′)) = 0 for all m. The map i being injective, we
get j′m(Y ′) = 0 for all m. Therefore, Y ′ =

∑
m j′m(Y ′)⊗fm = 0 and i⊗id is

injective. �
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4.6. From One Variable to Two Variables. One of the crucial steps
in our constructions will be to transform a module N over C[[h]] into a
module Ñ over C[[u, v]]. This is done as follows.

Let ι : C[[h]] → C[[u, v]] be the algebra morphism sending h to the
product uv. Observe that ι factors through the subalgebras C[u][[v]] and
C[v][[u]]. The morphism ι sends the ideal (hn) into the ideal (u, v)2n. Given
a C[[h]]-module N , we consider the projective system of C[[u, v]]-modules

N/(hn)⊗C[[h]]/(hn) C[[u, v]]/(u, v)2n

where n = 1, 2, 3, . . . and set

(4.4) Ñ = lim←−
n

(
N/(hn)⊗C[[h]]/(hn) C[[u, v]]/(u, v)2n

)
.

Clearly, for any x ∈ N , there is defined a corresponding element x̃ ∈ Ñ .

Lemma 4.7. (a) If N = V [[h]] for some vector space V over C, then
Ñ = V [[u, v]].

(b) If N and N ′ are topologically free C[[h]]-modules, then(
N⊗̂C[[h]]N

′)̃ ∼= Ñ⊗̂C[[u,v]]Ñ ′.

(c) Let i : N ′ → N be an injective map of topologically free C[[h]]-modules.
Then the induced C[[u, v]]-map ı̃ : Ñ ′ → Ñ is also injective.

Proof. (a) We have the following chain of C[[u, v]]-linear isomorphisms

Ñ = lim←−
n

V [[h]]/(hn)⊗C[[h]]/(hn) C[[u, v]]/(u, v)2n

= lim←−
n

V⊗CC[[h]]/(hn)⊗C[[h]]/(hn) C[[u, v]]/(u, v)2n

= lim←−
n

V⊗CC[[u, v]]/(u, v)2n

= lim←−
n

V [[u, v]]/(u, v)2n

= V [[u, v]].

The first isomorphism follows from the definition of Ñ , the second
and the fourth ones from the finite-dimensionality of C[[h]]/(hn) and of
C[[u, v]]/(u, v)2n.

(b) This is an easy exercise which follows from Part (a) and the prop-
erties of the topological tensor products over C[[h]] and C[[u, v]] stated in
Section 4.1 and in Lemma 4.5 (a).

(c) We assume that N = V [[h]] and N ′ = V ′[[h]] for some vector spaces V
and V ′. Let (ek)k be a basis of V ′ and (fj)j a basis of V . The C[[h]]-linear
map i : N ′ → N is determined by i(ek) =

∑
`≥0; j x

j
k,` fj h

`, where (xjk,`)j,k,`
is a family of scalars such that for each couple (k, `) the set of j with xjk,` 6= 0
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is finite. Any element X ∈ N ′ is of the form X =
∑

n≥0; k α
k
n ek h

n, where
(αkn)k,n is a family of scalars such that for each n ≥ 0 the set of k with
αkn 6= 0 is finite. We have

i(X) =
∑

`,n≥0; j,k

xjk,`α
k
n fj h

`+n =
∑
p≥0

 ∑
`,n≥0; j,k

`+n=p

xjk,`α
k
n fj

hp.

The coefficient of fjhp in i(X) is∑
`,n≥0; k
`+n=p

xjk,`α
k
n =

∑
`,k

0≤`≤p

xjk,`α
k
p−`.

This allows us to reformulate the injectivity of i as follows: The equations
on a family of scalars (αkn)k;n≥0

(4.5)
∑
`,k

0≤`≤p

xjk,`α
k
p−` = 0

holding for all j and p ≥ 0 imply that αkn = 0 for all k and n ≥ 0.
By Part (a) we have Ñ = V [[u, v]] and Ñ ′ = V ′[[u, v]]. On the basis (ek)k

the map ı̃ is defined by ı̃(ek) =
∑

`≥0; j x
j
k,` fj u

`v`. Any element Y ∈ Ñ ′

is of the form Y =
∑

m,n≥0; k β
k
mn ek u

mvn, where (βkmn)k,m,n is a family of
scalars such that for each m,n ≥ 0 the set of k with βkmn 6= 0 is finite. We
have

ı̃(Y ) =
∑

`,m,n≥0; j,k

xjk,`β
k
mn fj u

`+mv`+n

=
∑
p,q≥0

 ∑
`,m,n≥0; j,k

`+m=p,`+n=q

xjk,`β
k
mn fj

 upvq.

Note that the sum in the brackets is finite. Suppose that ı̃(Y ) = 0. For all
p, q ≥ 0 and all j we have∑

`,m,n≥0; k
`+m=p,`+n=q

xjk,`β
k
mn =

∑
`,k

0≤`≤min(p,q)

xjk,`β
k
p−`,q−` = 0.

Fixing q ≥ p ≥ 0 and setting αkn = βkn,q−p+n, we get (4.5) for all j. This
implies that βkn,q−p+n = αkn = 0 for all k, n, p, q. If p > q ≥ 0, we set
αkn = βkp−q+n,n and we conclude likewise. Therefore, Y = 0. �

We define a C[[u, v]]-bialgebra as a topological C[[u, v]]-bialgebra A with
respect to the ideal (u, v) = uA+ vA. As a consequence of Lemma 4.7, we
have the following:
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Corollary 4.8. If A is a C[[h]]-bialgebra that is topologically free as a
C[[h]]-module, then Ã is a C[[u, v]]-bialgebra that is topologically free as
a C[[u, v]]-module.

Proof. The C[[u, v]]-module Ã is topologically free by Lemma 4.7 (a). It is
a C[[u, v]]-bialgebra as a consequence of Lemma 4.7 (b). �

5. On Etingof and Kazhdan’s quantization of a Lie bialgebra.

In this section, we recall the results from Etingof and Kazhdan’s work
[EK96] needed in the sequel.

5.1. The Co-Poisson Bialgebra U(g). Let g be a Lie bialgebra with Lie
cobracket δ. Consider the universal enveloping algebra U(g) of g with stan-
dard cocommutative comultiplication given by (2.4). By [Dri87], the bial-
gebra U(g) has a unique co-Poisson bialgebra structure with a Poisson co-
bracket whose restriction to g ⊂ U(g) is the Lie cobracket δ. Recall from
Section 1.2 that a coquantization A of U(g) is a C[[h]]-bialgebra A such
that A ∼= U(g)[[h]] as a C[[h]]-module and A/hA = U(g) as co-Poisson
bialgebras.

In [EK96] Etingof and Kazhdan constructed a coquantization Uh(g) of
U(g) in this sense. To this end, they first constructed a coquantization Uh(d)
of U(d), where d is the double of g. We recall the definition of d.

5.2. Double of a Lie Bialgebra. Let g = g+ be a finite-dimensional Lie
bialgebra over C with Lie bracket [ , ] and cobracket δ. Let g− = (gop

+ )∗ =
(g∗+)cop be the dual Lie bialgebra modified as in Section 2.1.

Consider the direct sum d = g+
⊕

g−. Drinfeld [Dri82, Dri87] showed
that there is a unique structure of Lie bialgebra on d, which he called the
double of g+, such that

(a) the inclusions of g+ and g− into d are morphisms of Lie bialgebras
and

(b) the Lie bracket [x, y] for x ∈ g+ and y ∈ g− is given by

(5.1) [x, y] = (y⊗1) δ(x) + x · y,

where x · y ∈ g− ⊂ d is defined by (x · y)(x′) = −y([x, x′]) for x′ ∈ g+.
The Lie cobracket on d (hence on g±) is given by

(5.2) δ(X) = [X ⊗ 1 + 1⊗X, r] =
d∑
i=1

(
[X,xi]⊗ yi + xi ⊗ [X, yi]

)
for X ∈ d. Here r =

∑d
i=1 xi⊗yi is the canonical element of g+⊗g− ⊂ d⊗d,

where (xi)di=1 is a basis of g+ and (yi)di=1 is the dual basis of g−.
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5.3. The bialgebra Uhd. By [EK96, Section 3] there exists a C[[h]]-bi-
algebra Uh(d) with the following features:

(i) As a C[[h]]-algebra, Uh(d) = U(d)[[h]], i.e., the multiplication is the
standard formal power series product.

(ii) There exists an invertible element Jh ∈ (Ud⊗ Ud)[[h]] with constant
term 1⊗1 such that the comultiplication ∆h of Uh(d) is given for all a ∈ U(d)
by

(5.3) ∆h(a) = J−1
h ∆(a)Jh,

where ∆ is the standard comultiplication in U(d). The first terms of the
formal power series Jh are given by

(5.4) Jh ≡ 1⊗1 +
h

2
r mod h2

where r ∈ d⊗d was defined in Section 5.2. From (5.2–5.4) it follows that for
x ∈ d ⊂ Uh(d) we have

(5.5) ∆h(x)−∆op
h (x) ≡ h δ(x) mod h2,

where ∆op
h is the opposite comultiplication and δ is the Lie cobracket (5.2).

(iii) If we set t = r + r21 =
∑d

i=1 (xi ⊗ yi + yi ⊗ xi), then the element

(5.6) Rh = (J−1
h )21 exp

(ht
2

)
Jh ∈ (Ud⊗ Ud)[[h]] = Uh(d) ⊗̂C[[h]] Uh(d)

defines a quasitriangular structure on Uh(d). This means that ∆op
h (a) =

Rh∆h(a)R−1
h for all a ∈ Uh(d) and that

(5.7) (∆h⊗id)(Rh) = (Rh)13(Rh)23 and (id⊗∆h)(Rh) = (Rh)13(Rh)12.

Formula (5.4) implies

(5.8) Rh = 1⊗1 + hR′h,

where R′h ∈ Uh(d) ⊗̂C[[h]] Uh(d) such that R′h ≡ r mod h.
From (i) and (ii) it is clear that Uh(d) is a coquantization of the co-Poisson

bialgebra U(d).

5.4. The bialgebras Uh(g±). In [EK96, Section 4] Etingof and Kazhdan
constructed a C[[h]]-bialgebra Uh(g±) (with h-adic topology) with the fol-
lowing properties:

(i) As a C[[h]]-module, Uh(g±) is isomorphic to U(g±)[[h]].
(ii) Uh(g±) is a C[[h]]-subbialgebra of Uh(d). The map ph : Uh(g±) ⊂

Uh(d) = U(d)[[h]] → U(d) = U(d)[[h]]/hU(d)[[h]] induces a bialgebra iso-
morphism

Uh(g±)/hUh(g±) = U(g±) ⊂ U(d).
(iii) The element R′h ∈ Uh(d)⊗̂C[[h]]Uh(d) of (5.8) belongs to

Uh(g+)⊗̂C[[h]]Uh(g−). So does the universal R-matrix Rh.
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(iv) The coalgebra structure on Uh(g±) induces an algebra structure on
the dual module U∗h(g±) = HomC[[h]](Uh(g±),C[[h]]). By (iii) we can define
linear maps ρ± : U∗h(g∓)→ Uh(g±) by

(5.9) ρ+(f) = (id⊗f)(Rh) and ρ−(g) = (g⊗id)(Rh)

for all f ∈ U∗h(g−) and g ∈ U∗h(g+). In [EK96, Propositions 4.8 and 4.10]
it was shown that ρ+ is an injective antimorphism of algebras and ρ− is an
injective morphism of algebras.

The construction of Uh(d) and Uh(g±) depends on a Drinfeld associator,
see Sections 11.2-11.4. Nevertheless, it was shown in [EK97] (and in Sec-
tion 10 of the revised version of [EK96]) that the assignment (g+, d, g−) 7→(
Uh(g+) ↪→ Uh(d) ←↩ Uh(g−)

)
is functorial when the Drinfeld associator is

fixed.
5.5. The Linear Forms fx. Choose a C[[h]]-linear isomorphism α− :
Uh(g−) → U(g−)[[h]] such that α−(1) = 1 and α− ≡ id modulo h. Choose
also a C-linear projection π− : U(g−)→ U1(g−) = C⊕g− that is the identity
on U1(g−). For any x ∈ g+ we define a C-linear form 〈x,−〉 : U1(g−)→ C
extending the evaluation map 〈x,−〉 : g− → C and such that 〈x, 1〉 = 0.

Given x ∈ g+ we define a C[[h]]-linear form fx : Uh(g−)→ C[[h]] by

(5.10) fx(b) = 〈x, π−α−(b)〉 =
∑
n≥0

〈x, π−(bn)〉hn,

where b ∈ Uh(g−) and the elements bn ∈ U(g−) are defined by α−(b) =∑
n≥0 bnh

n. It follows from the definition that fx(1) = 0.
Applying the map ρ+ of (5.9) to fx ∈ U∗h(g−), we get an element ρ+(fx) ∈

Uh(g+). Fix a basis (x1, . . . , xd) of g+. Given a d-tuple j = (j1, . . . , jd) of
nonnegative integers, we set |j| = j1 + · · ·+ jd and xj = xj11 . . . xjdd ∈ U(g+).
Note that (xj)j is a basis of U(g+).

Lemma 5.6. (a) For any d-tuple j = (j1, . . . , jd) of nonnegative integers,
there exists an element tj ∈ Uh(g+) such that

ρ+(fx1)
j1 . . . ρ+(fxd

)jd = h|j| tj and ph(tj) = xj ,

where ph : Uh(g+) → Uh(g+)/hUh(g+) = U(g+) is the canonical pro-
jection.

(b) For any a ∈ Uh(g+), there is a unique family of scalars λ(n)
j ∈ C in-

dexed by a nonnegative integer n and a finite sequence j = (j1, . . . , jd)
of nonnegative integers such that

a =
∑
n≥0

 ∑
|j|≤c(n)

λ
(n)
j tj

 hn,

where c(n) is an integer depending on a and n.
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(c) If a ∈ Im ρ+, then c(n) = n, that is, λ(n)
j = 0 whenever n < |j|, where

λ
(n)
j are the scalars above.

Proof. (a) For any x ∈ g+, we have ρ+(fx) = htx for some tx ∈ Uh(g+) such
that ph(tx) = x. This follows from (5.8) (cf. [EK96, Lemma 4.6]). We set
tj = tj1x1 . . . t

jd
xd .

(b) The proof of Proposition 4.5 of [EK96] implies that any a ∈ Uh(g+)
can be expanded as above. Let us check that such an expression is unique.
If

(5.11)
∑
n≥0

( ∑
j; |j|≤c(n)

λ
(n)
j tj

)
hn = 0,

then
∑

|j|≤c(0) λ
(0)
j xj = 0 by application of the projection ph. Since the

elements (xj)j form a basis of U(g+), we conclude that λ(0)
j = 0 for all j.

We may then divide the left-hand side of (5.11) by h and start again. This
implies the vanishing of λ(1)

j = 0 for all j, and so on.
(c) Clearly, U∗h(g−) = U(g−)∗[[h]] where U(g−)∗ = HomC(U(g−),C).

We provide U∗h(g−) with the multiplication induced by the comultiplication
of Uh(g−). We claim that the family of linear forms (f jdxd . . . f

j1
x1)j ∈ U∗h(g−) is

linearly independent and that the C[[h]]-module it spans is dense in U∗h(g−)
for the I∗h-adic topology, where I∗h is the two-sided ideal of U∗h(g−) gen-
erated by h and fxk

(k = 1, . . . , d). It suffices to prove that the images
θjdxd . . . θ

j1
x1 ∈ U(g−)∗ of f jdxd . . . f

j1
x1 under the algebra morphism U∗h(g−) →

U∗h(g−)/hU∗h(g−) = U(g−)∗ are linearly independent and that their linear
span is dense in U(g−)∗ for the I∗0 -adic topology, where I∗0 is the two-sided
ideal of U(g−)∗ generated by θxk

(k = 1, . . . , d). Now, by definition of fxi ,
we have θxi = 〈xi, π−(−)〉. This implies that, for all i, j = 1, . . . , d, we have

(5.12) θxi(1) = 0 and θxi(yj) = δij ,

where (y1, . . . , yd) is the dual basis of the basis (x1, . . . , xd). We compute
the values of the linear form θjdxd . . . θ

j1
x1 on the basis (ykd

d . . . yk11 )k1,... ,kd≥0

of U(g−):

(θjdxd
. . . θj1x1

)(ykd
d . . . yk11 ) = (θ⊗jdxd

⊗ · · ·⊗θ⊗j1x1
)
(
∆|j|(ykd

d . . . yk11 )
)
.

A simple computation, using (5.12) and the definition of ∆ (cf. the proof of
Proposition 3.8), shows that
(5.13)

(θjdxd
. . . θj1x1

)(ykd
d . . . yk11 ) =

{
0 if k1 + · · ·+ kd < j1 + · · ·+ jd,

δj1,k1 . . . δjd,kd
if k1 + · · ·+ kd = j1 + · · ·+ jd.
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The claim about the linear forms θjdxd . . . θ
j1
x1 ∈ U(g−)∗ follows immediately

from (5.13).
Part (a) of this lemma and the claim established above imply that the

C[[h]]-linear span of the set (ρ+(fx1)
j1 . . . ρ+(fxd

)jd)j is dense in Im ρ+ for
the h-adic topology. It is enough to prove (c) for an element a in this
span. By Part (a), a =

∑
n≥0, j Pj h

|j| tj with Pj ∈ C[[h]]. By Part (b), the

element a can be written uniquely as a =
∑

n≥0, j λ
(n)
j hn tj . Hence, for any

j, the formal power series
∑

n≥0 λ
(n)
j hn is divisible by h|j|, which implies the

vanishing of λ(n)
j for n < |j|. �

6. The algebra A+ = Au,v(g+).

We first define a two-variable version Uu,v(g±) of Etingof and Kazhdan’s
quantization. Then we construct the algebra A+ = Au,v(g+) appearing in
Theorem 2.3. We use the notation g±, d defined in Section 5.

6.1. The bialgebras Uu,v(d) and Uu,v(g±). Applying the construction of
Section 4.6 to the C[[h]]-bialgebras Uh(d) and Uh(g±), we obtain C[[u, v]]-
modules

(6.1) Uu,v(d) = Ũh(d) and Uu,v(g±) = Ũh(g±).

As a consequence of Lemma 4.5, Lemma 4.7, Corollary 4.8, and of the results
summarized in Sections 5.3 and 5.4, we get the following proposition.

Proposition 6.2. (a) The C[[u, v]]-modules Uu,v(d) and Uu,v(g±) are to-
pologically free.

(b) Uu,v(d) has a bialgebra structure whose underlying algebra is the algebra
U(d)[[u, v]] of formal power series with coefficients in U(d).

(c) Uu,v(g±) has a bialgebra structure such that the C[[u, v]]-linear map
Uu,v(g±) → Uu,v(d) induced by Uh(g±) ⊂ Uh(d) is an embedding of
bialgebras.

(d) There are canonical isomorphisms of bialgebras

Uu,v(d)/(u, v)Uu,v(d) = U(d) and Uu,v(g±)/(u, v)Uu,v(g±) = U(g±).

By Proposition 6.2 (c) we may view Uu,v(g±) as a subset (in fact, a sub-
bialgebra) of Uu,v(d). We denote the comultiplication in Uu,v(d) and in
Uu,v(g±) by ∆u,v. To Etingof and Kazhdan’s universal R-matrix Rh ∈
Uh(d) ⊗̂C[[h]] Uh(d) corresponds an element Ru,v ∈ Uu,v(d) ⊗̂C[[u,v]] Uu,v(d).
By Section 5.4 (iii) and Lemma 4.5 (b), we have

Ru,v ∈ Uu,v(g+) ⊗̂C[[u,v]] Uu,v(g−).

The following is a consequence of (5.7) and (5.8).
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Lemma 6.3. (a) We have

(∆u,v⊗id)(Ru,v) = (Ru,v)13(Ru,v)23 and

(id⊗∆u,v)(Ru,v) = (Ru,v)13(Ru,v)12.

(b) There is a unique R′ ∈ Uu,v(g+) ⊗̂C[[u,v]] Uu,v(g−) such that Ru,v =
1⊗1 + uvR′. The image of R′ under the projection

Uu,v(g+) ⊗̂C[[u,v]] Uu,v(g−)→
(
Uu,v(g+) ⊗̂C[[u,v]] Uu,v(g−)

)
/(u, v)

= U(g+)⊗C U(g−)

is the element r =
∑d

i=1 xi⊗yi defined in Section 5.2.

Following 5.4, consider the dual spaces

U∗u,v(g±) = HomC[[u,v]](Uu,v(g±),C[[u, v]]),

and define C[[u, v]]-linear maps ρ+ : U∗u,v(g−)→ Uu,v(g+) and ρ− : U∗u,v(g+)
→ Uu,v(g−) by

(6.2) ρ+(f) = (id⊗f)(Ru,v) and ρ−(g) = (g⊗id)(Ru,v)

for f ∈ U∗u,v(g−) and g ∈ U∗u,v(g+). The dual space U∗u,v(g±) carries a
C[[u, v]]-algebra structure. The map ρ+ is an antimorphism of algebras
and ρ− is a morphism of algebras. This follows by a standard argument
from Lemma 6.3 (a) (cf. [EK96, Proposition 4.8]).

6.4. The Linear Forms f̃x. In Section 5.5 we constructed a C[[h]]-linear
form fx : Uh(g−) → C[[h]] for all x ∈ g+. The construction depends on
the choice of an isomorphism α− : Uh(g−) → U(g−)[[h]] and a projection
π− : U(g−) → U1(g−). By extension of scalars, we obtain a C[[u, v]]-linear
form f̃x : Uu,v(g−)→ C[[u, v]]. We have f̃x(1) = 0.

Let us apply ρ+ : U∗u,v(g−) → Uu,v(g+) to f̃x. The following is a conse-
quence of Lemma 6.3 (b).

Lemma 6.5. The element ρ+(f̃x) ∈ Uu,v(g+) is divisible by uv.

6.6. Definition of A+. Let (x1, . . . , xd) be the basis of g+ fixed in Sec-
tion 5.5. The set (u|j| xj), where j = (j1, . . . , jd) runs over all d-tuples of
nonnegative integers, is a basis of the free C[u]-module Vu(g+) introduced
in Section 2.4. In view of Lemma 6.5, we can define a C[u]-linear map
ψ+ : Vu(g+)→ Uu,v(g+) by ψ+(1) = 1 and

(6.3) ψ+(u|j| xj) = v−|j| ρ+(f̃x1)
j1 . . . ρ+(f̃xd

)jd ,

where j = (j1, . . . , jd) is a d-tuple of nonnegative integers with |j| ≥ 1.
This map extends uniquely to a C[u][[v]]-linear map, still denoted ψ+, from
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Vu(g+)[[v]] to Uu,v(g+) by

ψ+

∑
n≥0

wnv
n

 =
∑
n≥0

ψ+(wn)vn,

where w0, w1, w2, . . . ∈ Vu(g+). We define the C[u][[v]]-module A+ by

(6.4) A+ = ψ+(Vu(g+)[[v]]) ⊂ Uu,v(g+).

The remaining part of Section 6 is concerned with the study of A+. The
relevant results are stated in Theorem 6.9.

We choose a C[[h]]-linear isomorphism α+ : Uh(g+) → U(g+)[[h]] such
that α+(1) = 1 and α+ ≡ id modulo h. Such an isomorphism exists by
Section 5.4 (ii). Extending the scalars, we get a C[[u, v]]-linear isomorphism
α̃+ : Uu,v(g+)→ U(g+)[[u, v]] such that α̃+ ≡ id modulo uv. Let us consider
the composed map

pv : Uu,v(g+)
eα+−→U(g+)[[u, v]]→ U(g+)[[u]],

where the second map is the projection v 7→ 0. We equip U(g+)[[u]] with
the power series multiplication and the comultiplication (2.4).

Lemma 6.7. The map pv : Uu,v(g+)→ U(g+)[[u]] is a morphism of bialge-
bras.

Proof. The multiplication and the comultiplication of Uh(g+) transfer, via
the C[[h]]-linear isomorphism α+ : Uh(g+)→ U(g+)[[h]], to a multiplication
µh and a comultiplication ∆h on U(g+)[[h]]. Expanding µh and ∆h into
formal power series, we obtain

µh = µ0 + hµ1 + h2µ2 + · · · and(6.5)

∆h = ∆0 + h∆1 + h2∆2 + · · · ,

where µi : U(g+)⊗2 → U(g+) and ∆i : U(g+) → U(g+)⊗2 are linear maps
for all i = 0, 1, . . . Since Uh(g+)/hUh(g+) = U(g+) as bialgebras, we see that
µ0 and ∆0 are the standard multiplication and comultiplication of U(g+).

The multiplication and the comultiplication of Uu,v(g+) give rise, via α̃+,
to a multiplication µu,v and a comultiplication ∆u,v on U(g+)[[u, v]] of the
form

µu,v = µ0 + uvµ1 + u2v2µ2 + · · · and(6.6)

∆u,v = ∆0 + uv∆1 + u2v2∆2 + · · · ,

where the maps µi and ∆i are the same as in (6.5). It follows that pv is a
morphism of bialgebras, where U(g+)[[u]] is equipped with µ0 and ∆0. �

The following result is an elaboration of Lemma 5.6 (a).
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Lemma 6.8. (a) For any d-tuple j = (j1, . . . , jd), the element ψ+(u|j| xj)
defined by (6.3) belongs to u|j| Uu,v(g+) and

pv
(
ψ+(u|j| xj)

)
= u|j| xj ∈ U(g+)[[u]].

(b) We have pv(A+) = Vu(g+) and pv ◦ ψ+ : Vu(g+)[[v]] → Vu(g+) is the
projection sending v to 0.

Proof. (a) By multiplicativity of pv, it suffices to prove that v−1ρ+(f̃x) be-
longs to uUu,v(g+) and that pv

(
v−1ρ+(f̃x)

)
= ux for any x ∈ g+. The first

assertion follows from Lemma 6.5.
Let us compute pv

(
v−1ρ+(f̃x)

)
. Recall the isomorphism α− : Uh(g−) →

U(g−)[[h]] from Section 5.5 and the isomorphism α+ : Uh(g+)→ U(g+)[[h]]
defined above. LetXi ∈ Uh(g+) be defined byXi = α−1

+ (xi) and Yi ∈ Uh(g−)
by Yi = α−1

− (yi), where (x1, . . . , xd) is the fixed basis of g+ and (y1, . . . , yd)
is the dual basis. By (5.10),

(6.7) fx(Yi) = 〈x, π−α−(Yi)〉 = 〈x, π−(yi)〉 = 〈x, yi〉.

It follows from (5.8) that

(6.8) Rh = 1⊗1 + h
d∑
i=1

Xi⊗Yi + h2Z,

where Z ∈ Uh(g+) ⊗̂C[[h]] Uh(g−). By extension of scalars from C[[h]] to
C[[u, v]], we get

(6.9) Ru,v = 1⊗1 + uv
d∑
i=1

X̃i⊗Ỹi + u2v2Z̃,

where X̃i ∈ Uu,v(g+), Ỹi ∈ Uu,v(g−), and Z̃ ∈ Uu,v(g+) ⊗̂C[[u,v]] Uu,v(g−).
Moreover, using the definition of pv and Formula (6.7), we have

(6.10) pv(X̃i) = xi, and f̃x(Ỹi) = 〈x, yi〉.

Applying id⊗f̃x to Ru,v and using (6.9) and (6.10), we obtain

ρ+(f̃x) = (id⊗f̃x)(Ru,v)

= f̃x(1) + uv
d∑
i=1

X̃if̃x(Ỹi) + u2v2(id⊗f̃x)(Z̃)

= uv

d∑
i=1

〈x, yi〉 X̃i + u2v2(id⊗f̃x)(Z̃).
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Therefore,

v−1ρ+(f̃x) = u

d∑
i=1

〈x, yi〉 X̃i + u2v(id⊗f̃x)(Z̃).

This implies, in view of (6.10),

pv
(
v−1ρ+(f̃x)

)
= u

d∑
i=1

〈x, yi〉 pv(X̃i) = u

d∑
i=1

〈x, yi〉xi = ux.

(b) It follows from Part (a) and the definition of A+. �

Theorem 6.9. (a) The map ψ+ : Vu(g+)[[v]]→ A+ is an isomorphism of
C[u][[v]]-modules.

(b) A+ is a subalgebra of Uu,v(g+).
(c) The algebra A+ is independent of the choices made in Section 5.5.

Proof. (a) The map ψ+ is surjective by definition of A+. Let us check that
it is injective. Let w =

∑
n≥0 wnv

n ∈ Vu(g+)[[v]] with w0, w1, w2, . . . ∈
Vu(g+). Assume that w 6= 0. Take the minimal N ≥ 0 such that wN 6= 0
and define w′ by w = vNw′. By Lemma 6.8, we have pv(ψ+(w′)) = wN 6= 0,
hence ψ+(w′) 6= 0. As A+ ⊂ Uu,v(g+) has no v-torsion, we see that ψ+(w) =
vNψ+(w′) 6= 0.

(b) Let us check that ψ+(u|i|xi)ψ+(u|j|xj) ∈ A+ for all d-tuples i =
(i1, . . . , id) and j = (j1, . . . , jd). Since ρ+ : U∗h(g−) → Uh(g+) is an anti-
morphism of algebras, the product

ρ+(fx1)
i1 . . . ρ+(fxd

)idρ+(fx1)
j1 . . . ρ+(fxd

)jd

belongs to the image of ρ+. Therefore, by Lemma 5.6 (b-c), it can be
expanded as

ρ+(fx1)
i1 . . . ρ+(fxd

)idρ+(fx1)
j1 . . . ρ+(fxd

)jd =
∑
n≥0

∑
|k|≤n

λ
(n)
k tk

 hn,

where λ(n)
k ∈ C. By Lemma 5.6 (a),

ρ+(fx1)
i1 . . . ρ+(fxd

)idρ+(fx1)
j1 . . . ρ+(fxd

)jd

=
∑

n≥0; k, |k|≤n

λ
(n)
k ρ+(fx1)

k1 . . . ρ+(fxd
)kdhn−|k|.

By extension of scalars from C[[h]] to C[[u, v]], we have ρ̃+(fxi) = ρ+(f̃xi).
Therefore,

ρ+(f̃x1)
i1 . . . ρ+(f̃xd

)idρ+(f̃x1)
j1 . . . ρ+(f̃xd

)jd
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=
∑

n≥0; k, |k|≤n

λ
(n)
k ρ+(f̃x1)

k1 . . . ρ+(f̃xd
)kdun−|k|vn−|k|.

Using (6.3), we obtain

v|i|+|j| ψ+(u|i|xi)ψ+(u|j|xj) =
∑

n≥0; k, |k|≤n

λ
(n)
k ψ+(u|k|xk)un−|k| vn

=
∑
n≥0

 ∑
k; |k|≤n

λ
(n)
k un−|k| ψ+(u|k|xk)

 vn.

Thus, v|i|+|j| ψ+(u|i|xi)ψ+(u|j|xj) is a formal power series in v whose coef-
ficients belong to the C[u]-linear span of the elements ψ+(u|k|xk). Hence,
v|i|+|j| ψ+(u|i|xi)ψ+(u|j|xj) ∈ A+. Applying Lemma 6.10 below |i| + |j|
times, we obtain ψ+(u|i|xi)ψ+(u|j|xj) ∈ A+.

(c) The definition of A+ in Section 6.6 was based on the choice of a
C[[h]]-linear isomorphism α− : Uh(g−) → U(g−)[[h]] such that α−(1) = 1
and α− ≡ id modulo h, of a C-linear projection π− : U(g−)→ U1(g−) that
restricts to the identity on U1(g−), and of a basis (x1, . . . , xd) of g+. We
have to check that A+ is independent of these choices as a subset of Uu,v(g+).

(i) Suppose that we take another C[[h]]-linear isomorphism α′− : Uh(g−)
→ U(g−)[[h]] such that α′−(1) = 1 and α′− ≡ id modulo h. This gives us a
new linear form f ′x : Uh(g−) → C[[h]] and, by extension of scalars, a new
linear form f̃ ′x : Uu,v(g−) → C[[u, v]] for all x ∈ g+. Lemma 6.5 also holds
for f̃ ′x. By Part (b) it is enough to check that v−1 ρ+(f̃ ′x) belongs to A+.

Since α′− ≡ α− modulo h, we have f ′x ≡ fx modulo h. By the proof of
Lemma 5.6 (c), we see that

(6.11) f ′x = fx +
∑
n≥1

hn

∑
j

λ
(n)
j f jdxd

. . . f j1x1

 ,

where λ(n)
j ∈ C are indexed by a nonnegative integer n and a d-tuple j =

(j1, . . . , jd) of nonnegative integers. Applying ρ+, we get

ρ+(f ′x) = ρ+(fx) +
∑
n≥1

hn

∑
j

λ
(n)
j ρ+(fx1)

j1 . . . ρ+(fxd
)jd

 .

By extension of scalars, we have

ρ+(f̃ ′x) = ρ+(f̃x) +
∑
n≥1

un vn

∑
j

λ
(n)
j ρ+(f̃x1)

j1 . . . ρ+(f̃xd
)jd

 .
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Using (6.3), we obtain

v−1 ρ+(f̃ ′x) = v−1 ρ+(f̃x) +
∑
n≥1

un vn−1

∑
j

λ
(n)
j ρ+(f̃x1)

j1 . . . ρ+(f̃xd
)jd


= ψ+(ux) +

∑
n≥1

un vn−1

∑
j

λ
(n)
j v|j| ψ+(u|j|xj)


= ψ+(ux) +

∑
k≥1

vk

 ∑
j; |j|≤k

λ
(n)
j uk−|j|+1 ψ+(u|j|xj)

 .

This shows that v−1 ρ+(f̃ ′x) is a formal power series in v whose coeffi-
cients belong to the C[u]-linear span of the elements ψ+(u|j|xj). Hence,

v−1 ρ+(f̃ ′x) ∈ A+.
(ii) Suppose now that we take another projection π′− : U(g−) → U1(g−)

whose restriction to U1(g−) is the identity. We denote by f ′x the new linear
form Uh(g−) → C[[h]] obtained by using π′−. By extension of scalars, we
obtain a new linear form f̃ ′x : Uu,v(g−)→ C[[u, v]] for x ∈ g+.

Since π′−− π− = 0 on U1(g−), it follows from the proof of Lemma 5.6 (c)
that

(6.12) f ′x = fx +
∑
|j|≥2

λ
(0)
j f jdxd

. . . f j1x1
+
∑
n≥1

hn

∑
j

λ
(n)
j f jdxd

. . . f j1x1

 ,

where λ(n)
j ∈ C are scalars. Note the difference with (6.11): In (6.12) there

are extra terms of degree 0 in h. Nevertheless, the same arguments as in
Part (i) allow us to conclude.

(iii) Since x 7→ fx is linear, it follows that A+ is independent of the basis
in g+. �

Lemma 6.10. We have A+ ∩ vUu,v(g+) = vA+.

Lemma 6.10 will be proved in Section 7.7.

7. Bialgebra structure on A+.

In this section we establish that A+ has a C[u][[v]]-bialgebra structure. We
begin with a C[[u, v]]-subalgebra Â+ of Uu,v(g+) in which A+ sits as a dense
subalgebra.

7.1. The Algebra Â+. Using the comultiplication ∆u,v of Uu,v(g+) and
proceeding as in Section 3.1, we obtain C[[u, v]]-linear maps δn : Uu,v(g+)→
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Uu,v(g+)b⊗n for all n ≥ 1. Formulas (3.1)–(3.5) hold in this setting. We define
a C[[u, v]]-submodule Â+ of Uu,v(g+) by

(7.1) Â+ =
{
a ∈ Uu,v(g+) | δn(a) ∈ unUu,v(g+)b⊗n for all n ≥ 1

}
.

It follows from (3.3) and (3.4) that Â+ is a subalgebra of Uu,v(g+).

Lemma 7.2. Â+ is a topologically free C[[u, v]]-module.

Proof. By Lemma 4.3 it is enough to check that Â+ is a u-torsion-free,
v-torsion-free, admissible, separated, and complete C[[u, v]]-module.

We use the fact that Â+ is a submodule of the topologically free module
Uu,v(g+). Since the latter is separated, u-torsion-free, and v-torsion-free,
so is any of its submodules. We are left with checking admissibility and
completeness.

Admissibility: Let a, a1, a2 ∈ Â+ be such that a = ua1 = va2. Since
Uu,v(g+) is topologically free, hence admissible, there exists a0 ∈ Uu,v(g+)
such that a = uva0. We shall prove that a0 ∈ Â+, i.e., that δn(a0) ∈
unUu,v(g+)b⊗n. Since u(va0 − a1) = 0 and Uu,v(g+) has no u-torsion, we
have a1 = va0. Therefore, vδn(a0) ∈ unUu,v(g+)b⊗n. In other words, vδn(a0)
is divisible both by v and by un in Uu,v(g+)b⊗n, which is topologically free.
By an observation in Section 4.2, vδn(a0) = unvZ for some Z ∈ Uu,v(g+)b⊗n.
Since Uu,v(g+)b⊗n has no v-torsion, δn(a0) = unZ.

Completeness: Let (an)n≥0 be a sequence of elements of Â+ such that for
all n ≥ 0 the image of an+1 in Â+/(u, v)n+1 maps onto the image of an in
Â+/(u, v)n. Since Uu,v(g+) is complete, it contains an element a such that
a− an ∈ (u, v)nUu,v(g+) for all n ≥ 0. We shall show that a ∈ Â+, i.e., that
δp(a) is divisible by up for all p ≥ 1. For any n ≥ p,

δp(a)− δp(an) ∈ (u, v)nUu,v(g+)b⊗p and δp(an) ∈ upUu,v(g+)b⊗p,
which implies that δp(a) ∈ upUu,v(g+)b⊗p+(u, v)nUu,v(g+)b⊗p. Consequently,
δp(a) is divisible by up in lim←−n Uu,v(g+)b⊗p/(u, v)n = Uu,v(g+)b⊗p. �

Consider the morphism pv : Uu,v(g+)→ U(g+)[[u]] of Lemma 6.7. Recall
from (3.10) the algebra

V̂u(g+) =

∑
m≥0

am u
m | am ∈ Um(g+) for all m ≥ 0

 ⊂ U(g+)[[u]].

Lemma 7.3. (a) The morphism pv sends Â+ into V̂u(g+).
(b) We have Ker

(
pv : Â+ → V̂u(g+)

)
= Â+ ∩ v Uu,v(g+) = v Â+.
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Proof. (a) By (3.1) and (6.6) the map δn for Uu,v(g+) is of the form

δn = δn0 + uvδn1 ,

where δn0 is obtained by (3.1) from the standard comultiplication ∆ of
U(g+)[[u]]. Hence, p⊗nv δn = δn0 pv. Therefore, Part (a) follows from the
definitions and Proposition 3.8.

(b) Let a ∈ Â+ and b ∈ Uu,v(g+) be such that a = vb. We have to check
that b ∈ Â+. For any n ≥ 1, the element δn(a) = vδn(b) is divisible both
by v and by un in Uu,v(g+)b⊗n. Since the latter is topologically free, there
exists Z ∈ Uu,v(g+)b⊗n such that vδn(b) = unvZ. Hence, δn(b) = unZ, which
shows that b ∈ Â+. �

Lemma 7.4. We have A+ ⊂ Â+.

Proof. Let us first prove that ψ+(ux) = v−1ρ+(f̃x) belongs to Â+ for all
x ∈ g+. Given n ≥ 1, we have to check that δn(v−1ρ+(f̃x)) is divisible
by un. Formula (∆u,v⊗id)(R) = R13R23 for R = Ru,v implies

(∆n
u,v⊗id)(R) = R1,n+1R2,n+1 · · ·Rn−1,n+1Rn,n+1.

Therefore,

(δn⊗id)(R) = (R1,n+1 − 1)(R2,n+1 − 1) · · · (Rn−1,n+1 − 1)(Rn,n+1 − 1).

Since R = 1⊗1 + uvR′, we have

(δn⊗id)(R) = unvnR′1,n+1R
′
2,n+1 · · ·R′n−1,n+1R

′
n,n+1.

It follows that

δn(ρ+(f̃x))

= δn
(
(id⊗f̃x)(R)

)
= (δn⊗f̃x)(R)

= (id⊗f̃x)
(
(δn⊗id)(R)

)
= unvn(id⊗f̃x)(R′1,n+1R

′
2,n+1 · · ·R′n−1,n+1R

′
n,n+1) ∈ unUu,v(g+)b⊗n.

Hence, for n ≥ 1,

δn(v−1ρ+(f̃x))

= unvn−1(id⊗f̃x)(R′1,n+1R
′
2,n+1 · · ·R′n−1,n+1R

′
n,n+1) ∈ unUu,v(g+)b⊗n.

Since Â+ is a subalgebra of Uu,v(g+), ψ+(u|j| xj) ∈ Â+ for any d-tuple j.
Since Â+ is topologically free (hence complete) by Lemma 7.2, the map

ψ+ : Vu(g+)[[v]]→ Uu,v(g+)

takes its values in Â+. We conclude with Formula (6.4). �
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Lemma 7.5. The C[u][[v]]-linear map ψ+ : Vu(g+)[[v]]→ Uu,v(g+) extends
to a C[[u, v]]-linear map ψ̂+ : V̂u(g+)[[v]] → Uu,v(g+). The map ψ̂+ is
injective, its image is Â+:

ψ̂+(V̂u(g+)[[v]]) = Â+,

and pv ◦ ψ̂+ : V̂u(g+)[[v]]→ V̂u(g+) is the projection sending v to 0.

Proof. Any element of V̂u(g+) is of the form w =
∑

m≥0 am u
m, where

am =
∑

j; |j|≤m

ν
(m)
j xj

and ν
(m)
j ∈ C. By Lemma 6.8 (a), the element ψ+(am um) belongs to

umUu,v(g+). Since Uu,v(g+) is topologically free over C[[u, v]], the series∑
m≥0 ψ+(am um) converges in Uu,v(g+), so that we can define

ψ̂+(w) =
∑
m≥0

ψ+(am um).

By Lemma 7.4 and (7.1), for each m ≥ 0, δn(ψ+(am um)) is divisible by un

for all n ≥ 1. It follows that δn(ψ̂+(w)) is also divisible by un for all n ≥ 1.
Therefore, ψ̂+(w) ∈ Â+. Now any element of V̂u(g+)[[v]] is of the form∑

n≥0 wnv
n, where wn ∈ V̂u(g+) for all n ≥ 0. Clearly,

∑
n≥0 ψ̂+(wn)vn

converges in Â+. We set ψ̂+

(∑
n≥0 wnv

n
)

=
∑

n≥0 ψ̂+(wn)vn.

Lemma 6.8 (b) implies that pv ◦ ψ̂+ is the identity on V̂u(g+). Proceeding
as in the proof of Theorem 6.9 (a), we see that ψ̂+ is injective on V̂u(g+)[[v]].

It remains to prove that the image of ψ̂+ is Â+. For a ∈ Â+, set w0 =
pv(a) ∈ V̂u(g+), cf. Lemma 7.3 (a). Viewing w0 as a constant formal power
series in V̂u(g+)[[v]], we consider the element a−ψ̂+(w0) ∈ Â+; it clearly sits
in the kernel of pv, which is vÂ+ by Lemma 7.3 (b). Therefore, there exists
a1 ∈ Â+ such that a − ψ̂+(w0) = va1. Similarly, there exist w1 ∈ V̂u(g+)
and a2 ∈ Â+ such that a1− ψ̂+(w1) = va2. Repeating this construction and
using the separatedness of Â+, we obtain an element w =

∑
n≥0 wnv

n ∈
V̂u(g+)[[v]] such that a = ψ̂+(w). �

Corollary 7.6. We have

A+ ∩ vÂ+ = vA+ and A+ ∩ uÂ+ = uA+.

Proof. By Theorem 6.9 (a) and Lemma 7.5, it is enough to check that

Vu(g+)[[v]] ∩ vV̂u(g+)[[v]] = vVu(g+)[[v]]

and
Vu(g+)[[v]] ∩ uV̂u(g+)[[v]] = uVu(g+)[[v]].
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The former is clear; the latter is a consequence of Vu(g+) ∩ uV̂u(g+) =
uVu(g+), which is easy to check. �

7.7. Proof of Lemma 6.10. It is a consequence of Lemmas 7.3 (b) and 7.4,
and the first inclusion of Corollary 7.6. �

We can now show that A+ has a bialgebra structure. (For the definition
of ⊗̂C[u][[v]] and ⊗̂C[[u,v]], see Sections 1.3 and 4.4.)

Proposition 7.8. (a) We have the inclusions

A+ ⊗̂C[u][[v]]A+ ⊂ Â+ ⊗̂C[[u,v]] Â+ ⊂ Uu,v(g+) ⊗̂C[[u,v]] Uu,v(g+).

(b) If ∆u,v denotes the comultiplication of Uu,v(g+), then

∆u,v

(
A+

)
⊂ A+ ⊗̂C[u][[v]]A+

and
∆u,v

(
Â+

)
⊂ Â+ ⊗̂C[[u,v]] Â+.

Proof. (a) The inclusion Â+ ⊗̂C[[u,v]] Â+ ⊂ Uu,v(g+) ⊗̂C[[u,v]] Uu,v(g+) follows
from Proposition 6.2 (a), Lemma 7.2, and Lemma 4.5 (b).

Let us consider the first inclusion. By Theorem 6.9 (a) and Lemma 7.5,
it is enough to prove that the natural map

(7.2) Vu(g+)[[v]] ⊗̂C[u][[v]] Vu(g+)[[v]]→ V̂u(g+)[[v]] ⊗̂C[[u,v]] V̂u(g+)[[v]]

induced by the inclusion Vu(g+)[[v]] ⊂ V̂u(g+)[[v]] is injective. By definition
of ⊗̂C[u][[v]], we see that

Vu(g+)[[v]] ⊗̂C[u][[v]] Vu(g+)[[v]]

=
(
Vu(g+)⊗C[u]Vu(g+)

)
[[v]] = Vu(g+ ⊕ g+)[[v]].

On the other hand,

V̂u(g+)[[v]] ⊗̂C[[u,v]] V̂u(g+)[[v]]

= lim←−
n

(
V̂u(g+)[[v]]/(u, v)n⊗C[[u,v]]/(u,v)n V̂u(g+)[[v]]/(u, v)n

)
= lim←−

n

(
Vu(g+)[v]/(u, v)n⊗C[u,v]/(u,v)n Vu(g+)[v]/(u, v)n

)
= lim←−

n

(
Vu(g+)⊗C[u]Vu(g+)

)
[v]/(u, v)n

= lim←−
n

Vu(g+ ⊕ g+)[v]/(u, v)n

= lim←−
n

V̂u(g+ ⊕ g+)[[v]]/(u, v)n

= V̂u(g+ ⊕ g+)[[v]].
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The last equality holds because V̂u(g+ ⊕ g+)[[v]] is a topologically free
C[[u, v]]-module. The injectivity of (7.2) follows.

(b) In order to prove that the image of A+ under ∆u,v lies in the subal-
gebra A+ ⊗̂C[u][[v]]A+, it is enough to show that ∆u,v

(
ψ+(ux)

)
belongs to

this subalgebra for all x ∈ g+.
Let us consider the linear form fx ∈ U∗h(g−) of Section 5.5. Since ρ+ :

U∗h(g−)→Uh(g+) is a morphism of coalgebras (see [EK96, Proposition 4.8]),
we have ∆h(ρ+(fx)) ∈ Im ρ+ ⊗̂C[[h]] Im ρ+.

It follows from Lemma 5.6 that for any element a ∈ Uh(g+) ⊗̂C[[h]] Uh(g+),

there exists a unique family ν
(n)
j,k ∈ C indexed by a nonnegative integer n

and two d-tuples j and k such that

a =
∑
n≥0

 ∑
|j|+|k|≤c(n)

ν
(n)
j,k tj⊗tk

 hn,

where c(n) is an integer depending on a and n. If, in addition,
a ∈ Im ρ+ ⊗̂C[[h]] Im ρ+, then c(n) = n, i.e., ν(n)

j,k = 0 whenever n < |j|+ |k|.

Applying this to a = ∆h(ρ+(fx)), we obtain a family ν(n)
j,k ∈ C as above such

that

∆h(ρ+(fx))

=
∑
n≥0

 ∑
|j|+|k|≤n

ν
(n)
j,k tj⊗tk

 hn

=
∑

n≥0,j,k

|j|+|k|≤n

ν
(n)
j,k ρ+(fx1)

j1 . . . ρ+(fxd
)jd ⊗ ρ+(fx1)

k1 . . . ρ+(fxd
)kd hn−|j|−|k|,

where j = (j1, . . . , jd) and k = (k1, . . . , kd). Extending the scalars from
C[[h]] to C[[u, v]] and using (6.3), we obtain

∆u,v

(
ρ+(f̃x)

)
=

∑
n≥0; j,k

|j|+|k|≤n

ν
(n)
j,k ρ+(f̃x1)

j1 . . . ρ+(f̃xd
)jd ⊗ ρ+(f̃x1)

k1 . . . ρ+(f̃xd
)kd(uv)n−|j|−|k|

=
∑

n≥0; j,k, |j|+|k|≤n

ν
(n)
j,k ψ+(u|j|xj)⊗ψ+(u|k|xk)un−|j|−|k| vn

=
∑
n≥0

 ∑
j,k; |j|+|k|≤n

ν
(n)
j,k u

n−|j|−|k| ψ+(u|j|xj)⊗ψ+(u|k|xk)

 vn.
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Therefore, v∆u,v

(
ψ+(ux)

)
= ∆u,v

(
ρ+(f̃x)

)
is a formal power series in v

whose coefficients belong to the C[u]-linear span of the elements
ψ+(u|j|xj)⊗ψ+(u|k|xk). Hence, v∆u,v

(
ψ+(ux)

)
belongs to A+ ⊗̂C[u][[v]]A+.

The element ∆u,v

(
ψ+(ux)

)
∈ Uu,v(g+) ⊗̂C[[u,v]] Uu,v(g+) can be expanded

as
∆u,v

(
ψ+(ux)

)
=
∑
i

ai⊗zi,

where (ai)i is a basis of the topologically free C[[u, v]]-module Uu,v(g+) and
zi ∈ Uu,v(g+). Since∑

i

ai⊗vzi = v∆u,v

(
ψ+(ux)

)
∈ Uu,v(g+) ⊗̂C[[u,v]] Â+,

we have vzi ∈ Â+ for all i. By Lemma 7.3 (b) it follows that zi ∈ Â+ for
all i. Now taking a basis (bj)j of the topologically free C[[u, v]]-module Â+,
we can write

∆u,v

(
ψ+(ux)

)
=
∑
j

z′j⊗bj ,

where z′j ∈ Uu,v(g+). Since
∑

j vz
′
j⊗bj = v∆u,v

(
ψ+(ux)

)
∈ Â+ ⊗̂C[[u,v]] Â+,

we have vz′j ∈ Â+, hence z′j ∈ Â+ for all j. Therefore,

∆u,v

(
ψ+(ux)

)
∈ Â+ ⊗̂C[[u,v]] Â+.

The desired inclusion ∆u,v

(
ψ+(ux)

)
∈ A+ ⊗̂C[u][[v]]A+ follows from

(7.3) A
b⊗2
+ ∩ v

(
Â

b⊗2
+

)
= v
(
A

b⊗2
+

)
.

In view of Theorem 6.9 (a) and Lemma 7.5, Equality (7.3) is equivalent to

Vu(g+)[[v]]b⊗2 ∩ v
(
V̂u(g+)[[v]]b⊗2

)
= v
(
Vu(g+)[[v]]b⊗2

)
,

which is proved by using the identifications of the proof of Part (a). We
have thus established that ∆u,v

(
A+

)
⊂ A+ ⊗̂C[u][[v]]A+.

We now check that ∆u,v

(
Â+

)
⊂ Â+ ⊗̂C[[u,v]] Â+. By Lemma 7.5 any

element of Â+ is of the form ψ̂+(a), where a ∈ V̂u(g+)[[v]]. For any N >
0, there exists b ∈ Vu(g+)[[v]] such that a − b =

∑
n≥0 anv

n with an ∈⊕
p≥N Up(g+)up. Now, ψ̂+(b) = ψ+(b) ∈ A+, and ψ̂+(a− b) ∈ uNUu,v(g+)

by Lemma 6.8 (a). Therefore,

(7.4) ∆u,v(ψ̂+(a)) ≡ ∆u,v(ψ+(b)) mod uN .

It follows from the considerations above that

∆u,v(ψ+(b)) ∈ A+ ⊗̂C[u][[v]]A+ ⊂ Â+ ⊗̂C[[u,v]] Â+.
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The latter C[[u, v]]-module being topologically free, Formula (7.4) for all
N > 0 implies

∆u,v(ψ̂+(a)) ∈ Â+ ⊗̂C[[u,v]] Â+.

�

Corollary 7.9. The algebras A+ and Â+ are subbialgebras of Uu,v(g+).

7.10. Remark. The bialgebra A+ has the following alternative definition.
Define the C[u][[v]]-bialgebra

U ′u,v(g+) = lim←−
n

Uh(g+)⊗C[[h]]/(hn) C[u][[v]]/(vn),

where C[u][[v]] is a C[[h]]-module by the morphism ι of Section 4.6. One can
check that U ′u,v(g+) embeds as a subbialgebra into the bialgebra Uu,v(g+)
of Section 6.1, that the map α̃+ of Section 6.6 sends the C[u][[v]]-module
U ′u,v(g+) isomorphically onto U(g+)[u][[v]], and that the bialgebra mor-
phism pv of Lemma 6.7 maps U ′u,v(g+) onto the bialgebra U(g+)[u] of poly-
nomials with coefficients in U(g+).

Adapting the proofs of Sections 6–7, one can prove that A+ is in U ′u,v(g+)
and that

A+ =
{
a ∈ U ′u,v(g+) | δn(a) ∈ unU ′u,v(g+)b⊗n for all n ≥ 1

}
.

8. Proofs of Theorems 2.3, 2.6, and 2.9 (I).

Let Au,v(g+) = A+ be the bialgebra constructed in Sections 6–7. We first
prove Theorem 2.6 and then determine A+/uA+ as an algebra (Part I of
Theorem 2.9). The proof of Theorem 2.3 follows.

8.1. Proof of Theorem 2.6. It follows from Lemma 6.7, Lemma 6.8 (b),
Theorem 6.9, and Corollary 7.9 applied to g+ = g that the morphism of
bialgebras pv : Uu,v(g+) → U(g+)[[u]] restricts to a surjective morphism of
bialgebras pv : A+ → Vu(g+) whose kernel is vA+. Therefore, the induced
map A+/vA+ → Vu(g+) is an isomorphism of bialgebras. It remains to
check that this isomorphism preserves the cobracket.

The bialgebra structure on A+ induces on Vu(g+) a Poisson cobracket δ′

given by (1.8), where p = pv. We have to check that δ′ coincides with the
Poisson cobracket δu of Vu(g+) defined by (2.5). Since the algebra Vu(g+) is
generated by the elements ux with x ∈ g+, it suffices to show that δ′(ux) =
δu(ux) for all x ∈ g+.

We identify the module Uu,v(g+) with U(g+)[[u, v]] via the isomorphism
α̃+ of Section 6.6. Let a ∈ α̃−1

+ (ux) ⊂ Uu,v(g+). We have pv(a) = ux.
Viewing Uu,v(g+) as a subbialgebra of Uu,v(d), we see by (5.3)–(5.4) that
the comultiplication ∆u,v of Uu,v(g+) satisfies

∆u,v(a) ≡ ∆(a) + uv
[
∆(a),

r

2

]
mod u2v2 Uu,v(d)

b⊗2,
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where ∆ is the standard comultiplication (2.4) on Uu,v(d) = U(d)[[u, v]].
Therefore,

∆u,v(a)−∆op
u,v(a)

v
≡ u

[
∆(a),

r − r21
2

]
mod u2v Uu,v(d)

b⊗2.

It follows that

δ′(ux) = (pv⊗pv)
(

∆u,v(a)−∆op
u,v(a)

v

)
= u

[
∆(ux),

r − r21
2

]
= u2

[
x⊗1 + 1⊗x, r − r21

2

]
= u2

(
[x⊗1 + 1⊗x, r]− 1

2
[x⊗1 + 1⊗x, r + r21]

)
= u2 [x⊗1 + 1⊗x, r] = u2δ(x) = δu(ux).

The vanishing of [x⊗1 + 1⊗x, r + r21] is due to the invariance of the 2-
tensor r + r21. The identity δ(x) = [x⊗1 + 1⊗x, r] follows from (5.2). �

8.2. Proof of Theorem 2.9. Part I. We prove here that A+/uA+ =
S(g+)[[v]] as a C[[v]]-algebra. We first observe that the algebra A+/uA+ is
commutative. Indeed, A+/uA+ ⊂ Â+/uÂ+ by the second equality of Corol-
lary 7.6. By Proposition 3.5, the quotient algebra Â+/uÂ+ is commutative;
hence, so is A+/uA+.

Consider the C[u][[v]]-linear isomorphism ψ+ : Vu(g+)[[v]]→ A+ of The-
orem 6.9 (a). It induces a C[[v]]-linear isomorphism

Ψ+ : S(g+)[[v]] = Vu(g+)[[v]]/uVu(g+)[[v]]→ A+/uA+.

By definition,

(8.1) Ψ+(xj11 . . . xjdd ) = v−|j| ρ+(f̃x1)
j1 . . . ρ+(f̃xd

)jd modulo uA+

for all d-tuples j = (j1, . . . , jd). (Recall that (x1, . . . , xd) is a fixed basis
of g+.) Since A+/uA+ is commutative, Ψ+ is an algebra morphism. �

8.3. Proof of Theorem 2.3. By Theorem 6.9 (a), the C[u][[v]]-module
A+ is isomorphic to Vu(g+)[[v]], hence to S(g+)[u][[v]] (see Section 2.4 and
Lemma 2.5). As a consequence of Theorem 2.6 and Section 8.2, the bialgebra
A+ is commutative modulo u and cocommutative modulo v. It follows
from Theorem 2.6 and Lemma 2.5 that A+/(u, v) = S(g) as bi-Poisson
bialgebras. �
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8.4. Remark. Since A+ is a C[u][[v]]-module, we may set u = 1. We claim
that the quotient bialgebra A+/(u− 1) is isomorphic to Etingof and Kazh-
dan’s bialgebra Uv(g+) of Section 5.4 (with h replaced by v). Indeed, the
bialgebra inclusion A+ ⊂ U ′u,v(g+) of Remark 7.10 induces a bialgebra mor-
phism ξ : A+/(u−1)→ U ′u,v(g+)/(u−1) = Uv(g+). It remains to show that ξ
is an isomorphism. The isomorphism ψ+ of Theorem 6.9 (a) induces a C[[v]]-
linear isomorphism ψ+ : U(g+)[[v]] = Vu(g+)[[v]]/(u− 1)→ A+/(u− 1). It
now suffices to check that the composite map ξ ◦ ψ+ is an isomorphism.
By Sections 5.5, 6.4, and 6.6 the map ξ ◦ ψ+ sends xj = xj11 . . . xjdd ∈
U(g+)[[v]] to v−|j| ρ+(fx1)

j1 . . . ρ+(fxd
)jd for all d-tuples (j1, . . . , jd). In view

of Lemma 5.6 (a) it follows that ξ ◦ψ+ is an isomorphism modulo v; hence,
it is an isomorphism of topologically free C[[v]]-modules.

9. A nondegenerate bialgebra pairing.

In this section, we construct a pairing between A+ and a C[v][[u]]-bialgebra
A−, using the element Ru,v ∈ Uu,v(g+) ⊗̂C[[u,v]] Uu,v(g−) introduced in Sec-
tion 6. We start by defining A−, then we prove an important property
of Ru,v. We resume the notation of Sections 5-8.

9.1. The Bialgebras A− and Â−. They are defined by analogy with A+

and Â+. Let us begin with the definition of A−. Consider the C[[h]]-
linear isomorphism α+ : Uh(g+) → U(g+)[[h]] of Section 6.6. We have
α+(1) = 1 and α+ ≡ id modulo h. Choose a C-linear projection π+ :
U(g+)→ U1(g+) = C⊕ g+ that is the identity on U1(g+). For any y ∈ g−
we define a C-linear form 〈−, y〉 : U1(g+) → C extending the evaluation
map 〈−, y〉 : g+ → C and such that 〈1, y〉 = 0. We obtain a C[[h]]-linear
form gy : Uh(g+)→ C[[h]] by

(9.1) gy(a) = 〈π+α+(a), y〉 =
∑
n≥0

〈π+(an), y〉hn,

where a ∈ Uh(g+) and the elements an ∈ U(g+) are defined by α+(a) =∑
n≥0 anh

n. We have gy(1) = 0.
By extension of scalars, we obtain a C[[u, v]]-linear form g̃y : Uu,v(g+)→

C[[u, v]] such that g̃y(1) = 0. We apply the map ρ− : U∗u,v(g+) → Uu,v(g−)
of (6.2) to g̃y. By Lemma 6.5 adapted to this situation, ρ−(g̃y) ∈ Uu,v(g−)
is divisible by uv.

Let Vv(g−) be the C[v]-bialgebra introduced in Section 2.4, where we have
now replaced u by v. Let (y1, . . . , yd) be the basis of g− dual to the fixed
basis (x1, . . . , xd) of g+. The family (v|k| yk), where k runs over all d-tuples
of nonnegative integers, is a C[v]-basis of Vv(g−). We define a C[v]-linear
map ψ− : Vv(g−)→ Uu,v(g−) by ψ−(1) = 1 and

(9.2) ψ−(v|k| yk) = u−|k| ρ−(g̃y1)
k1 . . . ρ−(g̃yd

)kd ,
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where k = (k1, . . . , kd) is a d-tuple with |k| ≥ 1. This map extends uniquely
to a C[v][[u]]-linear map, still denoted ψ−, from Vv(g−)[[u]] to Uu,v(g−) by

ψ−

(∑
n≥0

wnu
n
)

=
∑
n≥0

ψ−(wn)un,

where w0, w1, w2, . . . ∈ Vv(g−). We then define the C[v][[u]]-module A− by

(9.3) A− = ψ−(Vv(g−)[[u]]) ⊂ Uu,v(g−).

Recall the isomorphism α− : Uh(g−) ∼= U(g−)[[h]] of Section 5.5. It
induces a C[[u, v]]-linear isomorphism α̃− : Uu,v(g−) ∼= U(g−)[[u, v]] such
that α̃− ≡ id modulo uv. Consider the composed map

pu : Uu,v(g−)
eα−−→U(g−)[[u, v]]→ U(g−)[[v]],

where the second map is the projection u 7→ 0. The map pu is a morphism
of bialgebras when we equip U(g−)[[v]] with the power series multiplication
and the comultiplication (2.4). Moreover, pu sends A− onto Vv(g−) and
pu ◦ ψ− : Vv(g−)[[u]] → Vv(g−) is the projection sending u to 0. This is
proved as in Section 6.

By analogy with Section 7.1, we define a C[[u, v]]-subalgebra Â− of
Uu,v(g−) by

(9.4) Â− =
{
a ∈ Uu,v(g−) | δn(a) ∈ vnUu,v(g−)b⊗n for all n ≥ 1

}
.

It is clear that the results of Sections 6–8 apply to A− and Â−, namely
we have the following properties.

(i) The map ψ− : Vv(g−)[[u]] → A− is an isomorphism of C[v][[u]]-
modules. It extends to an isomorphism of C[[u, v]]-modules ψ̂− : V̂v(g−)[[u]]
→ Â−.

(ii) A− ⊂ Â− are subalgebras of Uu,v(g−).
(iii) A− is independent of the choices of the isomorphism α+ : Uh(g+)→

U(g+)[[h]], of the projection π+ : U(g+)→ U1(g+), and of the basis of g−.
(iv) A− and Â− are topological bialgebras for the u-adic topology and

the (u, v)-adic topology, respectively.
(v) A− and Â− are commutative modulo v and cocommutative modulo u.

There are isomorphisms of co-Poisson bialgebras

(9.5) A−/uA− = Vv(g−),

isomorphisms of bi-Poisson bialgebras

(9.6) A−/(u, v)A− = S(g−),

and isomorphisms of algebras

(9.7) A−/vA− = S(g−)[[u]].
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Recall the two-variable universal R-matrix

Ru,v ∈ Uu,v(g+) ⊗̂C[[u,v]] Uu,v(g−)

of Section 6. We now give a stronger version of Lemma 6.3 (b).

Lemma 9.2. The element Ru,v − 1⊗1 belongs to the submodules

v Â+ ⊗̂C[[u,v]] Uu,v(g−) and Uu,v(g+) ⊗̂C[[u,v]] u Â−

of Uu,v(g+) ⊗̂C[[u,v]] Uu,v(g−).

Proof. Recall the element R′ ∈ Uu,v(g+) ⊗̂C[[u,v]] Uu,v(g−) of Lemma 6.3 (b).
It is enough to show that

uR′ ∈ Â+ ⊗̂C[[u,v]] Uu,v(g−) and vR′ ∈ Uu,v(g+) ⊗̂C[[u,v]] Â−.

We shall prove the first inclusion. The second one has a similar proof.
Let (bj)j be a basis over C[[u, v]] of the (topologically free) C[[u, v]]-

module Uu,v(g−). We can expand R′ as R′ =
∑

j zj⊗bj , where zj are el-
ements of Uu,v(g+). The proof of Lemma 7.4 shows that (δn⊗id)(uvR′) is
divisible by un for any n ≥ 1. Hence,

(δn⊗id)(R′) =
∑
j

δn(zj)⊗bj

is divisible by un−1. The elements bj being linearly independent, it follows
that δn(zj) is divisible by un−1 for all n ≥ 1 and all j. Therefore, uzj ∈ Â+

for all j and uR′ ∈ Â+ ⊗̂C[[u,v]] Uu,v(g−). �

Corollary 9.3. The element Ru,v belongs to the submodules

Â+ ⊗̂C[[u,v]] Uu,v(g−) and Uu,v(g+) ⊗̂C[[u,v]] Â−.

We consider the dual C[[u, v]]-modules Â∗+ = HomC[[u,v]](Â+,C[[u, v]])
and Â∗− = HomC[[u,v]](Â−,C[[u, v]]). In view of Corollary 9.3, Formulas (6.2)
now define C[[u, v]]-linear maps Â∗− → Uu,v(g+) and Â∗+ → Uu,v(g−), which
we still denote by ρ+ and ρ−, respectively. The comultiplications of Â+ and
of Â− induce algebra structures on Â∗+ and Â∗−. As in Section 6, the map
ρ+ is an antimorphism of algebras and ρ− is a morphism of algebras.

Lemma 9.4. We have

A+ ⊂ ρ+(Â∗−) ⊂ Â+ and A− ⊂ ρ−(Â∗+) ⊂ Â−.

Proof. Let us prove the first two inclusions. The other two inclusions have
similar proofs.

(a) We use the notation of Sections 6.4 and 6.6. We first show that,
for any x ∈ g+, the element v−1 ρ+(f̃x) ∈ A+ sits in ρ+

(
Â∗−
)
. Indeed,

if b ∈ Â−, then δ1(b) = b − ε(b)1 is divisible by v in Uu,v(g−). Hence,
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f̃x(b) = f̃x(b)−ε(b)f̃x(1) ∈ C[[u, v]] is divisible by v. We then define f̂x ∈ Â∗−
by

(9.8) f̂x(b) = v−1 f̃x(b) ∈ C[[u, v]]

for any b ∈ Â−. It follows that the restriction of f̃x to Â− equals v f̂x.
Therefore, v−1 ρ+(f̃x) = ρ+(f̂x) ∈ ρ+(Â∗−).

By Section 6.6, any element a ∈ A+ is of the form

a =
∑
n≥0

vn

∑
j

Pj(u) v−|j| ρ+(f̃x1)
j1 . . . ρ+(f̃xd

)jd

 ,

where the sums inside the brackets are finite and Pj(u) ∈ C[u]. The formal
power series ∑

n≥0

vn

∑
j

Pj(u) f̂ jdxd
. . . f̂ j1x1


converges to an element f in the topologically free C[[u, v]]-module Â∗−.
Since ρ+ : Â∗− → Uu,v(g+) is an antimorphism of algebras, we have ρ+(f) =
a. This implies that A+ ⊂ ρ+(Â∗−).

(b) Let us prove that ρ+(Â∗−) ⊂ Â+. Given f ∈ Â∗−, we have to check
that δn(ρ+(f)) is divisible by un for all n ≥ 1. By Lemma 9.2, vR′ ∈
Uu,v(g+) ⊗̂C[[u,v]] Â−, hence

vnR′1,n+1R
′
2,n+1 · · ·R′n−1,n+1R

′
n,n+1 ∈ Uu,v(g+)b⊗n ⊗̂C[[u,v]] Â−.

This allows us to apply id⊗f to vnR′1,n+1R
′
2,n+1 · · ·R′n−1,n+1R

′
n,n+1. A com-

putation similar to the one in the proof of Lemma 7.4 yields

δn(ρ+(f))

= un(id⊗f)(vnR′1,n+1R
′
2,n+1 · · ·R′n−1,n+1R

′
n,n+1) ∈ unUu,v(g+)b⊗n.

�

Lemma 9.5. For a ∈ A+ and b ∈ A−, the formulas

(9.9) (a, b)u,v =
(
ρ−1
+ (a)

)
(b) =

(
ρ−1
− (b)

)
(a),

yield a well-defined bialgebra pairing A+ ×Acop
− → C[[u, v]].

Here Acop
− denotes the bialgebra A− with the opposite comultiplication.

The pairing ( , )u,v is in the sense of Section 2.10 with K1 = C[u][[v]],
K2 = C[v][[u]], and K = C[[u, v]].

Proof. Let us prove that the expression
(
ρ−1
− (b)

)
(a) is well defined. It suffices

to check that, if g ∈ Â∗+ satisfies ρ−(g) = 0, then g(a) = 0. Suppose first
that a = ψ+(u|j|xj) for some d-tuple j. By (6.3), v|j| a = ρ+(f), where
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f = f̃ jdxd . . . f̃
j1
x1 ∈ U∗u,v(g−). Applying g⊗f to Ru,v ∈ Â+ ⊗̂C[[u,v]] Uu,v(g−),

we obtain

v|j| g(a) = g(ρ+(f)) = (g⊗f)(Ru,v) = f(ρ−(g)) = 0.

Since C[[u, v]] is v-torsion-free, we obtain g(a) = 0. By C[[u, v]]-linearity,
g(a) = 0 for all a ∈ Â+.

A similar argument proves that
(
ρ−1
+ (a)

)
(b) is well defined. Let us show

that

(9.10)
(
ρ−1
+ (a)

)
(b) =

(
ρ−1
− (b)

)
(a).

By linearity, it suffices to consider the case a = ψ+(u|j|xj) as above. We
have v|j| a = ρ+(f) with f ∈ U∗u,v(g−). Let g ∈ ρ−1

− (b) ⊂ Â∗+. Then

v|j|
(
ρ−1
+ (a)

)
(b) = f(b) = f(ρ−(g)) = (g⊗f)(Ru,v)

= g(ρ+(f)) = v|j| g(a) = v|j|
(
ρ−1
− (b)

)
(a).

Hence, (9.10) holds.
That ( , )u,v is a bialgebra pairing follows directly from the fact that ρ+

is an antimorphism of algebras and ρ− is a morphism of algebras. �

9.6. Remark. Proceeding as in the proof of Lemma 9.5, we can show that
the maps ρ+ : Â∗− → Â+ and ρ− : Â∗+ → Â− are injective.

9.7. Induced Bialgebra Pairings. Passing to the quotient modulo u, the
pairing ( , )u,v induces a bialgebra pairing

(9.11) ( , )v : A+/uA+ ×A−/uA− → C[[v]].

(The bialgebra A−/uA− is cocommutative by (9.5), so that (A−/uA−)cop =
A−/uA−.) Recall the isomorphism of algebras Ψ+ : S(g+)[[v]] → A+/uA+

defined by (8.1). On the other hand, the composition of ψ− : Vv(g−)→ A−
defined by (9.2) and the projection A− → A−/uA− is an isomorphism of
C[v]-bialgebras Ψ′

− : Vv(g−)→ A−/uA−, which is defined on the C[v]-basis
(v|k| yk)k of Vv(g−) by

Ψ′
−(v|k| yk) = ψ−(v|k| yk) mod uA−(9.12)

= u−|k| ρ−(g̃y1)
k1 · · · ρ−(g̃yd

)kd mod uA−,

where k = (k1, . . . , kd) and the maps g̃yi were introduced in Section 9.1.

Lemma 9.8. If j = (j1, . . . , jd) and k = (k1, . . . , kd) are d-tuples of non-
negative integers, then

(Ψ+(xj),Ψ′
−(v|k| yk))v =


0 if |j| > |k|,
δj1,k1 . . . δjd,kd

j1! . . . jd! if |j| = |k|,
∈ v|k|−|j|C[[v]] if |j| < |k|.
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Proof. We first claim that for any x ∈ g+ and any d-tuple k = (k1, . . . , kd),

(9.13) (Ψ+(x),Ψ′
−(v|k| yk))v =

{
0 if |k| = 0,
v|k|−1 〈x, π−(yk)〉 if |k| ≥ 1.

Indeed, consider the diagram

Uu,v(g−)
eα−−−−→ U(g−)[[u, v]]

〈x,π−(−)〉−−−−−−→ C[[u, v]]ypu

y y
U(g−)[[v]] id−−−→ U(g−)[[v]]

〈x,π−(−)〉−−−−−−→ C[[v]]

where the unmarked vertical maps are the projections sending u to 0. The
left-hand and the right-hand squares commute by definition of pu and by
linearity, respectively. It follows that, for any b ∈ Uu,v(g−),

(9.14) f̃x(b) mod uC[[u, v]] = 〈x, π−(pu(b))〉.

Since Ψ+(x) = v−1 ρ+(f̃x) mod uA+ and Ψ′
−(v|k| yk) = ψ−(v|k| yk) mod

uA−, we have

(Ψ+(x),Ψ′
−(v|k| yk))v = v−1 f̃x(ψ−(v|k| yk)) mod uC[[u, v]]

= v−1 〈x, π−(pu(ψ−(v|k| yk)))〉

= v−1 〈x, v|k| π−(yk)〉 = v|k|−1 〈x, π−(yk)〉

for all k. If |k| = 0, then v|k| yk = 1, on which 〈x,−〉 vanishes. This
proves (9.13).

Formula (9.13) implies that Lemma 9.8 holds for any j and k such that
|j| = 1. For the general case, observe that

(Ψ+(xj),Ψ′
−(v|k| yk))v(9.15)

= (Ψ+(x1)j1 . . .Ψ+(xd)jd ,Ψ′
−(v|k| yk))v

= (Ψ+(x1)⊗j1⊗ · · ·⊗Ψ+(xd)⊗jd ,∆
|j|
u,v(Ψ′

−(v|k| yk)))v

= (Ψ+(x1)⊗j1⊗ · · ·⊗Ψ+(xd)⊗jd , (Ψ′
−)⊗|j|(∆|j|(v|k| yk)))v

in view of Lemma 9.5, and the fact that Ψ+ preserves the multiplication
and Ψ′

− preserves the comultiplication. Here ∆ is given by (2.4). Then the
formulas of Lemma 9.8 for a general j follow from (2.4), (9.15), and the
formulas for j such that |j| = 1. �

Passing to the quotients modulo v and modulo (u, v), the pairing ( , )u,v
induces bialgebra pairings

(9.16) ( , )u : A+/vA+ × (A−/vA−)cop → C[[u]]
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and

(9.17) A+/(u, v)×A−/(u, v)→ C.

The latter can also be obtained from the pairing ( , )v of (9.11) by setting
v = 0.

The isomorphism Ψ+ : S(g+)[[v]] → A+/uA+ defined by (8.1) induces a
canonical isomorphism of bialgebras S(g+) = A+/(u, v). The isomorphism
Ψ′
− : Vv(g−) → A−/uA− defined above induces a canonical isomorphism

of bialgebras S(g−) = A−/(u, v). We denote by ( , )0 the bialgebra pair-
ing S(g+) × S(g−) → C obtained from (9.17) under these identifications.
Lemma 9.8 implies that

(9.18) (xj , yk)0 =

{
0 if |j| 6= |k|,
δj1,k1 . . . δjd,kd

j1! . . . jd! if |j| = |k|

for all d-tuples j = (j1, . . . , jd) and k = (k1, . . . , kd).

Corollary 9.9. The pairings

( , )u,v : A+ ×Acop
− → C[[v]], ( , )v : A+/uA+ ×A−/uA− → C[[v]],

( , )u : A+/vA+×(A−/vA−)cop → C[[u]], and ( , )0 : S(g+)×S(g−)→ C

are nondegenerate.

Proof. It follows from (9.18) that ( , )0 is nondegenerate. (Actually, ( , )0 is
the standard pairing between S(g+) and S(g−).)

We check that ( , )v is nondegenerate. Let a ∈ A+/uA+ such that
(a,−)v = 0. If ā denotes the image of a under the projection A+/uA+ →
S(g+), then (ā,−)0 = 0. It follows from the nondegeneracy of ( , )0 that
ā = 0, which implies that a ∈ vA+/uA+. Let a1 ∈ A+/uA+ be such that
a = va1. We now have (a1,−)v = 0. A similar argument shows that a1 is
divisible by v, hence a is divisible by v2 in A+/uA+. Proceeding in the same
way, we see that a is divisible by any power of v, which is possible only if
a = 0. A similar argument shows that (−, b)v = 0 implies b = 0.

The nondegeneracy of ( , )u,v and ( , )u is proved in a similar fashion. �

10. Completion of the proof of Theorem 2.9.

Before proceeding to prove Theorem 2.9, we establish a few facts about a
topological dual of the C[v]-bialgebra

Vv(g−) =

∑
n≥0

bnv
n ∈ U(g−)[v] | bn ∈ Un(g−) for all n ≥ 0

 .
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10.1. A Topological Dual. Inside the dual

V ∗
v (g−) = HomC[v](Vv(g−),C[[v]])

of Vv(g−) there is a C[[v]]-submodule V o
v (g−) consisting of all f ∈ V ∗

v (g−)
satisfying the following condition: For every m ≥ 0 there exists N ≥ 0 such
that

(10.1) f(Up(g−) vp) ⊂ vmC[[v]]

for all p ≥ N . In other words, V o
v (g−) consists of all C[v]-linear forms that

are continuous when we equip C[[v]] with the v-adic topology and Vv(g−)
with the I-adic topology, where I is the two-sided ideal

I =
⊕
p≥1

Up(g−) vp ⊂ Vv(g−).

Lemma 10.2. The C[[v]]-module V o
v (g−) is topologically free and

V o
v (g−)

⋂
v V ∗

v (g−) = v V o
v (g−).

Proof. For the first statement, it is enough to check that, if (fn)n≥0 is a
family of elements of V o

v (g−) such that fn ≡ fn+1 mod vn for all n ≥ 0, then
there exists a unique f ∈ V o

v (g−) such that f ≡ fn mod vn for all n ≥ 0.
Indeed, since the linear forms fn are with values in C[[v]], there exists a

unique f ∈ V ∗
v (g−) such that f ≡ fn mod vn for all n ≥ 0. Let us show

that f belongs to V o
v (g−). Fix m ≥ 0. By definition of V o

v (g−), there exists
N ≥ 0 such that fm(Up(g−) vp) ⊂ vmC[[v]] for all p ≥ N . Since f ≡ fm
mod vm, we have f(a) ≡ fm(a) mod vm for all a ∈ Vv(g−), hence

f(Up(g−) vp) ≡ fm(Up(g−) vp) ≡ 0 mod vm

for all p. Therefore, f(Up(g−) vp) ⊂ vmC[[v]] for all p ≥ N .
The second statement is an easy exercise left to the reader. �

We now relate V o
v (g−) to S(g+)[[v]]. As before, we fix a basis (x1, . . . , xd)

of g+ and the dual basis (y1, . . . , yd) of g−. The family of elements xj =
xj11 . . . xjdd indexed by all d-tuples j = (j1, . . . , jd) of nonnegative integers is
a C-basis of S(g+); the family of elements (v|k| yk) indexed by all d-tuples
k of nonnegative integers is a C[v]-basis of Vv(g−).

Suppose there exists a pairing ( , ) : S(g+)[[v]]× Vv(g−)→ C[[v]] (in the
sense of Section 2.10 with K = K1 = C[[v]] ⊃ K2 = C[v]) such that for all
j = (j1, . . . , jd) and k = (k1, . . . , kd) we have

(10.2) (xj , v|k| yk) =


0 if |j| > |k|,
δj1,k1 . . . δjd,kd

j1! . . . jd! if |j| = |k|,
∈ v|k|−|j|C[[v]] if |j| < |k|.

The pairing ( , ) induces a C[[v]]-linear map ϕ : S(g+)[[v]]→ V ∗
v (g−) defined

for a ∈ S(g+)[[v]] by ϕ(a) = (a,−).
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Proposition 10.3. Under Condition (10.2) the map ϕ sends S(g+)[[v]] iso-
morphically onto V o

v (g−).

Proof. The same argument as in the proof of Corollary 9.9 shows that the
pairing ( , ) is nondegenerate. This implies the injectivity of ϕ.

Let us prove that ϕ sends S(g+)[[v]] into V o
v (g−). Any element of

S(g+)[[v]] is of the form

a =
∑
n≥0; j

µj,n xj v
n,

where (µj,n)n≥0; j is a family of scalars indexed by a nonnegative integer n
and a d-tuple j of nonnegative integers, such that for all n there exists an
integer Nn with µj,n = 0 whenever |j| ≥ Nn.

In order to check that ϕ(a) lies in V o
v (g−), we have to prove that, given

m ≥ 0, there exists N such that for all p ≥ N we have

ϕ(a)(Up(g+) vp) ⊂ vmC[[v]].

Let N ′
m be any integer such that N ′

m ≥ Nn for all n = 0, . . . ,m − 1. It is
clear that µj,n = 0 when |j| ≥ N ′

m and 0 ≤ n ≤ m − 1. For any p ≥ 1,
the family (vp yk) with |k| ≤ p is a basis of Up(g−) vp. Let us compute
ϕ(a)(vp yk) when |k| ≤ p. Using (10.2), we get

ϕ(a)(vp yk) = (a, vp yk)

=
∑
n≥0; j

µj,n (xj , vp yk) vn

=
∑
n≥0; j

µj,n (xj , v|k| yk) vn+p−|k|

=
∑

j

|j|≤|k|

Pj(v),

where Pj(v) =
(∑

n≥0 µj,n v
n
)
(xj , v|k| yk) vp−|k|. If |j| ≥ N ′

m, then∑
n≥0

µj,n v
n =

∑
n≥m

µj,n v
n

is divisible by vm. Hence Pj(v) is divisible by vm. If |j| < N ′
m and |j| ≤

|k|, then by (10.2) (xj , v|k| yk) is divisible by v|k|−|j|. Therefore, Pj(v) is
divisible by vp−|j|, hence by vp−N

′
m+1. If |j| < N ′

m and |j| > |k|, then
p − |k| ≥ p − N ′

m + 1. Therefore, Pj(v) is divisible by vp−N
′
m+1. Summing

up, we see that ϕ(a)(Up(g+) vp) ⊂ vmC[[v]] for all p ≥ m+N ′
m − 1. Hence,

ϕ(a) ∈ V o
v (g−).
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It remains to show that V o
v (g−) ⊂ ϕ(S(g+)[[v]]). Since (v|j| yj)j is a C[v]-

basis of Vv(g−), a C[v]-linear form f ∈ V ∗
v (g−) is uniquely determined by

the family (νj(v))j of formal power series defined by

νj(v) = f(v|j| yj) ∈ C[[v]].

Suppose that f ∈ V o
v (g−). Then for every m there exists N such that for

all j with |j| ≥ N the formal power series νj(v) is divisible by vm. Consider
the formal sum

a0 =
∑
j

νj(v)

j!
xj ,

where j! = j1! . . . jd! if j = (j1, . . . , jd). By the divisibility property of νj(v)
obtained above, a0 is a well-defined element of S(g+)[[v]]. Let us compute
ϕ(a0) ∈ V o

v (g−).
Given a d-tuple k = (k1, . . . , kd), we have

ϕ(a0)(v|k| yk) = (a0, v
|k| yk)

=
∑
j

νj(v)

j!
(xj , v|k| yk)

=
∑

j; |j|=|k|

νj(v)

j!
(xj , v|k| yk) +

∑
j; |j|<|k|

νj(v)

j!
(xj , v|k| yk).

From (10.2) we derive∑
j; |j|=|k|

νj(v)

j!
(xj , v|k| yk) =

∑
j; |j|=|k|

νj(v)

j!
δj,k k! = νk(v),

where δj,k = δj1,k1 . . . δjd,kd
. On the other hand, by (10.2), (xj , v|k| yk) is

divisible by v if |j| < |k|. It follows that, for all k,

ϕ(a0)(ykv|k|) = νk(v) + vC[[v]] = f(ykv|k|) + vC[[v]].

Therefore, f = ϕ(a0) + vf1, where f1 is a linear form on Vv(g−) such that
vf1 belongs to the subspace V o

v (g−). By Lemma 10.2, this implies that
f1 ∈ V o

v (g−). Starting all over again, we get an element f2 ∈ V o
v (g−)

and an element a1 ∈ S(g+)[[v]] such that f1 = ϕ(a1) + vf2. Hence, f =
ϕ(a0 + va1) + v2f2. Proceeding in this way, we see that for all n ≥ 0

V o
v (g−) = ϕ(S(g+)[[v]]) + vnV o

v (g−).

Together with the topological freeness of V o
v (g−) proved in Lemma 10.2, this

implies that V o
v (g−) sits inside the image of ϕ. �
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Recall the nondegenerate bialgebra pairing (9.11)

( , )v : A+/uA+ ×A−/uA− → C[[v]]

and the bialgebra isomorphism Ψ′
v : Vv(g−)→ A−/uA− of Section 9.7. They

give rise to a C[[v]]-linear morphism of algebras ϕ : A+/uA+ → V ∗
v (g−)

defined for a ∈ A+/uA+ and b ∈ Vv(g−) by

(10.3) ϕ(a)(b) = (a,Ψ′
−(b))v.

Corollary 10.4. V o
v (g−) is a subalgebra of V ∗

v (g−) and ϕ : A+/uA+ →
V ∗
v (g−) is an injective morphism of algebras whose image is V o

v (g−).

Proof. By Lemma 9.8 the pairing

(−,−) = (Ψ+(−),Ψ′
−(−))v : S(g+)[[v]]× Vv(g−)→ C[[v]]

satisfies Condition (10.2). By Proposition 10.3 the map ϕ ◦ Ψ+ is injective
with image V o

v (g−). Since ϕ ◦Ψ+ is an algebra morphism, its image V o
v (g−)

is necessarily a subalgebra of V ∗
v (g−). One concludes by recalling that Ψ+ :

S(g+)[[v]]→ A+/uA+ is an algebra isomorphism. �

Consider the Poisson C[[v]]-bialgebra Ev(g+) of Section 2.7. As an al-
gebra, Ev(g+) = S(g+)[[v]]. By (2.8) its comultiplication ∆′ fulfills the
following condition: For all x ∈ g+ ⊂ Ev(g+),

(10.4) ∆′(x) = x⊗1 + 1⊗x+
∑
k≥1

Xkv
k,

where Xk ∈
⊕

p+q=k+1 S
p(g+)⊗Sq(g+) for all k ≥ 1. The Poisson bracket

{ , } of Ev(g+) is uniquely determined by Condition (2.9).
In [Tur91, Section 12] a bialgebra pairing ( , )′v : Ev(g+) × Vv(g−) →

C[[v]] was constructed such that

(10.5) (x, vy)′v = 〈x, y〉 ∈ C

for all x ∈ g+ ⊂ S(g+)[[v]] = Ev(g+) and vy ∈ vg− ⊂ Vv(g−), where
〈 , 〉 : g+ × g− → C is the evaluation pairing. The pairing ( , )′v has the
following properties.

Lemma 10.5. Let X1, . . . , Xm ∈ g+ and Y1, . . . , Yn ∈ g−. If m > n, then

(10.6) (X1 · · ·Xm, v
n Y1 · · ·Yn)′v = 0.

If m = n, then

(10.7) (X1 · · ·Xm, v
n Y1 · · ·Yn)′v =

∑
σ

〈Xσ(1), Y1〉 · · · 〈Xσ(m), Ym〉,

where σ runs over all permutations of {1, . . . , n}.
If m < n, then

(10.8) (X1 · · ·Xm, v
n Y1 · · ·Yn)′v ⊂ vn−mC[[v]].
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Proof. (i) We prove (10.6) and (10.7) by induction on n, using (2.11) and
(10.5). The case m = n = 1 follows from (10.5). If m > n = 1, then by (2.4)
and (2.11)

(X1 · · ·Xm, v Y1)′v
= (X1⊗X2 · · ·Xm,∆(v Y1))′v = (X1⊗X2 · · ·Xm, vY1⊗1 + 1⊗vY1)′v
= (X1, vY1)′v (X2 · · ·Xm, 1)′v + (X1, 1)′v (X2 · · ·Xm, vY1)′v = 0.

Suppose we have proved (10.6) and (10.7) for 1, . . . , n− 1. By (2.4),

∆(Y1 · · ·Yn)

= 1⊗Y1 · · ·Yn +
n−1∑
p=1

∑
σ

Yσ(1) · · ·Yσ(p)⊗Yσ(p+1) · · ·Yσ(n) + Y1 · · ·Yn⊗1,

where σ runs over all (p, n− p)-shuffles, i.e., all permutations of {1, . . . , n}
such that σ(1) < · · · < σ(p) and σ(p+ 1) < · · · < σ(n). Therefore,

(X1 · · ·Xm, v
n Y1 · · ·Yn)′v

= (X1⊗X2 · · ·Xm,∆(vn Y1 · · ·Yn))′v
= (X1, 1)′v (X2 · · ·Xm, Y1 · · ·Yn)′v

+
n−1∑
p=1

∑
σ

(X1, v
p Yσ(1) · · ·Yσ(p))

′
v (X2 · · ·Xm, v

n−p Yσ(p+1) · · ·Yσ(n))
′
v

+ (X1, v
n Y1 · · ·Yn)′v (X2 · · ·Xm, 1)′v,

where σ runs over the same set of permutations as above. The first and last
terms vanish by (2.11). If m > n, the middle sum is zero by the induction
hypothesis on (10.6). If m = n, by (10.6), the only nonzero term is for p = 1,
so that

(X1 · · ·Xm, v
n Y1 · · ·Yn)′v

=
∑
σ

(X1, v Yσ(1))
′
v (X2 · · ·Xm, v

n−1 Yσ(2) · · ·Yσ(n))
′
v,

where σ runs over all permutations of {1, . . . , n} such that σ(2) < · · · <
σ(n). Therefore,

(X1 · · ·Xm, v
n Y1 · · ·Yn)′v

=
n∑
i=1

(X1, vYi)′v (X2 · · ·Xm, v
n−1 Y1 · · · Ŷi · · ·Yn)′v,

where the hat on Yi means that it is omitted from the product. We conclude
with (10.5) and the induction hypothesis on (10.7).
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We also prove (10.8) by induction on n. If n = 1, then necessarily m = 0
and the claim follows from (2.11). For the inductive step, observe that (10.4)
implies that, for X1, . . . , Xm ∈ g+,

∆′(X1 . . . Xm) =
∑
k≥0

X ′
k⊗X ′′

k v
k,

where X ′
k⊗X ′′

k ∈
⊕

p+q=k+m Sp(g+)⊗Sq(g+). By (2.11), we obtain

(X1 · · ·Xm, v
n Y1 · · ·Yn)′v = (∆′(X1 · · ·Xm), vY1⊗vn−1Y2 · · ·Yn)′v

=
∑
k≥0

vk(X ′
k, vY1)′v (X ′′

k , v
n−1 Y2 · · ·Yn)′v.

By (10.6) the only case where (X ′
k, vY1)′v may be nonzero is when X ′

k ∈
S1(g+), therefore when X ′′

k ∈ Sk+m−1(g+). If k + m − 1 ≤ n − 1, we use
(10.7) and the induction hypothesis on (10.8). Thus, (X ′′

k , v
n−1 Y2 · · ·Yn)′v

is divisible by vn−m−k. If k +m− 1 > n− 1, then (X ′′
k , v

n−1 Y2 · · ·Yn)′v = 0
by (10.6). Therefore, (X ′′

k , v
n−1 Y2 · · ·Yn)′v is divisible by vn−m−k in all cases.

Hence, (X1 · · ·Xm, v
n Y1 · · ·Yn)′v is divisible by vn−m. �

From the bialgebra pairing ( , )′v we get a morphism of algebras ϕ′ :
Ev(g+)→ V ∗

v (g−) defined by ϕ′(a) = (a,−)′v for a ∈ Ev(g+).

Corollary 10.6. The bialgebra pairing ( , )′v is nondegenerate and the mor-
phism of algebras ϕ′ induces an isomorphism

ϕ′ : Ev(g+)→ V o
v (g−) ⊂ V ∗

v (g−).

Proof. By Proposition 10.3 it is enough to check that the pairing ( , )′v sat-
isfies Condition (10.2). An easy computation shows that (10.2) is equivalent
to (10.6–10.8). �

10.7. Proof of Theorem 2.9. Part II. By Corollaries 10.4 and 10.6 we
have two algebra isomorphisms ϕ : A+/uA+ → V o

v (g−) and ϕ′ : Ev(g+) →
V o
v (g−). Composing ϕ with the inverse of ϕ′, we obtain an algebra isomor-

phism
χ = ϕ′−1ϕ : A+/uA+ → Ev(g+).

Let us check that χ is a morphism of coalgebras. By definition of ϕ, ϕ′

and χ,

(10.9) (a,Ψ′
−(b))v = ϕ(a)(b) = ϕ′

(
χ(a)

)
(b) = (χ(a), b)′v

for all a ∈ A+/uA+ and b ∈ Vv(g−). (For the definition of Ψ′
−, see Sec-

tion 9.7.) Using (2.11) and (10.9), we obtain

(∆′(χ(a)), b1⊗b2)′v = (χ(a), b1b2)′v
= (a,Ψ′

−(b1b2))v
= (a,Ψ′

−(b1)Ψ′
−(b2))v
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= (∆(a),Ψ′
−(b1)⊗Ψ′

−(b2))v

=
(
(χ⊗χ)(∆(a)), b1⊗b2

)′
v

for all a ∈ A+/uA+ and b1, b2 ∈ Vv(g−). Here ∆′ is the comultiplication
in Ev(g+) and ∆ is the comultiplication in A+/uA+ induced by ∆u,v. Since
the pairing ( , )′v is nondegenerate, ∆′χ = (χ⊗χ)∆.

The bialgebra A+/uA+ is a (commutative) Poisson bialgebra with Poisson
bracket { , }v defined for a1, a2 ∈ A+ by

(10.10) {p(a1), p(a2)}v = p

(
a1a2 − a2a1

u

)
,

where p : A+ → A+/uA+ is the projection. The bialgebra isomorphism
χ : A+/uA+ → Ev(g+) transfers this Poisson bracket to a Poisson bracket
{ , }′ on Ev(g+). In order to show that χ is a morphism of Poisson bialgebras,
we have to prove that { , }′ = { , }. It suffices to check that { , }′ satisfies
Condition (2.9).

The pairing of Lemma 9.5 pairs the bialgebras A+ and Acop
− . Conse-

quently,
(a1a2 − a2a1, b)u,v =

(
a1⊗a2,∆op

u,v(b)−∆u,v(b)
)
u,v

for all a1, a2 ∈ A+ and b ∈ A−. The bialgebra A− being cocommutative
modulo u (see Section 9.1), it follows that ∆op

u,v(b)−∆u,v(b) is divisible by u;
hence,

(10.11)
(
a1a2 − a2a1

u
, b

)
u,v

=
(
a1⊗a2,

∆op
u,v(b)−∆u,v(b)

u

)
u,v

.

By Section 8.1 applied to A− and by (9.5), the isomorphism ψ− : Vv(g−)[[u]]
→ A− of Section 9.1 induces the isomorphism Ψ′

− : Vv(g−) → A−/uA− of
co-Poisson bialgebras. Therefore,

(10.12) (Ψ′
−⊗Ψ′

−)(δv(vy)) =
∆u,v(b)−∆op

u,v(b)
u

mod uA− ⊗̂C[v][[u]]A−

for vy ∈ vg− ⊂ Vv(g−) and b ∈ A− mapped onto Ψ′
−(vy) under the projec-

tion A− → A−/uA−. Here, δv : Vv(g−)→ Vv(g−)⊗C[v]Vv(g−) is the Poisson
cobracket defined by (2.5), where we have replaced u by v, and the Lie
cobracket δ of g by the Lie cobracket δ− of g−. By definition of g− = (gop

+ )∗,

(10.13) 〈x1⊗x2, δ−(y)〉 = −〈[x1⊗x2], y〉
for all x1, x2 ∈ g+ and y ∈ g−.

Combining (10.10)-(10.12), we obtain

(10.14) ({p(a1), p(a2)}v,Ψ′
−(vy))v = −

(
p(a1)⊗p(a2), (Ψ′

−⊗Ψ′
−)(δv(vy))

)
v

for all a1, a2 ∈ A+ and y ∈ g−. It follows from (2.5), (10.9), (10.13), and
(10.14) that

({x1, x2}′, vy)′v =
(
χ−1({x1, x2}′),Ψ′

−(vy)
)
v

(10.15)
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=
(
{χ−1(x1), χ−1(x2)}v,Ψ′

−(vy)
)
v

= −
(
χ−1(x1)⊗χ−1(x2), (Ψ′

−⊗Ψ′
−)(δv(vy))

)
v

= −
(
x1⊗x2, δv(vy)

)′
v

= −
(
x1⊗x2, v

2 δ−(y)
)′
v

=
(
[x1, x2], vy

)′
v

for all x1, x2 ∈ g+ and y ∈ g−.
On the other hand, the Poisson bracket { , }′ induces the Poisson bracket

(2.3) on Ev(g+)/vEv(g+) = S(g+). Consequently, for all x1, x2 ∈ g+,

(10.16) {x1, x2}′ = [x1, x2] +
∑
m≥1

Xm v
m,

where Xm ∈ S(g+). Let X(p)
m be the component of Xm in Sp(g+). In order

to check Condition (2.9) for { , }′, it is enough to show that X(p)
m = 0 for all

p = 0, 1 and m ≥ 1.
For the case p = 0, we use the counits ε of the bialgebras involved. Since

ε vanishes on commutators in A+, we have ε({a1, a2}v) = 0 in the quo-
tient bialgebra A+/uA+. The map χ being also a morphism of bialgebras,
ε({x1, x2}′) = 0 for all x1, x2 ∈ g+. The map ε vanishing on Sp(g+) for
p ≥ 1 and being the identity on S0(g+), Formula (10.16) implies

0 = ε({x1, x2}′) = ε([x1, x2]) +
∑
m≥1

ε(Xm) vm =
∑
m≥1

X(0)
m vm.

Hence, X(0)
m = 0 for all m ≥ 1.

For p = 1, we use Lemma 10.5, (10.2), (10.15) and (10.16) in the following
computation holding for all x1, x2 ∈ g+ and y ∈ g−:

0 = ({x1, x2}′ − [x1, x2], vy)′v

=
∑
m≥1

(X(1)
m , vy)′v v

m +
∑

m≥1; p≥2

(X(p)
m , vy)′v v

m

=
∑
m≥1

〈X(1)
m , y〉 vm.

Hence, 〈X(1)
m , y〉 = 0 for all y ∈ g− and all m ≥ 1. Therefore, X(1)

m = 0 for
all m ≥ 1. �

10.8. Remark. Our definition of the Poisson bracket { , }′ gives a con-
struction of a Poisson bracket on Ev(g+) that is independent of [Tur91,
Theorem 11.4]. We have also proved that the topological dual V o

v (g−) has
a natural structure of a Poisson C[[v]]-bialgebra.
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10.9. Remark. There are similar versions of Theorems 2.3, 2.6, and 2.9
for the bialgebra Â+ of Section 7.1. To state them, we need the bi-Poisson
bialgebra Ŝ(g+). As an algebra, it is the completion of S(g) with respect to
its augmentation ideal I0 =

⊕
m≥1 S

m(g+):

Ŝ(g+) =
∏
n≥0

Sn(g+).

The bi-Poisson bialgebra structure on S(g+) defined in Section 2.2 extends
to a topological bi-Poisson bialgebra structure on Ŝ(g+), where the comul-
tiplication and the Poisson cobracket take values in the completed tensor
product

Ŝ(g) ⊗̂C Ŝ(g) = lim←−
n

(
S(g)/In0 ⊗C S(g)/In0

)
.

The natural projection qu : Vu(g+) → S(g+) of Section 2.4 extends to a
bialgebra morphism V̂u(g+)→ Ŝ(g+) that induces a canonical isomorphism
of bi-Poisson bialgebras

V̂u(g+)/uV̂u(g+) = Ŝ(g+).

Similarly, the Poisson C[[v]]-bialgebra structure on Ev(g+) = S(g+)[[v]] ex-
tends uniquely to a topological Poisson C[[v]]-bialgebra structure on Êv(g+)
= Ŝ(g+)[[v]]. The projection Êv(g+) → Ŝ(g+) sending v to 0 induces a
canonical isomorphism of bi-Poisson bialgebras

Êv(g+)/vÊv(g+)→ Ŝ(g+).

Proceeding for Â+ as we did for A+ in Sections 8–10, we can prove that
there is an isomorphism of co-Poisson bialgebras Â+/vÂ+ = V̂u(g+), an
isomorphism of Poisson bialgebras Â+/uÂ+

∼= Êv(g+), and an isomorphism
of bi-Poisson bialgebras Â+/(u, v) = Ŝ(g+).

11. Exchanging g+ and g−.

Consider the Lie bialgebra g′+ = g− and its double d′. By definition of the
double, d′ contains g′− = (g′+

∗)cop as a Lie subbialgebra. Following Sec-
tions 5.3-5.4 for g′+, we obtain three C[[h]]-bialgebras Uh(g′+) ↪→ Uh(d′) ←↩
Uh(g′−). The aim of this section is to prove the following addition to [EK96],
[EK97]. Here, for a bialgebra A, we denote by Acop the bialgebra A obtained
by replacing the comultiplication by the opposite comultiplication.

Theorem 11.1. There is an isomorphism of C[[h]]-bialgebras

Uh(d′) ∼= Uh(d)cop

sending Uh(g′+) onto Uh(g−)cop and Uh(g′−) onto Uh(g+)cop.
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Theorem 11.1 does not follow directly from the functoriality of Etingof
and Kazhdan’s quantization because in general there is no isomorphism
between the triples (g+, d, g−) and (g′+, d

′, g′−) (nevertheless, see the proof of
Theorem 1.18 in [EK98]). We have chosen to give a proof of this theorem
using the original definitions of the bialgebras Uh(d), Uh(g+), Uh(g−) as
given in [EK96]. These definitions will be recalled in Sections 11.2-11.4
below.

11.2. A Braided Monoidal Category. Consider the double Lie bialgebra
d = g+ ⊕ g− of g+ and let S be the category of U(d)-modules. This is a
symmetric monoidal category: The tensor product of two U(d)-modules is
given by M⊗N = M⊗CN on which U(d) acts through its comultiplication,
and the symmetry σM,N : M⊗N → N⊗M by the standard transposition
m⊗n 7→ n⊗m. The category S has an infinitesimal braiding tM,N : M⊗N →
M⊗N in the sense of Cartier [Car93] (see also [Kas95, Definition XX.4.1]).
The morphism tM,N is given by the action of the two-tensor t = r + r21 =∑d

i=1 (xi ⊗ yi + yi ⊗ xi) of Section 5.3.
We now fix a Drinfeld associator Φ, as defined, e.g., in [Dri89], [Dri90],

[Kas95, Section XIX.8], [KT98, Section 4.6]. This is a series Φ(A,B) in
two non-commuting variables A and B with coefficients in C and constant
term 1, subject to a certain set of equations (for details see the references
above). Such a Φ exists by [Dri90] and can be assumed to be the exponential
of a Lie series in A and B.

From S and Φ we construct a braided monoidal category C as follows:
The objects of C are the same as the objects of S. A morphism from M
to N in C is a formal power series

∑
n≥0 fnh

n, where fn ∈ HomS(M,N) =
HomU(d)(M,N) for all n. The composition in C is defined using the com-
position in S and the standard multiplication of formal power series. The
identity morphism of an object M in C is the constant formal power series∑

n≥0 fnh
n, where f0 = idM and fn = 0 when n > 0. The category C

has a tensor product: On objects it is the same as on the objects of S; on
morphisms it is obtained by extending C[[h]]-linearly the tensor product of
morphisms of S. The unit object is the same as in S, namely the trivial
module C on which U(g) acts by the counit.

For any triple (L,M,N) of objects in C we define an associativity isomor-
phism aL,M,N and a braiding cM,N by

(11.1) aL,M,N = Φ(h tL,M⊗idN , h idL⊗tM,N ) : (L⊗M)⊗N
∼=−→L⊗(M⊗N)

and

(11.2) cM,N = σM,N exp
(h

2
tM,N

)
: M ⊗N

∼=−→N ⊗M,

where σM,N is the transposition. For details, see [Kas95, XX.6].
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The construction of C, Formulas (11.1-11.2), and Φ(0, 0) = 1 imply that
the braided monoidal category obtained as the quotient of C by the subclass
of morphisms whose constant term as a formal power series in h is 0 is
nothing else than the category S we started from. In this sense, C is a
quantization of S.

11.3. Definition of Jh. Following [EK96, Section 2.3], we first define
U(d)-modules M± = U(d) ⊗U(g±) C, where C is the trivial U(g±)-module.
The Verma module M± is a free U(g∓)-module on a generator 1± such that
a · 1± = ε(a)1± for all a ∈ U(g±), where ε is the counit of U(g±). There is
an isomorphism ϕ : U(d)→M+ ⊗M− of U(d)-modules such that

(11.3) ϕ(1) = 1+ ⊗ 1−.

There are also U(d)-linear maps i± : M± → M±⊗M± defined by i±(1±) =
1±⊗1±.

In the braided monoidal category C of Section 11.2 consider the isomor-
phism

χ = β−1 ◦ (id+⊗ cM+,M− ⊗id−) ◦ α : (M+⊗M+)⊗(M−⊗M−)

→ (M+⊗M−)⊗(M+⊗M−),

where id± is the identity morphism of M±, cM+,M− : M+⊗M− →M−⊗M+

is the braiding, α is the composition of the associativity isomorphisms

(M+⊗M+)⊗(M−⊗M−)
a−1

M+⊗M+,M−,M−−−−−−−−−−−→
(
(M+⊗M+)⊗M−

)
⊗M−

aM+,M+,M−⊗id−

y(
M+⊗(M+⊗M−)

)
⊗M−

and β is the composition of the isomorphisms

(M+⊗M−)⊗(M+⊗M−)
a−1

M+⊗M−,M+,M−−−−−−−−−−−→
(
(M+⊗M−)⊗M+

)
⊗M−

aM+,M−,M+
⊗id−

y(
M+⊗(M−⊗M+)

)
⊗M−.

Then, by [EK96, Formula (3.1)], the element Jh ∈ (U(d)⊗U(d))[[h]] de-
termining the comultiplication of Uh(d) in (5.3) is defined by

(11.4) (ϕ⊗ϕ)(Jh) = χ(1+⊗1+⊗1−⊗1−) = χ(i+⊗i−)(ϕ(1)).

11.4. Definition of Uh(g±). For any f ∈ HomC(M+⊗M−,M−) consider
the endomorphism µ+(f) ∈ EndC(M+⊗M−) defined as the following com-
position of morphisms in the monoidal category C of Section 11.2:
(11.5)
M+⊗M−

i+⊗id−−→ (M+⊗M+)⊗M−
a−→ M+⊗(M+⊗M−)

id+⊗f−→ M+⊗M−,
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where a = aM+,M+,M− is the associativity isomorphism defined by (11.1).
Conjugating by the isomorphism ϕ of (11.3), we obtain the endomorphism
ϕ−1µ+(f)ϕ ∈ EndC(U(d)). Applying this endomorphism to the unit element
in U(d)[[h]], we get the formal power series

f+ =
(
ϕ−1µ+(f)ϕ

)
(1) ∈ U(d)[[h]].

By [EK96, Section 4.1], Uh(g+) is the image of the map f 7→ f+ from
HomC(M+⊗M−,M−) to Uh(d) = U(d)[[h]].

There is a similar definition for Uh(g−). For any g ∈ HomC(M+⊗M−,M+)
define µ−(g) ∈ EndC(M+⊗M−) as the following composition of morphisms
in C:
(11.6)
M+⊗M−

id+⊗i−−→ M+⊗(M−⊗M−) a−1

−→ (M+⊗M−)⊗M−
g⊗id−−→ M+⊗M−.

Applying the endomorphism ϕ−1µ+(f)ϕ ∈ EndC(U(d)) to 1 ∈ U(d)[[h]], we
obtain

g− =
(
ϕ−1µ−(g)ϕ

)
(1) ∈ U(d)[[h]].

By [EK96, Section 4.1], Uh(g−) is the image of the map g 7→ g− from
HomC(M+⊗M−,M+) to Uh(d) = U(d)[[h]].

11.5. Proof of Theorem 11.1. By Section 2.1,

g′− = (g′+
∗)cop = (g∗−)cop = (gop

+ )cop

is isomorphic to g+ via the map −idg+ . Let d′ = g′+ ⊕ g′− be the double Lie
bialgebra of g′+. We have d′ = g− ⊕ g+ = g+ ⊕ g− as vector spaces. The
following lemma is easily checked.

Lemma 11.6. The endomorphism σ of g+ ⊕ g− that is the identity on g−
and the opposite of the identity on g+ is an isomorphism of Lie bialgebras
σ : d→ d′ which fits in the following commutative diagram of Lie bialgebras,
where the horizontal morphisms are the natural injections:

g− ↪→ d ←↩ g+

id

y σ

y −id

y
g′+ = g− ↪→ d′ ←↩ g′− = (gop

+ )cop.

The morphism σ sends the 2-tensor r =
∑d

i=1 xi⊗yi ∈ d⊗d to

σ(r) =
d∑
i=1

(−xi)⊗yi = −r ∈ d′⊗d′.

Consequently, for the symmetric 2-tensor t = r + r21, we have σ(t) = −t.
The Lie bialgebra isomorphism σ : d → d′ induces a bialgebra isomor-

phism σ : U(d)→ U(d′), hence an algebra isomorphism between their quan-
tizations (cf. Section 5.3):

σ : Uh(d) = U(d)[[h]]→ U(d′)[[h]] = Uh(d′).
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For the definition of the comultiplication ∆′
h of Uh(d′) we follow Sec-

tion 11.2 and construct a braided monoidal category C′, using now the dou-
ble Lie bialgebra d′ = σ(d), the same Drinfeld associator Φ as above, and
the two-tensor t′ = σ(t). The morphism σ induces a canonical isomorphism
C = C′ of braided monoidal categories.

We also need Verma modules for d′. Following Section 11.4, they are
defined by M ′

± = U(d′) ⊗U(g′±) C. As a U(g′∓)-module, M ′
± is free on a

generator 1′±. There is an isomorphism ϕ′ : U(d′) → M ′
+⊗M ′

− defined by
ϕ′(1) = 1′+⊗1′−. The homomorphism σ : d → d′ induces canonical algebra
isomorphisms U(g±) = U(g′∓), hence canonical isomorphisms

M± = U(d)⊗U(g±) C = U(d′)⊗U(g′∓) C = M ′
∓.

Using these isomorphisms, we henceforth identify d′ with d, M ′
+ with M−,

M ′
− with M+, ϕ′ : U(d′)→M ′

+⊗M ′
− with the isomorphism of U(d)-modules

ϕ′ : U(d)→M−⊗M+ determined by

(11.7) ϕ′(1) = 1−⊗1+.

By (5.3) the comultiplication ∆′
h of the bialgebra Uh(d′) = Uh(d) is given

for a ∈ U(d)[[h]] by
∆′
h(a) = (J ′h)

−1∆(a)J ′h,

where ∆ is the standard comultiplication and J ′h is the element in
(U(d′)⊗U(d′))[[h]] = (U(d)⊗U(d))[[h]] defined, according to (11.4) and us-
ing the above identifications, by

(11.8) (ϕ′⊗ϕ′)(J ′h) = χ′(1−⊗1−⊗1+⊗1+) = χ′(i−⊗i+)(ϕ′(1))

where χ′ is obtained from the morphism χ of Section 11.3 by exchanging
M+ and M−.

Consider the U(d)-linear automorphism ν of U(d) defined by

(11.9) ν = (ϕ′)−1cM+,M−ϕ,

where cM+,M− : M+⊗M− → M−⊗M+ is the braiding. The morphism ν is
the right multiplication by the invertible element ω = ν(1) ∈ U(d)[[h]]:

(11.10) ν(a) = aω

for all a ∈ U(d)[[h]].

Lemma 11.7. We have ω ≡ 1 mod h and

J ′h = ∆(ω)−1 exp(ht/2)(Jh)21(ω⊗ω).

Proof. By (11.2), (11.3), (11.7), and (11.9) we have

ω = (ϕ′)−1
(
exp(ht/2)(1+⊗1−)

)
21

≡ (ϕ′)−1(1−⊗1+) ≡ 1 mod h.
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Let us compute J ′h. Below we shall prove that
(11.11)

cM−⊗M+,M−⊗M+(cM+,M−⊗cM+,M−)χ(i+⊗i−) = χ′(i−⊗i+)cM+,M− ,

where cM−⊗M+,M−⊗M+ : (M−⊗M+)⊗(M−⊗M+)→(M−⊗M+)⊗(M−⊗M+)
is the braiding. Then, (11.9), (11.11) and the naturality of the braiding im-
ply

((ϕ′)−1⊗(ϕ′)−1)χ′(i−⊗i+)ϕ′ν(11.12)

= ((ϕ′)−1⊗(ϕ′)−1)χ′(i−⊗i+)cM+,M−ϕ

= ((ϕ′)−1⊗(ϕ′)−1)cM−⊗M+,M−⊗M+(cM+,M−⊗cM+,M−)χ(i+⊗i−)ϕ

= cU(d),U(d)((ϕ
′)−1⊗(ϕ′)−1)(cM+,M−⊗cM+,M−)χ(i+⊗i−)ϕ

= cU(d),U(d)(ν⊗ν)(ϕ−1⊗ϕ−1)χ(i+⊗i−)ϕ.

Let us apply both sides of (11.12) to the unit in U(d)[[h]]. By (11.8) and
(11.10), we obtain for the left-hand side(

((ϕ′)−1⊗(ϕ′)−1)χ′(i−⊗i+)ϕ′ν
)
(1)

=
(
((ϕ′)−1⊗(ϕ′)−1)χ′(i−⊗i+)ϕ′

)
(ω)

= ∆(ω)
(
((ϕ′)−1⊗(ϕ′)−1)χ′(i−⊗i+)ϕ′

)
(1)

= ∆(ω)J ′h.

For the right-hand side, using (11.2), (11.4), (11.10), and the symmetry of t,
we obtain(

cU(d),U(d)(ν⊗ν)(ϕ−1⊗ϕ−1)χ(i+⊗i−)ϕ
)
(1) = cU(d),U(d)

(
(ν⊗ν)(Jh)

)
=
(
exp(ht/2)Jh(ω⊗ω)

)
21

= exp(ht/2)(Jh)21(ω⊗ω).

Putting both computations together, we obtain the desired formula for J ′h.
Let us prove (11.11). By a well-known result of Mac Lane’s, any braided

monoidal category is equivalent to a strict braided monoidal category. It is
therefore licit to omit the associativity isomorphisms in the computations.
To simplify notation, we replace in the braidings the subscripts M± by
± and we omit the tensor product signs. With these conventions, χ =
id+⊗c+,−⊗id− and χ′ = id−⊗c−,+⊗id+. In C we have the following sequence
of equalities implying (11.11) and justified below:

c−+,−+(c+,−⊗c+,−)χ(i+⊗i−)(11.13)

= c−+,−+(c+,−⊗c+,−)(id+⊗c+,−⊗id−)(i+⊗i−)

= (id−⊗c−,+⊗id+)c++,−−(c+,+⊗c−,−)(i+⊗i−)

= (id−⊗c−,+⊗id+)c++,−−(i+⊗i−)

= (id−⊗c−,+⊗id+)(i−⊗i+)c+,−
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= χ′(i−⊗i+)c+,−

Here, the first and the last equalities hold by definition of χ and χ′. The
second one is a consequence of the equality

c−+,−+(c+,−⊗c+,−)(id+⊗c+,−⊗id−)(11.14)

= (id−⊗c−,+⊗id+)c++,−−(c+,+⊗c−,−),

which holds in any braided monoidal category. This equality follows from
the identity

(11.15) σ2σ1σ3σ2σ1σ3σ2 = σ2
2σ1σ3σ2σ1σ3,

which holds in Artin’s braid group on four strands B4, where σ1, σ2, σ3 are
the standard generators of B4.

The third equality in (11.13) is a consequence of

(11.16) c±,± = id±⊗id±.

Since both sides of (11.16) are U(d)-linear, it suffices to check this equality
on the generator 1±⊗1± of M±⊗M±. Now, by (11.2) and the vanishing of
t(1±⊗1±), we have

c±,±(1±⊗1±) =
(
exp(ht/2)(1±⊗1±)

)
21

= (1±⊗1±)21 = 1±⊗1±.

This proves (11.16). The fourth equality in (11.13) holds by naturality of
the braiding. �

Corollary 11.8. Let σω : Uh(d) → Uh(d′) be the algebra isomorphism de-
fined by σω(a) = σ(ω−1aω) for all a ∈ Uh(d). Then σω is a bialgebra iso-
morphism Uh(d)cop ∼= Uh(d′).

Proof. We have to check that

(11.17) ∆′
hσω = (σω⊗σω)∆op

h .

It follows from Lemma 11.7 that, for all a ∈ U(d)[[h]],

(ω−1⊗ω−1)∆op
h (a)(ω⊗ω)

= (ω−1⊗ω−1)(J−1
h )21∆(a)(Jh)21(ω⊗ω)

= (J ′h)
−1∆(ω)−1 exp(ht/2)∆(a) exp(−ht/2)∆(ω)J ′h.

The 2-tensor t being invariant, ∆(a)t = t∆(a), hence ∆(a) exp(ht/2) =
exp(ht/2)∆(a). Therefore,

(ω−1⊗ω−1)∆op
h (a)(ω⊗ω) = (J ′h)

−1∆(ω)−1∆(a)∆(ω)J ′h
= (J ′h)

−1∆(ω−1aω)J ′h
= ∆′

h(ω
−1aω).

This implies (11.17). �
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We now complete the proof of Theorem 11.1 by establishing that the
bialgebra isomorphism σω : Uh(d)cop → Uh(d′) sends Uh(g∓) onto Uh(g′±).
We give the proof only for g′+. The proof for g′− is similar.

For f ′ ∈ HomC′(M ′
+⊗M ′

−,M
′
−) consider the endomorphism µ′+(f ′) ∈

EndC(M ′
+⊗M ′

−) defined as the following composition of morphisms in C′:
(11.18)
M ′

+⊗M ′
−
i′+⊗id′−−→ (M ′

+⊗M ′
+)⊗M ′

−
a′−→ M ′

+⊗(M ′
+⊗M ′

−)
id′+⊗f ′−→ M ′

+⊗M ′
−.

Here id′± is the identity morphism of M ′
±, i′+ : M ′

+ → M ′
+⊗M ′

+ is the
analogue of i+ : M+ → M+⊗M+, and a′ is the corresponding associativity
isomorphism. Conjugating by the isomorphism ϕ′ : U(d′) → M ′

+⊗M ′
−, we

obtain the endomorphism (ϕ′)−1µ′+(f ′)ϕ′ ∈ EndC′(U(d′)), hence the formal
power series

(f ′)+ =
(
(ϕ′)−1µ′+(f ′)ϕ′

)
(1) ∈ U(d′)[[h]].

By definition, Uh(g′+) is the image of the map f ′ 7→ (f ′)+ from
HomC(M ′

+⊗M ′
−,M

′
−) to Uh(d′) = U(d′)[[h]]. Under the above identifica-

tions, the morphism (11.18) in C′ becomes for f ∈ HomC(M−⊗M+,M+) the
composition of morphisms in C

(11.19) µ(f) : M−⊗M+
i−⊗id+−→ (M−⊗M−)⊗M+

a−→ M−⊗(M−⊗M+)
id−⊗f−→ M−⊗M+.

Therefore, the submodule σ−1(Uh(g′+)) of Uh(d) is the image of the map

f 7→ f− =
(
(ϕ′)−1µ(f)ϕ′

)
(1)

from HomC(M−⊗M+,M+) to Uh(d)= U(d)[[h]], where ϕ′ : U(d)→M−⊗M+

is defined by (11.7).
Let us compare the map f 7→ f− with the map g 7→ g− of Section 11.4.

We shall prove below that

(11.20) cM+,M−µ−(g) = µ(gc−1
M+,M−

)cM+,M−

for all g ∈ HomC(M+⊗M−,M+). It follows from (11.9), (11.10), (11.20),
and from the definitions of g− and of f− that

(gc−1
M+,M−

)− =
(
(ϕ′)−1µ(gc−1

M+,M−
)ϕ′
)
(1)

=
(
νϕ−1c−1

M+,M−
µ(gc−1

M+,M−
)cM+,M−ϕν

−1
)
(1)

=
(
νϕ−1µ−(g)ϕν−1

)
(1)

=
(
νϕ−1µ−(g)ϕ

)
(ω−1)

= ν
(
ω−1(ϕ−1µ−(g)ϕ)(1)

)
= ν(ω−1g−) = ω−1g−ω = σω(g−).

Consequently, σω(Uh(g−)) = Uh(g′+).
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It remains to prove (11.20). We use the simplified notation introduced in
the proof of (11.11). By functoriality of the braiding in C, we have
(11.21)

(i−⊗id+)c+,− = c+,−−(id+⊗i−) and c+,−(g⊗id−) = (id−⊗g)c+−,−

for g ∈ HomC(M+⊗M−,M+). Therefore, by definition of µ,

c−1
+,−µ(gc−1

+,−)c+,− = c−1
+,−(id−⊗(gc−1

+,−))a(i−⊗id+)c+,−

= c−1
+,−(id−⊗g)(id−⊗c−1

+,−)a(i−⊗id+)c+,−

= (g⊗id−)c−1
+−,−(id−⊗c−1

+,−)ac+,−−(id+⊗i−).

Since µ−(g) = (g⊗id−)a−1(id+⊗i−), it suffices to observe that by the general
properties of braided categories and (11.16),

(11.22) ac+,−− = ac+,−−(id+⊗c−,−) = (id−⊗c+,−)c+−,− a−1.

This completes the proof of (11.20) and Theorem 11.1. �

We end this section by computing the universal R-matrix R′h of Uh(d′) in
terms of the universal R-matrix Rh of Uh(d) and the invertible element ω ∈
Uh(d).

Lemma 11.9. We have R′h = (σω⊗σω)(Rh)21.

Proof. By (5.6) and Lemma 11.7 we have

R′h = (J ′h)
−1
21 exp(ht/2) J ′h

= (ω−1⊗ω−1)J−1
h exp(−ht/2)∆(ω)

· exp(ht/2) ∆(ω)−1 exp(ht/2)(Jh)21(ω⊗ω).

As observed in the proof of Corollary 11.8, ∆(a) commutes with exp(ht/2)
for any a ∈ Uh(d). Hence,

R′h = (ω−1⊗ω−1)J−1
h exp(ht/2)(Jh)21(ω⊗ω) = (ω−1⊗ω−1)(Rh)21(ω⊗ω).

�

12. Proof of Theorem 2.11.

The aim of this section is to identify the bialgebra A− of Section 9. As an
application, we prove Theorem 2.11.

Let us apply the constructions of Sections 6–7 to the Lie bialgebra g′+ =
g− of Sections 5.2 and 11. We obtain a C[[u, v]]-bialgebra Uu,v(g′+) contain-
ing a C[u][[v]]-bialgebra Au,v(g′+).
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12.1. Exchanging u and v. Any C[[u, v]]-module M gives rise to a
C[[u, v]]-module τ(M) defined as follows. As a vector space τ(M) = M ,
but the action of u, v is different: The new action of u is defined as the
multiplication by v and the new action of v is defined as the multiplication
by u. Clearly, τ(τ(M)) = M . Similarly, exchanging the actions of u and v,
we transform any C[u][[v]]-module M into a C[v][[u]]-module τ(M).

For the Lie bialgebra g′+ = g−, we obtain a C[v][[u]]-bialgebra Av,u(g′+)
and a C[[u, v]]-bialgebra Uv,u(g′+) by

(12.1) Av,u(g′+) = τ
(
Au,v(g′+)

)
and Uv,u(g′+) = τ

(
Uu,v(g′+)

)
.

It is clear that Av,u(g′+) ⊂ Uv,u(g′+).

Theorem 12.2. There is an isomorphism of C[[u, v]]-bialgebras

σeω : Uu,v(g−)cop → Uv,u(g′+)

sending Acop
− onto Av,u(g′+).

Proof. After extending the scalars from C[[h]] to C[[u, v]] and exchanging
u and v, the C[[h]]-bialgebra isomorphism σω : Uh(d)cop ∼= Uh(d′) of Theo-
rem 11.1 gives rise to a C[[u, v]]-bialgebra isomorphism

(12.2) σeω : Uu,v(d)cop → Uv,u(d′)

sending Uu,v(g−)cop onto Uv,u(g′+) and Uu,v(g+)cop onto Uv,u(g′−). The iso-
morphism σeω is given by a 7→ σ̃(ω̃−1aω̃), where σ̃ : Uu,v(g−) ∼= Uv,u(g′+)
is the algebra isomorphism induced by extension of scalars from the al-
gebra isomorphism σ : Uh(d) ∼= Uh(d′) of Section 11.5, and where ω̃ is
the invertible element of Uu,v(d) = U(d)[[u, v]] coming from the element
ω ∈ Uh(d) = U(d)[[h]], cf. Section 4.6. As a consequence of Lemma 11.7, we
have

(12.3) ω̃ ≡ 1 mod uv.

The bialgebra Uu,v(d′) contains a universal R-matrix

R′u,v ∈ Uu,v(d′) ⊗̂C[[u,v]] Uu,v(d
′)

defined in the same way as the element Ru,v ∈ Uu,v(d) ⊗̂C[[u,v]] Uu,v(d) in
Section 6. As an immediate corollary of Lemma 11.9,

(12.4) R′u,v = (σeω⊗σeω)(Ru,v)21.

We have to show that σeω maps A− onto Av,u(g′+). We first describe
Au,v(g′+) following Sections 5.5 and 6.6. To begin with, we need a C[[h]]-
linear isomorphism α′− : Uh(g′−) → U(g′−)[[h]] such that α′−(1) = 1 and
α′− ≡ id modulo h, and a C-linear projection π′− : U(g′−)→ U1(g′−) = C⊕g′−
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that is the identity on U1(g′−). We choose them in such a way that the
following squares commute:

(12.5)

Uh(g+)
α+−−−→ U(g+)[[h]]

σω

y σ

y
Uh(g′−)

α′−−−−→ U(g′−)[[h]],

U(g+)
π+−−−→ U1(g+)

σ

y σ

y
U(g′−)

π′−−−−→ U1(g′−)

where α+ : Uh(g+) → U(g+)[[h]] has been chosen in Section 6.6 and π+ :
U(g+)→ U1(g+) in Section 9.1.

For any y ∈ g−, let σ(y) be the corresponding element in g′+ and 〈σ(y),−〉′:
U1(g′−) → C be the C-linear form extending the standard evaluation map
〈σ(y),−〉′ : g′− → C and such that 〈σ(y), 1〉′ = 0. Following Section 5.5,
given y ∈ g−, we define a C[[h]]-linear form f ′σ(y) : Uh(g′−) → C[[h]] for
a ∈ Uh(g′−) by

(12.6) f ′σ(y)(a) = 〈σ(y), π′−α
′
−(a)〉′.

By extension of scalars, we obtain a C[[u, v]]-linear form f̃ ′σ(y) : Uu,v(g−)→
C[[u, v]]. By Lemma 6.5, the element

(12.7) ρ′+(f̃ ′σ(y)) = (id⊗f̃ ′σ(y))(R
′
u,v) ∈ Uu,v(g′+)

is divisible by uv. Let (y1, . . . , yd) be the basis of g− dual to the ba-
sis (x1, . . . , xd) of g+. In view of Section 6.6, Au,v(g′+) is the C[u][[v]]-
submodule of Uu,v(g′+) generated by the elements

v−|k| ρ′+(f̃ ′σ(y1))
k1 . . . ρ′+(f̃ ′σ(yd))

kd ,

where k runs over all finite sequences of nonnegative integers.
Therefore, Av,u(g′+) = τ(Au,v(g′+)) is the C[v][[u]]-submodule of Uv,u(g′+)

generated by the elements

(12.8) u−|k| ρ′+(f̃ ′σ(y1))
k1 . . . ρ′+(f̃ ′σ(yd))

kd ,

where k runs over all finite sequences of nonnegative integers.
In view of the definition of A− (see Section 9.1), in order to prove that

σeω(A−) = Av,u(g′+), it suffices to check that for all y ∈ g−

(12.9) σeω(ρ−(g̃y)) = −ρ′+(f̃ ′σ(y)),

where ρ− is defined by (6.2) and g̃y : Uu,v(g+) → C[[u, v]] is the C[[u, v]]-
linear form extended from the linear form gy : Uh(g+) → C[[h]] defined
by (9.1).

Let us prove (12.9). First observe that, since σ = −id on g+ and σ = id
on g−, we have

(12.10) 〈σ(y), σ(x)〉′ = −〈x, y〉
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for all x ∈ g+ and y ∈ g−. It follows from (9.1), (12.5), (12.6), and (12.10)
that

f ′σ(y)(σω(a)) = 〈σ(y), π′−α
′
−(σω(a))〉′

= 〈σ(y), σπ+α+(a)〉′

= −〈π+α+(a), y〉 = −gy(a)

for all y ∈ g− and a ∈ Uh(g+). By extension of scalars, we obtain

(12.11) f̃ ′σ(y)(σeω(a)) = −g̃y(a)

for all y ∈ g− and a ∈ Uu,v(g+).
As a consequence of (6.2), (12.4), (12.7), and (12.11),

ρ′+(f̃ ′σ(y)) = (id⊗f̃ ′σ(y))(R
′
u,v)

= (id⊗f̃ ′σ(y))
(
(σeω⊗σeω)(Ru,v)21

)
= (f̃ ′σ(y)⊗id)(σeω⊗σeω)(Ru,v)

= σeω((f̃ ′σ(y)σeω⊗id
)
(Ru,v)

)
= −σeω((g̃y⊗id)(Ru,v)

)
= −σeω(ρ−(g̃y)).

This proves (12.9) and completes the proof of Theorem 12.2. �

12.3. Proof of Theorem 2.11. Under the bialgebra isomorphism Acop
−
∼=

Av,u(g′+) of Theorem 12.2, the nondegenerate bialgebra pairing ( , )u,v of
Lemma 9.5 and Corollary 9.9 gives rise to a nondegenerate bialgebra pairing
Au,v(g+) × Av,u(g′+) → C[[u, v]]. The second assertion in Theorem 2.11
follows from (9.18) and (12.3). �

Appendix A. Biquantization of the trivial bialgebra.

Let g+ be a d-dimensional Lie bialgebra with basis (x1, . . . , xd) and with
dual basis (y1, . . . , yd). Assume throughout the appendix that g+ is the
trivial Lie bialgebra, i.e., with zero Lie bracket and cobracket:

(A.1) [xi, xj ] = 0 and δ(xi) = 0

for all i and j = 1, . . . , d. We now give a complete description of the
biquantization Au,v(g+) and of the pairing (9.9) under the hypothesis (A.1).

The dual Lie bialgebra g− = (g∗+)cop is also trivial, whereas the double
Lie bialgebra d = g+ ⊕ g− is not: It follows from (5.1) and (5.2) that the
Lie bracket of d is equal to zero, but not its Lie cobracket, which is given by
δ(u) = [u⊗1 + 1⊗u, r], where r =

∑d
i=1 xi⊗yi.
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We first determine the bialgebras Uh(d) and Uh(g±) of Section 5. Since d
is a trivial Lie algebra, we have

(A.2) Uh(d) = U(d)[[h]] = S(d)[[h]].

This is not only an isomorphism of algebras, but also of bialgebras. Indeed,
since Uh(d) is commutative, it follows from (5.3) that its comultiplication is
the standard one: ∆h = ∆.

In order to determine the subbialgebras Uh(g±) of Uh(d), we need Sec-
tions 11.2–11.4, whose notation we use freely. Consider the braided monoidal
category C of Section 11.2. We claim that the associativity isomorphims are
trivial:

(A.3) aL,M,N = idL⊗M⊗N

for any triple (L,M,N) of objects in C. Indeed, since the Lie algebra d
is abelian, the morphisms tL,M ⊗ idN and idL ⊗ tM,N coming up in (11.1)
commute with one another. Now, the Drinfeld associator Φ(A,B), being
the exponential of a Lie series in the variables A and B, is equal to 1 if A
and B commute. This proves (A.3).

On the Verma modules M±, the braiding cM+,M− is given by

cM+,M−(1+⊗1−) = exp(ht/2)(1−⊗1+)

in view of (11.2) and the symmetry of t. Since d is abelian, we have

exp(ht/2) =
d∏
i=1

exp(h(xi⊗yi)/2) exp(hr21/2).

Now, r21(1−⊗1+) =
∑d

i=1 yi1−⊗xi1+ = 0. Therefore

(A.4) cM+,M−(1+⊗1−) =
d∏
i=1

exp(h(xi⊗yi)/2)(1−⊗1+).

Let us give a formula for the isomorphism ϕ : U(d)→M+⊗M− of (11.3).
Since d = g+ ⊕ g− as Lie algebras, any element of U(d) = S(d) is a linear
combination of elements of the form ab, where a ∈ S(g+) ⊂ S(d) and b ∈
S(g−) ⊂ S(d). We have

(A.5) ϕ(ab) = b1+⊗a1−.
Indeed, using Sweedler’s notation, the definition of M± as modules, and the
commutativity of U(d) = S(d), we have

ϕ(ab) = ∆(ab)(1+ ⊗ 1−)

=
∑
(a)(b)

a(1)b(1)1+⊗a(2)b(2)1−

=
∑
(a)(b)

b(1)a(1)1+⊗a(2)b(2)1−
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=
∑
(a)(b)

b(1)ε(a(1))1+⊗a(2)ε(b(2))1−

=

∑
(b)

b(1)ε(b(2))1+

⊗
∑

(a)

ε(a(1))a(2)1−


= b1+⊗a1−.

It follows that, for a ∈ S(g+) and b ∈ S(g−),

(A.6) ϕ(exp(ab)) = exp(b⊗a)(1+⊗1−).

Proposition A.1. Uh(g±) = S(g±)[[h]] as bialgebras.

Proof. We prove this for Uh(g+). There is a similar proof for Uh(g−).
By Section 11.4, Uh(g+) is the image of the map f 7→ f+ from

HomC(M+⊗M−,M−) to Uh(d) = U(d)[[h]]. We claim that this image
is exactly the submodule U(g+)[[h]] of U(d)[[h]] consisting of the formal
power series with coefficients in U(g+) ⊂ U(d). Indeed, an element f ∈
HomC(M+⊗M−,M−) is of the form f =

∑
i≥0 fi h

i where the maps fi :
M+⊗M− → M− are U(d)-linear. Since M+⊗M− is a rank-one free mod-
ule generated by 1+⊗1−, the map fi is determined by the element ai 1− =
fi(1+⊗1−) ∈ M−, where ai is a well-defined element of U(g+). The claim
will be proved if we show that f+ =

∑
i≥0 ai h

i.
By (11.5), (A.3) and (A.5) we have

f+ =
(
ϕ−1µ+(f)ϕ

)
(1)

=
∑
i≥0

(
ϕ−1(id+⊗fi) a (i+⊗id−)ϕ

)
(1)hi

=
∑
i≥0

(
ϕ−1(id+⊗fi)(i+⊗id−)ϕ

)
(1)hi

=
∑
i≥0

(
ϕ−1(id+⊗fi)(i+⊗id−)

)
(1+⊗1−)hi

=
∑
i≥0

(
ϕ−1(id+⊗fi)

)
(1+⊗1+⊗1−)hi

=
∑
i≥0

ϕ−1(1+⊗ai 1−)hi =
∑
i≥0

ai h
i.

The fact that Uh(g±) = U(g±)[[h]] is a subbialgebra of U(d)[[h]], hence
has the standard product and coproduct, follows from the obvious fact that
U(g±) is a subbialgebra of U(d). The Lie algebras d and g± being abelian, we
have U(g±) = S(g±). Consequently, Uh(g±) = S(g±)[[h]] as bialgebras. �
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Corollary A.2. The bialgebra Â+ is the subbialgebra of S(g+)[[u, v]] con-
sisting of the formal power series

∑
m,n≥0 am,n u

mvn such that
am,n ∈

⊕m
k=0 S

k(g+) for all m ≥ 0.

Proof. By (6.1), Proposition A.1 and Lemma 4.7, we have Uu,v(g±) =
S(g±)[[u, v]]. We conclude in view of (7.1) and of Proposition 3.8. �

Similarly, the bialgebra Â− of Section 9.1 is the subbialgebra of
S(g−)[[u, v]] consisting of the formal power series

∑
m,n≥0 bm,n u

mvn such
that bm,n ∈

⊕n
k=0 S

k(g−) for all n ≥ 0.
In order to determine the subalgebras Au,v(g+) and A− defined in Sec-

tions 6.6 and 9.1, we have to make explicit the element

Ru,v ∈ Uu,v(g+) ⊗̂C[[u,v]] Uu,v(g−)

of Section 6. Let Jh and Rh be the elements of (U(d)⊗CU(d))[[h]] given by
(11.4) and (5.6), respectively.

Lemma A.3. We have Jh = exp(hr/2) and Rh = exp(hr).

Proof. By (11.4), (A.4) and (A.5), we have

(ϕ⊗ϕ)(Jh) = χ(1+⊗1+⊗1−⊗1−)

= exp(ht23/2) · (1+⊗1−⊗1+⊗1−)

= exp(hr23/2) · (1+⊗1−⊗1+⊗1−)

=
∑
n≥0

hn

2nn!

(
d∑
i=1

1⊗xi⊗yi⊗1

)n
(1+⊗1−⊗1+⊗1−)

= 1+⊗

∑
n≥0

hn

2nn!

d∑
i1,... ,in=1

xi1 · · ·xin1−⊗yi1 · · · yin1+

⊗1−

= (ϕ⊗ϕ)

∑
n≥0

hn

2nn!

d∑
i1,... ,in=1

xi1 · · ·xin⊗yi1 · · · yin


= (ϕ⊗ϕ)

(
exp(hr/2)

)
.

Formula (5.6) implies

Rh = (J−1
h )21 exp

(
ht

2

)
Jh = exp

(
(−r21 + r + r21 + r)

h

2

)
= exp(hr).

�

Corollary A.4. We have

Ru,v = exp(uvr) =
∑
n≥0

unvn

n!

d∑
i1,... ,in=1

xi1 · · ·xin⊗yi1 · · · yin .



BIQUANTIZATION OF LIE BIALGEBRAS 367

From Ru,v we get maps ρ+ : U∗u,v(g−) → Uu,v(g+) and ρ− : U∗u,v(g+) →
Uu,v(g−) as in Section 6. Formula (5.10) defines a C[[h]]-linear form fx :
Uh(g−) = S(g−)[[h]] → C[[h]], where we may take α− = id and π− :
U(g−) = S(g−) → U1(g−) = C ⊕ g− the natural projection. It follows
that the map f̃x : Uu,v(g−) = S(g−)[[u, v]]→ C[[u, v]] of Section 6.4 is given
for b =

∑
m,n≥0 bm,n u

mvn ∈ S(g−)[[u, v]] by

(A.7) f̃x(b) =
∑
n≥0

〈x, π(bm,n)〉umvn.

Lemma A.5. We have v−1 ρ+(f̃x) = ux for all x ∈ g+.

Proof. By (6.2), (A.7) and Corollary A.4 we get

ρ+(f̃x) = (id⊗f̃x)(Ru,v)

=
∑
n≥0

unvn

n!

d∑
i1,... ,in=1

f̃x(yi1 · · · yin)xi1 · · ·xin

=
∑
n≥0

unvn

n!

d∑
i1,... ,in=1

〈x, π(yi1 · · · yin)〉xi1 · · ·xin

= uv
d∑
i=1

〈x, π(yi)〉xi = uv
d∑
i=1

〈x, yi〉xi = uv x.

�

Corollary A.6. Au,v(g+) consists of the formal power series∑
m,n≥0 am,n u

mvn such that am,n ∈
⊕m

k=0 S
k(g+) for all m ≥ 0, and for

all n ≥ 0 there exists N with am,n = 0 for all m > N .

Similarly, the bialgebra A− consists of the formal power series∑
m,n≥0 bm,n u

mvn such that bm,n ∈
⊕n

k=0 S
k(g−) for all n ≥ 0, and for

all m ≥ 0 there exists M with bm,n = 0 for all n > M . Together with
Corollary A.6, this implies that

A− = Av,u(g−).

Let us describe the bialgebra pairing ( , )u,v : Au,v(g+)×Acop
− → C[[u, v]]

defined by (9.9). By (2.11) and Corollary A.6, it suffices to compute
(ux, vy)u,v when x ∈ g+ and y ∈ g−. The following result shows that
the pairing ( , )u,v is the standard one.

Lemma A.7. We have (ux, vy)u,v = 〈x, y〉 for all x ∈ g+ and y ∈ g−.
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Proof. By (9.9), (A.7), and Lemma A.5 we have

(ux, vy)u,v =
(
ρ−1
+ (ux)

)
(vy) = v−1 f̃x(vy) = v−1v 〈x, π(y)〉 = 〈x, y〉.

�

A.8. Remark. The reader may check, using (A.4) and (A.6), that the in-
vertible element ω ∈ Uh(d) = S(d)[[h]] defined by (11.10) is given by

ω = exp

(
h

2

d∑
i=1

xiyi

)
.
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ON EQUIVALENCE OF TWO CONSTRUCTIONS OF
INVARIANTS OF LAGRANGIAN SUBMANIFOLDS

Darko Milinković

We give the construction of symplectic invariants which
incorporates both the “infinite dimensional” invariants con-
structed by Oh in 1997 and the “finite dimensional” ones con-
structed by Viterbo in 1992.

1. Introduction.

Let M be a compact smooth manifold. Its cotangent bundle T ∗M carries
a natural symplectic structure associated to a Liouville form θ = pdq. For
a given compactly supported Hamiltonian function H : T ∗M → R and a
closed submanifold N ⊂ M Oh [30, 27] defined a symplectic invariants of
certain Lagrangian submanifolds in T ∗M in a following way. Let ν∗N ⊂
T ∗M be a conormal bundle of N . Denote by HF λ∗ (H,N ;M) the Floer ho-
mology groups generated by Hamiltonian orbits γ starting at the zero section
and ending at ν∗N such that AH(γ) :=

∫
γ pdq−Hdt ≤ λ (see, e.g., [30]). In

particular, for λ = ∞ we write HF∗(H,N ;M) := HF∞∗ (H,N ;M). These
groups are known to be isomorphic to H∗(N) [31]. We denote the corre-
sponding isomorphism by F . For a ∈ H∗(N) one defines

ρ(a,H : N) := inf{λ | FH(a) ∈ Im(jλ∗ ) ⊂ HF∗(H,N ;M)},(1)

where jλ∗ : HF λ∗ → HF∗(H,N ;M) is a well defined inclusion homomor-
phism. It is proved in [30] that ρ is a well defined invariant which (after
a suitable normalization of H) depends only on a Lagrangian submanifold
L := φH(OM ) and not on a particular choice of H. We refer the reader to
[26, 29, 30, 27] for more details.

This construction can be considered as an infinite dimensional version
of a construction given earlier by Viterbo [38]. Let L be a Hamiltonian
deformation of the zero section oM . It is known [21] that L can be realized
as

L =

{(
x,
∂S

∂x

) ∣∣∣(x, ζ) ∈ (∂S
∂ζ

)−1

(0)

}
,

where S : M × Rm → R is a smooth function fiberwise quadratic outside a
compact set. Using that result, Viterbo [38] defined symplectic invariants
of L associated to a homology classes of a base M in a following way. For

371
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a class a ∈ H∗(N) denote by Ta its lift to H∗(S∞N , S
−∞
N ), where SN is the

restriction of S to N × Rm and S±∞N := S−1
N ((−∞, λ]) =: SλN for large λ.

Note that this makes sense since S is quadratic at infinity. Then one sets

c(a, S : N) := inf{λ|Ta ∈ Im(jλ∗ ) ⊂ H∗(S∞, S−∞)},(2)

where jλ∗ : H∗(SλN , S
−∞
N ) → H∗(S∞N , S

−∞
N ) is an obvious inclusion homo-

morphism. Viterbo proved that these invariants essentially depend only on
L, and not on S. Viterbo carried out the construction for N = M (which
generalizes easily to closed N ⊂ M) and for an arbitrary vector bundle
E → M . As Viterbo’s invariants do not change under a stabilization (i.e.,
replacing S : E → R by S ⊕ Q : E ⊕ F → R), it is enough to consider the
case E = M × Rm. We refer the reader to [38] for more details. For an
alternative construction via Morse homology see [25].

The natural question of the equality between the two invariants is raised
in [30]. In [26] we outlined a proof, constructing the invariants which in-
terpolate the above two. The main technical tool, which we omitted in [26]
was the construction of the interpolated Floer-Morse theory on T ∗(M×Rm)
with an arbitrary coefficient ring. The purpose of this paper is to give the
details of this construction. Another way of interpolating Floer and Morse
homologies for generating functions, in the caseM = N was given by Viterbo
in [39, 37].

The dependence of the above invariants on the subset N ⊂ M , in par-
ticular the continuity with respect to the C1-topology of submanifolds is
an interesting question, which was further studied by Kasturirangan and
Oh [18, 19]. Some applications to wave fronts and Hofer’s geometry are
given in [30].

At the end, we give an application of our result to Hofer’s geometry of
Lagrangian submanifolds.

2. Preliminaries and notation.

Let M be a compact smooth manifold and E := M × Rm. The cotangent
bundle T ∗E = T ∗M × Cm carries the natural symplectic structure ω ⊕ ω0.

For a fixed relatively compact open set K ⊂ E and a Riemannian metric
gM on M we denote

GgM⊕g0 := the set of metrics on E
which coincide with gM ⊕ g0 outside K,

where g0 is a standard Euclidean metric on Rm. For a given non-degenerate
fiberwise quadratic form Q on E, we denote by S(E,Q) the set of all smooth
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functions S : E → R such that S = Q outside K and
∞∑
k=0

εk‖S −Q‖Ck <∞(3)

for some sequence εk of positive real numbers.
Similarly, let H(E) denote the set of smooth functions H : T ∗E× [0, 1]→

R such that outside K

H(x, ξ) = H1 ⊕H2(x, ξ) := H1(x) +H2(ξ)

for some compactly supported functions H1 : T ∗M → R and H2 : Cm → R
and

∞∑
k=0

εk‖H‖Ck <∞.(4)

Equipped with norms (3) and (4) the spaces

S(E,Q) −Q := {S −Q | S ∈ S(E,Q)}
and H(E) become separable Banach spaces which are (for suitably chosen
sequence εk) dense in L2(E) and L2(T ∗E) (see [11]).

For a closed submanifold N ⊂M and a function S ∈ S(E,Q) we define the
space of paths

Ω(S;N) := {Γ : [0, 1]→ T ∗E | Γ(0) ∈ Graph(dS), Γ(1) ∈ ν∗(N × Rm)},
and

Ppk:loc(S;N) := {U : R→ Ω(S;N) | U ∈W k,p
loc (R× [0, 1], T ∗E)}.

After restricting AH to Ω(S;N), for a given path Γ := (γ, z) : [0, 1]→ T ∗E
and a pair (H,S) ∈ H(E)× S(E,Q) the first variation formula gives

dAH(Γ)η =
∫ 1

0

[
ω

(
dγ

dt
, η

)
− dH(γ(t), t)η

]
dt− θη(0)

=
∫ 1

0

[
ω

(
dγ

dt
, η

)
− dH(γ(t), t)η

]
dt− dS(π(Γ(0)))Tπ(η(0)),

where π : T ∗E → E is the natural projection. Therefore, to get a good
variational problem, we set

A(H,S)(Γ) = AH(Γ) + S(π(Γ(0)))

(c.f. [30]). Straightforward computation yields:

dA(H,S)(Γ)η

=
∫ 1

0
[(ω ⊕ ω0)(Γ̇, η)− dH(Γ)η]dt

+ 〈Γ(1), Tπ(η(1))〉 − 〈Γ(0), Tπ(η(0))〉+ dS(π(Γ(0)))Tπ(η(0)).
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After restricting to Ω(S;N)

dA(H,S)(Γ)η =
∫ 1

0
[(ω ⊕ ω0)(Γ̇, η)− dH(Γ)η]dt.(5)

Hence, the critical points Γ := (γ, z) : [0, 1] → T ∗E of A(H,S) on Ω(S;N)
are the solutions of 

Γ̇ = XH(Γ)
(γ(0), z(0)) ∈ Graph(dS)
γ(1) ∈ ν∗N, z(1) ∈ oRm .

(6)

Note that Γ 7→ Γ(1) establishes the one-to-one correspondence

Crit(AH) = {Γ : [0, 1]→ T ∗E | Γ satisfies (6)}
∼= φH1 (Graph(dS)) ∩ ν∗(N × Rm).

For a given Riemannian metric gM on M , we denote by JgM the almost
complex structure which satisfies the following conditions:

1) JgM is compatible with the canonical symplectic structure ω on T ∗M .
2) JgM maps the vertical tangent vectors to the horizontal vectors with

respect to the Levi-Civita connection of gM .
3) On the zero section oM ⊂ T ∗M JgM assigns to each vector v ∈ TqM

the cotangent vector JgM (v) = gM (v, .) with obvious identifications.

Denote by jcω(M) the set of ω-compatible almost complex structures which
coincide with JgM outside a compact set in T ∗M , and by J cω(M) the set of
smooth paths Jt : [0, 1]→ jcω(M).

For a path {Jt} ∈ J cω(M), the family of product almost complex struc-
tures

J ⊕ i := {Jt ⊕ i}0≤t≤1

is compatible with the product symplectic structure ω⊕ω0 on T ∗E = T ∗M×
Cm. Denote by J cω(E) the set of almost complex structures on T ∗E which
coincide with product structure JgM⊕i outside a compact set. Those almost
complex structures induce the family of metrics

〈η1, η2〉Jt := ω ⊕ ω0(η1, Jtη2)

and hence an L2-type metric

〈〈η1, η2〉〉J :=
∫ 1

0
〈η1(t), η2(t)〉Jtdt

on Ω(S;N).
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In terms of metric 〈〈., .〉〉J the gradient flow U := (u, v) ∈ Ppk:loc(S;N) of
A(H,S) restricted to Ω(S;N) satisfies

∂J,HU := ∂U
∂τ + J

(
∂U
∂t −XH(U)

)
= 0

(u(τ, 0), v(τ, 0)) ∈ Graph(dS)
u(τ, 1) ∈ ν∗N, v(τ, 1) ∈ oRm .

(7)

Denote by CF (H,S : N) the set of critical points of A(H,S)|Ω(S;N). Then

CF (H,S : N) = {Γ = (γ, z) | Γ satisfies (6)}.

The set of critical values of A(H,S) in R

Spec(H,S : N) := A(H,S)(CF (H,S : N))

is called the action spectrum of A(H,S).
In the construction of Floer homology we will impose on the functions in

S(E,Q) the generic transversality condition

Graph(dS) t (φH1 )−1(ν∗N × Rm).(8)

Under assumption (8), the sets CF (H,S : N) and Spec(H,S : N) are finite.
In the general case, we have the following lemma, which describes the size
of set Spec(H,S : N). Similar results were established in [17, 30].

Lemma 1. The action spectrum Spec(H,S : N) is a compact nowhere
dense subset of R.

Proof. For the smooth function

f : ν∗N × oRm → R

f(x) = A(H,S)(φ
H
t ◦ (φH1 )−1(x))

we have, by (5)

df(x) = −θ((φH1 )−1(x))T (φH1 )−1(x) + dS(π(φH1 )−1(x))TπT (φH1 )−1(x)

and thus the set Spec(H,S : N) is contained in the set of critical values of
f . The latter is nowhere dense in R by the classical Sard’s theorem.

Since H = H1 ⊕ H2 and Graph(dS) = oM × Graph(dQ) outside some
compact subset K ⊂ T ∗E and supp(Hi) ⊂ Ki, i ∈ {1, 2} for some compact
subsets K1 ⊂ T ∗M and K2 ⊂ Cm, it follows that for x = (x1, x2) ∈ ν∗N ×
oRm outside K0 :=

⋃
t∈[0,1] φ

H1⊕H2
t ◦ (φH1⊕H2

1 )−1(K)

f(x) = g1(x1) + g2(x2),

where
g1 : ν∗N → R, g1(x1) = AH1(φ

H1
t ◦ (φH1

1 )−1(x1))

g2 : oRm → R, g2(x2) = AH2(φ
H2
t ◦ (φH2

1 )−1(x2)) +Q(πCm((φH2
1 )−1(x2))).



376 DARKO MILINKOVIĆ

Here πCm : Cm → Rm denotes the natural projection. Denote K̃0 := K0 ∩
ν∗N × oRm , K̃1 := K1 ∩ ν∗N , K̃2 := K2 ∩ oRm . Since g1 ≡ 0 outside K̃1 and
g2 ≡ 0 outside K̃2, all critical points of g are contained in the compact set

B = g(K̃0) ∪
(
g1(K̃1) + g2(K̃2)

)
∪ {0}.

Hence Spec(H,S : N) is compact as a closed subset of a compact set B. �

Let CF∗(H,S : N) denote the free abelian group generated by CF (H,S :
N) and CF ∗(H,S : N) := Hom(CF∗(H,S : N),Z). Further, denote by
M(J,H,S)(N : E) the set of solutions of (7) with finite energy, i.e., of those
which satisfy the condition:

E(U) :=
∫ +∞

−∞

∫ 1

0

(∣∣∣∣∂U∂τ
∣∣∣∣2
J

+
∣∣∣∣∂U∂t −XH(U)

∣∣∣∣2
J

)
dtdτ <∞.(9)

More generally, consider the τ -dependent families

Sαβ := Sαβτ ∈ S(E,Q), H
αβ := Hαβ

τ ∈ H(E), Jαβ := Jαβτ ∈ J cω(E),

such that for some R > 0 and τ < −R
Sαβτ ≡ Sα, Hαβ

τ ≡ Hα, Jαβτ ≡ Jα,
for some fixed Sα, Hα, Jα and, similarly,

Sαβτ ≡ Sβ , Hαβ
τ ≡ Hβ , Jαβτ ≡ Jβ,

for τ > R and Sβ, Hβ , Jβ fixed. Denote the sets of all such homotopies by

H(E), S(E,Q), J
c
ω(E).

We define M(Jαβ ,Hαβ ,Sαβ)(N : E) as the set of solutions of
∂Jαβ ,Hτ

U := ∂U
∂τ + Jαβ

(
∂U
∂t −XHαβ (U)

)
= 0

(u(τ, 0), v(τ, 0)) ∈ Graph(dSαβ)

u(τ, 1) ∈ ν∗N, v(τ, 1) ∈ omR

(10)

which satisfy

E(U) :=
∫ +∞

−∞

∫ 1

0

(∣∣∣∣∂U∂τ
∣∣∣∣2
Jαβ

+
∣∣∣∣∂U∂t −XHαβ (U)

∣∣∣∣2
Jαβ

)
dtdτ <∞.(11)

It is a standard result in elliptic regularity theory that the solutions of (10)
are smooth.

Finally, for two solutions x, y of (6) we denote by M(J,H,S)(x, y) the set
of solutions U of (7) such that

lim
τ→∞

U(τ, t) = x(t),

lim
τ→−∞

U(τ, t) = y(t).
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In an analogous way, we define M(Jαβ ,Hαβ ,Sαβ)(xα, xβ) to be the set of so-
lutions U of Equation (10) such that

lim
τ→−∞

U(τ, t) = xα(t)

lim
τ→∞

U(τ, t) = xβ(t),

where 
ẋα = XHα(xα)
xα(0) ∈ Graph(dSα)
xα ∈ ν∗N × oRm


ẋβ = XHβ (xβ)
xβ(0) ∈ Graph(dSβ)
xβ(1) ∈ ν∗N × oRm .

(12)

3. C0-estimates.

In this section we will prove that the solutions of (7) and (10) remain in a
compact neighborhood of zero-section. The essential ingredient of the proof
is the version of maximum principle which states that a J-holomorphic curve
cannot touch certain kind of hypersurfaces.

3.1. Contact type hypersurfaces.

Definition 2 ([40]). A smooth hypersurface ∆ in a symplectic manifold
(V, ω) is said to be of a contact type if there exists a vector field X defined
in a neighborhood U of ∆ and transversal to ∆ such that d(Xcω) = ω in
U . Such vector field is called conformal.

It is easy to see that % := Xcω defines a contact structure ζ := Ker (%)
on ∆.

Definition 3 ([7]). Let ∆ be an oriented hypersurface in an almost complex
manifold (V, J) and ζq the maximal J-invariant subspace of Tq∆. Then ∆
is called J-convex if for some (and hence any) defining 1-form % for ζq we
have d%(Y, JY ) > 0 for all non-zero vectors Y ∈ ζq.

For a contact type hypersurface ∆ in symplectic manifold (V, ω) there
exist an ω-compatible almost complex structure J such that ∆ is J-convex.

Example 4. The sphere S2n−1 ⊂ Cn is an i-convex hypersurface.

Example 5. Let Jg be an almost complex structure on T ∗M defined in
Section 2 and ‖ · ‖g the fiberwise norm induced by g. Then the hypersurface

∆ := {p ∈ T ∗M | ‖p‖g = 1}
is Jg-convex.

For the sake of completeness we give the proof of the following version of
the maximum principle for subharmonic functions (c.f., [23, 30]).
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Lemma 6. Let u : D → V be a J-holomorphic disc in an almost complex
manifold V and ∆ ⊂ V a J-convex hypersurface. Then u(D) cannot be
tangent to ∆.

Proof. Suppose that Im(D) is tangent to ∆ at the point u(z), for some
z ∈ D. Since u is J-holomorphic, u∗(TzD) ⊂ ζu(z) for ζ as in Definition 3.
Assume that ∆ = f−1(0) for some f : V → R.

We first prove that f ◦ u : D → R is subharmonic near z, or, equivalently
(see [7]) that a two-form di∗d(f ◦ u) is positive definite in a neighborhood
of z. Here i∗ : T ∗D → T ∗D is the operator adjoint to i : TD → TD,
η 7→

√
−1η.

Choose Y ∈ ζu(z). Then, according to Definition 3, JY ∈ ζu(z) and thus
J∗df(Y ) := df(JY ) = 0. Therefore,

J∗df |∆ = µ%|∆ + λdf |∆
for % as in Definition 2 and for some µ : V → (0,+∞) and λ : V → R.
Hence

dJ∗df |ζu(z)
= dµ ∧ %|ζu(z)

+ µd%|ζu(z)
+ dλ ∧ df |ζu(z)

= µd%|ζu(z).

Since u is J-holomorphic, i∗u∗ = u∗J∗ and thus

di∗d(f ◦ u) = u∗dJ∗df

= u∗(µd%) at u(z)
= (µd%)u∗.

Since u∗(TzD) ∈ ζu(z), and since d%|ζu(z) is positive definite (by Definition 3),
two-form di∗d(f ◦u) is positive definite near z. Hence, f ◦u is subharmonic.

Now, we finish the proof arguing indirectly. Suppose that Image (D) is
tangent to ∆. Then f ◦u attains its maximum at z. If z is an interior point
in D it contradicts the maximum principle for subharmonic functions. If
z ∈ ∂D then

d

dt
|t=1((f ◦ u)(tz)) = 0

which contradicts Hopf lemma (see [32]). �

3.2. The structure of the space of trajectories.
In this section we prove the following analogue of well-known Floer’s

theorem (see [11, 15, 35]).

Proposition 7. If U := (u, v) is a solution of Equation (10) which satisfies
the condition (11), then there exist the limits

xα(t) = lim
τ→−∞

U(τ, t)
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and
xβ(t) = lim

τ→∞
U(τ, t).

Moreover, xα and xβ are solutions of Equation (12) and hence

M(Jαβ ,Hαβ ,Sαβ)(N : E) =
⋃
xα,xβ

M(Jαβ ,Hαβ ,Sαβ)(x
α, xβ).

Proof. Choose a sequence τk → −∞, and consider the sequence Uk :=
U(τk, t). We claim that Uk is bounded in W 1,2([0, 1], T ∗E).

By assumption (11) we have∫ 1

0

∣∣∣∣∂U∂t (τk, t)−XHα(U(τk, t))
∣∣∣∣2 dt→ 0, as k →∞.(13)

Therefore, it remains to prove L2-estimate. We will prove that Uk(t) is
contained in a compact subset of T ∗E. We embed T ∗E properly in Rp and
denote by | · | the standard Euclidean norm on Rp. Assume first that

lim
k→∞

|Uk(1)| =∞.(14)

Recall that Sαβ ≡ Q outside a compact set K ⊂ E. By compactness of K
and (14) we have

lim
k→∞

dist(Uk(1),Graph(dSαβ |K)) =∞.(15)

Since
Uk(1) := (uk(1), vk(1)) ∈ ν∗N × oRm

and
Graph(dSαβ |E\K) ∼= oM ×Graph(dQ),

(14) implies

lim
k→∞

[dist(Uk(1),Graph(dSαβ |E\K))]2 = lim
k→∞

[dist(uk(1), oM )]2

+ lim
k→∞

[dist(vk(1),Graph(dQ))]2

= ∞.(16)

Therefore, from (15) and (16) we get

lim
k→∞

dist(Uk(1),Graph(dSαβ)) =∞.(17)

Since Uk(0) ∈ Graph(dSαβ) (17) gives

lim
k→∞

|Uk(1)− Uk(0)| =∞.(18)
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However

|Uk(1)− Uk(0)| =
∣∣∣∣∫ 1

0

dUk
dt

dt

∣∣∣∣
≤

(∫ 1

0

∣∣∣∣dUkdt
∣∣∣∣2 dt

) 1
2

< C

by (13), which contradicts (18). Therefore, there exists a compact set K1 ⊂
T ∗E such that

Uk(1) ∈ K1 for all k.(19)

Assume now that there exist a sequence tk ∈ [0, 1] such that |Uk(tk)| is
unbounded. By (19) that means

lim
k→∞

|Uk(1)− Uk(tk)| =∞(20)

for some subsequence (denoted again by) Uk. Then, by the same argument
as above,

|Uk(1)− Uk(0)| ≤

(∫ tk

0

∣∣∣∣dUkdt
∣∣∣∣2 dt

) 1
2

< C

which contradicts (20). Therefore, Uk is C0 (and hence L2) bounded.
Hence we deduce that Uk is bounded in W 1,2([0, 1], T ∗E). Therefore, by

Rellich Theorem,

Uk(t)→ xα(t) as k →∞ (in L2).

Moreover, since dUk
dt is L2-bounded (by (13)), the family Uk is equicontinuous

and thus, by Arzelà-Ascoli Theorem

Uk(t)→ xα(t) as k →∞ (in C0).

From (13) we conclude that xα is a (weak) solution of Equation (6). Smooth-
ness of xα follows from the smoothness of XHα . Since this is true for every
sequence τk, it is easy to see that

lim
τ→−∞

U(τ, t) = xα(t).

The case τ →∞ is treated analogously. �

Remark 8. The converse of previous proposition also holds: If U is a solu-
tion of Equation (10) which satisfies (13) then U is bounded in sense of (11).
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Indeed, in that case

1
2
E(U) =

1
2

∫ +∞

−∞

∫ 1

0

(∣∣∣∣∂U∂τ
∣∣∣∣2
Jαβ

τ

+
∣∣∣∣∂U∂t −XHαβ

τ
(U)
∣∣∣∣2
Jαβ

τ

)
dtdτ

=
∫ +∞

−∞

∫ 1

0

〈
∂U

∂τ
,
∂U

∂t
−X

Hαβ
τ

〉
Jαβ

τ

dtdτ

= A(Hβ ,Sβ)(x
β)−A(Hα,Sα)(x

α)−
∫ +∞

−∞

∫ 1

0

∂Hαβ
τ

∂τ
dtdτ

< +∞.

3.3. The image of the evaluation map.
In this section we prove the C0 estimate necessary for defining Floer ho-

mology on a non-compact manifold (see [8, 15, 30] for similar propositions).
In fact, we will prove that the image of the evaluation map

ev :MJαβ ,Hαβ ,Sαβ (N : E)× [0, 1]× R→ T ∗E

defined by
ev(U, τ, t) := U(τ, t)

is bounded.

Proposition 9. Consider a family of parameters (Jαβ ,Hαβ , Sαβ) chosen
as in Section 2, so that there exist a compact set K ⊂ T ∗E such that

Hαβ ≡ Hαβ
1 ⊕Hαβ

2 , Jαβ ≡ Jg ⊕ i outside K

and
Sαβ ≡ Q outside π(K),

where π : T ∗E → E is the natural projection. Then there exists a compact
set K0 ⊃ K, depending on (Jαβ ,Hαβ , Sαβ), such that

ev(MJαβ ,Hαβ ,Sαβ (N : E)) ⊂ K0.

Proof. Let K0 ⊃ K be a compact subset of T ∗E such that

Graph(dSαβ |π(K)) ⊂ K0

and
π1(K0) ⊃ supp(H1), π2(K0) ⊃ supp(H2)

where
π1 : T ∗E ∼= T ∗M × Cm → T ∗M, π2 : T ∗E → Cm

are natural projections. It is clear that outside K0 Equation (10) splits onto
∂Jgu− JgXHαβ

1
(u) = 0

u(τ, 0) ∈ oM
u(τ, 1) ∈ ν∗N


∂v − iX

Hαβ
2

(v) = 0

v(τ, 0) ∈ Graph(dQ)
v(τ, 1) ∈ oRm .

(21)
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Let U := (u, v) be a solution of (21) outside K0. Assume

π1(K0) ⊂ DR0 := {(q, p) ∈ T ∗M | ‖p‖g < R0}.
Let

R1 := sup

{∥∥∥∥∂Sαβ∂q
(e)
∥∥∥∥
g

| e ∈ E

}
.

Note that R1 is finite since Sαβ(q, ξ) = Q(ξ)
(
and hence ∂Sαβ

∂q ≡ 0
)

outside
a compact set. Set

R2 := sup

{
sup
t∈[0,1]

‖y(t)‖g | x := (y, z) solves (12)

}
.

Since Hαβ
1 ≡ 0 outside π1(K0) and Hαβ = Hαβ

1 ⊕ Hαβ
2 , Graph(dSαβ) =

Graph(dQ) outside K0 it follows that

max{R1, R2} ≤ R0.

We will first prove that

R3(u) := sup
(τ,t)∈R×[0,1]

‖u(τ, t)‖g < R0.

Arguing indirectly, assume that

R3(u) > Rk for i ∈ {0, 1, 2}.(22)

Then u component of Equation (21) outside the set {(q, p) ∈ T ∗M | ‖p‖g
≤ R0} becomes

∂Ju = 0,
i.e., u is J-holomorphic. Denote

∆ := {(q, p) ∈ T ∗M | ‖p‖g = R3(u)}.
By Example 5 ∆ is Jg-convex. Choose T ∈ R such that

sup
|τ |>T

sup
0≤t≤1

‖u(τ, t)‖g < R3(u).

Since max ‖u(τ, 0)‖ ≤ R1 it follows from (22) that max ‖u(τ, t)‖ is achieved
at some point (τ0, t0) ∈ [−T, T ]× (0, 1] and there exists a neighborhood Bε
of (τ0, t0) such that u|Bε is a Jg-holomorphic disc.

If (τ0, t0) is an interior point of (0, 1)× (−T, T ), then u(Bε) is tangent to
the Jg-convex hypersurface ∆, which is, by Lemma 6, a contradiction.

Therefore, assume that t0 = 1. Then u(τ, 1) is a curve tangent to ∆
at τ0. But, since u(τ, 1) ∈ ν∗N and ν∗N is Lagrangian, J d

dτ u(τ, 1) must
be perpendicular to ν∗N . In particular, it is perpendicular to the confor-
mal vector field ∂

∂r ∈ Tν
∗N (see Definition 2 and Definition 3). Therefore,

J d
dτ u(τ, 1) ∈ T∆, and hence u(Bε) is tangent to ∆, which is again a contra-

diction by Lemma 6.
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Consider now π2 : T ∗E ∼= T ∗M × Cm → Cm and assume that

π2(K0) ⊂M ×B(0, R4),

where B(0, R4) is the standard Euclidean ball of radius R4 in Rm. If

R5 := sup

{
sup
t∈[0,1]

|z(t)| | x := (y, z) solves (12)

}
,

where | · | is the standard Euclidean norm on Cm then R5 ≤ R4. Now

sup
(τ,t)∈R×[0,1]

|v(τ, t)| < R4.

Indeed, arguing as above, we rule out the interior points easily. For the
boundary points, we use the fact that the radial vector field ∂

∂ρ ∈ TCm

is tangent to both Graph(dQ) and oRm and perpendicular to the standard
Euclidean sphere in Rm. Assume that sup |v| was achieved at some point
(τ0, t0), for t0 = 0 or 1. Then the curve v(τ, t0) is tangent to S2m−1 at τ0 and
perpendicular to the radial vector field ∂

∂ρ ∈ TRm. Since both Graph(dQ)
and oRm are Lagrangian, i ddτ v(τ, t0)|τ0 is also perpendicular to ∂

∂ρ , i.e., tan-
gent to S2m−1. Since S2m−1 is i-convex (see Example 4), this again contra-
dicts Lemma 6. �

Once we have established C0 estimates, the standard compactness result
follows as in [12, 11, 28, 35]:

Proposition 10. For any sequence Uk ∈M(Jαβ ,Hαβ ,Sαβ)(xα, xβ) there exist
a subsequence (denoted by Uk again), sequences τ jk ∈ R (0 ≤ j ≤ l) and an
integer s (0 ≤ s ≤ l) such that

1) for 0 ≤ j ≤ s − 1 Uk(τ + τ jk) and all its derivatives converge uni-
formly on compact sets to U j ∈ M(Jβ ,Hβ ,Sβ)(xj , xj−1), where xj are
the solutions of Equation (12) and x0 = xβ,

2) Uk(τ + τ sk) and all its derivatives converge uniformly on compact sets
to U j ∈ M(Jαβ ,Hαβ ,Sαβ)(xs, xs−1), where xs is the solutions of Equa-
tion (12),

3) for s+1 ≤ j ≤ l Uk(τ+τ jk) and all its derivatives converge uniformly on
compact sets to U j ∈M(Jα,Hα,Sα)(xj , xj−1),where xj are the solutions
of Equation (12) and xl = xα.

The complementary concept to the compactness property of Proposi-
tion 10 is the gluing construction. It is now standard (see [12, 22]) and
can be summarized in the following

Proposition 11. For any pair of trajectories

(Uα, Uαβ) ∈M(Jα,Hα,Sα)(x
α, yα)×M(Jαβ ,Hαβ ,Sαβ)(y

α, zβ)



384 DARKO MILINKOVIĆ

there exists a sequence Uk ∈ M(Jαβ ,Hαβ ,Sαβ)(xα, zβ) converging to (U1, U2)
in the sense of Proposition 10.

4. Fredholm theory.

Assume that H ∈ H(E) and S ∈ S(E,Q) are chosen as in (8), i.e., assume
that Graph(dS) intersects (φH1 )−1(ν∗N × oRm) transversely. Then, for each
two solutions x, y of Equation (6) there exist a smooth Banach manifold

Ppk(x, y) ⊂ P
p
k:loc(x, y) := {U ∈ Ppk:loc(S;N) | lim

τ→−∞
U = x, lim

τ→∞
U = y}

such that (7) defines a smooth Fredholm section

∂J,H : Ppk(x, y)→ L,(23)

where L is a smooth Banach bundle over Ppk(x, y) with fibers

LU = W k−1,p(R× [0, 1], U∗T (T ∗E)).

The linearization of ∂J,H at U ∈M(J,H,S)(x, y) is a Fredholm operator

EU := D(∂J,H) : TUPpk(x, y)→ LU ,(24)

EUξ = ∇τξ + J(U)∇tξ +∇ξJ(U)
∂U

∂t
+∇ξ∇H(t, U)

where ∇τ , ∇t, ∇ξ denote the covariant derivative with respect to Levi-
Civita connection associated to metric ω(·, J ·) and TUPpk(x, y) is the set of
all ξ ∈ W k,p(R × [0, 1], U∗T (T ∗E)) such that ξ(τ, 0) ∈ T (Graph(dS)) and
ξ(τ, 1) ∈ T (ν∗(N × oRm)). Furthermore, for fixed J and S,

F : (U,H) := (u, v,H) 7→ ∂J,HU

defines a smooth section of the Banach bundle

L → Ppk(x, y)×H(E)

transversal to the zero section. Hence, F−1(0) is a (Banach) manifold. The
projection

Π : F−1(0)→ H(E)

(U,H) 7→ H

is a Fredholm map. The point U ∈ M(J,H,S)(x, y) is a regular point of
Section (23) if and only if (U,H) ∈ F−1(0) is a regular point of Π. Hence,
by Sard-Smale Theorem applied to Π, the set of points in H ∈ H(E) for
which Section (23) is regular is dense in H(E). Similarly, one can use J cω(E)
or S(E,Q) in place of H(E).

Indeed, Floer’s proof of the above statements in [11] (see also [28, 35])
carries over in our situation with slight modifications. Hence we have the
following
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Proposition 12. Let N and Q be fixed as in Section 2. Then there exists
a dense set

(J cω(E)× S(E,Q) ×H(E))reg ⊂ J cω(E)× S(E,Q) ×H(E)

such that for every (J, S,H) ∈ (J cω(E)×S(E,Q)×H(E))reg the linearization of
Section (23) at U ∈ M(J,H,S)(N : E) is onto. Consequently, for (J, S,H) ∈
(J cω(E) × S(E,Q) × H(E))reg M(J,H,S)(x, y) is a smooth finite dimensional
manifold.

Similarly, we have the parameterized version of Proposition 12 (see [9,
11]):

Proposition 13. Let N and Q be fixed as in Proposition 12, and

(Jα, Sα,Hα), (Jβ, Sβ,Hβ) ∈ (J cω(E)× S(E,Q) ×H(E))reg.

Then there exists a dense subset (J cω(E)×S(E,Q) ×H(E))reg in a set of all
homotopies J cω(E)× S(E,Q) ×H(E) defined in Section 2 such that for

(Jαβ , Sαβ ,Hαβ) ∈ (J cω(E)× S(E,Q) ×H(E))reg

Equation (10) defines a smooth Fredholm section

(∂J,H , ∂) : Ppk(x
α, xβ)→ L,(25)

on a smooth Banach bundle L over Ppk(x
α, xβ) ⊂ Ppk:loc(x

α, xβ), where

Ppk:loc(x
α, xβ) := {U ∈ Ppk:loc(S;N) | lim

τ→−∞
U = xα lim

τ→∞
U = xβ},

which is regular at any U ∈M(Jαβ ,Hαβ ,Sαβ)(xα, xβ)

Example 14. The case S = S1 ⊕ S2, H = H1 ⊕H2, J = J1 ⊕ J2.
Assume that S(q, ξ) = S1(q) + S2(ξ) and H(x, y) = H1(x) + H2(y). Then
Equations (6) and (7) split onto

γ̇ = XH1(γ)
γ(0) ∈ Graph(dS1)
γ(1) ∈ ν∗N


ż = XH2(z)
z(0) ∈ Graph(dS2)
z(1) ∈ oRm

and
∂u
∂τ + J1(∂u∂t −XH1(u)) = 0
u(τ, 0) ∈ Graph(dS1)
u(τ, 1) ∈ ν∗N


∂v
∂τ + J2(∂v∂t −XH2(u)) = 0
v(τ, 0) ∈ Graph(dS2)
v(τ, 1) ∈ oRm ,

and the linearization (24) splits onto

Eu⊕Ev : T(u,v)P
p
k((x1, x2), (y1, y2)) = TuPpk(x1, y1)⊕TvPpk(x2, y2)→ Lu⊕Lv.

Hence, if H1 ∈ (H(M))reg and H2 ∈ (H(Rm))reg then H ∈ (H(M ×Rm))reg.
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Example 15. The case H ≡ 0.
In this case we have the Morse complex of S|N , which is regular for a dense
subset (S(E,Q))reg ∈ S(E,Q) (see Proposition 27).

In this section we will compute the Fredholm index of Sections (23)
and (25) in terms of Maslov indices of Hamiltonian paths xα and xβ. Next,
we relate this computation to the Morse index of S and give the groups
CF∗(H,S : N) canonical grading. The existence of such grading is estab-
lished in [10] and similar computations to ours are given for the case S ≡ 0,
m = 0 in [30] and for the periodic orbits problem in [6, 36].

4.1. The Maslov index.
Maslov index for paths of Lagrangian subspaces has been studied by sev-

eral authors (see [1, 3, 34, 33]). We will follow the notation and terminology
of [34] and [33]. Denote by Λ(k) the Lagrangian Grassmanian, i.e., the man-
ifold of Lagrangian subspaces in Ck. The Maslov index assigns to every pair
of paths

L,L′ : [0, 1]→ Λ(k)
a half integer µ(L,L′) ∈ 1

2Z characterized by:

Naturality: For any path Ψ : [0, 1]→ Sp (2k)

µ(Ψ(t)L(t),Ψ(t)L′(t)) = µ(L(t), L′(t)).

Homotopy: Two paths L, L′ : [0, 1] → Λ(k) with L(0) = L′(0) and
L(1) = L′(1) are homotopic with fixed endpoints if and only if they
have the same Maslov index.

Zero: If L(t) ∩ L′(t) is of constant dimension, then µ(L,L′) = 0.
Direct Sum: µ(L1 ⊕ L′1, L2 ⊕ L′2) = µ(L1, L2) + µ(L′1, L

′
2).

Catenation: For 0 < t0 < 1

µ(L,L′) = µ(L|[0,t0], L
′|[0,t0]) + µ(L|[t0,1], L

′|[t0,1]).

Localization: If L′(t) ≡ Rk × 0 and L(t) = Graph(A(t)) for a path

A : [0, 1]→ End (Rk)

of symmetric matrices then

µ(L,L′) =
1
2

sign A(1)− 1
2

sign A(0).

The Maslov index of a symplectic path

Ψ : [0, 1]→ Sp (k)

with respect to a fixed Lagrangian submanifold V ⊂ Ck (say V = 0 × Rk)
is defined by

µ(Ψ) := µ(ΨV, V ),
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or, equivalently, (see [33])

µ(Ψ) = µ(Graph(Ψ), V × V ).

Following [34], we consider the perturbed Cauchy-Riemann operator
∂J,T,Lζ := ∂ζ

∂τ + J ∂ζ∂t + Tζ

ζ : Rk × [0, 1]→ Ck

(ζ(τ, 0), ζ(τ, 1)) ∈ Rk × L(τ) ⊂ Ck × Ck.

(26)

Here we assume that (c.f., [34, 30]):
1) L : R→ Λ(k) is C1 and L(τ) = 0× Rk for large |τ |.
2) The almost complex structure J : R×[0, 1]→ End (R2k) is compatible

with symplectic form ω0 = dx1 ∧ dy1 + · · · + dxk ∧ dyk on Ck and
independent of τ for |τ | large enough; J(±∞, t) = J±(t).

3) T : R × [0, 1] → End (R2k) is the continuous family of matrices such
that

lim
τ→±∞

sup
0≤t≤1

‖T (τ, t)− T±(t)‖ = 0(27)

for some paths T± : [0, 1]→ End (Rk) of symmetric matrices.
4) If Ψ± : [0, 1]→ Sp (2k) is a solution of

∂Ψ±

∂t
− J±(t)T±(t)Ψ± = 0, Ψ±(0) = Id(28)

then Ψ±(Rk) is transverse to 0× Rk.
We will need the following:

Proposition 16 ([34]). The operator

∂J,T,L : W 1,2
L → L2(R× [0, 1],Ck)

where

W 1,2
L := {ζ ∈W 1,2(R× [0, 1],Ck) | (ζ(τ, 0)), ζ(τ, 1) ∈ Rk × L(τ)}

is Fredholm with the index given by

Index(∂J,T,L) = −µ(Ψ−) + µ(Ψ+) + µ(∆,Rk × L(τ))

where ∆ is the diagonal in Ck × Ck.

Remark 17. The Proposition above has been proved in [34] under the
assumption J ≡ −i (i.e., for the operator ∂ instead of ∂). In index formula
in [34] the Maslov indices µ(Ψ±) appear with the opposite sign. Since the
change of variables t 7→ −t transforms the operator ∂ to ∂ and changes
the sign of Maslov index, these two difference give the index formula in
Proposition 16 if J ≡ i. The general case is an easy consequence of the
contractibility of set J cω0

of ω0-compatible almost complex structures in Ck

and the continuity of Fredholm index.
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4.2. The dimension of M(J,H,S)(N : E).
Our goal is to to assign the Maslov index to the Hamiltonian path

ż = XH(z)
z(0) ∈ Graph(dS)
z(1) ∈ ν∗(N × Rm).

(29)

However, in a manifold instead of a linear space the Maslov index of a
Hamiltonian path would depend on the choice of a trivialization of a tangent
bundle along that path. Hence, we have to choose some class of admissible
trivializations. In the case S ≡ 0, m = 0 this is done in [30] and we will
adapt that exposition to our situation. Let

ψt := (φH]π
∗S

t ◦ (φH]π
∗S

1 )−1) ◦ (φHt ◦ (φH1 )−1)−1

= φHt ◦ φπ
∗S
t ◦ (φH1 ◦ φπ

∗S
1 )−1 ◦ (φHt ◦ (φH1 )−1)−1

= φHt ◦ φπ
∗S
t ◦ (φπ

∗S
1 )−1 ◦ (φHt )−1.

The transformation

U(τ, t) 7→ Ũ := ψt(U(τ, t))(30)

transforms Equation (10) to
∂J̃ ,H]π∗SŨ = 0
Ũ(τ, 0) ∈ oM × Rm

Ũ(τ, 1) ∈ ν∗(N × Rm),
(31)

where J̃ = ψ∗t J , and (29) is equivalent to
ż = XH]π∗S(z)
z(0) ∈ oM×Rm

z(1) ∈ ν∗(N × Rm).
(32)

Hence, we will compute the dimension of M(Jαβ ,Hαβ ,Sαβ)(N : E) by com-
puting the dimension of the space of solutions of (31) and give the grading
to CF∗(H,S) by assigning the Maslov index to each solution of (32).

For given z, we choose the class T of trivializations

ϕ : z∗T (T ∗(E))→ [0, 1]× Cn+m

such that
ϕ(Hz(t)) ≡ Rn+m, ϕ(Fz(t)) ≡ iRn+m,

where Hz and Fz are horizontal and vertical subbundles with respect to
Levi-Civita connection on T ∗E. Note that T 6= ∅ since [0, 1] w ∗.

For ϕ ∈ T and a solution z of (32), we define the symplectic path

Ψz
ϕ(t) := ϕTψH]π

∗S
t (z(0))(ϕ)−1 : Cn+m → Cn+m.(33)

Then we have:



ON EQUIVALENCE OF TWO CONSTRUCTIONS... 389

Lemma 18 ([30]). If ϕ1, ϕ2 ∈ T then µ(Ψϕ1) = µ(Ψϕ2).

We give the groups CF∗(H,S : N) the grading by assigning to each
solution of (29) (i.e., the generator of CF∗(H,S : N)) the Maslov index of
the corresponding solution. More precisely, we have the following:

Definition 19. 1) We call the index of the solution of (32) with respect
to some (and thus any) trivialization ϕ ∈ T the Maslov index of a
solution z of (29) and denote it by µ(z).

2) We denote by CFp(H,S : N) the group generated by solutions z
of (29) with p = 1

2dim(N × Rm) − µ(z) and set CF p(H,S : N) :=
Hom(CFp(H,S : N),Z).

According to Theorem 2.4 in [33] p is an integer. We will see later (see
Remark 21) that it depends on the rank of the eigenbundle of Q (= S at
infinity) but not on the rank of E.

Consider the case H ≡ 0. Let SN : N → R be a Morse function and
let S : E → R be an extension of SN such that SN ◦ πN = S in a tubular
neighborhood πN : V → N × Rm of N × Rm ⊂ E. Let x ∈ N × Rm be a
critical point of SN . We identify the neighborhood of x in N ×Rm with Rl

and the neighborhood of x in E with Rl × Rn+m−l. In these coordinates

ψπ
∗S

t (q1, q2, p1, p2) = (q1, q2, p1 + dSN (q1), p2)

and

Tψπ
∗S

t (x) =


I 0 0 0
0 I 0 0

tD2S(x) 0 I 0
0 0 0 I

 .

Since Tψπ
∗S

t (x)(Rn+m × {0}) = Graph(tD2S), applying the localization
property of Maslov index to A(t) := tD2S(x) we get

µ(Tψπ
∗S

t (x)) =
1
2
signA(1)− 1

2
signA(0)(34)

=
1
2
signD2S(x)

=
1
2
signD2SN (q1)

= −mN
S (q1) +

1
2
dim(N × Rm),

where mN
S is the Morse index of SN . Therefore, in that case p is the Morse

index of SN .
Now we have the following analogue of Theorem 5.1 in [30]:

Proposition 20. For the regular choice of parameters,

dimM(Jαβ ,Hαβ ,Sαβ)(x
α, xβ) = −µ(xα) + µ(xβ).
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In particular, for H ≡ 0 and S as above

dimM(J,H,S)(x, y) = mN
S (x)−mN

S (y),

where mN
S is the Morse index of S|N .

Proof. Since

M(Jαβ ,Hαβ ,Sαβ)(x
α, xβ) = (∂Jαβ ,Hαβ )−1(0),

we have
dimM(Jαβ ,Hαβ ,Sαβ)(x

α, xβ) = Index(EU ),

where EU is the linearization of ∂Jαβ ,Hαβ at U ∈ M(Jαβ ,Hαβ ,Sαβ)(xα, xβ).
Since Index(EU ) depends only on the homotopy type of U , we can assume
that

U(−τ, t) = xα(t), and U(τ, t) = xβ(t) for τ ≥ τ0.
Choose a symplectic trivialization

ϕ : U∗T (T ∗E)→ R× [0, 1]× Cn+m

such that
ϕ(HU(τ,t)) ≡ Rn+m, ϕ(FU(τ,t)) ≡ iRn+m.

The same computation as in Theorem 5.3 [36] shows that

ϕEUϕ
−1 = ∂J0,T,L + compact perturbation,

where ∂J0,T,L is the operator (26) with J0 = ϕ∗J , L(τ) = ϕ(T (ν∗N × oRm))
and T satisfies (27) and (28) with

Ψ+ := Ψxβ

ϕ , Ψ− := Ψxα

ϕ

(see (33)). Since a compact perturbation does not change Fredholm index,
we have

Index(EU ) = Index(∂J0,T,L)

= −µ(xα) + µ(xβ) + µ(∆,Rn+m × L(τ))

by Proposition 16. Since the trivialization ϕ is chosen so that dim(∆ ∩
Rn+m × L(τ)) is constant, by zero axiom we have

Index(EU ) = −µ(xα) + µ(xβ).

This proves the first statement. The second statement follows from the first
one and (34). �

Remark 21. Let H = H1 ⊕ 0 for some compactly supported Hamiltonian
H1 : T ∗M → R and S(q, ξ) = Q(ξ). Then the grading by p = 1

2dim(N ×
Rm)− µ(z) does not depend on a fiber dimension m but only on the index
of Q. Indeed, consider the stabilization

Q̃ : E × Rm1 → R, Q̃ = Q⊕Q0
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for some quadratic form Q0 : Rm1 → R with zero index. The critical
points of A(H1⊕0,Q̃) are of the form (z, 0) : [0, 1] → T ∗E × Cm1 , where
z : [0, 1]→ T ∗E is the critical point of A(H1⊕0,Q). Let ϕ := (ϕ1, ϕ2) ∈ T be
a trivialization of T ∗E × Cm1 . By Direct Sum Axiom

1
2
dim(N × Rm+m1)− µ(z, 0)

=
1
2
(dim(N) +m+m1)− µ(Ψz

ϕ1
⊕Ψ0

ϕ2
)

=
1
2
(dim(N) +m+m1)− µ(Ψz

ϕ1
)− µ(Ψ0

ϕ2
)

=
1
2
(dim(N) +m+m1)− µ(z)

−
(
−Index(Q0) +

1
2
m1

)
(by (34))

=
1
2
dim(N × Rm)− µ(z).

4.3. Orientation.
In order to define Floer homology for arbitrary coefficients we need the

orientation of manifoldsM(J,H,S) andM(Jαβ ,Hαβ ,Sαβ). Contrary to the case
of holomorphic spheres or cylinders (see [14], [24]), manifolds of holomorphic
discs with Lagrangian boundary conditions need not to be orientable in
general. However, in case of cotangent bundle such manifold are orientable
under the boundary conditions of a conormal type. More precisely, we have
the following:

Proposition 22 ([30]). For each (Jαβ ,Hαβ , Sαβ) ∈ (J cω(E) × H(E) ×
S(E,Q))reg and each xα, xβ the determinant bundle

Det→M(Jαβ ,Hαβ ,Sαβ)(x
α, xβ)

is trivial. Hence, the manifold M(Jαβ ,Hαβ ,Sαβ)(xα, xβ) is oriented. More-
over, there exists a coherent orientation in the sense of Definition 11 in [14]
of all M(J,H,S) and M(Jαβ ,Hαβ ,Sαβ) in each isotopy class of (J,H, S).

Remark 23. In [30] the proof Proposition 22 is carried out for the case
S ≡ 0. The general case follows from the fact that the transformation (30)
defines a diffeomorphism

M(J,H,S)(x, y)
∼=→M(J̃ ,H]π∗S,0)(x̃, ỹ).

Hence the orientation onM(J̃ ,H]π∗S,0)(x̃, ỹ) induces the pull-back orientation
onM(J,H,S)(x, y).
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Remark 24. In Section 5.2 we will prove that in the case H ≡ 0 for a
suitable choice of a J, S, g there exists a diffeomorphism

MFloer
(J,0,S)(x, y) ∼=M

Morse
(S,g) (x, y)

for x, y ∈ Graph(dS) ∩ ν∗(N × Rm) ∼= Crit(S|N×Rm). We will choose the
orientations of M(J,0,S)(x, y) and M(S,g)(x, y) so that this diffeomorphism
is orientation preserving.

The one dimensional components of M(J,H,S) and M(Jαβ ,Hαβ ,Sαβ) carry
two orientations: one given in Proposition 22 and another given by orienting
each trajectory in the direction of ∂U

∂τ . Define

n(U) =

{
1 if these two orientations coincide
−1 otherwise.

Coherent (compatible with gluing) definition of orientation in Proposition 22
has the following consequence:

Lemma 25. If (U1, V1), (U2, V2) ∈ M(J,H,S)(x, y) ×M(J,H,S)(y, z) are two
ends of the component of M(J,H,S)(x, z) (in sense of Propositions 10), then

n(U1)n(V1) + n(U2)n(V2) = 0.

�

Similar statement is true in parameterized version. The proof follows the
same lines as the proof of analogous statements in [12, 14, 15].

5. Floer homology.

5.1. Construction.
For x ∈ CFp(H,S : N) and y ∈ CFp−1(H,S : N) we define n(x, y) to be

the number of points in (zero dimensional) manifold

M̂(J,H,S)(N : E) :=M(J,H,S)(N : E)/R
counted by their orientations, i.e.,

n(x, y) =
∑
U

n(U),

where n(U) is defined in Section 4.3. Here R acts on M(J,H,S)(N : E) in a
standard way, by the translation in τ -variable.

According to Propositions 12, 13 and 10 for (J,H, S) in a dense subset

(J cω(E)×H(E)× S(E,Q))reg ⊂ J cω(E)×H(E)× S(E,Q)

the number n(x, y) is finite.
The following proposition is a reformulation of the result proved in [12]

and [28] for the compact case.
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Theorem 26.
(1) For (J,H, S) ∈ (J cω(E)×H(E)× S(E,Q))reg the homomorphisms

∂ : CFp(H,S : N)→ CFp−1(H,S : N)

∂x =
∑
y

n(x, y)y

and

δ := Hom(∂) : CF p(H,S : N)→ CF p+1(H,S : N)

satisfy
∂ ◦ ∂ = 0, δ ◦ δ = 0.

We define

HFp(J,H, S;N : E) := Ker∂/Im∂

and
HF p(J,H, S;N : E) := Kerδ/Imδ.

(2) For two given parameters

(Jα,Hα, Sα), (Jβ,Hβ, Sβ) ∈ (J cω(E)×H(E)× S(E,Q))reg,

there exist canonical isomorphisms

hαβ : HFp(Jα,Hα, Sα;N : E)→ HFp(Jβ,Hβ , Sβ ;N : E)

and

hαβ : HF p(Jα,Hα, Sα;N : E)→ HF p(Jβ,Hβ , Sβ ;N : E)

which satisfy
(i) hγβ ◦ hβα = hγα
(ii) hαα = id.
The analogous equalities hold for hαβ.

Proof. Once we established the C0 -estimates as in Proposition 9, the proof
follows the same lines as in Theorem 4 in [12] (see also [28]). For the later
purpose, we only recall the main points. By definition of ∂, we have

∂2(x) = ∂

(∑
y

n(x, y)y

)
(35)

=
∑
z

∑
y

n(x, y)n(y, z)z.

According to Propositions 10 and 11, the split trajectories in

M(J,H,S)(x, y)×M(J,H,S)(y, z)

are the boundaries of one dimensional manifolds contained inM(J,H,S)(x, z)
and oriented as in Section 4.3. Hence, they appear in (35) in pairs with
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opposite signs and thus they add to 0. That proves ∂ ◦ ∂ = 0. For the proof
of the second statement, we define

(hαβ)] : CFp(Hα, Sα : N)→ CFp(Hβ, Sβ : N)

by

(hαβ)]x =
∑
xβ

n(xα, xβ)xβ ,

where n(xα, xβ) is the number of points in (zero dimensional by Proposi-
tion 20) manifold M(Jαβ ,Hαβ ,Sαβ)(xα, xβ), counted with their orientations.
Set

(hαβ)] := Hom((hβα)]) : CF p(Hα, Sα : N)→ CF p(Hβ, Sβ : N).

Note that the grading is preserved by Proposition 20. Homomorphisms
(hαβ)] and (hαβ)] commute with ∂ and δ respectively. The proof is based on
the same gluing arguments as the proof of ∂2 = 0 (see [12, 15]). Therefore,
they define the mappings hαβ and hαβ in homology (resp. cohomology).

If hαβ and hβγ are defined via regular homotopies

(Hαβ , Sαβ , Jαβ) and (Hβγ , Sβγ , Jβγ)

then for large R the regular homotopy (Hαγ , Sαγ , Jαγ), where

Hαγ
τ =

{
Hαβ
τ+R, τ ≤ 0

Hβγ
τ−R, τ ≥ 0,

Sαγτ =

{
Sαβτ+R, τ ≤ 0
Sβγτ−R, τ ≥ 0,

Jαγτ =

{
Jαβτ+R, τ ≤ 0
Jβγτ−R, τ ≥ 0,

(36)

defines the homomorphism hαγ which satisfies property 2 (i). The proof is
again based on the same argument as the proof of ∂2 = 0 [12].

Finally, homomorphisms hαβ and hαβ are independent of the choice of
homotopy Hαβ . We only sketch the proof of this fact, referring the reader
to [12, 15] for the details. Choose two homotopiesHαβ

1 , Sαβ1 , Jαβ1 , Hαβ
2 , Sαβ2 ,

Jαβ2 . Let (hαβ)1] and (hαβ)2] be the corresponding chain homomorphisms.

Consider the one-parameter families of homotopies {Hαβ
ν }ν∈R, {Sαβν }ν∈R,

{Jαβν }ν∈R such that

Hαβ
ν ≡ H

αβ
1 , Sαβν ≡ S

αβ
1 , Jαβν ≡ Jαβ1 for ν ≤ 0

and

Hαβ
ν ≡ H

αβ
2 , Sαβν ≡ S

αβ
2 , Jαβν ≡ Jαβ2 for ν ≥ 1.



ON EQUIVALENCE OF TWO CONSTRUCTIONS... 395

Let ñ(xα, xβ) denote the algebraic number of the solutions of

∂U
∂τ + Jαβν (∂U∂t −XHαβ

ν
(U)) = 0

(u(τ, 0), v(τ, 0)) ∈ Graph(dSαβν )
u(τ, 1) ∈ ν∗N, v(τ, 1) ∈ oRm

limτ→−∞ U(τ, t) = xα(t),
limτ→∞ U(τ, t) = xβ(t).

(37)

Define
Φαβ : CFp(Hα, Sα : N)→ CFp+1(Hβ , Sβ : N)

by
Φαβ(xα) =

∑
ñ(xα, xβ)xβ.

Then
∂ ◦ Φαβ − Φαβ ◦ ∂ = (hαβ)1] − (hαβ)2] ,

i.e., Φαβ is a chain homotopy ([12, 15]). Therefore, h1
αβ = h2

αβ .
Statement 2 (ii) now follows by choosing the constant homotopy Hαα ≡

Hα. �

5.2. Computation.
In [13] Floer proved that if

h : M → R

is a C2 Morse function, then

HF∗(J, h ◦ π,M) ∼= HMorse
∗ (h).

We incorporate this result and the generalization [31] in our framework.
Consider the tubular neighborhood W ∼= W0 ×Rm of N ×Rm ⊂ E and the
projection

πN : W → N × Rm

given locally by

πN : (x, y, ξ) 7→ (x, ξ).(38)

Following [31], assume that the metric g in T ∗E is chosen in the following
way. Choose a metric gM on M such that the fibers of πN are orthogonal to
N ×Rm with respect to the metric gE := gM ⊕ g0, where g0 is the standard
metric on Rm. The Levi-Civita connection associated with gE provides the
splitting

Tξ(T ∗E) = Hξ ⊕ Fξ
into horizontal and vertical subbundles. Fξ and Hξ are canonically isomor-
phic to T ∗π(ξ)E and Tπ(ξ)E. Let g be a metric on T ∗E such that Hξ is
orthogonal to Fξ and that the above isomorphisms are isometries.
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Let
SN : N × Rm → R

be a Morse function obtained by restricting S ∈ S(E,Q) to N × Rm. Let
V ⊂ W be another tubular neighborhood of N × Rm and let κ : E → R be
a smooth function such that

κ(e) = 1 for e ∈ V
= 0 for e /∈W.

We denote by
SVN : E → R

an extension of SN defined by

SVN (e) :=

{
κ(e)SN (πN (e)) + (1− κ(e))S(e) for e ∈W
S(e) for e /∈W.

Then SVN : E → R is smooth and

SVN (e) = SN ◦ πN (e) for e ∈ V.

Note that from (38) and the definition of SVN it follows that SVN (x, y, ξ) =
Q(ξ) whenever S(x, y, ξ) = Q(ξ) and hence SVN belongs to the parameter
space S(E,Q). Since we proved in Proposition 9 that images of all solutions
of (7) are contained in some relatively compact open submanifoldK0 ⊂ T ∗E,
we have

sup
K0

∥∥∇dSVN∥∥ <∞,
where ‖∇dSVN‖ is defined with respect to gE and the induced Levi-Civita
connection on T ∗E|π(K0). Hence we can assume, after replacing gE by χgE
with

χ(e) = ε0, for e ∈ K0

= 1, for e /∈ K1 ⊃ K0

if necessary, that

sup
K0

∥∥∇dSVN∥∥ < ε(39)

for small ε > 0. Note that the Levi-Civita connection on T ∗E|π(K0) is
invariant under the rescaling gE  ε0gE and thus remains unchanged. Since
χ ≡ 1 outside K1, χgE remains in parameter space GgM⊕g0 .

Proposition 27 (Compare [31]).

HFp(J, 0, SVN ;N : E) ∼= HMorse
p (SN ).
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Proof. Since H ≡ 0, Equation (6) becomes
Γ̇ = 0
Γ(0) ∈ Graph(dSVN )
Γ(1) ∈ ν∗N × oRm

i.e.,
Γ(t) ≡ p ∈ ν∗(N × Rm) ∩Graph(dSVN ) ∼= Crit(SN ).

Hence, we have one-to-one correspondence

CFp(0, SVN ;N : E) ∼= Crit(SN ).(40)

Since SVN is constant along the fibers of πN and the fibers are orthogonal
to N × Rm, we have, for e ∈ N × Rm

∇gESVN (e) = ∇gN
E SN (e),(41)

where gNE is a restriction of gE to N .
Let γ be a solution of

dγ

dτ
+∇gN

E SN (γ) = 0.(42)

Consider, modifying Lemma 5.1 in [13]

U(τ, t) := ψ1−t(γ(τ))

and
Jt = (ψ1−t)∗Jg

where ψt := ψ
π∗SV

N
t and Jg := JgM ⊕ i for JgM is as in Section 2. Then

∂U

∂τ
+ Jt

∂U

∂t
= Tψ1−t

dγ

dτ
+ (ψ1−t)∗JgTψ1−t[−Xπ∗SV

N
(ψ1−t(γ))]

= Tψ1−t
dγ

dτ
− (ψ1−t)∗JgTψ1−tXπ∗SV

N
(γ)

= Tψ1−t

(
dγ

dτ
− JgXπ∗SV

N
(γ)
)

= Tψ1−t

(
dγ

dτ
+∇gπ∗SVN (γ)

)
.

Since dπ∗SVN vanishes on the vertical subbundle F it follows that ∇gπ∗SVN ⊂
H, and since Tπ|H : H → TE is an isometry by the choice of g, we have

∇gπ∗SVN = ∇gESVN

= ∇gN
E SN (by (41)).
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Therefore, U satisfies
∂U
∂τ + Jt

∂U
∂t = 0

U(τ, 0) = ψ1(γ(τ)) ∈ ψ1(N) ⊂ Graph(dSVN )
U(τ, 1) = γ(τ) ∈ N ⊂ ν∗N,

i.e., U ∈M(Jt,0,SV
N )(N : E).

Conversely, for every solution U of
∂U
∂τ + Jt

∂U
∂t = 0

U(τ, 0) ∈ Graph(dSN )
U(τ, 1) ∈ ν∗N × oRm

we define
γ(τ, t) := (ψ1−t)−1(U(τ, t)).

Note that
∂γ

∂τ
+ Jg

(
∂γ

∂t
−Xπ∗SV

N
(γ)
)

= (Tψ1−t)−1

(
∂U

∂τ
+ (ψ1−t)∗Jg

∂U

∂t

)
= 0,

i.e., γ satisfies 
∂γ
∂τ + Jg

∂γ
∂t +∇gSVN (γ) = 0

γ(τ, 0) = ψ−1
1 (U(τ, 0)) ∈ oE

γ(τ, 1) = U(τ, 1) ∈ ν∗(N × Rm).
(43)

We will prove that ∂γ
∂t ≡ 0. Let us write γ(τ, t) = (x(τ, t), y(τ, t)) with

x(τ, t) ∈ E and y(τ, t) ∈ T ∗x(τ,t)E. Since Jg maps horizontal vectors to
vertical ones, we can write (43) in the form

∂x
∂τ −∇ty +∇gESVN (x) = 0
∇τy + ∂x

∂t = 0
y(τ, 0) = 0, x(τ, 1) ∈ N × Rm, y(τ, 1) ∈ ν∗x(τ,1)(N × Rm).

(44)

Define

f(τ) :=
∫ 1

0
|y(τ, t)|2dt.

Note that, by the construction of SVN ,

Graph(dSVN ) ∩ ν∗(N × Rm) ⊂ N × Rm.

Therefore, we have
lim

τ→±∞
y(τ, t) ≡ 0

and hence
lim

τ→±∞
f(τ) = 0.
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Following the same lines as in [31] we prove that f is convex, and hence
constant. We identify Tξ(T ∗E) ∼= T ∗ξ E ⊕ TξE and compute

1
2
f ′′(τ) =

∫ 1

0

(
|∇τy|2 + 〈∇2

τy, y〉
)
dt

=
∫ 1

0

(
|∇τy|2 −

〈
∇t
∂x

∂τ
, y

〉)
dt

=
∫ 1

0

(
|∇τy|2 − 〈∇2

t y, y〉+ 〈∇ ∂x
∂t
dSVN (x), y〉

)
dt.

Here we used the fact that the Levi-Civita connection is torsion free, and
thus ∇τ ∂x∂τ = ∇t ∂x∂t . Since y(τ, 0) = 0, integrating by parts we compute∫ 1

0
〈∇2

t y, y〉dt = 〈∇ty(τ, 1), y(τ, 1)〉 −
∫ 1

0
|∇ty|2dt

=
〈
∂x

∂τ
+∇SVN (x), y(τ, 1)

〉
−
∫ 1

0
|∇ty|2dt

= −
∫ 1

0
|∇y|2dt,

since ∂x
∂τ +∇SVN (x) ∈ T (N × Rm) and y(τ, 1) ∈ ν∗(N × Rm). Hence

1
2
f ′′(τ) =

∫ 1

0

(
|∇τy|2 + |∇ty|2 − 〈∇∇τydS

V
N (x), y〉

)
dt

≥ ‖∇τy‖2L2 + ‖∇ty‖2L2 −
∥∥∇dSVN∥∥L∞ ‖∇τy‖L2 ‖y‖L2

≥ ‖∇τy‖2L2 + ‖∇ty‖2L2 −
∥∥∇dSVN∥∥L∞ ‖∇ty‖2L2

by Poincaré inequality, since y(τ, 0) = 0. Hence f ′′(τ) ≥ 0 if ε in (39) is
small enough. Therefore y ≡ 0 and, by (44) ∂x

∂t ≡ 0. Hence ∂γ
∂t ≡ 0. By (43)

this means that γ solves

dγ

dτ
+∇gN

E SVN (γ) = 0.

Therefore, we have one-to-one correspondence

M(J,0,SV
N )
∼=M(SN ,g).

Together with (40) this finishes the proof. �

Theorem 28. For regular parameters

(J̃ , H̃, S) ∈ (J cω(E)× H(E) × S(E,Q))reg,
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and (J,H) ∈ (J cω(M) × H(M))reg there exist the isomorphisms

HFp+k(J̃ , H̃, S;N : E) ∼= HFp(J,H,N : M) ∼= Hp(N),

where HF∗(J,H,N : M) is the ordinary Floer homology of the pair
(oM , ν∗(N)) of Lagrangian submanifolds in T ∗M and H∗(N) the singular
homology of submanifold N . Analogously, there exist the isomorphisms

HF p+k(J̃ , H̃, S;N : E) ∼= HF p(J,H,N : M) ∼= Hp(N).

Furthermore, the above isomorphisms commute with isomorphisms hαβ
(resp. hαβ) constructed in Theorem 26.

Proof. The second isomorphism

HF∗(J,H,N : M) ∼= H∗(N),

follows from Proposition 27, and we will prove only the first one.
According to Theorem 26 we can assume that

H̃ = H ⊕ 0, J̃ = J ⊕ i and S = Q.

With such choice of parameters, the critical points Γ := (γ, z) of A(H⊕0,Q)

on Ω(Q;N) are the solutions of
γ̇ = XH(γ)
γ(0) ∈ oM , γ(1) ∈ ν∗N
ż = 0
z(0) ∈ oRm , z(1) ∈ Graph(dQ).

Hence z ≡ 0 and thus

CF∗(H ⊕ 0, Q : N) ∼= CF∗(H,N)

where the last group is the usual Floer chain group for the pair (oM , ν∗N)
in T ∗M .

The gradient flow of A(H⊕0,Q) satisfies
∂J,Hu := ∂u

∂τ + J(∂u∂t −XH(u)) = 0
u(τ, 0) ∈ oM , u(τ, 1) ∈ ν∗N
∂v = ∂v

∂τ + i∂v∂t = 0
v(τ, 0) ∈ Graph(dQ), v(τ, 1) ∈ oRm

and therefore M(J⊕i,H⊕0,Q)(N : E) is diffeomorphic to M(J,H)(N : M).
Hence, the above isomorphism between Floer chain groups defines the iso-
morphism between the corresponding Floer homologies, and, consequently,
cohomologies. �
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6. Invariants.

6.1. Definition.
Observe that, since Equation (7) is the negative gradient flow of A(H,S),

the boundary operator ∂ preserves the level sets of A(H,S). More precisely,
we define

CF λ(H,S : N) := {Γ ∈ CF (H,S : N) | A(H,S)(Γ) < λ}
and

CF λ∗ (H,S : N) := the free abelian group generated by CF λ(H,S : N).

Then, the boundary map

∂ : CF∗(H,S : N)→ CF∗(H,S : N)

induces the relative boundary map

∂λ : CF λ∗ (H,S : N)→ CF λ∗ (H,S : N)

which satisfy the obvious identity

∂λ ◦ ∂λ = 0.

Therefore, we can define the relative Floer homology groups

HF λ∗ := Ker(∂λ)/Im(∂λ).

The natural inclusion

jλ : CF λ(H,S : N)→ CF (H,S : N)

induces the group homomorphism

jλ] : CF λ∗ (H,S : N)→ CF∗(H,S : N)

which commutes with ∂, i.e.,

∂ ◦ jλ] = jλ] ◦ ∂λ.

Hence, jλ] induces the natural homomorphism

jλ∗ : HF λ∗ (J,H, S : N)→ HF∗(J,H, S : N).

Furthermore, we define

CF ∗λ (H,S : N) := Hom(CF λ∗ (H,S : N),Z)

and denote by δλ the restriction of δ to CF ∗λ (H,S : N). Now jλ] induces
dual homomorphism

j]λ : CF ∗(H,S : N)→ CF ∗λ (H,S : N)

such that
j]λ ◦ δ = δλ ◦ j]λ.
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Hence, we have the homomorphism

j∗λ : HF ∗(J,H, S : N)→ HF ∗λ (J,H, S : N).

Definition 29. (1) For (a, J,H, S) ∈ H∗(N)×(J cω(E)×H(E)×S(E,Q))reg
we define

σ(a, J,H, S : N) := inf{λ | a ∈ Image(jλ∗F∗)}.
(2) For (u, J,H, S) ∈ H∗(N)× (J cω(E)×H(E)× S(E,Q))reg we define

σ(u, J,H, S : N) := inf{λ | j∗λF ∗u 6= 0}.
Here

F∗ : H∗(N)→ HF∗(J,H, S : N)
and

F ∗ : H∗(N)→ HF ∗(J,H, S : N)
denote the isomorphisms in Theorem 28.

Next lemma shows that the above definition is correct.

Lemma 30. For a 6= 0, u 6= 0 and generic (J,H, S), the numbers σ(a, J,H,
S : N) and σ(u, J,H, S : N) are the critical values of A(H,S). In particular,
they are finite numbers.

Proof. The set of critical points of A(H,S) is in one-to-one correspondence
with

Graph(dS) ∩ (φH1 )−1(ν∗N × oRm).(45)

Since H = H1 ⊕H2 and S = Q at infinity, the set (45) is

(oM ∩ (φH1
1 )−1(ν∗N))× (Graph(dQ) ∩ (φH2

1 )−1(oRm))

outside a compact set. Since H1 and H2 have compact supports, all points
in (45) are contained in a compact set. From transversality assumption (8)
we conclude that the set (45) is finite. Hence, if λ is not a critical value of
A(H,S), then there exists µ < λ such that there is no critical values of A(H,S)

in closed interval [µ, λ]. In that case,

CF λ∗ (H,S : N) ≡ CFµ∗ (H,S : N), CF ∗λ (H,S : N) ≡ CF ∗µ(H,S : N)

and
jλ] ≡ j

µ
] , j

]
λ ≡ j

]
µ.

Hence, z ∈ Im(jλ∗ ) (resp. j∗λ 6= 0) is equivalent to z ∈ Im(jµ∗ ) (resp. j∗µ 6= 0).
It follows that λ cannot be detected by σ.

Finally, since there are only finitely many critical values of A(H,S), we
deduce that both σ(a, J,H, S : N) and σ(u, J,H, S : N) are finite numbers.

�

We next show that the definition of σ does not depend on an almost
complex structure J used in construction of Floer homology.
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Proposition 31. The numbers σ(a, J,H, S : N) and σ(u, J,H, S : N) are
independent of the regular choice of J .

Proof. For Jα, Jβ ∈ J cω(E) we chose any path Jτ ∈ J
c
ω(E). Recall from

the proof of Theorem 26 that the isomorphism

hαβ : HF∗(Jα,H, S : N)→ HF∗(Jβ,H, S : N)

is induced by the group homomorphism

h] : CF∗(H,S : N)→ CF∗(H,S : N),(46)

h](xα) =
∑
xβ

n(xα, xβ)xβ,

where n(xα, xβ) is the algebraic number of points in zero dimensional mani-
foldM(Jαβ ,H,S)(xα, xβ). We compute the difference A(H,S)(xβ)−A(H,S)(xα)
for every xβ which appears in sum (46). For such xβ, the setM(Jαβ ,H,S)(xα,
xβ) is nonempty (n(xα, xβ) 6= 0). For any U ∈M(Jαβ ,H,S)

A(H,S)(x
β)−A(H,S)(x

α)

=
∫ +∞

−∞

d

dτ
A(H,S)(U)dτ

=
∫ +∞

−∞
dA(H,S)(U)

∂U

∂τ
dτ

=
∫ +∞

−∞

∫ 1

0

[
(ω ⊕ ω0)

(
∂U

∂t
,
∂U

∂τ

)
− dH(U)

∂U

∂t

]
dtdτ

=
∫ +∞

−∞

∫ 1

0

〈
Jτ

(
∂U

∂t
−XH(U)

)
,
∂U

∂τ

〉
Jτ

dtdτ

= −
∫ +∞

−∞

∫ 1

0

∣∣∣∣∂U∂τ
∣∣∣∣2
Jτ

dtdτ

≤ 0.

Here we used (5) and (10). Hence, A(H,S)(xα) ≥ A(H,S)(xβ) and therefore
hαβ is level preserving, i.e.,

hαβ : HF λ∗ (Jα,H, S : N)→ HF λ∗ (Jβ ,H, S : N),(47)

hαβ ◦ jλ∗ = jλ∗ ◦ hαβ
Assume that Fαa ∈ Im(jλ∗ ), where

Fα∗ : H∗(N)→ HF∗(Jα,H, S : N)

is the isomorphism in Theorem 26. Then, by (47), hαβFα∗ a ∈ Im(jλ∗ ). Since
hαβF

α
∗ = F β∗ by Theorem 26, we have F β∗ a ∈ Im(jλ∗ ) and hence

σ(a, Jα,H, S : N) ≤ σ(a, Jβ,H, S : N).



404 DARKO MILINKOVIĆ

Since the above argument is valid for any Jα, Jβ , the opposite inequality
also holds and therefore

σ(a, Jα,H, S : N) = σ(a, Jβ,H, S : N).

�

As a consequence, we can introduce the following notation.

Definition 32. For regular choice of parameters (J,H, S) we denote the
numbers σ(a, J,H, S : N) and σ(u, J,H, S : N) by σ(a,H, S : N) and
σ(u,H, S : N).

6.2. Continuity.
In order to extend Definition 32 from (J cω(E)×H(E)× S(E,Q))reg to the

whole manifold J cω(E) × H(E) × S(E,Q) we need the following continuity
result:

Theorem 33. For a ∈ H∗(N) the function

σ : (J cω(E)×H(E)× S(E,Q))reg → R,

(H,S) 7→ σ(a,H, S : N)
is continuous in C0 topology. The analogous statement is true for u ∈
H∗(N) and σ(u,H, S : N).

Proof. We fix regular parameters (Hα, Sα) and (Hβ, Sβ) and choose the C∞

function
ρ : R→ R

such that
ρ(τ) = 1, for τ ≥ 1

ρ(τ) = 0, for τ ≤ 0.

Denote by (Hτ , Sτ ) a regular homotopy connecting (Hα, Sα) and (Hβ, Sβ)
which is ε-close in C1-topology to (possibly non-regular) homotopy

(ρ(τ)Hβ + (1− ρ(τ))Hα, ρ(τ)Sβ + (1− ρ(τ))Sα).

Then, as in the proof of Proposition 31 we compute A(Hβ ,Sβ)(xβ)−
A(Hα,Sα)(xα) for a pair xα, xβ connected by trajectory U satisfying (10).
Since

d

dτ
A(Hτ ,Sτ )(U(τ)) = dA(Hτ ,Sτ )(U)

∂U

∂τ
−
∫ 1

0

∂Hτ

∂τ
dt+

∂Sτ
∂τ

and since the last two terms are ε-close to

−
∫ 1

0
ρ′(τ)(Hβ −Hα)dt+ ρ′(τ)(Sβ − Sα),
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we have

A(Hβ ,Sβ)(x
β)−A(Hα,Sα)(x

α)

=
∫ +∞

−∞

d

dτ
A(Hτ ,Sτ )(U(τ))dτ

≤
∫ +∞

−∞

{∫ 1

0

[
dA(Hτ ,Sτ )(U)

∂U

∂τ
− ρ′(τ)(Hβ −Hα)

]
dt

+ ρ′(τ)(Sβ − Sα)
}
dτ + ε

≤
∫ +∞

−∞

∣∣∣∣∂U∂τ
∣∣∣∣2
J

dτ −
∫ 1

0
min(Hβ −Hα)dt+ max(Sβ − Sα) + ε.

Here, again, we used (5) and (10). Hence, we have the well defined homo-
morphism

hαβ : HF λ∗ (J,Hα : Sα : N)→ HF
λαβ+ε
∗ (J,Hβ ;Sβ : N)

where λαβ := λ−
∫ 1
0 min(Hβ−Hα)dt+max(Sβ−Sα), such that the diagram

HF λ∗ (J,Hα : Sα : N)
jλ
∗−→ HF∗(J,Hα;Sα : N)yhαβ yhαβ

HF
λαβ+ε
∗ (J,Hβ;Sβ : N)

j
λαβ+ε
∗−→ HF∗(J,Hβ;Sβ : N)

commutes. By the same argument as in Proposition 31 we deduce, for
a ∈ H∗(N)

σ(a,Hβ , Sβ : N)− σ(a,Hβ, Sβ : N)

≤ −
∫ 1

0
min(Hβ −Hα)dt+ max(Sβ − Sα) + ε.

Letting ε→ 0 this becomes

σ(a,Hβ, Sβ : N)− σ(a,Hα, Sα : N)

≤ −
∫ 1

0
min(Hβ −Hα)dt+ max(Sβ − Sα).

By changing the role of α and β we get

σ(a,Hβ, Sβ : N)− σ(a,Hα, Sα : N)

≥ −
∫ 1

0
max(Hβ −Hα)dt+ min(Sβ − Sα)
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and therefore

|σ(a,Hβ , Sβ : N)− σ(a,Hα, Sα : N)|

≤ ‖Hβ −Hα‖C0 + ‖Sβ − Sα‖C0 .

�

As a consequence we have the following:

Definition 34. For (a,H, S) ∈ H∗(N)×H(E)× S(E,Q) we define

σ(a,H, S : N) := lim
k→∞

σ(a,Hk, Sk : N)

where the limit is taken over any sequence

(J cω(E)×H(E)× S(E,Q))reg 3 (J,Hk, Sk)

such that
C0 − lim

k→∞
(Hk, Sk) = (H,S).

We define σ(u,H, S : N) for u ∈ H∗(N) in the same way.

The following lemma extends Lemma 30:

Lemma 35. For a 6= 0, u 6= 0 and arbitrary (not necessarily generic)
(J,H, S), the numbers σ(a, J,H, S : N) and σ(u, J,H, S : N) are the critical
values of A(H,S).

Proof. For any (H,S) ∈ H(E) × S(E,Q) there exists a sequence (Hk, Sk) ∈
(H(E)× S(E,Q))reg of generic functions such that

C1 − lim
k→∞

(Hk, Sk) = (H,S).(48)

According to Lemma 30 there exists a sequence of points

xk ∈ φHk
1 (Graph(dSk)) ∩ ν∗(N × Rm)

such that

σ(a, J,Hk, Sk : N) = A(Hk,Sk)(φ
Hk
t ◦ (φHk

1 )−1(xk)).

Note that xk is bounded and hence, after taking a subsequence, we can
assume that

lim
k→∞

xk = x0.(49)

Define

f, fk : ν∗(N × Rm)→ R,(50)

fk(x) := A(Hk,Sk)(φ
Hk
t ◦ (φHk

1 )−1(x))

f(x) := A(H,S)(φ
H
t ◦ (φH1 )−1(x)).
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From (48) it follows that

lim
k→∞

φHk
t (x) = φHt (x)

for all x ∈ T ∗E and hence

lim
k→∞

fk(x) = f(x).(51)

Since fk are smooth, by Arzelà-Ascoli Theorem the convergence above is
uniform on compact subsets of ν∗(N × Rm). Similarly, by (48)

lim
k→∞

dfk = df(52)

uniformly on compact subsets of ν∗(N × Rm). According to Definition 34
and by (49) and (51)

σ(a, J,H, S : N) = lim
k→∞

σ(a, J,Hk, Sk : N)

= lim
k→∞

fk(xk)

= f(x0)

= A(H,S)(φ
H
t ◦ (φH1 )−1(x0)).

By (49) , (50) and (52) we have

dA(H,S)(φ
H
t ◦ (φH1 )−1(x0)) = df(x0)

= lim
k→∞

dfk(xk)

= 0

and hence φHt ◦ (φH1 )−1(x0) ∈ Crit(A(H,S)). �

6.3. Normalization.
Consider the Hamiltonian

Kt := χ(t)(Ht + c0)

where χ : T ∗M → R is a smooth function with compact support, such that
χ ≡ 1 in a neighborhood of ∪t∈[0,1]φ

H
t (oM ). Then φH1 (oM ) = φK1 (oM ), but

ρ(a,K : N) = ρ(a,H : N) + c0.

More generally, it can be shown that for any two Hamiltonians H and K
such that φH1 (oM ) = φK1 (oM ) we have

ρ(a,K : N) = ρ(a,H : N) + c0

for some c0 ∈ R [30]. Similar considerations apply to the case of invariants c
and σ. Hence, in order to consider the constructed invariants as the invari-
ants of Lagrangian submanifolds, we have to impose certain normalization on
the choice of parameters in (H,S) ∈ H(E)×S(E,Q). Assume thatH = H1⊕0
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for some compactly supported Hamiltonian function H : T ∗M → R. De-
note by LS ⊂ T ∗M the Lagrangian submanifold having S as a generating
function quadratic at infinity. We will need the following result.

Theorem 36. If Hα,Hβ are two compactly supported Hamiltonians defined
on T ∗M and Sα, Sβ two generating functions quadratic at infinity such that

φH
α

1 (LSα) = φH
β

1 (LSβ ),

then there exists a constant c0 ∈ R such that for any N ⊂M

Spec(Hα ⊕ 0, Sα : N) = Spec(Hβ ⊕ 0, Sβ : N) + c0.(53)

In particular, if x∞ ∈M is fixed and

S̃pec(H ⊕ 0, S : N) := Spec(H ⊕ 0, S : N)− Spec(H ⊕ 0, S : x∞)
= {r − s | r ∈ Spec(H ⊕ 0, S : N), s ∈ Spec(H ⊕ 0, S : x∞)}

then

S̃pec(Hα ⊕ 0, Sα : N) = S̃pec(Hβ ⊕ 0, Sβ : N).(54)

Proof. The critical points of A(Hα,Sα) and A(Hβ ,Sβ) are in one-to-one corre-
spondence with points of

ν∗N ∩ φHα

1 (LS) = ν∗N ∩ φHβ

1 (LS).(55)

More precisely, the solutions of
dΓ
dt = XH⊕0(Γ)
Γ(0) ∈ Graph(dS)
Γ(1) ∈ ν∗N × oRm

are of the form Γ = (γ, z) where
dγ
dt = XH(γ)
dz
dt = 0
(γ(0), z) ∈ Graph(dS), γ(1) ∈ ν∗N, z ≡ (ξ, 0) ∈ oRm .

Denote
L := φH

α

1 (LSα) = φH
β

1 (LSβ )
and consider the function f : L→ R defined by

f(x) = A(Hα,Sα)(φ
Hα⊕0
t (dSα(i−1

Sα((φH
α

1 )−1(x)))))

− A(Hβ ,Sβ)(φ
Hβ⊕0
t (dSβ(i−1

Sβ ((φH
β

1 )−1(x))))).

Since (φH
α

1 )−1(L) = LSα and and (φH
β

1 )−1(L) = LSβ , for x ∈ L

i−1
Sα((φH

α

1 )−1(x)) = i−1
Sα

(
qα,

∂Sα

∂q
(qα, ξα)

)
= (qα, ξα),
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i−1
Sβ ((φH

β

1 )−1(x)) = i−1
Sβ

(
qβ,

∂Sβ

∂q
(qβ, ξβ)

)
= (qβ, ξβ),

where

(qα, ξα) ∈ ΣSα , (qβ, ξβ) ∈ ΣSβ(56)

and (
qα,

∂Sα

∂q

)
= (φH

α

1 )−1(x),
(
qβ,

∂Sβ

∂q

)
= (φH

β

1 )−1(x).(57)

Hence

dSα(i−1
Sα((φH

α

1 )−1(x))) = dSα(qα, ξα)

=
(
qα,

∂Sα

∂q
(qα, ξα), ξα,

∂Sα

∂ξ
(qα, ξα)

)
=

(
qα,

∂Sα

∂q
(qα, ξα), ξα, 0

)
(by (56))

= (((φH
α

1 )−1(x)), ξα, 0) (by (57)),

and similarly

dSβ(i−1
Sβ ((φH

β

1 )−1(x))) = (((φH
β

1 )−1(x)), ξβ , 0).

Therefore, the paths

t 7→ φH
α⊕0

t (dSα(i−1
Sα((φH

α

1 )−1(x)))) and(58)

t 7→ φH
β⊕0

t (dSβ(i−1
Sβ ((φH

β

1 )−1(x))))

respectively start at Graph(dSα) (respectively Graph(dSβ)) and end at the
points (in local coordinates)

φH
α⊕0

1 (dSα(i−1
Sα((φH

α

1 )−1(x)))) = (φH
α⊕0

1 ((φH
α

1 )−1(x)), ξα, 0)
= (x, ξα, 0)

and
φH

β⊕0
1 (dSβ(i−1

Sβ ((φH
β

1 )−1(x)))) = (x, ξβ, 0)

respectively. Let

χ : R→ φH
α

1 (LS) = φH
β

1 (LS)

be a smooth path connecting two points in (55). Since the paths (58) are
Hamiltonian and start at Graph(dSα) and Graph(dSβ), the same computa-
tion as in (5) shows that

d

ds
f(χ(s)) = θ(ηα(s))− θ(ηβ(s))



410 DARKO MILINKOVIĆ

where

ηα(s) :=
d

ds
φH

α⊕0
1 (dSα(iSα((φH

α

1 )−1(χ(s)))))

=
(
dχ

ds
,
dξα(s)
ds

, 0
)
,

with (dξ
α(s)
ds , 0) ∈ T (oRm). Similarly,

ηβ(s) =
(
dχ

ds
,
dξβ(s)
ds

, 0
)
.

Since θ = θM ⊕ θRm and θRm(ξ, 0) = 0 it follows that

d

ds
f(χ(s)) = 0.

Hence f ≡ c0, for some constant c0 ∈ R independent of N . This proves (53)
and (54). �

Definition 37. Fix x∞ ∈ M . Let S be a generating function quadratic at
infinity for the Lagrangian submanifold LS = φH1 (oM ) ∈ T ∗M . We define
the normalized parameters (H̃, S̃) by

S̃ = S − 1
2
σ(1,H ⊕ 0, S : x∞), H̃ = H +

1
2
σ(1,H ⊕ 0, S : x∞).

Remark 38. Strictly speaking, (H̃, S̃) /∈ H(E) × S(E,Q). However, it is
allowed to add a constant to the parameters in H(E) × S(E,Q) since Floer
theory depends only on the first derivatives (∇H,∇S) which remain un-
changed.

The normalization described above also gives the normalization of invari-
ants ρ and c defined by (1) and (2). Indeed, these invariants are the special
cases of invariant σ, as we show in the following lemma:

Lemma 39. For (H,S) ∈ H(M)× S(E,Q) and a ∈ H∗(N)

σ(a,H ⊕ 0, Q : N) = ρ(a,H : N)

and
σ(a, 0, S : N) = c(a, S : N).

Analogous statements hold for any u ∈ H∗(N).

Proof. The first equality follows from Theorem 28. To prove the second
one, we first observe that, if SVN is as in Proposition 27 and SVN ≡ S outside
U ⊃ V , then

c(a, S : N) = σ(a, 0, SVN : N).
Since ‖SVN − S‖C0 → 0 as U → N , the conclusion follows from Theorem 33.

�
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Definition 40. Fix x∞ ∈ M . Let S be a generating function quadratic
at infinity for the Lagrangian submanifold LS = φH1 (oM ) ∈ T ∗M . For a
submanifold N ⊂M and a ∈ H∗(N), u ∈ H∗(N) we define

c(a, LS : N) := c(a, S̃ : N), c(u, LS : N) := c(u, S̃ : N),

where S̃ = S − c(1, S : x∞). In a similar way, define

ρ(a, LS : N) := ρ(a, H̃ : N), ρ(u, LS : N) := ρ(u, H̃ : N),

with H̃ = H + ρ(1,H : x∞).

By Lemma 39 the definition of the parameters (H̃, S̃) in Definition 37
and Definition 40 agree in a sense that in the cases H ≡ 0 and S ≡ Q both
definitions give the same functionals

A(H̃⊕0,Q̃) = A(H⊕0,Q) − σ(1,H ⊕ 0, Q : x∞)

and
A(0̃,S̃) = A(0,S) − σ(1, 0, S : x∞).

Invariants in Definition 40 are well defined invariants of Lagrangian sub-
manifolds of T ∗M Hamiltonian isotopic to the zero section.

6.4. Equality between the two invariants.
In this section we will show that the invariants ρ and c give the same

invariants of Lagrangian submanifolds of T ∗M . The proof below is sketched
in [26], we present it here for the sake of completeness.

Theorem 41 ([26]). Let LS = φH1 (oM ) ∈ T ∗M be a Lagrangian submani-
fold generated by generating function S quadratic at infinity. Then for any
submanifold N ⊂M and any a ∈ H∗(N)

c(a, LS : N) = ρ(a, LS : N).(59)

The analogous equality holds for any u ∈ H∗(N).

Proof. Denote by St : E → R a generating function of (φHt )−1(LS), such
that S0 = S, S1 = S. Let H(t) denote a Hamiltonian such that φH(t)

1 = φHt .
Note that

φ
H(t)
1 (LSt) = φ

H(t)
1 (φHt )−1(LS)

= φHt (φHt )−1(LS)
= LS

and therefore, by Theorem 36 the action spectrum S̃pec(H(t)⊕ 0, St : N) is
fixed. By Theorem 33 the function

σ̃ : t 7→ σ(a,H(t)⊕ 0, St : N)− σ(a,H(t)⊕ 0, St : x∞)
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is continuous and takes the values in the set S̃pec(H(t)⊕ 0, S : N), which is
nowhere dense in R by Lemma 1. Hence σ̃ ≡ constant. In particular,

σ(a, 0, S̃ : N)(60)

= σ(a,H(0)⊕ 0, S0 : N)− σ(a,H(0)⊕ 0, S0 : x∞)

= σ(a,H(1)⊕ 0, S1 : N)− σ(a,H(1)⊕ 0, S1 : x∞)

= σ(a, H̃ ⊕ 0, Q;N).

According to Lemma 39 and Definition 40

σ(a, 0, S̃ : N) = c(a, LS : N)(61)

and

σ(a, H̃ ⊕ 0, Q : N) = ρ(a, LS : N).(62)

Now, (59) follows from (60), (61) and (62). �

7. A note on Hofer’s geometry.

In [16] Hofer introduced a biinvariant metric on a group Dcω(P ) of compactly
supported Hamiltonian diffeomorphisms of a symplectic manifold P . For
H ∈ C∞c (P × [0, 1]) define the oscillation of Ht by

osc(Ht) := sup
x∈P

Ht(x)− inf
x∈P

Ht(x).

That leads to the definition of the length of the curve φHt in Dcω(P ) as

l({φHt }0≤t≤1) :=
∫ 1

0
osc(Ht)dt.

Definition 42 (Hofer’s energy). The energy of ψ ∈ Dcω(P ) is defined by

E(ψ) := inf{l(φHt ) | φH1 = ψ}.

The non-degeneracy of the energy functional, i.e.,

E(ψ) = 0 iff ψ = id

has been proved by Hofer [16] (see also [17]) in the case P = Cn and by
Lalonde and McDuff [20] in general.

In the case P = Cn Bialy and Polterovich [2] proved that

c(µ,Γψ)− c(1,Γψ) ≤ E(ψ)(63)

where c(µ,Γψ) − c(1,Γψ) is Viterbo’s norm (see [38]). Moreover, they
proved that Viterbo’s and Hofer’s metrics coincide locally in the sense of
C1-Whitney topology.
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More generally, for a symplectic manifold P , let LM (P ) be the space of
Lagrangian submanifolds L ⊂ P Hamiltonian isotopic to the Lagrangian
submanifold M . In other words,

LM (P ) := {φH1 (M) | φH1 ∈ Dcω(P )}.
The group Dcω(P ) acts transitively on LM (P ) by (φ,L) 7→ φ(L). The mani-
fold LM (P ) has a natural Dcω(P )-invariant metric defined in the following:

Definition 43. For L1, L2 ∈ LM (P ) we define

d(L1, L2) := inf{E(φ) | φ ∈ Dcω(P ), φ(L1) = L2}.(64)

The non-degeneracy of d has been proved by Oh [30] for P = T ∗M and
by Chekanov [4, 5] in general case. Moreover, for P = T ∗M

ρ(µ,L)− ρ(1, L) ≤ d(oM , L)(65)

(see [30] or apply Lemma 39 to the inequalities at the end of the proof of
Theorem 33 with Sα = Sβ = Q, Hα = 0, setting first a = 1 and then
a = µ and subtracting; then take the infimum over all Hβ’s such that
φH

β

1 (oM ) = L).
Theorem 41 together with (65) implies

c(µ,L)− c(1, L) ≤ d(oM , L)

which is the generalization of (63) to Hofer’s and Viterbo’s geometries of
Lagrangian submanifolds in a cotangent bundle. As c(µ,L) = c(1, L) if
and only if L = oM , it gives another proof of the nondegeneracy of Hofer’s
metric.
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[6] C. Conley and E. Zehnder, Morse-type index theory for flows and periodic solutions
of Hamiltonian equations, Comm. Pure Appl. Math., 37 (1984), 207-253.

[7] Y. Eliashberg and M. Gromov, Convex symplectic manifolds, Proc. of Symp. in Pure
Math., 52 (1991), 135-162.

[8] Y. Eliashberg, H. Hofer and D. Salamon, Lagrangian intersections in contact geome-
try, GAFA, 5 (1995), 553-567.

[9] A. Floer, Morse theory for Lagrangian intersections, J. Diff. Geom., 18 (1988), 513-
517.

[10] , A Relative Morse index for the symplectic action, Comm. Pure Appl. Math.,
41 (1988), 393-407.

[11] , The unregularized gradient flow of the symplectic action, Comm. Pure. Appl.
Math., 41 (1988), 775-813.

[12] , Symplectic fixed points and holomorphic spheres, Comm. Math. Phys., 120
(1989), 575-611.

[13] , Witten’s complex and infinite dimensional Morse theory, J. Diff. Geom., 30
(1989), 207-221.

[14] A. Floer and H. Hofer, Coherent orientations for periodic orbit problem in symplectic
geometry, Math. Z., 212 (1993), 13-38.

[15] , Symplectic homology I: Open sets in Cn, Math. Z., 215 (1994), 37-88.

[16] H. Hofer, On the topological properties of symplectic maps, Proc. Royal Soc. Edin-
burgh, 115 A (1990), 25-38.

[17] H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics,
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EXPLICIT REALIZATIONS OF CERTAIN
REPRESENTATIONS OF Sp(n, R) VIA THE DOUBLE

FIBRATION TRANSFORM

Jodie D. Novak

We consider a family of singular infinite dimensional uni-
tary representations of G = Sp(n, R) which are realized as
sheaf cohomology spaces on an open G-orbit D in a general-
ized flag variety for the complexification of G. By parametriz-
ing an appropriate space, MD, of maximal compact subvari-
eties in D, we identify a holomorphic double fibration between
D and MD which we use to define a map P , often referred to
as a double fibration or Penrose transform, from the represen-
tation into sections of a corresponding sheaf on MD. Analysis
of the construction of P shows that P is injective, the image
of P is the kernel of a differential operator on MD and P is
an intertwining map.

1. Introduction.

In this paper, we consider a family of singular infinite dimensional unitary
representations of G = Sp(n,R) which are realized on certain sheaf cohomol-
ogy spaces of D, an open G-orbit in a generalized flag variety for the com-
plexification of G. By parametrizing an appropriate space, MD, of maximal
compact subvarieties in D, we can identify a holomorphic double fibration
between D and MD, a well understood bounded symmetric domain. Using
standard constructions from sheaf theory and the fact that MD is Stein, we
define a map P , often referred to as a double fibration or Penrose transform,
from the representation into the space of sections of a corresponding sheaf
on MD. By analyzing the spectral sequences involved in the construction of
P and applying the Bott-Borel-Weil theorem, we show that P is injective.
Further analysis leads to the fact that the image of P is the kernel of a
differential operator on MD and that P is an intertwining map.

More generally, let G be a real semisimple Lie group and let X be a
generalized flag manifold for GC, the complexification of G. If D is an open
G-orbit in X, then D can be realized as G/H for some subgroup H of
G. Associated to each D is a family of representations of G given by the
Dolbeault cohomology spaces Hp(D,L) where L is the sheaf of holomorphic
sections of a homogeneous line bundle on D. Under certain conditions, these

417
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representations are non-zero, singular, irreducible, unitarizable and infinite
dimensional. They provide a construction of an important and mysterious
part of the unitary dual of G.

These representations can be studied using a double fibration transform
whose purpose is to embed the cohomology space in a space of holomorphic
sections of a vector bundle on MD as the kernel of a differential operator.
Although the technique was developed for open orbits G/H where H is
compact, some results of Wolf [Wo2, Wo3] allow the possibility of extending
this technique to any open G–orbit in a generalized flag manifold for GC.
This technique is related to Schmid’s [S] construction of discrete series for
G associated to an orbit G/H when H is a compact Cartan contained in a
maximal compact subgroup K of G.

Wells and Wolf [WW] studied G-orbits D = G/H where H is compact.
For these orbits, they showed the existence of a holomorphic double fibration
where

(1.1)

YD
µ↙ ↘ν

D MD.

MD is the space of GC-translates in D of the maximal compact subvariety
K/H ∩ K and YD is the incidence manifold YD = {(z,Q) ∈ D × MD :
z ∈ Q}. They show that MD is Stein in this case and use the double
fibration to show that Hs(D, E) embeds in H0(MD, R

s
νµ

∗(E)) where E is
the sheaf of holomorphic sections of a homogeneous bundle on D. This
work proves modified versions of conjectures made by Griffiths [Gr] while
studying automorphic cohomology.

Even if H is not compact, these ideas can be used for any open orbits D
if we know that MD is a Stein manifold. Fortunately, Wolf [Wo2, Wo3]
has shown that MD is Stein for all open G-orbits D. Eastwood, Penrose,
and Wells [EPW] used a holomorphic double fibration of this type for an
open orbit of U(2, 2) with isotropy U(1) × U(1, 2) to study the massless
field equations. In this case, MD is U(2, 2)/ (U(2)× U(2)). Patton and
Rossi [PR1, PR2], generalizing the work of Eastwood, Penrose and Wells,
studied special SU(p, q)-orbits.

The key to using the double fibration transform is understanding the
structure of MD. There are two basic cases and, as is expected, the struc-
ture of MD depends on the structure of D. An open orbit D is of holo-
morphic type if there exists a holomorphic double fibration between D and
G/K. In this case MD is G/K. An open orbit D is of nonholomorphic
type if no such holomorphic double fibration exists. In this case MD is
an open submanifold of GC/KC ([WW]). The U(2, 2) example studied by
Eastwood, Penrose and Wells is of holomorphic type and further examples
and generalizations of the holomorphic type are given in [BE]. In fact, open
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orbits of holomorphic type are well understood. Orbits of holomorphic type
correspond to highest weight representations and those of nonholomorphic
type correspond to representations which do not have a highest weight. The
representations are discrete series if and only if H is compact.

Not as much is known in the nonholomorphic case. This case splits use-
fully into two subcases: When G/K is Hermitian symmetric and when it is
not. When G/K is Hermitian symmetric, the structure ofMD has been com-
puted for two families of examples: For arbitrary U(p, q)-orbits [DZ, PR2]
and for the open Sp(n,R)-orbits in the flag variety of Lagrangian planes in
C2n [N]. In both familiesMD is G/K ×G/K where G/K denotes G/K with
the opposite complex structure. More recently, Wolf and Zierau [WZ] have
shown that MD is always G/K ×G/K in the nonholomorphic Hermitian
symmetric case.

When G/K is not Hermitian symmetric, Wells [We] and Dunne and
Zierau [DZ] determined MD for special SO(2m, r)-orbits. Akheizer and
Gindikin [AG] have also worked out a related example for this case and
have suggested that MD could be described as a particular Stein tubular
neighborhood of G/K in GC/KC. For these examples, it is not clear whether
MD can be realized as a homogeneous space or whether these results can
be generalized. No work has been done as yet on defining the transform for
these cases.

1.1. Results of Paper. In this paper we will define a double fibration
transform for the Sp(n,R)-representations Hs(Di,L). Here, Di is one of
r − 1 open orbits in the generalized flag variety X of isotropic i-planes in
C2n where r ≤ n (see Section 3.2). The dimension of a maximal compact
subvariety in Di is s and L is the sheaf of holomorphic sections of a suffi-
ciently negative line bundle on Di. These orbits are in the nonholomorphic
Hermitian symmetric case with noncompact H so we are studying represen-
tations which are not discrete series and which do not have a highest weight.
In this paper, we will construct a double fibration transform for Hs(Di,L)
and show that it is injective (Theorem 4.6 and 4.11). Finally, we will use
the transform to realize Hs(Di,L) as the kernel of a differential operator
on H0(MDi , R

s
νµ

∗L) (Theorem 4.11 and 5.26). Thus these representations
are Frechet spaces and are continuous, facts that also follow from work by
Wong [Wg].

Now we describe the results in more detail. Let C2n be endowed with a
symplectic form and a Hermitian form of signature (n, n). Let X be the set
of r-planes in C2n which are isotropic with respect to the symplectic form
where r ≤ n. For 1 ≤ i ≤ r− 1, let Di be planes in X of signature (i, r− i).
Then X is a generalized flag variety for the Lie group Sp(n,C) and Di is the
open Sp(n,R)-orbit G/Hi in X where Hi is U(i, r− i)×Sp(n− r,R). Let χ
be a unitary character on Hi which determines a homogeneous vector bundle
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Lχ on Di. Let Lχ be the sheaf of holomorphic sections of Lχ. When the
bundle satisfies a suitable negativity condition and s is the dimension of a
maximal compact subvariety ofDi, thenHs(Di,Lχ) is a non-zero irreducible
infinite-dimensional singular unitarizable representation of Sp(n,R). In this
paper we give another realization of this representation via a double fibration
transform.

In Section 2, we outline the construction of the double fibration transform
for complex manifolds D, Y and M which are related by the holomorphic
double fibration (1.1). When L is a line bundle on D, the transform is a map
from Hp(D,O(L)) to H0(M,RpνO(µ∗L)) which is defined using standard
constructions from sheaf theory. We establish the conditions necessary for
this map to be injective and for the image of Hp(D,O(L)) to be the kernel
of a map from H0

(
M,RpνO(µ∗L)

)
to H0

(
M,RpνΩ1

µ(µ
∗L)
)

where Ω1
µ is the

sheaf of relative holomorphic 1–forms on Y .
In Section 3, we analyze the geometry of the holomorphic double fibration

used in the construction of the transform.
In Section 4, we construct the transform for Hs(Di,Lχ). This involves

analyzing the sheaves and vector bundles which are in the construction. In
particular, we show that each of RsνO(µ∗Lχ) and RsνΩ

1
µ(µ

∗Lχ) is the sheaf
of holomorphic sections of a homogeneous vector bundle. These facts, which
are crucial in determining when the transform is injective, are not immediate
because µ is a G-equivariant map from a (G×G)-homogeneous manifold to
a G-homogeneous manifold.

Next, we show that the transform is injective by analyzing the Leray spec-
tral sequences involved in the construction of the map and by reducing the
problem to an application of the Borel-Bott-Weil theorem. An abbreviated
version of the main result of Section 4 is the following theorem.

Theorem 4.11. The double fibration transform

P : Hs(Di,Lχ)→ H0(MDi , R
s
νO(µ∗Lχ))

is an injection and the image of P is the kernel of a map D from
H0
(
MDi , R

s
νO(µ∗Lχ)

)
to H0

(
MDi , R

s
νΩ

1
µ(µ

∗Lχ)
)
.

Since RsνO(µ∗Lχ) and RsνΩ
1
µ(µ

∗Lχ) are each the sheaf of sections of a ho-
mogeneous bundle, the transform realizes Hs

(
Di,Lχ

)
as a space of functions

on MDi with values in a homogeneous vector bundle.
In Section 5, we analyze the map D in Theorem 4.11. By construction,

D is determined by the map from Hs
(
YDi ,O(µ∗Lχ)

)
to Hs

(
YDi ,Ω

1
µ(µ

∗Lχ)
)

and the kernel of D is the image of P . The main result of Section 5 is the
following theorem.

Theorem 5.26. D is a G-equivariant differential operator.
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In Appendix A we consider the situation where the line bundle Lχ is
replaced with a finite dimensional vector bundle although it is the line bundle
case that corresponds to unitarizable representations.

This paper incorporates the results of my thesis which was done at Ok-
lahoma State University. More specifically, my thesis contains these results
when r = n along with the contents of [N]. The case when r < n is not a
part of my thesis. I wish to thank my advisor, Roger Zierau, and Joe Wolf
and Anthony Kable for many useful conversations while I was working on
these results. Thanks also to the referee for suggesting the extension to the
vector bundle case.

2. The general double fibration transform.

Let D, Y , and M be complex manifolds. Then we refer to (2.1) as a holo-
morphic double fibration for D when µ and ν are holomorphic fibrations.

(2.1)

Y
µ↙ ↘ν

D M.

Let L → D be a holomorphic line bundle on D and L the sheaf of holo-
morphic sections of L. In this setting, it is sometimes possible to define a
double fibration transform from the Dolbeault cohomology space Hs

(
D,L

)
to H0

(
M,RsνO(µ∗L)

)
where RsνO(µ∗L) is the sth higher direct image of

O(µ∗L) by ν. In this paper, we will define a double fibration transform for a
family of open Sp(n,R)-orbits D in the generalized flag of isotropic r-planes
in C2n when r ≤ n.

Although the construction of the transform is described in a variety of
places [see [BE, EPW, PR2, WW], for example], we include a brief dis-
cussion here, adapted to our situation, for the convenience of the reader.

The first step in the construction is to determine when Hs(D,L) is iso-
morphic to Hs(Y, µ−1L). In the setting of this paper, the fiber of µ is
contractible (Proposition 3.13) and this is sufficient to guarantee, by a theo-
rem of Buchdahl [Bu], that the isomorphism exists. We note, however, that
the contractibility of the fiber of µ is a stronger condition than that required
by Buchdahl.

The second step is to construct a resolution of µ−1L to which we can
apply the following lemma.

Lemma 2.2. Let

0→ S → S0 → S1 → · · · → SN → 0

be an exact sequence of sheaves on a manifold Y and suppose Hp(Y,St) = 0
for p < q and 1 ≤ t ≤ N . Then there is an injection from Hq(Y,S) →
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Hq(Y,S0). Furthermore, Hq(Y,S) is the kernel of the induced map from
Hq(Y,S0) to Hq(Y,S1).

To find an appropriate resolution of µ−1L, we begin by constructing a
resolution of µ−1OD. We denote by Ωp

Z the sheaf of holomorphic p-forms
on a complex manifold Z.

Definition 2.3.
(1) The sheaf of relative 1-forms on Y , denoted by Ω1

µ, is defined by the
exact sequence

µ∗Ω1
D → Ω1

Y → Ω1
µ → 0

where µ∗Ω1
D = OY ⊗ µ−1Ω1

D and we tensor over µ−1OD.
(2) The relative p–forms Ωp

µ are defined by ∧pΩ1
µ.

We can think of Ωp
µ as p-forms on Y in the direction of the fiber of µ

with coefficients in OY and dµ : ∧pΩ1
µ → ∧p+1Ω1

µ as differentiation along
the fiber.

We have the following lemma about relative p-forms.

Lemma 2.4. Let m = dimY − dimD.
(1) Then

0→ µ−1OD → OY
dµ−→ Ω1

µ → · · · → Ωm
µ → 0(2.5)

is an exact sequence of sheaves on Y .
(2) The sequence (2.6) is a resolution of µ−1L.

0→ µ−1L → µ∗L → Ω1
µ(µ

∗L)→ · · · → Ωm
µ (µ∗L)→ 0.(2.6)

The proof of (1) is the usual Poincaré lemma. To prove (2) we tensor
(2.5) by µ−1L and observe that µ∗L = O(µ∗L) and

Ωp
µ ⊗µ−1OD

µ−1L = Ωp
µ ⊗OY

O(µ∗L).

To simplify notation we denote Ωp
µ ⊗µ−1OD

µ−1L by let Ωp
µ(µ∗L).

Applying Lemma 2.2 to (2.6) yields the following lemma.

Lemma 2.7. If Hp
(
Y,Ωt

µ(µ
∗L)
)

= 0 for all p < q and all t, then
Hq
(
Y, µ−1L

)
embeds in Hq(Y,O(µ∗L)) as the kernel of the induced map

from Hq
(
Y,O(µ∗L)

)
to Hq

(
Y,Ω1

µ(µ
∗L)
)
.

For the third and final step in the construction of the transform, we must
assume that M is Stein, that ν is proper, and that S is a coherent sheaf on
Y . With these assumptions, the following theorem is the key to this final
step.

Theorem 2.8. Hp(Y,S) is isomorphic to H0(M,RpνS).
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Proof. There exists a Leray spectral sequence which abuts to H∗(Y,S) and
whose E2-term is given by Ep,q2 = Hp

(
M,RqνS

)
. The direct image theorem

[GR] implies that RqνS is coherent so Ep,q2 = 0 for all nonzero p. That is,
the spectral sequence collapses and the result follows. �

If O(µ∗L) and Ω1
µ(µ

∗L) are coherent, then Theorem 2.8 implies that
Hq
(
Y,O(µ∗L)

)
is isomorphic to H0

(
M,RqνO(µ∗L)

)
and also that

Hq
(
Y,Ω1

µ(µ
∗L)
)

is isomorphic to H0
(
M,RqνΩ1

µ(µ
∗L)
)
. These isomorphisms,

along with the isomorphism in Lemma 2.7, determine a map D from
H0
(
M,RqνO(µ∗L)

)
to H0

(
M,RqνΩ1

µ(µ
∗L)
)
.

In the following theorem, we combine these constructions to define the
Penrose transform.

Theorem 2.9. The Penrose tranform is the map

P : Hq(D,L)→ H0
(
M,RqνO(µ∗L)

)
.

The map P is an injection and the image of P is the kernel of D which is
defined below.

More explicitly, Hq(D,L) is isomorphic to Hq
(
Y, µ−1L

)
by Buchdahl’s

theorem. Then dµ : OY → Ω1
µ determines a map dµ∗ : O(µ∗Lχ)→ Ω1

µ(µ
∗L)

whose kernel is µ−1L. By Lemma 2.7, dµ∗ determines an injection Dµ from
Hq(Y,O(µ∗L)) to Hq

(
Y,Ω1

µ(µ
∗L)
)

whose kernel is Hq
(
Y, µ−1L

)
. Then,

Theorem 2.8 gives an isomorphism between Hq
(
Y,O(µ∗L)

)
and

H0
(
M,RqνO(µ∗L)

)
and one between Hq

(
Y,Ω1

µ(µ
∗L)
)

and
H0
(
M,RqνΩ1

µ(µ
∗L)
)
. As a result, Dµ determines a differential operator D

such that the following diagram commutes.

Hq
(
Y,O(µ∗L)

)
−−−→ H0

(
M,RqνO(µ∗L)

)
Dµ

y yD
Hq
(
Y,Ω1

µ(µ
∗L)
)
−−−→ H0

(
M,RqνΩ1

µ(µ
∗L)
) .

In this way, the map P and D are defined and P embeds Hq(D,L) is
H0(M,RqνO(µ∗L)) as the kernel of D.

3. The geometry underlying the double fibration transform.

The purpose of this section is to understand the geometry of the holomorphic
double fibrations (3.1) and (3.2) which we will use to define a double fibration
transform for a family of Sp(n,R)-representations. Let Di be the open
Sp(n,R)-orbit of isotropic r-planes of signature (i, r − i) in the generalized
flag manifold X of isotropic r-planes in C2n. Then Di is G/Hi where Hi '
U(i, r − i) × Sp(n − r,R) and K/Hi ∩K is a maximal compact subvariety
in Di. Here, K is a maximal compact subgroup of G isomorphic to U(n).
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Let MXi be the Sp(n,C)-translates of K/Hi ∩K in X. Let M̃Di be the
translates contained in Di and let MDi be the connected component of M̃Di

containing K/Hi ∩K. Let YDi and YXi be the incidence spaces

YDi = {(z,Q) ∈ Di ×MDi : z ∈ Q}
and YXi = {(z,Q) ∈ X ×MXi : z ∈ Q}.

Then we have the following holomorphic double fibrations

(3.1)

YDi
µ↙ ↘ν

Di MDi

and

(3.2)

YXi
µ̃↙ ↘ν̃

X MXi

with the natural projection maps.

3.1. Preliminaries. In this section, we define the bilinear forms and the
Lie groups we will use to describe the manifolds in the double fibrations.
In addition, we describe various Lie algebras and root systems that will be
used later.

Let 〈· , ·〉H denote the Hermitian form on C2n corresponding to the ma-

trix In,n =
(
In 0
0 −In

)
and let ω(· , ·) denote the symplectic form on C2n

corresponding to J =
(

0 −In
In 0

)
. We call a subspace y of C2n isotropic if

ω(u , v) = 0 for all u, v ∈ y and Lagrangian if y = y⊥ω . We denote the sig-
nature of a subspace y by sgn(y) = (a, b, c) if y has a Hermitian orthogonal
basis of a positive vectors, b negative vectors and c null vectors. If c = 0,
we write sgn(y) = (a, b).

We will use these forms to describe certain subgroups of GL(2n,C). The
complex symplectic group Sp(n,C) is the set of matrices that preserve the
symplectic form, and U(n, n) is the subgroup that preserves the Hermitian
form. Then Sp(n,C) ∩ U(n, n) is a real form of Sp(n,C) which preserves
both the symplectic and Hermitian forms. We denote Sp(n,C) by GC and
the real form by G. We note that G ' Sp(n,R).

Let gC denote the Lie algebra of GC and g the Lie algebra of G. Fix the
Cartan subalgebra

tC = {diag(t1, t2, . . . , tn,−t1,−t2, . . . ,−tn) : tj ∈ C}
of gC where an element of tC is a diagonal matrix with the indicated en-
tries. Elements of t∗C will be identified with points in Cn as follows. For
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γ = (γ1, . . . , γn) in Cn, define

γ
(
diag(t1, . . . , tn,−t1, . . . ,−tn)

)
=
∑

γjtj .

Let ej be the element of t∗C which corresponds to the jth standard basis
vector in C2n.

The element λi = (−1, . . . ,−1 | 0, . . . , 0| 1, . . . , 1) in t∗C, with i-entries be-
fore the first vertical bar, (n − r)-entries between the vertical bars, and
(r − i)-entries after the last vertical bar, will be used to determine a posi-
tive system for gC. Although these objects depend on i and r, we will only
indicate the dependence on i. If 4(gC) denotes the roots of gC, then

4(gC) = 4(hi,C) ∪4(qi,+) ∪4(qi,−)

where 4(hi,C) is the set of roots of gC whose inner product with λi is 0 and
4(qi,+) (respectively, 4(qi,−)) is the roots of gC whose inner product with
λi is positive (respectively, negative).

We fix a positive system

4+(hi,C) = {(ej − ek) : 1 ≤ k < j ≤ i or i+ n− r + 1 ≤ k < j ≤ n}
∪ {(ej + ek) : 1 ≤ j ≤ i, i+ n− r + 1 ≤ k ≤ n}
∪ {(ej − ek) : i+ 1 ≤ j < k ≤ i+ n− r}
∪ {(ej + ek) : i+ 1 ≤ j ≤ k ≤ i+ n− r}.

for hi,C and note that the first two subsets are all the positive roots for
U(i, r− i) and the last two for Sp(n− r,R). If r = n, the Sp(n− r,R) piece
does not appear. The corresponding simple system is

Πi = {e2 − e1, e3 − e2, . . . , ei − ei−1, e1 + ei+n−r+1}
∪ {ei+n−r+2 − ei+n−r+1, ei+n−r+3 − ei+n−r+2, . . . , en − en−1}
∪ {ei+1 − ei+2, ei+2 − ei+3, . . . , ei+n−r−1 − ei+n−r, 2ei+n−r}.

Again we note that the first two subsets are the simple roots for U(i, r − i)
and the last for Sp(n−r,R). Now4+(hi,C)∪4(qi,+) forms a positive system
for 4(gC) and this is the system that we shall use throughout.

Let hi,C = tC +
∑

α∈4(hi,C)

gα and let Hi,C be the analytic subgroup associ-

ated to hi,C. Let hi = hi,C∩g; then hi is isomorphic to u(i, n−i)⊕sp(n−r,R)
and Hi ' U(i, n−i)×Sp(n−r,R) is the analytic subgroup for hi. For r = n,
Hi is the fixed points of the involution Ad ζi on G where

ζi =


−Ii 0 0 0
0 In−i 0 0
0 0 Ii 0
0 0 0 −In−i

 .
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Let qi,+ =
∑

α∈4(qi,+)

gα and let Qi,+ denote the analytic subgroup of qi,+

in GC. Let qi,− =
∑

α∈4(qi,−)

gα and let Qi,− denote the analytic subgroup of

qi,− in GC.
Let Θ be the Cartan involution on gC given by Θ(X) = −tX. Denote by

KC the analytic subgroup of GC corresponding to the (+1)-eigenspace of Θ.
The (−1)-eigenspace pC of Θ decomposes into the KC-invariant subspaces
p+ and p−. Let P+ = exp(p+) and P− = exp(p−). In this case K, the real
form of KC, is isomorphic to U(n).

3.2. The Double Fibration for Sp(n,R). The geometry of C2n induced
by the Hermitian and symplectic forms provides a useful tool for describing
the spaces Di, YDi , and MDi in the double fibration (3.1), for realizing them
as homogeneous manifolds, and for examining the relationship between the
double fibrations (3.1) and (3.2).

We begin by observing that GC acts transitively on X, the set of isotropic
r-planes in C2n, by Witt’s theorem (see, for example, [A]). If we choose
xi = span{e1 , . . . , ei , e2n−r+i+1 , . . . , e2n} as a basepoint in X, then GC acts
with isotropy subgroup Hi,CQi,−. Then X, as a generalized flag manifold for
GC, can be realized in several ways; if it is important to specify a realization
we will use the convention Xi = GC/Hi,CQi,−. We also note that if r = n
and i = 0 or n, then the isotropy subgroup is KCP+ or KCP−, respectively.

The relationship between X and Di, the set of isotropic (i, r − i)-planes,
is given in the following proposition.

Proposition 3.3. Di is an open G-orbit in X.

This can be seen in two ways. First, for a fixed r, the open G-orbits in X
are parametrized by the signatures (i, r−i) [Wo1]. Second, a generalization
of Witt’s theorem (see [A], for example) implies that G acts transitively on
Di. For the basepoint xi, the stabilizer of this action is Hi and a dimension
count shows that Di is open.

Thus Di is a complex manifold. If r = n and i = 0 or n, then Di is the
Hermitian symmetric space G/K and is of holomorphic type. If r = n and
i 6= 0 or n, then Di is the indefinite Kähler symmetric space G/Hi and is of
non-holomorphic type. If r < n, then Di is G/Hi which is not a symmetric
space. In this case, if i = 0 or r, then Di is of holomorphic type and if i 6= 0
or r then Di is of nonholomorphic type as described in Section 1.

We now define two other members of the double fibrations: MDi and MXi .

Definition 3.4. The space MXi is the set of GC-translates of Kxi. Let M̃Di

be the GC-translates of Kxi contained in Di and let MDi be the connected
component of M̃Di containing Kxi.
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To analyze the structure of MDi and MXi , we need to understand the
structure of the K-orbit of xi in Di. First, work of Schmid and Wolf [SW]
implies that Kxi is a maximal compact subvariety of Di.

If r = n and i = 0 or n, then Kxi = xi and MDi is Di. If r = n with
i 6= 0 or n and if r < n with i = 0 or r, then Kxi is biholomorphic to the
Grassmanian of i-planes in Cn in the first case and to the Grassmanian of r-
planes in Cn in the second. In all cases, Kxi is realized as the homogeneous
space K/Hi ∩K. The parametrization of MDi is given in the following
theorem for r = n with i 6= 0 or n and for all r < n with i 6= 0 or r.

Theorem 3.5. The manifold MDi is biholomorphic to G/K ×G/K, where
G/K denotes G/K with the opposite complex structure.

For r = n and i 6= 0 or n, the proof of this theorem is the main result of
[N]. More recently, Wolf and Zierau [WZ] have proven this theorem for all
open orbits of nonholomorphic type when G/K is a Hermitian symmetric
space and G is a classical group. We will outline the idea of the proof in [N]
so that we can use the explicit description of MD given there in the proof
of the contractibility of the fiber.

First, we describe how to associate a pair of transverse Lagrangian planes
in C2n to a GC-translate of Kxi. The difficulty here is showing that the
association is unique. Once this is complete, we have the parametrization
of MXi given below.

Lemma 3.6. MXi is the manifold GC/KC when 2i 6= r and GC/L when
2i = r.

This is another result of [N] where L is the subgroup of GC generated by
KC and the matrix J which defines the symplectic form.

To describe the association, we observe that Kxi is the set of isotropic
r-planes of signature (i, r − i) which meet y0 = span{e1 , . . . , en} in an i-
plane and w0 = span{en+1 , . . . , e2n} in an (r − i)-plane. More specifically,
each i-plane u in y0 together with any (r− i)-plane u′ in u⊥ω ∩w0 forms an
isotropic (i, r− i)-plane in Kxi and each element of Kxi can be described in
this fashion. We make two observations. First, when r = n, the dimension
of u⊥ω ∩w0 is n− i so for each i-plane in y0 there exists exactly one (n− i)-
plane u′ in u⊥ω ∩ w0 such that u ⊕ u′ is an element of Kxi. Second, the
above description of Kxi does not depend on the signature of the planes y0

and w0, only that the planes are transverse and Lagrangian. In light of this,
translating Kxi by g ∈ GC element by element is equivalent to translating
y0 and w0 by g and creating gKxi from the translated planes.

To reflect the relationship betweenKxi and the two transverse Lagrangian
planes y0 and w0, we denote Kxi by V i(y0,w0). Then gKxi will be denoted
by V i(gy0,gw0) and MXi is the set of maximal compact subvarieties V i(y,w)
for any pair of transverse Lagrangian planes y and w. The main difficulty
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in parametrizing MXi is determining the stabilizer of the action of GC on
MXi . That is, showing the level of uniqueness of the representation of a
maximal compact subvariety by V i(y,w). When 2i 6= r, V i(y,w) = V i(y′,w′)
if and only if y = y′ and w = w′. When 2i = r , it is also the case that
V i(y,w) = V i(y′,w′) when y = w′ and w = y′. This happens because
switching the position of y and w in V i(y,w) does not change the maximal
compact subvariety.

To parametrize MDi , we must identify which pairs of transverse La-
grangian planes are asociated to elements of MDi . Clearly, if y is positive
and w is negative, then V i(y,w) is in Di and hence in M̃Di . The difficulty
lies in showing that such V i(y,w) are in MDi and that only V i(y,w) of this
type are in MDi . See [N] for details.

The descriptions of MDi and MXi are useful for determining the structure
of

YDi =
{
(z, V i(y,w)) ∈ Di ×MDi : z ∈ V i(y,w)

}
(3.7)

and YXi =
{
(z, V i(y,w)) ∈ X ×MXi : z ∈ V i(y,w)

}
.

It is not too difficult to show that GC acts transitively on YXi by
g · (z, V i(y,w)) = (gz, V i(gy,gw)). Making use of the parametrization of
MXi and Xi, we have the following theorem.

Theorem 3.8. When 2i 6= r the manifold YXi is GC6 Hi,CQi,− ∩KC and

when 2i = r the manifold YXi is GC6 Hi,CQi,− ∩ L

We now turn our attention to analyzing the structure of YDi . Although
G acts on YDi as GC acts on YXi , this action is not transitive. Fortunately,
G×G acts transitively on YDi . First, we define the action of G×G on the
basepoint (xi, V i(y0,w0)) by

(g1, g2) ·
(
xi, V

i(y0,w0)
)

=
(
(g1 exp(X+)xi, V i(g1 exp(X+)y0, g1 exp(X+)w0))

)
.

where exp(X+)k exp(X−) is the Harish-Chandra decomposition (see [K], for
example) of g−1

1 g2. We note that the action in the second factor simplifies
to V i(g1y0, g2w0). This action of G×G maps (xi, V i(y0,w0)) onto YDi as
follows. Since G×G acts transitively on MDi , there exists g1, g2 ∈ G such
that (g1, g2)V i(y0,w0) = V i(y,w) for any V i(y,w) in MDi . Since K×K fixes
V i(y0,w0), as k1 and k2 run through K, (g1k1, g2k2) acting on xi run through
every element of V i(g1y0,g2w0). Thus each (z, V i(y,w)) is a translate of
(xi, V i(y0,w0)). Then G×G acts on (z, V i(y,w)) by first writing (z, V i(y,w))
as (g3, g4)(xi, V i(y0,w0)) and letting (g1g3, g2g4) act on (xi, V i(y0,w0)).

We have the following theorem.
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Theorem 3.9. YDi is biholomorphic to G6 Hi ∩K ×
G6 K.

Proof. As shown above, G×G acts transitively on YDi . Then the stabilizer of
(xi, V i(y0,w0)) is (Hi ∩K)×K so there is an isomorphism between YDi and
G/Hi ∩K ×G/K which endows YDi with a differentiable structure. The
complex structure comes from using the Harish-Chandra decomposition to
embed G/Hi ∩K into GC/(Hi,CQi,− ∩KC)P+ and G/K in GC/KCP−. The
opposite complex structure is needed in the second factor since P+ is replaced
with P−. �

We have the following two observations about the action of G×G on YDi .
First, if we had decomposed g−1

2 g1 as exp(X−)k exp(X+) instead of decom-
posing g−1

1 g2, then (g1, g2)(xi, V i(y0,w0)) = (g2 exp(X−)xi, V i(g1y0,g2w0))
determines another action of G×G on YDi . In this case, the space YDi

would have been realized as G/K × G/Hi ∩K. If this action were chosen,
the factors would be switched throughout the construction.

Second, when r = n we can describe the action of G×G on the first
component of (xi, V i(y0,w0)) geometrically. This is possible because, as de-
scribed after Lemma 3.6, each element of Kxi is of the form u ⊕ u′ with u
an i-plane in y0 and u′ an (n− i)-plane in u⊥ω ∩ w0. When r = n, we have
u′ = u⊥ω ∩ w0. That is, each element of Kxi is completely determined by
its intersection with y0. So, if we move xi ∩ y0 by g1 to g1(xi ∩ y0), then
g1(xi ∩ y0) meets g1y0 in an i-plane and the image of xi under (g1, g2) is
z′ = g1(xi ∩ yo) ⊕ [{g1(xi ∩ yo)}⊥ω ∩ (g2wo)] which is an element of
V i(g1y0,g2w0). Using the Harish-Chandra decompostition of g−1

1 g2, we have
z′ = g1 exp(X+)xi. Thus, the action of G×G on YDi can be interpreted in
terms of planes.

3.3. Relating the two double fibrations. A good understanding of the
relationship between the double fibrations (3.1) and (3.2) is crucial for giving
an explicit realization of the differential operator in Theorem 2.9. We have
already discussed the relationship between Di and Xi in Proposition 3.3. In
this section, we consider the relationship between the other pairs.

From the descriptions of YDi and YXi in (3.7) as certain pairs of isotropic
r-planes and maximal compact subvarieties, it is clear that YDi is contained
in YXi . When these spaces are realized as homogeneous manifolds, the em-
bedding of YDi in YXi is given by the following theorem.

Theorem 3.10. The map

ϕ : G6 Hi ∩K ×
G6 K → GC6 Hi,CQi,− ∩KC

defined by ϕ(g1, g2) = g1 exp(X+) is a holomorphic injection where the
Harish-Chandra decomposition of g−1

1 g2 is exp(X+)k exp(X−) with X+ ∈
p+, k ∈ KC and X− ∈ p−.
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Proof. In the following diagram

G6 Hi ∩K ×
G6 K ϕ−−−−→ GC6 Hi,CQi,− ∩KC

α

y yβ

GC6 (Hi,CQi,− ∩KC)P+
×GC6 KCP−

i−−−−→ GC6 (Hi,CQi,− ∩KC)P+
×GC6 KCP−

the embeddings α and β are given by α(g1, g2) = (g1, g2) and β(g) = (g, g)
and i is the identity map. The following calculation shows that the image
of α is contained in the image of β:

α(g1, g2) = (g1, g2)

= g1 · (e, g−1
1 g2)

= g1 · (e, exp(X+)k exp(X−))

= g1 · (exp(X+), exp(X+))

= β(g1 exp(X+)).

Thus this a commutative diagram and the result follows. �

For 2i 6= r, the map ϕ embeds YDi in YXi . For 2i = r, the realization
of YXi accounts for the fact that, in this case, V i(y,w) and V i(w, y) are the
same maximal compact subvariety. The natural projection map

π : GC6 Hi,CQi,− ∩KC →
GC6 Hi,CQi,− ∩ L

reflects this identification. Since only one of these realizations occurs in the
parametrization of YDi , the map π◦ϕ is an injection and gives the embedding
of YDi in YXi in this case.

The situation forMDi andMXi is similar and we use the following theorem
to embed MDi in MXi .

Theorem 3.11. The map

ψ : G6 K ×G6 K → GC6 KC

defined by ψ(g1, g2) = g1 exp(X+) is a holomorphic injection where
exp(X+)k exp(X−) is the Harish-Chandra decomposition of g−1

1 g2.

Proof. We embed G/K ×G/K and GC/KC in GC/KCP+ ×GC/KCP− and
proceed as in Theorem 3.10. �

For 2i 6= r, the map ψ embeds MDi in MXi . For 2i = r, let π : GC/KC →
GC/L be the natural projection map. Then, as before, π ◦ψ embeds MDi in
MXi .
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3.4. The fiber of µ. The geometry of the fiber of µ plays an important role
in the first step of the construction of the Penrose transform. In particular,
we need the fiber of µ to be contractible to apply Buchdahl’s condition [Bu]
to conclude that Hs

(
Di,Lχ

)
is isomorphic to Hs

(
YDi , µ

−1Lχ
)
. Since µ is

a G-equivariant map, it suffices to consider the geometry of µ−1(xi) where,
as before, we have xi = span{e1 , . . . , ei , e2n−r+i+1 , . . . , e2n}. We will show
that µ−1(xi) is contractible by showing that it fibers over a contractible
space with contractible fiber. Let G(j) = Sp(j,C) ∩ U(j, j).

Theorem 3.12. Let

π : µ−1(xi)→
Hi6 U(i)×G(n− r)× U(r − i)×

Hi6 U(i)×G(n− r)× U(r − i)
be the map defined by π(xi, V i(y,w)) = (h1, h2) where h1(xi ∩ y0) = xi ∩ y
and h2(xi ∩ w0) = xi ∩ w. Then µ−1(xi) fibers over

Hi6 U(i)×G(n− r)× U(r − i)×
Hi6 U(i)×G(n− r)× U(r − i)

with fiber
G(n− i)6 U(n− i)×

G(i+ n− r)6 U(i+ n− r).

This theorem together with the observation that both the base space and
the fiber of π are contractible give us the following proposition.

Proposition 3.13. µ−1(xi) is contractible.

Proof of Theorem 3.12. To understand the geometry of µ−1(xi), we must
identify all maximal compact subvarieties V i(y,w) in MDi containing xi.
Given the parametrization of MDi , this is equivalent to finding all positive
Lagrangain planes y and all negative Lagrangian planes w such that y meets
xi is an i-plane and w meets xi is an (r − i)-plane.

We begin by looking at a special case: The positive i-plane ui =
span{e1, . . . , ei} in xi. We can extend ui to a positive Lagrangian plane by
any positive (n−i)-plane in u⊥ω

i ∩u
⊥H
i = span{ei+1, . . . , en, en+i+1, . . . , e2n}.

One such plane is vi = span{ei+1, . . . , en}. To find the others we observe
that, in G, the plane u⊥ω

i ∩u
⊥H
i is fixed by G(i)×G(n− i) and the stabilizer

of vi in G(i) × G(n − i) is G(i) × U(n − i). Thus, all positive Lagrangian
planes containing ui are of the form ui ⊕ gvi where g ∈ G(n− i)/U(n− i).

More generally, any positive i-plane u in xi is an Hi-translate of ui and
the stabilizer of ui in Hi is U(i) × G(n − r) × U(r − i). Thus the positive
i-planes in xi are parametrized by Hi/(U(i)×G(n− r)× U(r − i)) and for
each positive i-plane in xi the set of positive Lagrangian planes containing
it is parametrized by G(n− i)/U(n− i).

In a similar fashion, one can show that the negative (r − i)-planes in xi
are parametrized by Hi/U(i) × G(n − r) × U(r − i) and for each negative



432 JODIE D. NOVAK

(r − i)-plane in xi, the set of negative Lagrangain planes containing it is
parametrized by G(i+ n− r)/U(i+ n− r). �

4. Constructing the double fibration transform for Hs(Di,Lχ).

In this section we will define a double fibration transform for the Sp(n,R)-
representationsHs(Di,Lχ) where s is the dimension of the maximal compact
subvariety K/Hi ∩K in Di and χ is the character on Hi whose differential

is given by χ = (−a, . . . ,−a | 0, . . . , 0 |a, . . . , a). That is, χ =
i∑

j=1
−aej +

n∑
p=i+n−r+1

aep in h∗i,C. In this case Hs(Di,Lχ) is an irreducible, unitarizable

nonzero infinite dimensional representation of Sp(n,R) if a < −2n+r [Wg].
In the process of defining the transform, it will be necessary to impose
additional restrictions on χ so that the transform will be injective.

4.1. Pulling up Hs(Di,Lχ) by µ to YDi. The first step in defining the
transform is transferring Hs(Di,Lχ) to YDi . Since the fiber of µ is con-
tractible (Proposition 3.13), a theorem of Buchdahl [Bu] implies the follow-
ing theorem.

Theorem 4.1. Hs
(
Di,Lχ

)
is isomorphic to Hs

(
YDi , µ

−1Lχ
)
.

Now Lemma 2.4 implies that

0→ µ−1Lχ → O(µ∗Lχ)→ Ω1
µ(µ

∗Lχ)→ · · · → Ωm
µ (µ∗Lχ)→ 0(4.2)

is a resolution of µ−1Lχ where Ωp
µ(µ∗Lχ) is the sheaf of relative p-forms on

YDi with values in the bundle µ∗Lχ and m = dimYDi − dimDi.
Upon first inspection, the sheaves in the resolution of µ−1Lχ do not appear

to be sheaves of holomorphic sections of homogeneous vector bundles due
to the fact that µ is a G–equivariant map, not G×G–equivariant, from the
G×G-homogeneous space YDi to the G-homogeneous space Di. We will
show, using the natural projection map µ̃ : YXi → Xi, that these sheaves are
holomorphic sections of a homogeneous vector bundle. We begin with the
sheaf O(µ∗Lχ).

Theorem 4.3. The bundle µ∗Lχ on YDi is a homogeneous bundle with fiber
Cχ where (Hi ∩K)×K acts by χ⊗ 1.

Proof. Let χ̃ be the extension of χ to Hi,CQi,− with χ̃ trivial on Qi,−. Then
µ̃?Lχ̃ is the homogeneous line bundle on YXi with fiber Cχ̃ and its restriction
to ϕ(YDi) is isomorphic to µ∗Lχ on YDi where ϕ is the embedding of YDi

in YXi in Theorem 3.10. This isomorphism allows us to show that µ∗Lχ is
a G×G-homogeneous bundle once we have an explicit expression for the
action of G×G on ϕ(YDi).
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Let g ∈ ϕ(YDi) and g1, g2 ∈ G. Assume, for the moment, that the Harish-
Chandra decomposition of (g1g)−1g2g as exp(X+)k exp(X−) exists. The key
to seeing that (g1, g2) ·g = g1g exp(X+) defines an action of G×G on ϕ(YDi)
is the following computation. Using the identification of GC/Hi,CQi,− ∩KC
with YXi , we have

(g1, g2) · g = (g1, g2) ·
(
gxi, V

i(gy0,gw0)
)

= (g1g, g2g)(xi, V i(y0,w0))

=
(
g1g exp(X+)xi, V i(g1g exp(X+)y0, g1g exp(X+)w0)

)
= g1g expX+(xi, V i(y0,w0))

= g1g expX+.

Now we address the Harish-Chandra decomposition of (g1g)−1g2g. Since
g ∈ ϕ(YDi), there exist g3, g4 ∈ G such that ϕ(g3, g4) = g. That is, there
exist X

′
+ ∈ p+ and h ∈ Hi,CQi,− ∩KC such that g = g3 exp(X ′

+)h. Using
this expression for g in (g1g)−1g2g and the Harish-Chandra decomposition
of (g1g3)−1g2g4 yields the decomposition of (g1g)−1g2g.

Let W denote the restriction of µ̃∗Lχ̃ to ϕ(YDi) and let [g, w] be in Wg.
For g1, g2 ∈ G,

(g1, g2) · [g, w] =
[
g1g exp(X+), w

]
defines an action of G×G on W. Then W is the G×G-homogeneous line
bundle on YDi with fiber Cχ ⊗ 1. �

We note that the action of G on W as a subgroup of GC is equivalent to
the action of G as the diagonal subgroup of G×G.

In the remainder of this section, we will show that the sheaves Ωp
µ(µ∗Lχ)

in (4.2) are sheaves of sections of homogeneous bundles on YDi . Since
Ωp
µ(µ∗Lχ) = Ωp

µ ⊗O(µ∗Lχ), it suffices to show that Ωp
µ is homogeneous.

First we describe the sheaf of relative differential 1-forms for a general
fibration between differentiable manifolds. Let f : Y → X be a C∞ fibra-
tion. Then ker df , the relative tangent bundle, is a subbundle of the tangent
bundle of Y whose stalk at y is the kernel of dfy and (ker df)∗ is the relative
cotangent bundle. Let E1

M denote the sheaf of smooth differential 1-forms
on a manifold M and let EM be the sheaf of C∞ functions on M . Then
f∗E1

X = f−1E1
X ⊗f−1EX

EY and the sheaf of relative differential 1-forms is
E1
f = E1

Y /f
∗E1
X .

Theorem 4.4. E1
f and E((ker df)∗) are isomorphic as sheaves.

Sketch of Proof. Since it suffices to check this on sufficiently small open
sets, we may assume that U , an open subset of Y , is isomorphic to Rn×Rk.
The map γU : E1

f (U) → E((ker df)∗)(U) defined by γU ([w]) = γw where
γw(y) = w(y)|ker df and y ∈ Y gives the isomorphism. �
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We will use this theorem to describe the relative holomorphic (1,0)-forms
for the holomorphic fibration from GC/Hi,CQi,− ∩KC to GC/Hi,CQi,− given
by the natural projection map µ̃. As is customary, we identify the holomor-
phic tangent space T 1,0(GC/Hi,CQi,− ∩KC) with T (GC/Hi,CQi,− ∩KC); we
do likewise for GC/Hi,CQi,−. Under these identifications, Theorem 4.4 im-
plies that the sheaf of relative holomorphic 1-forms Ω1

µ̃ is isomorphic to the
sheaf O((ker dµ̃)∗). Now ker dµ̃ is the GC–homogeneous bundle with fiber
(hi,C ⊕ qi,−)/(hi,C ⊕ qi,−) ∩ kC.

Theorem 4.4 again implies that Ω1
µ is the sheaf O((ker dµ)∗) where here

dµ is the map from T 1,0(YDi) to T 1,0(Di). Since the map µ from G/Hi∩K×
G/K to G/Hi is given in terms of isotropic planes and maximal compact
subvarieties and not as a map of homogeneous spaces, we are unable to use
the definition of µ to determine ker dµ. However, we can give an explicit
description of Ω1

µ by understanding the relationship between Ω1
µ and Ω1

µ̃.

Theorem 4.5.

(1) The sheaf Ω1
µ is isomorphic to O((ker dµ)∗).

(2) The vector bundle ker dµ is (G × G)-homogeneous with fiber
(hi,C ⊕ qi,−) ∩ p where (Hi ∩K)×K acts by Ad ⊗ 1.

(3) The vector bundle (ker dµ)∗ is (G × G)-homogeneous with fiber
(hi,C ⊕ qi,+) ∩ p where (Hi ∩K)×K acts by Ad ⊗ 1.

Proof of (1). This follows from the discussion before the statement of The-
orem 4.5. �

Proof of (2). Recall the map

ϕ : G6 Hi ∩K ×
G6 K → GC6 Hi,CQi,− ∩KC

from Section 3.3. Since the image of ϕ is open in GC/Hi,CQi,− ∩KC, the
fiber of µ is open in the fiber of µ̃. Thus, we have ker dµ = (ker dµ̃)|Im(ϕ).
Then, as in Theorem 4.3, we can define an action of G×G on ker dµ and
the action of (Hi ∩ K) × K on (ker dµ)e is determined by its action on
(ker dµ̃)|Im(ϕ). Thus (Hi ∩K)×K acts on

(
(hi,C ⊕ qi,−)/(hi,C ⊕ qi,−)∩ kC

)
via Ad⊗1. Since (hi,C ⊕ qi,−)∩ p is an

[
(Hi∩K)×K

]
-invariant complement

to (hi,C ⊕ qi,−)∩ kC in hi,C ⊕ qi,−, the bundle ker dµ is (G×G)–homogeneous
with fiber (hi,C ⊕ qi,−) ∩ p. �

Proof of (3). The Killing form can be used to identify (hi,C ⊕ qi,+)∩p as the
dual of (hi,C ⊕ qi,−) ∩ p in gC. �

We are now ready to apply Lemma 2.2.
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4.2. The Vanishing Condition. We will show in this section that
Hp(YDi ,Ω

q
µ(µ∗Lχ)) vanishes for all p < s and 1 ≤ q ≤ m if a < 1

2 −
3
2n

when r = n and if a < −3n+ r when r < n. That is, we obtain the hypoth-
esis of Lemma 2.2 for the resolution of µ−1Lχ given in (4.2). Once this is
accomplished, we have:

Theorem 4.6. If a < 1
2 −

3
2n when r = n and if a < −3n + r when r <

n, then there is an injection from Hs
(
YDi , µ

−1Lχ
)

into Hs
(
YDi ,O(µ∗Lχ)

)
whose image is the kernel of the induced map from Hs

(
YDi ,O(µ∗Lχ)

)
to

Hs
(
YDi ,Ω

1
µ(µ

∗Lχ)
)
.

To obtain the vanishing condition, we make the following observations.
First, the manifold MDi is Stein [Wo2, Wo3]. Second, since the map ν is
a fibration, it is proper because the inverse image of a point in MDi under
ν is isomorphic to the compact submanifold K/Hi ∩K. Third, the sheaves
Ωq
µ(µ∗Lχ) are coherent since each is the sheaf of sections of a homogeneous

vector bundle. (See Theorem 4.3 and 4.5.)
Now we can apply Theorem 2.8 to Hp(YDi ,Ω

q
µ(µ∗Lχ)) to obtain the fol-

lowing theorem.

Theorem 4.7. Hp(YDi ,Ω
q
µ(µ∗Lχ)) is isomorphic to H0(MDi , R

p
νΩ

q
µ(µ∗Lχ))

for all p and q.

Now we will show that H0(MDi , R
p
νΩ

q
µ(µ∗Lχ)) vanishes for all p < s

and 1 ≤ q ≤ m if a < 1
2 −

3
2n when r = n and if a < −3n + r when

r < n. Recall that Ωq
µ(µ∗Lχ) is the sheaf of holomorphic sections of the

(G×G)-homogeneous bundle Vq
χ = ∧q(ker dµ)∗ ⊗ µ∗Lχ on YDi whose fiber

is ∧q
[
(hi,C ⊕ qi,+) ∩ p

]
⊗ Cχ.

Before we look at the structure of RpνΩ
q
µ(µ∗Lχ) we identify the fiber of

ν with K/Hi ∩K. Under this identification, the restriction of µ∗Lχ to the

fiber of ν is the bundle K ×(Hi∩K) Cχ and the restriction of (ker dµ)∗ is the
K-homogeneous bundle with fiber ∧q

[
(hi,C ⊕ qi,+) ∩ p

]
(see Theorem 4.5).

With these identifications, the restriction of Vq
χ to the fiber of ν is the

bundle
K ×(Hi∩K) [∧q[(hi,C ⊕ qi,+) ∩ p]⊗ Cχ]

which we also denote by Vq
χ. With this in mind, a theorem of Bott [B]

implies that RpνΩ
q
µ(µ∗Lχ) is the sheaf of holomorphic sections of the (G×G)–

homogeneous vector bundle Hp (K/Hi ∩K,O(Vq
χ)) on MDi whose fiber is

Hp(K/Hi ∩K,O(Vq
χ)).

We summarize this discussion with the following lemma.

Lemma 4.8. The sheaf RpνΩ
q
µ(µ∗Lχ) is the sheaf of holomorphic sections of

the (G×G)-homogeneous vector bundle on MDi whose fiber is Hp(K/Hi ∩K,
O(Vq

χ)) and the action of K×K on the fiber is given by (k1, k2) · ω = `∗
k−1
1

ω
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where `k is the map from K/Hi ∩K to itself given by left translation. We
denote RpνΩ

q
µ(µ∗Lχ) by O

[
Hp
(
K/Hi ∩K,O(Vq

χ)
)]

.

We now state the vanishing condition.

Theorem 4.9. Hp
(
K6 Hi ∩K , O(Vq

χ)
)

vanishes for p < s and 1 ≤ q ≤ m
if a < 1

2 −
3
2n when r = n and if a < −3n+ r when r < n.

The proof of this theorem is an application of Bott-Borel-Weil along
with the following observations. Since the fiber V q

χ of Vq
χ is reducible, we

decompose V q
χ into irreducible subrepresentations V1, . . . , Vj . Then Bott-

Borel-Weil determines a condition on χ such that Hp(K/Hi ∩K,O(Vi))
vanishes for all p 6= s. Thus Hp(K/Hi ∩K,O(Vq

χ)) also vanishes. Since
we do not know the Vi’s or their highest weights, we choose χ such that
〈χ+γ+ρK , α〉 < 0 for all α ∈ 4(qi,+∩ kC) and for all weights γ of V q

χ which
guarantees the vanishing of Hp(K/Hi ∩K,O(Vi)) for all i and for all p 6= s.
If χ is chosen such that a < 1

2 −
3
2n when r = n and if a < −3n + r when

r < n, then the vanishing is guaranteed. The calculations for this theorem
were done with 4+(kC) = {ej − ek : 1 ≤ k < i and k ≤ j ≤ n, i + 1 ≤ j <
k ≤ i+n−r, i+1 ≤ k ≤ i+n−r < j ≤ n, or i+n−r+1 ≤ k < j ≤ n}. Thus
we have obtained the hypothesis for Lemma 2.2 and have proved Theorem
4.6.

4.3. Pushing Down to MDi by ν. Now we will push Hs(YDi ,O(µ∗Lχ))
down to MDi and construct the double fibration transform.

Theorem 4.10. Hs
(
YDi ,O(µ∗Lχ)

)
is isomorphic to H0

(
MDi , R

s
νO(µ∗Lχ)

)
which is isomorphic to H0

(
MDi ,O

[
Hs(K/Hi ∩K,Lχ)

])
.

Proof. This is Theorem 4.3 and Lemma 4.8 applied to the sheaf O(µ∗Lχ).
�

Now we can define the double fibration transform.

Theorem 4.11. Define the map

P : Hs
(
Di,Lχ

)
→ H0

(
MDi , R

s
νO(µ∗Lχ)

)
by the composition of the maps in Theorem 4.1, Theorem 4.6, and Theorem
4.10. Then P is the double fibration transform and it is an injection if
a < 1

2 −
3
2n when r = n and a < −3n + r when r < n. Also, the image

of P is isomorphic to the kernel of a map D from H0
(
MDi , R

s
νO(µ∗Lχ)

)
to

H0
(
MDi , R

s
νΩ

1
µ(µ

∗Lχ)
)

where D is defined in Theorem 2.9.
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4.4. Bott-Borel-Weil applied to Hs(K/Hi ∩K,O(Lχ)). Before we in-
vestigate the map D in the next section, we will further our understanding
of H0

(
MDi , R

s
νO(µ∗Lχ)

)
As before, a theorem of Bott [B] implies that the

fiber of Rsν(µ
∗Lχ) is Hs(K/Hi ∩K,Lχ).

We have the following lemma.

Lemma 4.12. For r = n, if a < 1
2(1 − n), the cohomology space

Hp(K/Hi ∩K,Lχ) vanishes whenever p < s and whenever p = s it is the
nonzero irreducible K-representation of highest weight (a+i, . . . , a+i ; −a−
n+ i, . . . ,−a− n+ i) where there are (n− i) entries before the semicolon.

For r < n if a < −n+1 then Hp(K/Hi ∩K,Lχ) vanishes whenever p < s
and whenever p = s it is a nonzero irreducible K-representation. If r−i ≤ i,
the highest weight of the representation is

(a+ i+ n− r, . . . , a+ i+ n− r;
2i− r, . . . 2i− r| − a− n+ i, · · · − a− n+ i;

2i− r, . . . , 2i− r| − a− n+ i, . . . ,−a− n+ i)

where there are (r− i)-entries before the first semicolon, a total of i-entries
before the first vertical bar, (2i− r)-entries between the first vertical bar and
the second semicolon, a total of (n−r)-entries between the vertical bars, and
(r − i)-entries after the second vertical bar.

If r − i > i, the highest weight of the representation is

(a+ i+ n− r, . . . , a+ i+ n− r|2i− r, . . . 2i− r;
a+ i+ n− r, . . . a+ i+ n− r|2i− r, . . . , 2i− r;

− a− n+ i, . . . ,−a− n+ i)

where there are i-entries before the first vertical bar, (n + 2i − 2r)-entries
between the first vertical bar and the first semicolon, a total of (n−r)-entries
between the two vertical bars, (r−2i)-entries between the second vertical bar
and the second semicolon, a total of (r − i)-entries after the second vertical
bar.

The proof is an application of Bott-Borel-Weil.

5. The differential operator.

The double fibration transform realizes the representation Hs
(
Di,Lχ

)
as the

kernel of the map

D : H0
(
MDi , R

s
νO(µ∗Lχ)

)
→ H0

(
MDi , R

s
νΩ

1
µ(µ

∗Lχ)
)

(5.1)

defined in Theorem 4.11 and Theorem 2.9. In this section, we will describe
D more explicitly and show that it is a G-invariant differential operator.
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Recall that Hs
(
Di,Lχ

)
is isomorphic to Hs

(
YDi , µ

−1Lχ
)

and that
Hs
(
YDi , µ

−1Lχ
)

is the kernel of the map ∂∗µ : Hs
(
YDi ,O(µ∗Lχ)

)
→

Hs
(
YDi ,Ω

1
µ(µ

∗Lχ)
)

where ∂∗µ is induced from the map ∂µ : OYDi
→ Ω1

µ.
Now a Leray spectral sequence argument shows that Hs

(
YDi ,O(µ∗Lχ)

)
is

isomorphic to H0
(
MDi , R

s
νO(µ∗Lχ)

)
and that Hs

(
YDi ,Ω

1
µ(µ

∗Lχ)
)

is isomor-
phic to H0

(
MDi , R

s
νΩ

1
µ(µ

∗Lχ)
)
. The map ∂µ determines a map between the

spectral sequences and induces the map D in (5.1).
To understand D, we need a better understanding of the map ∂µ : OYDi

→
Ω1
µ. By definition ∂µ = π ◦ ∂ where ∂ : OYDi

→ Ω1
YDi

is the standard
holomorphic deRahm operator on YDi and π is the quotient map from Ω1

YDi

to Ω1
µ = Ω1

YDi
/µ∗Ω1

Di
. We note that, in this case, d = ∂ since ∂ = 0 on the

sheaves of interest. Although we can realize both Ω1
YDi

and Ω1
µ as sheaves of

holomorphic sections of a (G×G)–homogeneous bundles, the map π is not
determined by a (G×G)-equivariant bundle map. To understand π we will
decompose it into π1 ◦π2 where π2 : Ω1

YDi
→ ν∗Ω1

MDi
and π1 : ν∗Ω1

MDi
→ Ω1

µ.
Once we show that π2 is a (G×G)-equivariant map and π1 is equivariant for
the diagonal embedding of G in G×G, then π will be a G–equivariant map.

Let ∂2 = π2 ◦ ∂ and let ∂∗2 be the induced map from the cohomology
space Hs

(
YDi ,O(µ∗Lχ)

)
to Hs

(
YDi , ν

∗Ω1
MDi

(µ∗Lχ)
)
. We will see in Section

5.1 that the corresponding map

D2 : H0
(
MDi , R

s
νO(µ∗Lχ)

)
→ H0

(
MDi , R

s
ν

[
ν∗Ω1

MDi
(µ∗Lχ)

])
is the standard holomorphic d operator on MDi and that D2 is a (G×G)-
invariant first-order differential operator.

Now π1 induces a map

π1 : Hs
(
YDi , ν

∗Ω1
MDi

(µ∗Lχ)
)
→ Hs

(
YDi ,Ω

1
µ(µ

∗Lχ)
)
.

In Section 5.2, we will show that the corresponding map

D1 : H0
(
MDi , R

s
ν [ν

∗Ω1
MDi

(µ∗Lχ)]
)
→ H0

(
MDi , R

s
νΩ

1
µ(µ

∗Lχ)
)

is a G-invariant zeroth-order differential operator. As D1 is G-invariant and
D2 is (G×G)-invariant, the map D = D1 ◦ D2 is a G-invariant first-order
differential operator for the diagonal embedding of G in G×G.

5.1. The operator D2. In this section we will define π2 : Ω1
YDi
→ ν∗Ω1

MDi

and give an explicit realization of the map ∂2 : OYDi
→ ν∗Ω1

MDi
which

induces the map

∂∗2 : Hs
(
YDi ,O(µ∗Lχ)

)
→ Hs

(
YDi , ν

∗Ω1
MDi

(µ∗Lχ)
)
.
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We will then see how ∂∗2 determines the (G×G)-invariant differential operator

D2 : H0
(
MDi , R

s
νO(µ∗Lχ)

)
→ H0

(
MDi , R

s
ν [ν

∗Ω1
MDi

(µ∗Lχ)]
)

by examining the maps between the Leray spectral sequences for
Hs
(
YDi ,O(µ∗Lχ)

)
and Hs

(
YDi , ν

∗Ω1
MDi

(µ∗Lχ)
)
.

The Leray spectral sequence which defines the isomorphism between the
cohomology spaces Hs

(
YDi ,O(µ∗Lχ)

)
and H0

(
MDi , R

s
νO(µ∗Lχ)

)
is realized

from a filtration of the resolution

0→ O(µ∗Lχ)→ E0,0(µ∗Lχ)→ E0,1(µ∗Lχ)→ · · · → E0,a(µ∗Lχ)→ 0

with respect to the fiber of ν. (See, for example, [G].) Using the homoge-
neous structure of E0,c and µ∗Lχ, the E0-term is given by

Ep,q0 = C∞
(
G×G,Cχ ⊗ ∧qci ⊗ ∧pd

)(Hi∩K)×K(5.2)

where Cχ is an (Hi ∩ K)-representation and where ci and d represent the
fiber of the antiholomorphic cotangent space of K/Hi ∩K and G/K ×G/K
respectively. Since ∧pd is a (K × K)-representation, the following lemma
gives another realization of Ep,q0 .

Lemma 5.3.

Ep,q0 = C∞
(
G×G,C∞

(
K,Cχ ⊗ ∧qci

)Hi∩K ⊗ ∧pd
)K×K

.(5.4)

Proof. The isomorphism is given by sending ϕ to ϕ̃ where ϕ̃(g1, g2)(k) =
ϕ(g1k, g2). A straightforward computation shows that ϕ̃ has the correct
invariance property. �

Then Ep,q1 = C∞
(
G×G,Hq(K/Hi ∩K,O(Cχ))⊗ ∧pd

)K×K and

Ep,q2 = Hp
(
G/K ×G/K,O

[
Hq(K/Hi ∩K,O(Cχ))

])
= Hp

(
G/K ×G/K,RqνO(µ∗Lχ)

)
.

Now we turn our attention to the Leray spectral sequence for
the cohomology space Hs

(
YDi , ν

∗Ω1
MDi

(µ∗Lχ)
)
. The E0-term of the Leray

spectral sequence which defines the isomorphism between the spaces
Hs
(
YDi , ν

∗Ω1
MDi

(µ∗Lχ)
)

and H0
(
MDi , R

s
ν [ν

∗Ω1
MDi

(µ∗Lχ)]
)

is given by

Ep,q0,M = C∞
(
G×G,Cχ ⊗ ∧qci ⊗ ∧pd⊗ (p+ ⊕ p−)

)(Hi∩K)×K(5.5)

where here we are identifying (gC/(kC ⊕ p±))∗ with p∓.
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Lemma 5.6.

Ep,q0,M = C∞
(
G×G,

[
C∞

(
K,Cχ ⊗ ∧qci ⊗ p+

)Hi∩K ⊗ ∧pd
]

(5.7)

⊕
[
C∞

(
K,Cχ ⊗ ∧qci

)Hi∩K ⊗
(
p− ⊗ ∧pd

)])K×K
.

Proof. As in Lemma 5.3, we see that (5.5) is isomorphic to

C∞
(
G×G,C∞

(
K×K,Cχ ⊗ ∧qci ⊗ (p+ ⊕ p−)

)(Hi∩K)×K ⊗ ∧pd
)K×K

.(5.8)

Since p− and p+ are K-representations, the inside of (5.8) is isomorphic to

C∞
(
K×K,

(
Cχ ⊗ ∧qci

)
⊗ 1
)(Hi∩K)×K ⊗

(
(p+ ⊗ 1)⊕ (1⊗ p−)

)
which is isomorphic to

C∞
(
K,Cχ ⊗ ∧qci

)Hi∩K ⊗
(
(p+ ⊗ 1)⊕ (1⊗ p−)

)
.

The lemma follows from splitting up the direct sum and identifying

C∞
(
K,Cχ ⊗ ∧qci

)Hi∩K ⊗ (p+ ⊗ 1)

with
C∞

(
K,Cχ ⊗ ∧qci ⊗ p+

)Hi∩K .

�

Now that we have explicit descriptions of the Leray spectral sequences, we
look at the map π2 and π2 ◦∂ in more detail so we can define a map between
the spectral sequences. To define the map π2, we observe that ν∗Ω1

MDi
is

the sheaf of holomorphic sections of the (G×G)-homogeneous bundle on YDi

with fiber (
gC6 (kC ⊕ p+) ⊕

gC6 (kC ⊕ p−)
)∗

(5.9)

and Ω1
YDi

is the sheaf of holomorphic sections of the (G×G)-homogeneous
bundle with fiber(

gC6 [(hi,C ⊕ qi,−) ∩ kC]⊕ p+
⊕ gC6 (kC ⊕ p−)

)∗
.(5.10)

The natural map from (5.9) to (5.10) induces the (G×G)–equivariant map
π2 : Ω1

YDi
→ ν∗Ω1

MDi
. Then ∂2 = π2 ◦ ∂ is a map from OYDi

to ν∗Ω1
MDi

.
In the following lemma, we give an explicit formula for ∂2 : OYDi

→
ν∗Ω1

MDi
which will lead to a formula for ∂2,0 : Ep,q0 → Ep,q0,M .

Lemma 5.11. The map ∂2 : OYDi
→ ν∗Ω1

MDi
is given by

∂2(ψ) =
∑
α∈p−

r1(Xα)ψ ⊗X−α +
∑
β∈p+

r2(Xβ)ψ ⊗X−β(5.12)
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where ψ represents the corresponding element of O(G×G)(Hi∩K)×K . Here(
r1(Xα)ψ

)
(g1, g2) =

d

dt

∣∣∣∣
t=0

ψ(g1 exp tXα, g2)

and (
r2(Xβ)ψ

)
(g1, g2) =

d

dt

∣∣∣∣
t=0

ψ(g1, g2 exp tXβ).

Proof. The manifolds G/Hi ∩ K and G/K are open orbits in the general-
ized flags GC/(Hi,CQi,− ∩KC)P+ and GC/KCP− respectively. Griffiths and
Schmid’s [GS] formula for the standard ∂ operator implies that the standard
∂ operator from OYDi

to Ω1
YDi

is given by

∂(ψ) =
∑

α∈(qi,+∩kC)⊕p−

r1(Xα)ψ ⊗X−α +
∑
β∈p+

r2(Xβ)ψ ⊗X−β .

The lemma follows from the fact that ∂2 = π2 ◦ ∂. �

The map ∂2 : OYDi
→ ν∗Ω1

MDi
determines a map between the resolutions

E0,• ⊗ OYDi
(µ∗Lχ) and E0,• ⊗ ν∗Ω1

MDi
(µ∗Lχ) which respects the filtration

along the fibers of ν. This map of resolutions induces a map between the
associated Leray spectral sequences (see, for example, [G]). Let ∂2,0 be the
induced map from Ep,q0 to Ep,q0,M (i.e., from (5.2) to (5.5)). Thus the formula
for ∂2,0 is the same as the formula for ∂2.

Lemma 5.13. The map ∂̃2,0 from (5.4) to (5.7) is given by (5.12).

Proof. The isomorphism between (5.2) and (5.4) and the one between (5.5)
and (5.7) as defined in Lemma 5.3 and 5.6 respectively imply that

(∂̃2,0ψ)(g1, g2)(k) =
∑
α∈p−

(
r1(Xα)ψ

)
(g1, g2)(k)⊗Ad(k−1)X−α

+
∑
β∈p+

(
r2(Xβ)ψ

)
(g1, g2)(k)⊗X−β.

Since C∞
(
K,Cχ⊗∧qci⊗p+)Hi∩K is isomorphic to C∞

(
K,Cχ⊗∧qci

)Hi∩K⊗
p+, the lemma follows. �

Thus the maps ∂̃2,0 and ∂2,1 : Ep,q1 → Ep,q1,M where

Ep,q1,µ = C∞
(
G×G,

[(
Hq(K/Hi ∩K,O(Lχ))⊗ p+

)
⊗ ∧pd

]
⊕[

Hq(K/Hi ∩K,O(Lχ))⊗ (p− ⊗ ∧pd)
])K×K

are each the standard holomorphic d operator on MDi . Since both spec-
tral sequences collapse at the E2–term, the map ∂2,2 : Ep,q2 → Ep,q2,M is the
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zero map except when p = 0 and q = s. In that case, it is the standard
holomorphic d operator on MDi

D2 : H0
(
MDi , R

s
νO(µ∗Lχ)

)
→ H0

(
MDi , R

s
ν [ν

∗Ω1
MDi

(µ∗Lχ)]
)

and it is a (G×G)-equivariant map.

5.2. The operator D1. In this section, we define π1 : ν∗Ω1
MDi
→ Ω1

µ and
then see how this determines the operator

D1 : H0
(
MDi , R

s
ν [ν

∗Ω1
MDi

(µ∗Lχ)]
)
→ H0

(
MDi , R

s
νΩ

1
µ(µ

∗Lχ)
)
.

To define the map π1 we observe that the restriction of ν̃∗Ω1
MXi

and Ω1
µ̃ to

YDi is isomorphic to ν∗Ω1
MDi

and Ω1
µ respectively. Because the embedding

of YDi in YXi is G-equivariant, these two isomorphisms are G–equivariant.
Now ν̃∗Ω1

MXi
is the sheaf of holomorphic sections of the GC-homogeneous

bundle with fiber (
gC6 kC

)∗
(5.14)

and Ω1
µ̃ is the sheaf of holomorphic sections of the GC-homogeneous bundle

with fiber (
(hi,C ⊕ qi,+)6 (hi,C ⊕ qi,+) ∩ kC

)∗
.(5.15)

Then π̃1 is the GC–equivariant map induced by the natural restriction map
from (5.14) to (5.15) and π1 = π̃1|ν∗Ω1

MDi

is the G-equivariant map from

ν∗Ω1
MDi

to Ω1
µ.

As in Section 5.1, the Leray spectral sequences forHs
(
YDi , ν

∗Ω1
MDi

(µ∗Lχ)
)

and Hs
(
YDi ,Ω

1
µ(µ

∗Lχ)
)

together with the map π1 : ν∗Ω1
MDi
→ Ω1

µ determine
a map

D1 : H0
(
MDi , R

s
ν [ν

∗Ω1
MDi

(µ∗Lχ)]
)
→ H0

(
MDi , R

s
νΩ

1
µ(µ

∗Lχ)
)
.

In this case, this process does not yield an explicit description of D1

because we do not have an explicit description of π1 in terms of the homoge-
neous vector bundles for ν∗Ω1

MDi
and Ω1

µ. To resolve this difficulty we use the
fact that π1 is the restriction of the map π̃1 to ν∗Ω1

MDi
. Since π̃1 can be de-

scribed explicitly we use the Leray spectral sequences for
Hs
(
YXi , ν̃

∗Ω1
MXi

(µ̃∗Lχ̃)
)

and Hs
(
YXi ,Ω

1
µ̃(µ̃

∗Lχ̃)
)

to determine the map D̃1

from H0
(
MXi , R

s
ν̃ [ν̃

?Ω1
MXi

(µ̃∗Lχ̃)]
)

to H0
(
MXi , R

s
ν̃Ω

1
µ̃(µ̃

∗Lχ̃)
)
. Then we will

show that D̃1 restricts to D1.
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Using the homogeneous structure of ν̃∗Ω1
MXi

we see that the E0-term of

the Leray spectral sequence for Hs
(
YXi , ν̃

∗Ω1
MXi

(µ̃∗Lχ̃)
)

is given by

Ẽp,q0,M = C∞
(
GC,Cχ̃ ⊗ ∧qci ⊗ ∧pd⊗ F2

)Hi,CQi,−∩KC

where F2 = (gC/kC)∗. Now Ẽp,q0,M is isomorphic to

C∞
(
GC, C

∞(KC,Cχ̃ ⊗ ∧qci ⊗ F2)Hi,CQi,−∩KC ⊗ ∧pd
)KC

by sending ϕ to ϕ̃ where ϕ̃(g)(k) = ϕ(gk). Likewise the E0–term of the
Leray spectral sequence for Hs

(
YXi ,Ω

1
µ̃(µ

∗Lχ̃)
)

is given by

Ẽp,q0,µ = C∞
(
GC,Cχ̃ ⊗ ∧qci ⊗ ∧pd⊗ F3

)Hi,CQi,−∩KC

where F3 =
(
(hi,C ⊕ qi,−)/(hi,C ⊕ qi,−) ∩ kC

)∗ and Ẽp,q0,µ is isomorphic to

C∞
(
GC, C

∞(KC,Cχ̃ ⊗ ∧qci ⊗ F3)Hi,CQi,−∩KC ⊗ ∧pd
)KC .

Since the homogeneous structures of ν̃∗Ω1
MXi

and Ω1
µ̃ are compatible, we

can give an explicit realization of the map π̃1,0 : Ẽp,q0,M → Ẽp,q0,µ induced by π1.
Let r be the map from F2 to F3 given by restriction. Then (π̃1,0(ϕ)) (g)(k) =
r(ϕ(g)(k)).

For the E1-terms we have that

Ẽp,q1,M = C∞
(
GC,H

q(KC/Hi,CQi,− ∩KC,O(F2,χ̃))⊗ ∧pd
)KC(5.16)

and

Ẽp,q1,µ = C∞
(
GC,H

q(KC/Hi,CQi,− ∩KC,O(F3,χ̃))⊗ ∧pd
)KC(5.17)

where Fj,χ̃ is the homogeneous bundle on KC/Hi,CQi,− ∩KC with fiber Fj⊗
Cχ̃.

Since K/Hi ∩K = KC/(Hi,CQi,− ∩KC) we can identify the cohomology
space in (5.16) with

Hq
(
K/Hi ∩K,O(F2,χ)

)
(5.18)

and the cohomology space in (5.17) with

Hq
(
K/Hi ∩K,O(F3,χ)

)
(5.19)

where Fj,χ is the homogeneous bundle on K/Hi ∩K with fiber Fj ⊗ Cχ.
The map π̃1,0 induces a map from Ẽp,q1,M to Ẽp,q1,µ which is determined by

the map from (5.18) to (5.19). To determine this map for q = s, we let
F1 = (gC/(hi,C + qi,− + kC))∗.

Lemma 5.20.

0→ F1
j−→ F2

r−→ F3 → 0(5.21)

is a short exact sequence where j is the natural inclusion map.
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Proof. For vector spaces W ⊂ V the dual space (V/W )∗ can be identified
with the set of λ ∈ V ∗ such that λ|W = 0. Since F3 can also be written as(
(hi,C + qi,− + kC)/kC

)∗ the lemma follows. �

Now (5.21) induces a short exact sequence in cohomology.

Lemma 5.22.

0→ Hs(K/Hi ∩K,O(F1,χ))
j∗−→ Hs(K/Hi ∩K,O(F2,χ))
r∗−→ Hs(K/Hi ∩K,O(F3,χ))→ 0

is an exact sequence for r = n if a < 1
2 −

3
2n and for r < n if a < −3n+ r.

Proof. The short exact sequence (5.21) induces the following short exact
sequence of sheaves

0→ O(F1,χ)
j̃−→ O(F2,χ)

r̃−→ O(F3,χ)→ 0(5.23)

since j and r are equivariant for Hi ∩ K and qi,− ∩ kC. The sequence
(5.23) induces a long exact sequence in cohomology. Since the dimension of
K/Hi ∩K is s, cohomology vanishes in degree greater than s. The space
Hs−1(K/Hi ∩K,O(F3,χ)) = 0 by Theorem 4.9 and the lemma follows. �

We will now determine r∗ explicitly.

Lemma 5.24. r∗ is a linear projection map.

Proof. Since K is compact, representations of K are semisimple so the short
exact sequence splits. Thus, Hs(K/Hi ∩K,O(F1,χ)) has a complement in
Hs(K/Hi ∩K,O(F2,χ)) which must map isomorphically onto
Hs(K/Hi ∩K,O(F3,χ)). Thus, r∗ is a linear projection map. �

In Appendix B, we decompose the K-representations
Hs(K/Hi ∩K,O(F2,χ)) and Hs(K/Hi ∩K,O(F3,χ)) and determine r∗ ex-
plicitly for the case when r = n.

The map from Ẽp,s1,M → Ẽp,s1,µ is given by sending ϕ to r∗ ◦ ϕ where
(r∗ ◦ ϕ)(g)(k) = r∗(ϕ(g)(k)). Thus the map D̃1 from Ẽ0,s

2,M → Ẽ0,s
2,µ is the

restriction of the map from Ẽ0,s
1,M → Ẽ0,s

1,µ to holomorphic sections of the
bundle Hs(K/Hi ∩K,O(F2,χ)) and D̃1 is a GC–invariant zeroth-order dif-
ferential operator. Since MDi is open in MXi , the map D̃1 restricts to a
differential operator on MDi . Now

Rsν̃ [ν̃
∗Ω1

MXi
(µ̃∗Lχ̃)] ' Rsν [ν∗Ω1

MDi
(µ∗Lχ)](5.25)

so D̃1 restricted to MDi is the map from H0
(
MDi , R

s
ν [ν

∗Ω1
MDi

(µ∗Lχ)]
)

to H0
(
MDi , R

s
νΩ

1
µ(µ

∗Lχ)
)

which is given by sending ϕ to r∗ ◦ ϕ. Since
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π̃1|ν∗Ω1
MDi

= π1 this map is D1. The G-equivariance of the map π1 implies

that D1 is also G-invariant. Thus we have proven the following theorem.

Theorem 5.26.
(1) The map

D1 : H0
(
MDi , R

s
ν

[
ν∗Ω1

MDi
(µ∗Lχ)

])
→ H0

(
MDi , R

s
νΩ

1
µ(µ

∗Lχ)
)

is a G-equivariant zeroth–order differential operator.
(2) The map

D : H0(MDi , R
s
νO(µ∗Lχ))→ H0

(
MDi , R

s
νΩ

1
µ(µ

∗Lχ)
)

is given by D = D1◦D2 and D is a G-equivariant first–order differential
operator.

Appendix A.

The main body of the paper considers the double fibration transform for a
family of representations of Sp(n,R) which are realized in cohomology with
values in a line bundle. The outline for constructing the double fibration
transform, as given in Section 2, is valid if we replace the line bundle L
with a finite dimensional vector bundle V. In this appendix, we consider the
details of the construction when the line bundle is replaced with a vector
bundle.

Let Fλ be a finite-dimensional, irreducible representation of Hi with high-
est weight λ and Fλ the corresponding homogeneous vector bundle on Di.
When r = n and λ = (a1, · · · , ai | ai+1, · · · , an), then λ is a highest weight
if

ai ≥ · · · ≥ a1 ≥ −ai+1 ≥ · · · ≥ −an.(A.1)

When r < n and λ = (a1, · · · , ai | ai+1, · · · , ai+n−r | ai+n−r+1, · · · , an), then
λ is a highest weight if

ai ≥ · · · ≥ a1 ≥ −ai+n−r+1 ≥ · · · ≥ −an(A.2)

and

ai+1 ≥ · · · ≥ ai+n−r ≥ 0.(A.3)

The representation Hs(Di,O(Fλ)) is infinite-dimensional, non-zero, and
irreducible [Wg] under the following circumstances: When r = n, in addi-
tion to A.1, we require that −an > n and when r < n, in addition to A.2
and A.3, we require that −an > n and ai+1 + an < −2n+ r. Unlike the line
bundle case, these representations are not unitarizable.

Now we consider the construction of the double fibration transform. The
first step, using Buchdahl’s theorem [Bu] to identify Hs(Di,O(Fλ)) with
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Hs
(
YDi , µ

−1O(Fλ)
)
, remains valid because Buchdahl’s theorem, which ap-

plies to vector bundles, requires only that the fiber of µ be contractible,
which we already have.

The second step, embedding Hs
(
YDi , µ

−1O(Fλ)
)

in Hs(YDi ,O(µ∗Fλ)),
is more complicated. As in Theorem 4.9, this requires a condition on λ
which guarantees that Hp(K/Hi ∩K,O(Vq ⊗ Fλ)) vanish for all p < s and
all 1 ≤ q ≤ m. Recall that Vq is the bundle ∧q(ker dµ)∗ whose fiber is
V q = ∧q[(hi,C ⊕ qi,+) ∩ p]. When we consider V q ⊗ Fλ as an K/Hi ∩K
representation, we see the main difference from the line bundle case. In
the line bundle case, when the representation Cχ is restricted to Hi ∩ K,
it remains irreducible. This allows us to know explicitly the form of the
highest weights of the irreducible components of V q⊗Cχ (see the discussion
after Theorem 4.9) and to compute a specific condition on χ to guarantee
vanishing.

Such is not the case for vector bundles. The representation Fλ, when

restricted to Hi∩K, may be reducible. If we decompose Fλ as Fλ =
k
⊕
j=1

Fλj

with Fλj
an irreducible representation of Hi ∩ K with highest weight λj ,

we can say something about the λj ’s. Since Hi ∩ K = U(i) × U(r − i) ×
Sp(n − r,R) is reductive, the highest weight λj splits into two pieces: A
highest weight λ′j for the semisimple piece and a character χj on the center.
Similarly, λ itself is of the form λ = χ + λ′ when λ is a highest weight of
Hi = U(i, r − i) × Sp(n − r,R). Since the one-dimensional representation
remains irreducible under restriction, we have that χj = χ for all j where
χ = (−a, · · · ,−a | 0, · · · , 0 | a, · · · , a). So, each λj is of the form χ + λ′j .
Now we replace χ with χ+ λ′j in the proof of Theorem 4.9. Then let

C = max
j

{〈
λ
′
j , en − e1

〉}
and

D = max
j,t

{〈
λ
′
j , αt

〉}
with α1 = ei+1 − e1, α2 = en − ei, α3 = en − ei+n−r. Then the vanishing
condition holds for r = n when a < −3n + 1 − C and for r < n when
a < −3n+ r −D.

The third step, pushing Hs(YDi ,O(µ∗Fλ)) down to H0(MDi , R
s
νO(µ∗Fλ)),

is unaffected by changing from a line bundle to a vector bundle.
Likewise, the differential operator is not affected by changing from a line

bundle to a vector bundle. Although, as in the line bundle case, when
r < n, it is difficult to decompose the representations in Lemma 5.22 to give
an explicit description of the projection operator r∗ as was done when r = n
in Appendix B.
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Appendix B.

For the case when r = n, we will decompose the spaces
Hs(K/Hi ∩K,O(F2,χ)) and Hs(K/Hi ∩K,O(F3,χ)) and determine the
map r∗ : Hs(K/Hi ∩K,O(F2,χ)) → Hs(K/Hi ∩K,O(F3,χ)) in Lemma
5.22 explicitly. Since K is compact, each of Hs(K/Hi ∩K,O(F2,χ)) and
Hs(K/Hi ∩K,O(F3,χ)) can be decomposed into a direct sum of irreducible
K-representations.
First, we decomposeHs(K/Hi ∩K,O(F3,χ)) . We cannot apply Bott-Borel-

Weil directly to Hs(K/Hi ∩K,O(F3,χ)) since
(
(hC⊕qi,−)/(hC⊕qi,−)∩ kC

)∗
= F3 is not an irreducible (qi,− ∩ kC)-representation. Although we can
decompose F3 into a direct sum of irreducible (Hi ∩K)-representations, in
order to decompose O(F3,χ) accordingly the decomposition of V must also
be as (qi,− ∩ kC)-modules (see [TW]). If we use the killing form to identify
F3 with (hi,C ⊕ qi,+)∩p, then on hi,C∩p the action of qi,−∩ kC is trivial and
on qi,+ ∩ p,the action is by ad. Since we cannot find a decomposition of F3

which respects the action of qi,−∩ kC, we will use a composition series for F3

to determine Hs(K/Hi ∩K,O(F3,χ)) as indicated in the following theorem.

Theorem B.1. Let V be a representation of qi,− ∩ kC and let 0 = V0 ⊂
V1 ⊂ V2 ⊂ · · · ⊂ VN = V be a composition series for V . Let Wj denote
Vj/Vj−1 and let V and Wj be the associated homogeneous vector bundles on
K/Hi ∩K. Then there exists a spectral sequence with Ep,q1 =
Hp+q

(
K/Hi ∩K,O(WN−p)

)
which abuts to H∗(K/Hi ∩K,O(V)

)
.

Proof. Since the representations are stable under the action of the antiholo-
morphic tangent space qi,−∩kC, the filtration of V induces a filtration in the
Dolbeault complex. By the proposition on page 440 of [GH] it follows that
there exists a spectral sequence with Ep,q1 = Hp+q

(
K/Hi ∩K,O(WN−p)

)
which abuts to H∗(K/Hi ∩K,O(V)

)
. �

Corollary B.2. If Hp
(
K/Hi ∩K,O(Wj)

)
= 0 for all p 6= p0 and all j,

then Hp0
(
K/Hi ∩K,O(V)

)
=

N∑
j=1

Hp0
(
K/Hi ∩K,O(Wj)

)
.

Proof. The spectral sequence collapses in Theorem B.1 giving the conclusion.
�

Once we find an appropriate decomposition series of F3 we can use Bott-
Borel-Weil to determine when Hp

(
K/Hi ∩K,O(Wj ⊗ Lχ)

)
vanishes for all

j and for all p 6= s. Choose the following elements for the composition series:

F3 = V4 = (hi,C ⊕ qi,+) ∩ p V2 = (hi,C ⊕ qi,+) ∩ p+

V3 = [(hi,C ⊕ qi,+) ∩ p+]⊕ (hi,C ∩ p−) V1 = hi,C ∩ p+.

Then each Vj is a representation for Hi ∩K and qi,− ∩ kC where the action
of qi,− ∩ kC on Vj is the restriction of its action on V . Let Wj = Vj/Vj−1.
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Then the successive quotients are

W4 ' qi,+ ∩ p− W2 ' qi,+ ∩ p+

W3 ' hi,C ∩ p− W1 ' hi,C ∩ p+.

Each Wj is an irreducible (Hi∩K)–representation (since each is the realiza-
tion of the holomorphic or anti-holomorphic tangent space of some symmet-
ric space) and each Wj is a (qi,− ∩ kC)–representation. The induced action
of qi,− ∩ kC on Wj is trivial. Let λj denote the highest weight of Wj . Then

λ4 = −2e1 λ2 = 2en
λ3 = −e1 − ei+1 λ1 = ei + en.

Lemma B.3. If a < −1
2(n + 1) then Hp(K/Hi ∩K,O(Wj ⊗ Lχ)) = 0

for all j whenever p < s and whenever p = s it is an irreducible K-
representation with highest weight ξ + λ′j. Here ξ = (a+ i, . . . , a+ i ; −a−
n+ i, . . . ,−a− n+ i) with (n− i) entries before the semicolon and

λ′4 = −2en−i+1 λ′2 = 2en−i
λ′3 = −e1 − en−i+1 λ′1 = en−i + en.

The proof is an application of Bott-Borel-Weil.
Thus we have proven the following theorem.

Theorem B.4. If a < −1
2(n+ 1), then

Hs(K/Hi ∩K,O(F3,χ)) =
4
⊕
j=1

Eτj

where Eτj is the irreducible K-representation with highest weight τj = ξ+λ′j
where ξ and λ′j are given in Lemma B.3.

Now we will decompose Hs(K/Hi ∩K,O(F2,χ)).

Theorem B.5. If a < −1
2(n+ 1), then

Hs(K/Hi ∩K,O(F2,χ)) =
6
⊕
j=1

Eτj

where Eτj is the irreducible K–representation of highest weight τj = ξ + λ′j.
Here ξ and λ′j are given in Lemma B.3 for j = 1, . . . , 4. Let λ′5 = 2en and
λ′6 = −2e1.
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Proof. First we identify F2 = (gC/kC)∗ with p. The decomposition p+⊕p− of
p respects the action of Hi ∩K and qi,− ∩ kC. Thus Hs(K/Hi ∩K,O(F2,χ))
decomposes into the direct sum of the K-representations

Hs
(
K/Hi ∩K,O

[
K ×Hi∩K (Cχ ⊗ p+)

])
and

Hs
(
K/Hi ∩K,O

[
K ×Hi∩K (Cχ ⊗ p−)

])
.

Since p+ and p− are indecomposable as (qi,− ∩ kC)-representations, the co-
homology spaces will be computed using a composition series.

Now U3 = p+, U2 = p+∩ (hi,C ⊕ qi,−) and U1 = p+∩ qi,− is a composition
series for p+ and Z3 = p−, Z2 = p− ∩ (hi,C ⊕ qi,−) and Z1 = p− ∩ qi,− is a
composition series for p−. Lemma B.3 implies that

Hp
(
K/Hi ∩K,O(K ×Hi∩K (Cχ ⊗W ))

)
= 0(B.6)

for p < s where W = U3/U2, U2/U1, Z3/Z2, and Z2/Z1. We will determine
the condition necessary for (B.6) to hold when W is U1 or Z1.

Let λ5 = 2ei and λ6 = −2ei+1. Then λ5 (respectively λ6) is the highest
weight of the irreducible K-representation U1 (respectively Z1). As in the
proof of Lemma B.3, to show (B.6) it suffices to show that 〈χ+pk+λj , en−e1〉
< 0 for j = 5, 6. Since 〈χ+ pk + λj , en − e1〉 = 2a+ n− 1 we see that (B.6)
is true when a < −1

2(n+ 1). Thus Theorem B.1 and Corollary B.2 together
imply that Hs

(
K/Hi ∩K,O

[
K ×Hi∩K (Cχ ⊗ p+)

])
= Eτ1 ⊕ Eτ2 ⊕ Eτ5 and

that Hs
(
K/Hi ∩K,O

[
K ×Hi∩K (Cχ ⊗ p−)

])
= Eτ3 ⊕ Eτ4 ⊕ Eτ6 �

We will now determine r∗ explicitly.

Lemma B.7. r∗ is a linear projection map.

Proof. The map r∗ is onto by Lemma 5.22. Since Hs(K/Hi ∩K,O(F3,χ)) =
4
⊕
j=1

Eτj and Hs(K/Hi ∩K,O(F2,χ)) =
6
⊕
j=1

Eτj and each Eτj is an irreducible

K-representation, r∗ is the natural projection map from
6
⊕
j=1

Eτj to
4
⊕
j=1

Eτj .

�
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REAL COBOUNDARIES FOR MINIMAL CANTOR
SYSTEMS

Nicholas S. Ormes

In this paper we investigate the role of real-valued cobound-
aries for classifying of minimal homeomorphisms of the Can-
tor set. This work follows the work of Giordano, Putnam, and
Skau who showed that one can use integer-valued cobound-
aries to characterize minimal homeomorphisms up to strong
orbit equivalence. First, we prove a rigidity result. We show
that there is an orbit equivalence between minimal Cantor
systems which preserves real-valued coboundaries if and only
if the systems are flip conjugate. Second, we investigate a real
analogue of the dynamical unital ordered cohomology group
studied by Giordano, Putnam and Skau. We show that, in
general, isomorphism of our unital ordered vector space de-
termines a weaker relation than strong orbit equivalence and
we characterize this relation in a certain finite dimensional
case. Finally, we consider isomorphisms of this vector space
which preserve the cohomology subgroup. We show that such
an isomorphism gives rise to a strictly stronger relation than
strong orbit equivalence. In particular, it determines topo-
logical discrete spectrum, but does not determine systems up
to flip conjugacy.

1. Introduction.

In [GPS95], Giordano, Putnam and Skau used C∗-algebraic invariants to
characterize minimal homeomorphisms of the Cantor set up to various no-
tions of orbit equivalence. For a minimal homeomorphism T : X → X of
the Cantor set X, their key invariant reduces to the group of continuous
integer-valued functions f : X → Z modulo the coboundaries (functions of
the form f−f ◦T ), along with a positive cone and order unit. In this paper,
we examine real-valued coboundaries and look at analogues of their results
from three perspectives.

Let S and T be minimal homeomorphisms of the Cantor set. In the
main result of Section 2 (Theorem 2.10) we prove that if S and T are orbit
equivalent by a homeomorphism which maps the set of real S-coboundaries
bijectively onto the set of real T -coboundaries then S is conjugate to T or

453
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T−1 (S and T are flip conjugate). In fact, we show that any homeomor-
phism from the Cantor set to itself which identifies real coboundaries of S
and T must be an orbit equivalence with a bounded jump function (The-
orem 2.11). In contrast, Giordano, Putnam and Skau’s work shows that
an orbit equivalence induces a bijection between the sets of integer-valued
coboundaries if and only if S and T are strongly orbit equivalent. Results
in [BH94, Orm97, Sug, Sug98] underscore the vast difference between
strong orbit equivalence and flip conjugacy for this class of systems. More-
over, an example of Boyle shows that a homeomorphism identifying integer
coboundaries need not be a strong orbit equivalence. In appendix A, we
present this unpublished example of Boyle in which S and T have the same
integer coboundaries, and have the property that T (x) and T (Snx) are not
in the same S-orbit for all x and all n 6= 0.

In Section 3, we define and investigate the natural analogue of Giordano,
Putnam and Skau’s unital ordered group: The vector space of continuous
real-valued functions modulo the real coboundaries along with a positive
cone and order unit. We show (Theorem 3.10) if the cardinality of the
set of ergodic invariant Borel probabilities is finite then this cardinal com-
pletely determines our unital ordered vector space GR(T ). Using a result of
Dougherty, Jackson, and Kechris, we see that when the set of ergodic T -
invariant Borel probabilities is finite, our unital ordered vector space char-
acterizes Borel orbit equivalence.

In Section 4, we study the dynamical properties which are determined if
we consider only isomorphisms of the real unital ordered vector space GR(T )
which preserve the subgroups of integer-valued functions GZ(T ). We present
results which show that there is some more dynamical information in the
pair (GR(T ),GZ(T )) than in GZ(T ) alone but not enough to determine T up
to flip conjugacy. For example, we show that the isomorphism of the pair
(GR(T ),GZ(T )) determines the topological discrete spectrum of T (Theo-
rem 4.4). The unital ordered group GZ(T ) already determines the rational
discrete spectrum, but does not, in general, determine the irrational spec-
trum (see [Orm97]). We show (Theorem 4.6) that for a minimal Cantor
system (X,T ) with GZ(T ) ⊆ Q the pair (GR(T ),GZ(T )) carries no more dy-
namical information than the unital ordered group GZ(T ) alone. This shows
that one cannot determine flip conjugacy using (GR(T ),GZ(T )). Taking the
previous two results together, we obtain a new result (Corollary 4.7) about
minimal Cantor systems and the unital ordered group GZ(T ). Namely, if
GZ(T ) ⊆ Q then T cannot have irrational spectrum.

I thank Mike Boyle for his helpful comments and for allowing me to include
his example Appendix A. I thank Bernard Host for allowing me to include
his proof of Theorem 2.6.
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2. The Same Set of Real Coboundaries.

Throughout this paper we will consider topological dynamical systems
(X,T ) where T : X → X is a homeomorphism of X a compact metric
space. In particular, we will consider minimal Cantor systems. A homeo-
morphism T : X → X is called minimal if for all x ∈ X the T -orbit of x,
{Tnx : n ∈ Z}, is dense. We will call the pair (X,T ) a minimal Cantor
system if X is a Cantor set and T : X → X is minimal. The main prop-
erties of minimality that we will make use of are the following: There are
no periodic points in a minimal system and for any open set U ⊆ X, there
is an integer r such that for all x ∈ X, one of {x, T (x), . . . , T r(x)} is in U .
Minimal Cantor systems include the odometer systems below.

Example (Odometer systems). Let {di} be an infinite sequence of positive
integers. Let X be the space of infinite sequences x = x1x2x3 . . . such that
0 ≤ xi < di for all i. We put the discrete topology on the sets {0, 1, . . . , di−
1} and the infinite product of this discrete topology on X. In this way, X
becomes a Cantor set. The topology on X is equivalent to the one generated
by the metric d where d(x, y) = 2−n if xi = yi for all 0 ≤ i ≤ n and
xn+1 6= yn+1.

Define T : X → X by adding one with right carry. In other words, for
x ∈ X, let n be the smallest positive integer such that xn < (dn − 1). If
such an n exists, define T (x) to be the sequence [T (x)]i = 0 for i < n,
[T (x)]n = xn+1 and [T (x)]i = xi for i > n. If xn = (dn−1) for all n, define
T (x) to be the sequence [T (x)]n = 0 for all n. The dynamical system (X,T )
is minimal since the T -orbit of every point sees all the words of length n in
the first n coordinates. The odometer system where di = 2 for all i is called
the dyadic adding machine.

Let (X,S) and (Y, T ) be minimal Cantor systems. The following are some
of the different equivalences we will consider. Of course, the notions make
sense for more general topological dynamical systems.

Definition 2.1 (conjugacy). We say (X,S) and (Y,T ) are conjugate if there
is a homeomorphism h : X → Y such that ∀x ∈ X,hS(x) = Th(x).

Definition 2.2 (flip conjugacy). We say (X,S) and (Y, T ) are flip conju-
gate if S is conjugate to T or S is conjugate to T−1.

Definition 2.3 (orbit equivalence). We say (X,S) and (Y, T ) are orbit
equivalent if there is a homeomorphism h : X → Y and functionsm : X → Z
and n : X → Z such that

∀x ∈ X, hS(x) = Tm(x)h(x) and hSn(x)(x) = Th(x).

In other words, (X,S) and (Y, T ) are conjugate to systems (Z, S′) and (Z, T ′)
where

∀x ∈ Z, {(S′)n(x) : n ∈ Z} = {(T ′)n(x) : n ∈ Z}.
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The theory of orbit equivalence has a long history in the study of measure-
theoretic dynamical systems [KR95, KW91, Kri69, Kri76, Rud85]. It
was this work which motivated the study of orbit equivalence in topological
systems.

As it turns out, for a given topological orbit equivalence, the continuity
properties of the “jump functions” m : X → Z and n : X → Z can give
information about the extent to which one system is determined by the other.
In particular, for minimal Cantor systems Boyle [Boy83] proved that the
jump functions are bounded if and only if they are continuous, and gave the
following characterization (generalized in [BT98]) of orbit equivalence with
a bounded jump functions.

Theorem 2.4 (Boyle). Suppose (X,S) and (X,T ) are minimal Cantor sys-
tems with the same orbits. If there is a bounded function m : X → Z such
that S(x) = Tm(x)(x) for all x then S and T are flip conjugate.

In [GPS95], Giordano, Putnam and Skau used C∗-algebraic invariants
to characterize orbit equivalence for minimal Cantor systems, and to give
information about the continuity/boundedness properties of the associated
jump functions one can achieve. One important notion from their work is
the notion of strong orbit equivalence.

Definition 2.5 (strong orbit equivalence). Two minimal Cantor systems
(X,S) and (Y, T ) are strongly orbit equivalent if they are orbit equivalent
by a map h : X → Y with jump functions m : X → Z and n : X → Z such
that m and n have at most one point of discontinuity each.

We will say more about strong orbit equivalence in Section 3. For now,
we simply point out that strong orbit equivalence is a much weaker relation
than flip conjugacy. For example, strongly orbit equivalent systems can
have arbitrarily large topological entropy differences and when attached with
an ergodic invariant measure, can give rise to vastly different measurable
structures (see [BH94, Orm97, Sug, Sug98]).

For a minimal Cantor systems (X,T ), Giordano, Putnam and Skau’s
characterization up to orbit equivalence relies upon looking at integer-valued
continuous functions of the form f − fT (from here on we use fT to denote
f ◦ T ). We will call a continuous function f : X → R a real T -coboundary if
there exists a continuous function g : X → R such that f(x) = g(x)− g(Tx)
for all x ∈ X. Similarly, we will call a function f : X → Z an integer T -
coboundary if there is a continuous g : X → Z such that f(x) = g(x)−g(Tx)
for all x ∈ X. The following characterization of coboundaries is well known.
With kind permission, we present Bernard Host’s proof of this result [Hos].

Theorem 2.6. Let (X,T ) be a Cantor minimal system. A continuous func-
tion f : X → R is a real T -coboundary if and only if sums of the form∑n

i=0 f(T ix) are uniformly bounded over n ≥ 1 and x ∈ X.
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Proof. If f = g − gT for some g then
∑n

i=0 f(T ix) = g(x) − g(Tnx) thus
sums of this form are uniformly bounded.

For the other direction, let (X,T ) be a minimal system, and f a contin-
uous real-valued function on X. Define

f (n)(x) =


∑n−1

i=0 f(T ix) if n > 0
0 if n = 0
−
∑−1

i=−n f(T ix) if n < 0.

Assume that C is a constant such that

∀x ∈ X, ∀n ∈ N, |f (n)(x)| ≤ C.

As for all x ∈ X we have f (0)(x) = 0 and f (−n)(x) = −f (n)T−n(x) for n > 0
we get:

∀x ∈ X, ∀n ∈ Z, f (n)(x) ≤ C.
We write:

F (x) = sup
n∈Z

f (n)(x); Osc(x) = lim sup
y→x

F (y)− lim inf
y→x

F (y).

For every x ∈ X we have f(x) = F (x) − F (Tx) and for all n, we have
f (n)(x) = F (x) − F (Tx). We have only to prove that the function F (x) is
continuous, i.e., that the function Osc(x) is identically 0.

We choose some ε > 0 and define:

K = {x ∈ X : F (x) ≤ ε}.

By construction, for x ∈ X there is an n ∈ Z with

Tnx ∈ K ⇐⇒ f (n)(x) ≥ F (x)− ε.

Thus, by definition of F (x), for every x ∈ X there exists n ∈ Z with Tnx ∈
K, and ⋃

n∈Z
T−nK = X.

But K is closed. Thus, by Baire’s Theorem, the interior U of K is not empty
and, by minimality, ⋃

n∈Z
T−nU = X.

For x ∈ T−nU we have f (n)(x) ≤ F (x) ≤ f (n)(x) + ε thus, by continuity
of f (n), Osc(x) ≤ ε.

Therefore, Osc(x) ≤ ε for all x ∈ X. �

We will look more closely at Giordano, Putnam and Skau’s results in
Sections 3 and 4. For the remainder of this section, however, we concentrate
on one aspect of their results.
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Theorem 2.7 (Giordano, Putnam, Skau). Suppose (X,S) and (Y, T ) are
minimal Cantor systems. There is an orbit equivalence h : X → Y which
induces a bijection from the set of integer S-coboundaries to the set of integer
T -coboundaries if and only if S and T are strongly orbit equivalent.

In Theorem 2.10, we prove an analogous result, there is an orbit equiva-
lence which respects real coboundaries if and only if S and T are flip con-
jugate. To prove the difficult direction of Theorem 2.10, we first note the
following.

Lemma 2.8. Let (X,S) and (X,T ) be minimal Cantor systems with the
same orbits. For all n, let En = {x : S(x) = Tn(x)}. Then one of the
following holds.

1. X =
⋃
|n|≤N En for some N ,

2. there is an infinite sequence of sets Enk
with |nk| < |nk+1| such that

Enk
contains a clopen set for all k.

Proof. By the continuity of S and T , the set En is closed for all n. Let FN
denote the closed set FN =

⋃
|n|≤N En.

Fix N and assume that X − FN is nonempty. Then the sets En where
|n| > N form a countable closed cover of this open set. By the the Baire
Category Theorem, one element of this cover must contain an open set,
and therefore a clopen set. If condition 1 does not hold then we obtain a
sequence of sets as in condition 2. �

From Boyle’s result (Theorem 2.4) case 1 implies that S and T are flip
conjugate. So to prove Theorem 2.10, it will suffice to show that in case 2,
S and T do not have the same real coboundaries. For the remainder of the
section, let (X,S) and (X,T ) be minimal Cantor systems with the same
orbits, and let En = {x : S(x) = Tn(x)} for all n 6= 0.

Suppose there is an infinite sequence of sets Enk
with |nk| < |nk+1| such

that Enk
contains a clopen set for all k. Then by passing to a monotone

increasing or decreasing subsequence of nk’s and possibly exchanging T for
T−1 we have the hypothesis of the following.

Lemma 2.9. Suppose there exists an infinite increasing sequence of posi-
tive integers n1 < n2 < n3 < · · · and nonempty clopen sets Ck such that
S(x) = Tnk(x) for all x ∈ Ck. Then there exists a continuous real-valued
S-coboundary which is not a continuous real-valued T -coboundary.

Proof. After passing to a subsequence of the Ck, we will define f as

f(x) =
∞∑
k=1

(1/k)1Uk
(x)

where for all k, Uk is a clopen subset of Ck, and 1Uk
is the indicator function

of Uk. The function f(x) will be continuous as long as there is a point
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x0 /∈
⋃
k∈N Uk such that if xk is a sequence of points with xk ∈ Uk then

limk→∞ xk = x0.
To get that f − fS−1 is not a T -coboundary, we will choose the Uk such

that for x ∈ Un the T -orbit of x enters each of the sets Un, Un−1, . . . , U1 at
least once before it enters any set of the form SUk for k ∈ N. In this case,
for all x ∈ Un we will be able to find an integer m such that

m∑
i=0

(
f(T ix)− fS−1(T ix)

)
=

m∑
i=0

∑
k∈N

(1/k)
(
1Uk

(T ix)− 1SUk
(T ix)

)
=

m∑
i=0

∑
k∈N

(1/k)1Uk
(T ix)

≥
n∑
k=1

(1/k)

> log(n).

If the function f − fS−1 were a T -coboundary then by Theorem 2.6 there
would be a uniform bound on the functions

∑m
i=0(f − fS−1)T i.

To construct the function f(x) it suffices to construct a sequence of leap-
frogging sets {Uk}. Let Bn(x) denote the T -orbit block Bn(x) = {x, T (x),
. . . , Tn(x)}. We will call a sequence of pairwise disjoint sets {Uk}k∈N leap-
frogging for the pair (S, T ) if

1) there exists an increasing sequence of integers {nk} such that S(x) =
Tnk(x) for all x ∈ Uk,

2) for all x ∈ Uj and y ∈ Uk with 1 ≤ j ≤ k, the set Bnj (x) ∩ Bnk
(y) is

either empty or equal to Bnj (x),
3) for all x ∈ Uk the set Bnk

(x) ∩ Uk−1 is nonempty.
We call the sets leap-frogging because we imagine the T -orbit of a point

laid out along a number line. If a point is in Uk, the S-image of that point
leaps forward in the T -orbit.

' $
?

' $
?

' $
?

n1 n1

n2

U1 U1SU1 SU1U2 SU2

' n3

U3

-
T
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Condition 3 ensures that for j < k, the S-image of a point x ∈ Uk
leap-frogs at least one orbit block Bnj (y) where y ∈ Uj . For x ∈ Un let
m be the smallest integer such that x ∈ U1. This condition will give us∑m

i=0

∑
k∈N(1/k)1Uk

(T ix) is at least
∑n

k=1(1/k).
We can think of condition 2 as ensuring that the S-jumps are nested. In

other words, for j ≤ k if x ∈ Uk and y ∈ Uj then S(x) /∈ Bnj (y) unless
x = y. Conditions 2 and 3 imply: If x ∈ Un and m is the smallest integer
such that Tmx ∈ U1 then

∑m
i=0

∑
k∈N(1/k)1SUk

(T ix) = 0.
We will construct the leap-frogging sets Uk ⊆ Ck recursively. Before we do

so, we will pick a special point x0 with the property that for large k the set
Uk lies within a small clopen subset of x0. Since X is compact, after passing
to a subsequence of the Ck we may assume that there is a sequence of points
{xk} with xk ∈ Ck such that the limit limk→∞ xk exists. Let x0 be the limit
of this subsequence. We can replace the Ck with clopen neighborhoods of
the xk’s of decreasing diameter. In this way, we may assume that our sets
Ck have the property that if yk ∈ Ck, then limk→∞ yk = x0. Moreover, we
may assume that x0 /∈

⋃
k∈NCk.

To construct U1, pick y1 ∈ C1 such that neither x0 nor Sx0 are in the
T -orbit block Bn1(y1). Let U1 be a clopen neighborhood of y1 such that
x0, Sx0 /∈

⋃n1
i=0 T

iU1 and U1, TU1, . . . , T
n1U1 are pairwise disjoint. Since

the T jU1 are pairwise disjoint, if x and y are distinct points in U1 then the
intersection of the T -orbit blocks Bn1(x) ∩Bn1(y) is empty.

Now assume that we have sets U1, U2, . . . , Uk satisfying the leap-frogging
conditions such that neither x0 nor Sx0 are in

⋃nk
i=0 T

iUk. We can find a
clopen neighborhood V of x0 such that V ∩

⋃nk
i=0 T

iUk, SV ∩
⋃nk
i=0 T

iUk and
V ∩ SV are all empty.

By the minimality of T there is an integer rk such that for any x ∈ X
the set Brk(x)∩Uk is nonempty. By passing to a subsequence of the Ck, we
may assume nk+1 > rk and Ck+1 ⊆ V . Choose yk+1 ∈ Ck+1. Pick a clopen
neighborhood Uk+1 of yk+1 of diameter less than 1/k such that Uk+1 ⊆ Ck+1

and Uk+1, TUk+1, . . . , T
nk+1Uk+1 are pairwise disjoint.

Since Uk+1 ⊆ Ck+1, we have that for all x ∈ Uk, S(x) = Tnk(x) (condi-
tion 1). Since nk+1 > rk, for all x ∈ Uk+1 the set Bnk+1

(x)∩Uk is nonempty
for all x ∈ Uk+1 (condition 3). Since Uk+1 ⊆ V and SUk+1 ⊆ SV we have
Uk+1∩

⋃nk
i=0 T

iUk, SUk+1∩
⋃nk
i=0 T

iUk are both empty. This gives the nested
property of the blocks (condition 2). Since neither x0 nor Sx0 are in Uk+1

we can continue with the recursion. �

The previous two lemmas give us the following theorem.

Theorem 2.10. Let (X,S) and (Y, T ) be minimal Cantor systems. There
is an orbit equivalence h : X → Y which induces a bijection from the set of
real S-coboundaries to the set of real T -coboundaries if and only if S and T
are flip conjugate.
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Proof. If S and T are not flip conjugate then by Theorem 2.4 and Lem-
mas 2.8 and 2.9 we can construct an S coboundary which is not a T -
coboundary. For the other direction we simply need to see that a home-
omorphism R : X → X and its inverse R−1 : X → X always have the same
set of coboundaries. This follows as

f − fR−1 = (fR−1)R− (fR−1). �

Remark. The above is reminiscent of rigidity results of Boyle and Tomiy-
ama [BT98, Theorem 3.6] and Giordano, Putnam and Skau [GPS]. In
the case where S and T are minimal Cantor systems Boyle and Tomiyama
show that if the C∗-algebras associated to S and T are related by an iso-
morphism which identifies the subalgebra of continuous functions, then the
systems are flip conjugate. Giordano, Putnam and Skau showed that an
algebraic isomorphism of the topological full group must be induced by a
flip conjugacy.

Theorem 2.10 can be strengthened. We show below (Theorem 2.11) that
we need not require that the homeomorphism which identifies real cobound-
aries be an orbit equivalence, it is automatic. The analogous statement for
integer coboundaries is not true. An example of Boyle (see Appendix A)
shows that it is possible for two minimal homeomorphisms S and T of the
Cantor set to have the same set of integer coboundaries and have the prop-
erty that if x and y are in the same S-orbit then Tx and Ty are not in the
same S-orbit.

Let C(X,R) denote the set of real-valued continuous functions on a Can-
tor set X.

Theorem 2.11. Let (X,S) and (X,T ) be minimal Cantor systems. Then
(X,S) and (X,T ) have the property that for all f ∈ C(X,R) there exist
g1, g2 ∈ C(X,R) such that

f − fT = g1 − g1S
f − fS = g2 − g2T

if and only if S and T have the same orbits and there is a bounded (contin-
uous) function m : X → Z such that S(x) = Tm(x)(x) for all x ∈ X.

Proof. Let En = {x : S(x) = Tn(x)} and F = X − ∪n∈ZEn.
Suppose such a function m : X → Z exits. Then F is empty and

there exists an integer M such that En is empty for |n| > M . For f ∈
C(X,R) we may write f − fT =

∑M
n=−M 1TEnf − (1TEnf)T . If x ∈ En

then (1TEnf)Tx = (1TEnf)Snx and the above function is therefore an S-
coboundary.

Suppose that no such function m exists. In other words, assume X −
∪|n|≤MEn is nonempty for all M . If infinitely many of the sets En have
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nonempty interior then by Lemma 2.9 there is a real-valued S-coboundary
which is not a real-valued T -coboundary.

If X−∪|n|≤MEn is nonempty for all M and only finitely many of the sets
En have nonempty interior then by the Baire Category Theorem, F contains
an open set. It remains to show that S and T cannot have the same set of
real coboundaries when F contains an open set.

We will construct an S-coboundary which is not a T -coboundary by se-
lecting a nested sequence of clopen sets U ⊇ U1 ⊇ U2 ⊇ · · · , a sequence of
points xk ∈ Uk, and an increasing sequence of integers nk with the following
properties.

1)
∑nk

i=0 1Uk
(T i(xk)) ≥ 2k,

2)
∑nk

i=0 1SUk
(T i(xk)) = 0,

3)
∑nk

i=0

(
1Uj (T

i(xk))− 1SUj (T
i(xk))

)
= 0 for all 1 ≤ j < k.

Assume such a collection of sets exists, and let f =
∑∞

k=1(3/4)k1Uk
. If in

addition to the above, the diameters of the Uk’s are going to zero then the
function f(x) will be continuous. Since the sets SUk are nested, condition 2
implies that

∞∑
j=k

nk∑
i=0

1SUj (T
i(xk)) = 0.

Putting this fact together with conditions 1 and 3, we get
nk∑
i=0

f(T ixk)− f(S−1(T ixk))

=
nk∑
i=0

∞∑
j=1

(3/4)j
[
1Uj (T

ixk)− 1SUj (T
ixk)

]
=

nk∑
i=0

k−1∑
j=1

(3/4)j
[
1Uj (T

ixk)− 1SUj (T
ixk)

]
+

nk∑
i=0

∞∑
j=k

(3/4)j1Uj (T
ixk)−

nk∑
i=0

∞∑
j=k

(3/4)j1SUj (T
ixk)

≥ 2k(3/4)k

= (3/2)k.

Therefore, by Theorem 2.6, f−fS−1 cannot be a T -coboundary. It remains
then to construct the sets.

We first note that for any point x ∈ F since S(x) is not in the T -orbit of
x, for any positive integers m,n there is a clopen neighborhood U of x such
that T kU ∩ SU = ∅ for all −m ≤ k ≤ n. This implies that for any clopen
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set V ⊆ F and positive integers m,n, there exists a clopen U ⊆ V such that
T kU ∩ SU = ∅ for −m ≤ k ≤ n.

To construct U1, we take any clopen set V ⊆ F . Let x be in V and let
n1 be the smallest positive integer n such that Tn(x) ∈ V . We can choose
a clopen neighborhood V0 of x such that T kV0 ∩ SV0 = ∅ for 0 ≤ k ≤ n1.
Let V1 be a clopen subset of Tn1V0 ⊆ V such that T kV1 ∩ SV1 = ∅ for
−n1 ≤ k ≤ 0. Now let U1 = T−n1V1∪V1 and let x1 be any point in T−n1V1.
We get

∑n1
i=0 1U1(T

ix1) = 2, and
∑n1

i=0 1SU1(T
ix1) = 0.

Now suppose that we have constructed sets U ⊇ U1 ⊇ U2 ⊇ · · · ⊇ Uk,
points x1, x2, . . . , xk, and integers n1, n2, . . . , nk with the desired proper-
ties. Consider the function fk =

∑k
i=1(3/4)k1Ui . If fk − fkS

−1 is not a
T -coboundary, then we are done. Assume that fk − fkS−1 = g − gT for
some g. Since fk − fkS−1 is a locally constant rational valued function, we
may assume that g is as well.

Let y0 ∈ Uk ∩ F . By the minimality of T , we can choose an integer N
such that

∑N
i=0 1Uk

(T iy0) > 2k+1 and g(y0) = g(TN+1y0). Choose a clopen
neighborhood V around y0 such that fk(T iy) − fk(S−1T iy) = fk(T iy0) −
fk(S−1T iy0) for all y ∈ V and all 0 ≤ i ≤ N . Then for all y ∈ V ,

N∑
i=0

(
fk(T iy)− fk(S−1T iy)

)
= g(y)− g(TN+1y) = 0,

which will give condition 3.
Let M denote

∑N
i=0 1Uk

(T iy0) and let 0 = r0 < r1 < · · · < rM ≤ N
be the integers such that T rjV ⊆ Uk. We know that since y0 ∈ F we can
choose V0 ⊆ V such that T iV0 ∩ SV0 is empty for all 0 ≤ i ≤ N . Since
T r1V0 ⊆ Uk, there is a clopen set V1 ⊆ T r1V0 such that T iV1 ∩SV1 is empty
for all −r1 ≤ i ≤ (N−r1). Continuing, for all 0 ≤ j ≤M , we can obtain sets
Vj ⊆ T rj−rj−1Vj−1 such that T iVj ∩SVj is empty for all −rj ≤ i ≤ (N − rj).
Let Uk+1 be the union over 0 ≤ j ≤ M of the sets T−rM+rjVM , and let
xk+1 be any point in T−rMVM . Then

∑N
i=0 1Uk+1

(T ixk+1) = M ≥ 2k+1 and∑N
i=0 1SUk+1

(T ixk+1) = 0, giving conditions 1 and 2. �

3. Real Ordered Group.

The notion of strong orbit equivalence emerged from the study of C∗-
algebraic invariants for topological dynamical systems. For minimal home-
omorphisms of the Cantor set, Herman, Putnam and Skau showed that
these C∗-crossed products are classified by their K-theory [HPS92]. The
K-theory for these C∗-algebras amounts to the group of continuous integer-
valued functions on the Cantor set modulo the coboundaries along with a
positive cone and order unit. Giordano, Putnam and Skau showed that
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this unital ordered group characterizes strong orbit equivalence for minimal
Cantor systems (Theorem 3.3) [GPS95, Theorem 2.1].

In this section, we define and investigate the group of continuous real-
valued functions modulo the real coboundaries. As in [GPS95], our group
will be considered along with a natural positive cone and order unit. Unlike
the integer case, our space has the structure of a vector space over the reals.
With this, the classification problem essentially comes down to counting
the dimension of subspaces. When the number of ergodic invariant Borel
probabilities is finite, the span of these measures acts as the dual to this space
modulo the infinitesimal subgroup (Lemma 3.9). In this finite dimensional
case, we are able to show (Theorem 3.10) that the cardinality of the set
of ergodic Borel probabilities completely classifies our unital ordered vector
space. Interestingly, this leads us back to orbit equivalence. A result of
Dougherty, Jackson, and Kechris (Theorem 3.13) [DJK94, Theorem 9.1]
states that the cardinality of the set of ergodic invariant Borel probabilities
characterizes a weaker form of orbit equivalence, Borel orbit equivalence.
3.1. The Unital Ordered Group GZ(T ). We present the relevant defini-
tions for unital ordered groups. For a more detailed introduction,
see [GPS95].

Definition 3.1 (unital ordered group). A unital ordered group G is a triple
(G,G+, u) where:
• G is an abelian group,
• G+ is subset of G such that

G+ ∩ (−G+) = {0}, G+ +G+ ⊆ G+, and G+ −G+ = G,
• u is an element of G+ such that

for all g ∈ G there exists an n ∈ Z+ such that (nu− g) ∈ G+.

Definition 3.2 (isomorphism). Two unital ordered groups (G,G+, u) and
(H,H+, v) are isomorphic if and only if there is group isomorphism f : G→
H such that f(G+) = H+ and f(u) = v.

Suppose (X,T ) is a minimal Cantor system. We will use GZ(T ) to denote
the unital ordered group (GZ(T ), GZ(T )+, 1T ) defined as follows. Let GZ(T )
be the group of continuous functions from the Cantor set X into the integers
modulo the integer coboundaries

GZ(T ) = C(X,Z)/{f − fT : f ∈ C(X,Z)}.
Let GZ(T )+ be the semigroup of equivalence classes of nonnegative functions

GZ(T )+ = {[f ] : f(x) ≥ 0 for all x ∈ X}
and let 1T be the equivalence class of the constant function one

1T = [1].

The ordered group above is, in fact, a simple dimension group as defined by
Elliot [Ell76].
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Theorem 3.3 (Giordano, Putnam, Skau). Let (X,S) and (X,T ) be mini-
mal Cantor systems. Then GZ(S) is isomorphic to GZ(T ) if and only if S
and T are strongly orbit equivalent.

The above gives strong orbit equivalence a more natural meaning, the
equivalence relation which is induced by isomorphism of unital ordered
groups. To get a similar statement for orbit equivalence, we must first
introduce infinitesimal subgroups and traces of simple dimension groups.

Definition 3.4 (infinitesimals). Let G = (G,G+, u) be a unital ordered
group. The set

Inf (G) = {g ∈ G : u− ng ∈ G+ for all n ∈ Z}

is the infinitesimal subgroup of G.

Definition 3.5 (trace). A trace σ on a unital ordered group G = (G,G+, u)
is a homomorphism σ : G→ R such that σ(G+) ⊆ R+ and σ(u) = 1.

The order structure of any simple dimension group is determined by the
action of the trace space [Eff81]. In other words,

G+ = {g ∈ G : σ(g) > 0 for all traces σ} ∪ {0}

and
Inf (G) = {g ∈ G : σ(g) = 0 for all traces σ}.

If (X,T ) a minimal Cantor system then the trace space of GZ(T ) with the
natural topology is a compact, convex metric space which is affinely home-
omorphic to the space of T -invariant Borel probabilities MT . Moreover,

GZ(T )+ =
{

[f ] :
∫
fdµ > 0 for all µ ∈MT

}
∪ {0}

and

Inf (T ) = Inf (GZ(T )) =
{

[f ] :
∫
fdµ = 0 for all µ ∈MT

}
.

Theorem 3.6 (Giordano, Putnam, Skau). Let (X,S) and (X,T ) be min-
imal Cantor systems. Then the unital ordered groups GZ(S)/Inf (S) and
GZ(T )/Inf (T ) are isomorphic if and only if S and T are orbit equivalent.

3.2. A Real Analogue to GZ(T ). The results of Section 2 and of Gior-
dano, Putnam and Skau motivate our investigation of the triple GR(T ) =
(GR(T ), GR(T )+, 1T ) where

GR(T ) = C(X,R)/{f − fT : f ∈ C(X,R)}

GR(T )+ = {[f ] : f(x) ≥ 0 for all x ∈ X}
1T = [1].
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Remark. Typically, there is an additional assumption that unital ordered
groups be countable. However, none of the notions of unital ordered group,
isomorphism, infinitesimals and traces depend upon the group being count-
able.

Suppose that (X,S) and (X,T ) are minimal Cantor systems. We first
notice that the groups GR(S), GR(T ) can adopt the structure of a real vector
space (with the definition r[f ] := [rf ]). It is this identification which makes
the inclusion map of GZ(T ) → GR(T ) worth studying. For example, there
can exist locally constant coboundaries f − fT where f cannot be chosen
to be locally constant. Thus we are not simply considering the old group
GZ(T ) with real coefficients, there are also new identifications.

Henceforth, we will refer to the triple (GR(T ), GR(T )+, 1T ) as a real or-
dered vector space. The isomorphisms we will consider are R-vector space
isomorphisms which preserve classes of nonnegative and constant functions.

For the remainder of this section, we will concentrate on the case where
the space of invariant measures MT is finite dimensional. In this case we
will characterize Inf (GR(T )) (Theorem 3.10).

Proposition 3.7. Let (X,T ) be a minimal Cantor system. If MT is finite
dimensional then

GR(T )+ =
{

[f ] :
∫
fdµ > 0 for all µ ∈MT

}
∪ {0}

and

Inf R(T ) = Inf (GR(T )) =
{

[f ] :
∫
fdµ = 0 for all µ ∈MT

}
.

Proof. Suppose f : X → R is a continuous function.
If there exists h ∈ C(X,R) such that f(x) + h(x) − hT (x) ≥ 0 for all x,

then either f + h− hT ≡ 0 or
∫
fdµ > 0 for all µ ∈MT .

Now suppose
∫
fdµ > 0 for all µ ∈MT . Then since MT is finite dimen-

sional, there is a δ > 0 such that
∫
fdµ ≥ δ for all µ. Select a continuous

function g : X → Q that takes on finitely many values and f(x) − δ/2 <
g(x) < f(x) for all x. Then there is an integer m such that mg ∈ C(X,Z)
and

∫
mgdµ > 0 for all µ ∈ MT . By the properties of GZ(T ), there is an

integer coboundary h−hT such that mg(x)+h(x)−hT (x) ≥ 0. Therefore,
f + 1

m(h− hT ) is a nonnegative function and [f ] ∈ GR(T )+.
The second claim now follows easily as [1]−n[f ] ∈ GR(T )+ iff n

∫
fdµ ≤ 1

for all µ ∈MT iff
∫
fdµ = 0 for all µ ∈MT .

�

Proposition 3.8. Let (X,T ) be a minimal Cantor system. If MT is finite
dimensional then the dimension of Inf R(T ) is |R|.
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Proof. A continuous function from X to R is determined by its values on a
countable dense subset. Therefore

dim(Inf R(T )) ≤ dim(C(X,R)) ≤ |R||Q| = |R|.
To finish the proof, it suffices to construct a family of linearly independent

infinitesimals {fα : α ∈ (0, 1)}. In other words, we want a collection of
functions {fα} which integrate to zero with any T -invariant Borel probability
such that no linear combination with nonzero coefficients is a coboundary.

We can use the same techniques as those used in Lemma 2.9 to create
infinitesimals which are not T -coboundaries. Recall that in the proof of
Lemma 2.9 we had sets Uk and integers nk such that the function f(x) =∑

k≥1(1/k) (1Uk
(x)− 1TnkUk

(x)) was not a T -coboundary (in that proof
there was a transformation S such that SUk = TnkUk). The reason f failed
to be a T -coboundary was that for all n there was a point x and an integer
m such that

∑m
i=0 f(T ix) ≥

∑n
k=1(1/k) and therefore has no uniform upper

bound when summed over partial T -orbits. Notice that this function must
be an infinitesimal since the integration of f with any T -invariant Borel
probability yields zero.

Suppose that we have such an f . (If you like, pick minimal S with the
same orbits as T but with an unbounded jump function to create the Uk
and nk.) Now for α ∈ (0, 1), let

fα(x) =
∑
k≥1

(1/k)α (1Uk
(x)− 1TnkUk

(x)) .

For any finite collection 0 < α1 < α2 < · · · < αn < 1 and nonzero
real coefficients {r1, r2, . . . , rn} the function r1fα1 + r2fα2 + · · · + rnfαn

is an infinitesimal. It cannot be a T -coboundary since the partial sums∑N
k=1

∑n
j=1 rj(1/k)

αj behave like
∑N

k=1 r1(1/k)
α1 which is unbounded. �

Since the infinitesimal subgroups have the same dimension and contain
no order structure, it remains to characterize GR(T )/Inf R(T ).

Let E(T ) denote the set of ergodic T -invariant Borel probability measures.

Lemma 3.9. Suppose that (X,T ) is a minimal Cantor system and that
|E(T )| is finite. Then dim(GR(T )/Inf R(T )) = |E(T )|.

Proof. Let V denote the vector space GR(T )/Inf R(T ) and V ∗ the dual of
V . The dimension of V is finite if and only if the dimension of V ∗ is finite.
Moreover, if the dimensions are finite, then they are the same.

Let F be an element of V ∗, then it is a linear functional on C(X,R). By
the Riesz Representation Theorem, there is a finite signed Borel measure µ
such that F (f) =

∫
fdµ. Since F is a linear functional on C(X,R)/{f−fT},

the measure µ must be T -invariant. Since |E(T )| is finite, the measure µ is a
linear combination of ergodic T -invariant Borel probability measures. Two
linear combinations of these ergodic measures are the same as elements of
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V ∗ if and only if they are the same as signed Borel measures. Therefore,
dim(V ) = dim(V ∗) = |E(T )|. �

Theorem 3.10. Let (X,T ) be a minimal Cantor systems such that |E(T )| =
d is finite. The unital ordered vector space GZ(T )/Inf (T ) is isomorphic to
Rd where (Rd)+ are the elements with strictly positive entries along with the
zero vector and (1, 1, · · · , 1) is the order unit.

Proof. Since the dimension of GR(T )/Inf R(T ) and Rd are the same, we
know that they are isomorphic as vector spaces. It remains to show that we
can choose an isomorphism which preserves the order structure and unit.

Let {[f1], [f2], . . . , [fd]} be a basis for GR(T )/Inf R(T ), and let E(T ) de-
note the ergodic measures E(T ) = {µ1, µ2, . . . , µd}. We define a map from
Rd to GR(T )/Inf R(T ) where a vector ~v ∈ Rd gets sent to the equivalence
class of a linear combination of the basis functions g =

∑
cifi which has∫

gdµj = vj for j = 1, 2, . . . , d.
Such a map preserves positive cones and order units. �

Corollary 3.11. Let (X,S) and (X,T ) be minimal Cantor systems, such
that |E(S)| and |E(T )| are finite. The unital ordered vector spaces GR(S)
and GR(T ) are isomorphic if and only if |E(S)| = |E(T )|.

Proof. We may write the vector space GR(T ) as GR(T )/Inf R(T )⊕ Inf R(T ).
By Theorem 3.10, GR(S)/Inf R(S) and GR(T )/Inf R(T ) are isomorphic as
unital ordered vector spaces. By Proposition 3.8 the dimension of the infini-
tesimal subspaces are the same and therefore there is a vector space isomor-
phism between them. Since there is no order structure on the infinitesimal
subspace, the result follows. �

The work of Dougherty, Jackson, and Kechris gives us a dynamical inter-
pretation for equal cardinality of ergodic invariant Borel probabilities.

Definition 3.12 (Borel orbit equivalence). Let S : X → X and T : Y → Y
be Borel transformations of compact metric spaces X and Y . A Borel orbit
equivalence is a Borel bijection h : X → Y and functions m : X → Z and
n : X → Z such that

∀x ∈ X, hS(x) = Tm(x)h(x) and hSn(x)(x) = Th(x).

Theorem 3.13 (Dougherty, Jackson, Kechris). Let S : X → X and T :
Y → Y be Borel transformations of compact metric spaces X and Y . Then
S and T are Borel orbit equivalent if and only if |E(S)| = |E(T )|.

Therefore, we get the following dynamical interpretation of isomorphism
of the unital ordered vector space in the case where the spaces of invariant
measures are finite dimensional.



REAL COBOUNDARIES FOR MINIMAL CANTOR SYSTEMS 469

Theorem 3.14. Let (X,S) and (X,T ) be minimal Cantor systems such
that |E(S)|, |E(T )| are finite. Then the following are equivalent:

1) GR(S) ∼= GR(T ) as unital ordered vector spaces,
2) S and T are Borel orbit equivalent.

The result of Dougherty, Jackson and Kechris is true in the case where the
cardinality of the ergodic invariant Borel measures is infinite. However, at
present the author does not see how to extend the above theorem to include
that case.

4. GR(T ) as an extension of GZ(T ).

Let (X,S) and (X,T ) be a minimal Cantor systems. As we saw in the
last section, isomorphism of GR(S) and GR(T ) induces a weaker relation
than strong orbit equivalence. We now consider isomorphisms of the unital
ordered vector space GR(S) to GR(T ) which when restricted to GZ(S) gives
an isomorphism of the integer unital ordered groups. We first notice that
GZ(T ) embeds in GR(T ).

Proposition 4.1. The natural inclusion map i : GZ(T ) → GR(T ) is one-
to-one and order-preserving.

Proof. To show that the map is injective, it suffices to show that if an integer-
valued function is a real coboundary, then it is an integer coboundary. As-
sume we have functions f ∈ C(X,Z) and g ∈ C(X,R) with f = g − gT .

Let x0 be any point in X and let α = g(x0). Then for all n ∈ Z, g(Tnx0)
is an integer plus α. For example if n > 0 then

g(x0)− g(Tnx0) =
n−1∑
i=0

g(T ix0)− g(T i+1x0) =
n−1∑
i=0

f(T ix0) ∈ Z.

Since all T -orbits are dense in X, all values of the function g are an integer
plus α. Letting k = g−α, we obtain an integer-valued function k ∈ C(X,Z)
where f = k − kT .

Clearly, if [f ] ∈ GZ(T )+ then i([f ]) ∈ GR(T )+. Now suppose that f ∈
C(X,Z) and i([f ]) ∈ GR(T )+. That is, suppose there exists a function
h ∈ C(X,R) such that f(x) + h(x) − hT (x) ≥ 0 for all x. Then either
f ≡ 0 or for all invariant probability measures µ,

∫
fdµ > 0. In either case,

[f ] ∈ GZ(T )+. �

Definition 4.2 (pair isomorphism). Suppose that S and T are minimal
homeomorphisms of the Cantor set. We will call H a pair isomorphism of
(GR(S),GZ(S)) and (GR(T ),GZ(T )) if H : GR(S) → GR(T ) is a real ordered
vector space isomorphism such that H(GZ(S)) = GZ(T ).

In particular, we are interested in the following questions. Does a pair iso-
morphism H : (GR(S),GZ(S)) → (GR(T ),GZ(T )) induce a stronger relation
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than strong orbit equivalence? Does a pair isomorphism imply that S and T
are flip conjugate? We will show that the answer to the first question is yes,
and the answer to the second is no. To answer these questions, we begin by
showing that the isomorphism class of the pair (GR(T ),GZ(T )) classifies the
(topological) discrete spectrum of the system (X,T ).

Definition 4.3 (discrete spectrum). Let (X,T ) be a minimal Cantor sys-
tem. The discrete spectrum of T is the set of λ such that FT = λF for some
continuous function F from X to {z ∈ C, |z| = 1}.

We will call a function F as above an eigenfunction for T and λ an eigen-
value for T .

The strong orbit equivalence class already determines the rational part of
the discrete spectrum (eigenvalues exp(2πiα) where α ∈ Q), but strongly or-
bit equivalent systems may have different irrational spectrum (see [Orm97]).
The following shows that the pair (GR(T ),GZ(T )) does indeed carry some
additional information beyond strong orbit equivalence.

Theorem 4.4. Let (X,S) and (X,T ) be minimal Cantor systems. Suppose
that there is a pair isomorphism between (GR(S),GZ(S)) and (GR(T ),GZ(T )).
Then S and T have the same discrete spectrum.

Proof. We first show that a complex number exp(2πiα) is an eigenvalue
for T if and only if there exist f ∈ C(X,Z) and k ∈ C(X,R) such that
f = α+ k − kT .

Suppose functions k, f exist as above. Multiplying both sides of f =
α+ k − kT by 2πi and exponentiating one obtains

exp(2πikT (x)) exp(2πif(x)) = exp(2πiα) exp(2πik(x)).

Since f(x) ∈ Z for all x, we see that exp(2πif(x)) = 1 and therefore F (x) =
exp(2πik(x)) is an eigenfunction for T with eigenvalue exp(2πiα).

Now suppose that F : X → S1 is an eigenfunction for the eigenvalue
exp(2πiα). Let U1, U2, . . . , Un be clopen sets such that a logarithm function
Lj can be continuously defined on each F (Uj). For x ∈ Uj we define k(x) =
Lj(F (x)). With this definition, k : X → R is a continuous function and
k(x)−k(Tx)+α is an integer for all x ∈ X. Therefore, there is a f : X → Z,
k : X → R such that f = α+ k − kT .

This completes the proof since if f = α + k − kS as above and there is
a pair isomorphism H : (GR(S),GZ(S)) → (GR(T ),GZ(T )) then H([f ]) =
αH([1S ]) = α[1T ]. Taking a representative function g from H([f ]), we see
that there must be a function k′ ∈ C(X,R) such that g = α + k′ − k′T .
Therefore if exp(2πiα) is an eigenvalue for S then exp(2πiα) is an eigenvalue
for T as well. �

The above theorem extends to determine the possible discrete spectrum
of an induced system (A, TA) of (X,T ). An induced system (A, TA) of (X,T )
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is a minimal Cantor system obtained by taking a clopen subset A ⊆ X and
the map TA : A→ A. The map TA is defined to be TA(x) = Tn(x) where n
is the smallest positive integer such that Tn(x) ∈ A.

Theorem 4.5. Let (X,S) and (X,T ) be minimal Cantor systems. Suppose
that there is a pair isomorphism between (GR(S),GZ(S)) and (GR(T ),GZ(T )).
Then there is an induced system (A,SA) of (X,S) which has λ in the discrete
spectrum if and only if there is an induced system of (B, TB) of (X,T ) which
has λ in the discrete spectrum.

Proof. Suppose that λ = exp(2πiα) is in the topological discrete spectrum of
an induced system (A,SA). This occurs if and only if for some f ∈ C(A,Z)
and h ∈ C(A,R) we have f − α = h − hSA on the set A. Extend f to
f̂ : X → Z by defining f̂ ≡ 0 on the complement of A. Then the function
(f̂ − α1A) is an S-coboundary by Theorem 2.6. (Notice that for x ∈ A,∑n

i=0(f̂ − α1A)(Six) =
∑m

i=0(f̂ − α1A)((SA)ix) for some m ≤ n.)
Now since f̂ − α1A is an S-coboundary and we have a pair isomorphism

H : (GR(S),GZ(S))→ (GR(T ),GZ(T )), we know that H([f̂ ])−αH([1A]) = 0
in GR(T ).

Claim. There is an indicator function 1B ∈ H([1A]) for some clopen set
B ⊆ X.

Proof of Claim. Since [1A] ∈ GZ(S)+ there is a g1 ∈ H([1A]) such that
g1(x) ≥ 0 for all x. Since [1]S − [1A] ∈ GZ(S)+ there is a g2 ∈ H([1A]) such
that g2(x) ≤ 1 for all x. We know that the function g1 − g2 is an integer
T -coboundary, g1 − g2 = k − kT for some k ∈ C(X,Z). Let C be a clopen
set on which k is constant. Let C1, C2, . . . , Cr be the clopen subsets of C
such that x ∈ Cn if and only if n is the smallest positive integer such that
Tn(x) ∈ C. By minimality, C =

⋃r
n=1Cn for some r.

For x ∈ Cn, we know
n−1∑
i=0

g1T
i(x)− g2T i(x) =

n−1∑
i=0

kT i(x)− kT i+1(x)

= k(x)− kTn(x)
= 0.

Therefore, for all n and x ∈ Cn, we have

0 ≤
n−1∑
i=0

g1T
i(x) =

n−1∑
i=0

g2T
i(x) ≤ n.

Fix n and x ∈ Cn. Let Bn be the union of exactly
∑n−1

i=0 g1T
i(x) of the sets

Cn, TCn, . . . , T
n−1Cn. Let B =

⋃r
n=1Bn.

The difference between g1 and 1B must be a T -coboundary by Theo-
rem 2.6. This follows since for x ∈ Cn,

∑n−1
i=0 g1T

i(x) =
∑n−1

i=0 1BT i(x).
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Thus the difference g1 − 1B is bounded along T -orbits. This proves the
claim.

Let g be a representative of H([f̂ ]) and let B be a clopen set such that
1B ∈ H([1A]). Then there exists a function k ∈ C(X,R) such that g−α1B =
k − kT .

Let K(x) = exp(2πik(x)). The function g is integer-valued so

K(T (x)) = exp(−2πig(x)) exp(2πiα1B(x))K(x)
= exp(2πiα1B(x))K(x).

If x ∈ B, we have K(T (x)) = λK(x). If x /∈ B, we have K(T (x)) = K(x).
Therefore, for x ∈ B, we have K(TB(x)) = λK(x). Thus, T has an induced
system with λ in the spectrum. �

Remark. If λ = exp(2πiα) where α ∈ Q then the conclusion of the previous
theorem is trivially true. For any minimal Cantor system T and any p ∈ Z
there is an induced system TA such that a periodic orbit of cardinality p is
a factor of TA. To see this, let B ⊆ X be a clopen set with small enough
diameter so that if x ∈ B and Tn(x) ∈ B then n ≥ p. Let A =

⋃p−1
i=0 T

iB.
Then the induced system (A, TA) has as a factor of a finite orbit of length
p.

In the case where λ = exp(2πiα), α /∈ Q, the statement is nontrivial as
we will see in Corollary 4.8.

The following theorem shows some of the limitations on dynamical in-
formation that one can get from the pair (GR(T ),GZ(T )). In particular,
it shows that one cannot deduce flip conjugacy from a pair isomorphism
between (GR(S),GZ(S)) and (GR(T ),GZ(T )). For a unital ordered group G,
when we say G ⊆ Q we mean that G is isomorphic to a subgroup of (Q,Q+, 1)
with the induced order.

Theorem 4.6. Let S and T be minimal homeomorphisms of the Cantor set.
Suppose GZ(T ) is a subgroup of Q. Then there is a pair isomorphism between
(GR(S),GZ(S)) and (GR(T ),GZ(T )) if and only if S and T are strongly orbit
equivalent.

Proof. Since GZ(T ) ⊆ Q every integer-valued function can be written as a
constant plus a integer coboundary. The embeddings for (GR(S),GZ(S)) and
(GR(T ),GZ(T )) are given by [f ] 7→ q[1] where q is the rational number cor-
responding to [f ]. Since the integer unital ordered groups are subsets of Q,
the maps S and T are uniquely ergodic. Therefore, the real ordered groups
GR(S) and GR(T ) are isomorphic by Theorem 3.10. Since the isomorphism
maps the constant function one to the constant function one, it must map
the subgroup of integer-valued functions onto one another. �
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In particular, this shows that systems (X,T ) with GZ(T ) ⊆ Q cannot be
strongly orbit equivalent to systems with any irrational discrete spectrum.
Systems with GZ(T ) ⊆ Q include all odometer systems (see example from
Section 2). For an odometer system with di digits in the ith place the
group GZ(T ) is isomorphic to the subgroup of the rationals formed by all
rationals whose denominators are products of the di’s [HPS92]. For the
dyadic adding machine GZ(T ) is the dyadic rationals Z[12 ].

Corollary 4.7. Suppose (X,T ) is a minimal Cantor system where GZ(T )
is a subgroup of Q. Then T cannot have irrational discrete spectrum.

Proof. To prove this, one simply needs an S with GZ(S) = GZ(T ) such that
S has no irrational spectrum. Then by Theorem 4.6, and Theorem 3.3, there
is a pair isomorphism between (GR(S),GZ(S)) and (GR(T ),GZ(T )). But by
Theorem 4.4, S and T must have the same discrete spectrum.

To create such an S, make a list of the denominators {d1 < d2 < · · · }
which appear in elements of GZ(T ), then construct an odometer system with
d1 digits in the first place, d2 digits in the second place, and so on.

The odometer systems have no irrational spectrum. This follows from the
fact that for every clopen set A in an odometer system (X,T ) there is an
integer n such that TnA = A. If there were a map F : X → S1 and a λ
such that FT = λF , then there would be a clopen set A ⊆ X whose image
under F lies within {exp(2πiθ) : 0 ≤ θ ≤ π} such that FTn(A) = F (A) for
some n. If λ = exp(2πiα) with α irrational, then λnF (A) can never equal
F (A). �

Corollary 4.8. Suppose (X,T ) is a minimal Cantor system where GZ(T )
is a subgroup of Q. Then T cannot have an induced system with irrational
discrete spectrum.

Proof. Suppose that GZ(T ) is a subgroup of Q. Then any induced system
TA must also have GZ(TA) ⊆ Q. This follows from results of [GPS95],
or by the following argument. Since GZ(T ) ⊆ Q, T is uniquely ergodic.
Moreover, the integral of any integer-valued continuous function with this
measure must be rational. The same holds for an induced system (A, TA),
so GZ(TA) ⊆ Q. �

Appendix A. A homeomorphism good on measures and bad on
orbits.

Author: Mike Boyle
Suppose S and T are minimal homeomorphisms of the Cantor set X.

Giordano, Putnam and Skau proved that if h : X → X is a homeomor-
phism which identifies integer coboundaries for S and T then S and T are
orbit equivalent (Theorem 2.7 of this paper). This result is a spinoff of
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their beautiful algebraic characterization (“K0 modulo the infinitesimals”)
of orbit equivalence of homeomorphisms of the Cantor set. This work de-
veloped constructions involving Bratteli diagrams, C∗-algebras and some
homological algebra. It is natural to ask whether the theorem above could
be proved directly, i.e., without reference to this associated machinery. This
seems problematic even at first glance–given h as in the theorem, how could
one recover orbit information? Here is an example (circulated informally
in 1992) which reinforces this impression. I thank Chris Skau for helpful
comments.

Example. Let X be the domain of the dyadic adding machine S. There is
a homeomorphism T from X to X such that
• if x and y are any two points in the same S-orbit, then the points T (x)

and T (y) are in different S-orbits, and
• for all clopen sets U , there are continuous functions f, g : X → Z such

that 1U − 1TU = f − fS and 1U − 1SU = g − gT .

The dyadic adding machine is defined as an example of an odometer
system in Section 2. We recapitulate the definition here. The space X is
{0, 1}N. A point x in X is a one-sided sequence x1x2x3... with each xi in
{0, 1}. The map S sends the sequence x = 1∞ (xi = 1, for all i) to the
sequence 0∞. Otherwise, x has for some nonnegative k an initial word 1k0
and Sx is obtained by replacing this word with 0k1.

Two sequences in X are cofinal if they disagree in only finitely many
coordinates. Two sequences x, y are in the same S-orbit if and only if either
(1) they are cofinal or (2) one is cofinal to 0∞ and the other is cofinal to 1∞.

Choose a collection of infinite pairwise disjoint sets An, 1 ≤ n <∞, such
that N is the union of the An. Enumerate the finite words on {0, 1} as
W (1),W (2), ... such that n > m implies the length |W (n)| of W (n) is at
least |W (m)|. Define Bn = {m ∈ An : m > |W (n)|}, an infinite subset of N.
For each n > 0, we define a homeomorphism φn : X → X by

(φnx)i =

{
xi + 1 (mod 2) if i ∈ Bn and x1...x|W (n)| = W (n)
xi otherwise.

Now define ψn = φn ◦ φn−1 ◦ ... ◦ φ1. In other words, ψ1 = φ1 and
ψn(x) = φn(ψn−1(x)). Finally, let ψ = limψn. Apart from a technical
detail, ψ will be the homeomorphism T of the example.

For each n and x,

(ψnx)i = (ψx)i, 1 ≤ i ≤ |W (n)|.
Therefore the maps ψn are converging uniformly and ψ is a homeomorphism.
Also, for every k and x, the word (ψx)1...(ψx)k is determined by the word
x1...xk. So, for every k, ψ induces a permutation of the initial cylinders of
length k. This means that for any cylinder set U , there is a unique integer l
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such that ψU = SlU and 1U−1ψU = 1U−1SlU . In particular, we may deduce
that any integer ψ-coboundary is an integer S-coboundary and vice-versa.

If x and y are distinct points in X, then let N = N(x, y) denote the
largest integer such that xi = yi if i < N . Notice, if φi corresponds to
a word W (i) such that |W (i)| < N(x, y) (equivalently, i ≤ 2N−1) then
N(x, y) = N(φix, φiy). On the other hand, if φi corresponds to a word
W (i) of length N, then φi fixes the initial word of length N in every point,
and φi changes a point x (by flipping symbols in the coordinates indexed by
Bi) if and only if x1...xN = W (i).

Now given distinct points x and y, set γ = ψ2N−1 , where N = N(x, y).
Let φn be the map corresponding to the initial word W (n) of γx of length
N . Our discussion above gives the following implications:

(ψx)i 6= xi if i ∈ Bn,
(ψy)i = yi if i ∈ Bn.

It follows immediately that if x and y are distinct cofinal points, the ψx and
ψy are not cofinal.

Next note that if x and y are distinct points, then for some Bn,

xi = (ψx)i and yi = (ψy)i, for i ∈ Bn.

(In fact we can use n such that Bn corresponds to a word W (n) of length 2
which begins neither ψ2x nor ψ2y.) Consequently, if x is cofinal to 0∞ and
y is cofinal to 1∞, then ψx, ψy are not cofinal.

This finishes the proof for the example, except for a technical detail: It
might be the case that there are points x, y in the same S-orbit such that ψx
is cofinal to 0∞ and ψy is cofinal to 1∞. To take care of this, choose points u
and v such that the preimage under ψ of the S-orbit of u does not intersect
any S-orbit containing a point in the preimage under ψ of the S-orbit of
v. Let β be a cofinal homeomorphism of X (x, y are cofinal iff βx, βy are
cofinal) which exchanges 0∞ with u and which exchanges 1∞ with v. Let T
be the composition, ψ followed by β. Now we have for all distinct points x
and y: If x, y are cofinal then Tx, Ty are not cofinal; if x is cofinal to 0∞

and y is cofinal to 1∞, then Tx,Ty are not cofinal; if Tx is cofinal to 0∞

and Ty is cofinal to 1∞, then x, y are not in the same S-orbit.
This finishes the proof.
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APPLICATION TO GLOBAL BERTINI THEOREMS

Dr. Laila E.M. Rashid

Let k be an infinite field of arbitrary characteristic, (A, M,
K) a k-algebra of essentially finite type, with K/k separable
and P a local property. We say that LBk(P) holds if: For the
generic α = (α1, . . . , αn) ∈ kn ⇒ P(AxαA) ⊆ P(A)∩V (xα)∩
UP (xα =

∑
αixi, 〈x1, . . . , xn →= M, UP non-empty open

subset of Spec A and P(A) = {P ∈ Spec A|Ap is P}). We show
that: LBK(P) holds ⇒ LBK(GP) holds for the corresponding
geometric property (in particular, for P = regular, normal,
reduced, Rs, LBK(GP) holds). As an appliance we obtain a
Bertini Theorem for hypersurgace setions of a variety X ⊆ P n

k

concerning the geometric properties.

1. Introduction.

Bertini showed that, given a smooth projective variety x contained in Pnk
with k = C, the generic hypersurface section of x is also smooth (see [B,
Chap. 10, n. 25]; for a modern approach, see [H, Th. 8.18] or [J, Th. 6.3]).

There have been many generalizations of this Theorem: We recall the
recent algebraic studies on trasversality made by Kleiman in [K] and Speiser
in [S] where they introduced a fully modern point of view of schemes over
an algebraically closed field of arbitrary characteristic.

Another approach to this problem has been proposed by Flenner in [F]
(following Grothendieck, see [G]).

He shows that, given a field k of arbitrary characteristic and given a
local k-algebra (A < M < K) with K/k separable, then, for the generic
α = (α1, . . . , αn) ∈ kn ⇒

P(A/xαA) ⊆ P(A) ∩ UP(1)

where xα =
∑
αixi, {x1, . . . , xn} is a generator system of M and UP is

a non-empty open subset of SpecA depending on P, being P one of the
following local properties: Regular, normal, reduced, Rs and Sr.

These results applied to the local ring of the vertex of the affine cone
corresponding to a projective variety X, imply, by standard techniques, the
corresponding global Bertini Theorem for the variety X.

In this work we want to show that every time we have a result like (1)
for a property P we have the same result for the corresponding geometric
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property GP and that the coresponding global results hold (these are known
only for geometrically regular, see [J, Chap. 1, §6]).

In Section 3 we introduce some topological remarks that we use in next
section: We show that if k is a subfield of K, (k infinite), every non-empty
open set of Kn can be constructed to a non-empty open set of Kn.

In Section 4, that is main section, we give a local Bertini Theorem for the
properties GP in an axiomatic form and we show that there are properties
GP (for example GP = Sr, geom. Rs, geom. regular, geom. normal, geom.
reduced) to which we can apply the Theorem. In these cases we show that
the GP-locus is open.

In Section 5 we deduce a global Bertini’s Theorem for the hypersurface
sections of a variety X in a projective space over a field of arbitrary char-
acteristic and for the above cited GP (we extend for many geometrically
properties Th. 6.3 in [J] concerning the only geometrical regular property).

2. Preliminaries and notation.

In this section we fix the standard notation to be used in the following.
The rings considered are always commutative with an identity element.
If A is a ring, Ω(A) is the set of maximal ideals of A.
We recall here the definition of essentially finite type algebra and some

properties of this algebra that we shall have to use in Section 4.

Definition 2.1 ([EGA, Chap. IV, 1.3.8]). Let T be a ring. A T -algebra S
is of essentially finite type (e.f.t. for short) if S is T -isomorphic to S−1C
where C is a T -algebra of finite type and S is a multiplicatively closed subset
of C.

Properties 2.2 ([EGA, Chap. IV, 1.3.9 (ii)]; [M, 34.A]).

(i) If S is a T -algebra of e.f.t. and T ′ is a T -algebra then S′ = S⊕T T
′ is

a T ′-algebra of e.f.t..
(ii) If S is a T -algebra of e.f.t. and T is an excellent ring then S is an

excellent ring.

In the following, all topological spaces are considered with their Zariski
topology. If A is a ring we put V (x1, . . . , xn) to closed subset of SpecA
corresponding to the ideal generated to the elements x1, . . . , xn of A.

Let F [T ] = F [T1, . . . , Tn] be the polynomial ring with coefficients in the
field F . We identify Fn{(α1, αn)|α1 ∈ F} with the topological subspace
S = {(T1 − α1, . . . , Tn − αn)|α1 ∈ F} MaxSpecF [T ]. (We observe that
F
n = MaxSpecF [T ] where F denotes the algebraic closure of the field F .)
The expression “x generic in X”, where X is a topological space, means

that x is in a dense open subset of X.
We recall here the definition of geometric property.



APPLICATION TO GLOBAL BERTINI THEOREMS 479

Definition 2.3. Let P be a local property and A a local ring containing a
field k. We say that A is geometrically P if A⊕k

k is P.

(See also [EGA, Chap. IV, 6.7.7] for equivalent definitions.)
Finally we put P(A) = {P ∈ SpecA|AP verifies the local property P}.

3. Some topological remarks.

For our aim we have to prove that, given an infinite field k, if K/k is a field
extension and = is an open dense subset Kn then = ∩ kn is an open dense
subset of kn (Prop. 3.3). We prove this fact in two steps (the first one for
the ‘open’ property, the second one for the ‘dense’ property).

We consider the following commutative diagram:

Kn −−−→
i

SpecK[T1, . . . , Tn]

j

x f

y
kn −−−→

h
Spec k[T1, . . . , Tn]

where i, h are the inclusions of canonical maps and, as well known, Kn (resp.
kn) is a topological subspace of SpecK[T ] (resp. Spec [T ]).

Lemma 3.1. Let K/k be a field extension, then kn is a subspace of Kn.

Proof.
Case 1. K/k algebraic extension.

One can suppose that I = V (g) is a fundamental closed set.
Consider a representation g =

∑
xigi with xi ∈ K linearly independent

over k and gi ∈ k[X1, . . . , Xn]. Then I ∩ kn = V (g1, . . . , gr). The inclusion
I ∩ kn ⊆ (C) ∩ kn is trivial. The other one is easy if we remark that
f−1(kn) = kn.

Case 2. K/k purely transcendental extension.
Let = = {(x1, . . . , xn) ∈ Kn|g(x1, . . . , xn) = 0 with g ∈ K[T ]} be a

fundamental closed set of Kn. Among the coefficients of g there are only a
finite number t of elements of K transcendental over k and so we can reduce
to the transcendental extension of finite type. Using induction on t we can
consider that there is only one transcendental element Z (i.e., t = 1).

So g(T1, . . . , Tn) = ai1···in(z)T i1 · · ·T in with ai1···in(z) ∈ k(z).

(k1, . . . , kn) ∈ kn ∩ = ⇔ g(k1, . . . , kn) = 0⇔ bi1···in(z)ki1 · · · kin = 0

with bi1···in(Z) ∈ k[Z] (obtained by clearing denominators and simplify-
ing) ⇔ gr(k1, . . . , kn)Zr + · · · + g0(k1, . . . , kn) = 0 (obtaining ordering
bi1···in(z)ki1 · · · kin like a polynomial in z) where gr(T1, . . . , Tn) ∈ k[T ].

But Z is transcendental over k and so (k1, . . . , kn) = kn ∩= ⇔ g(k1, . . . ,
kn) = 0 ∀ i 0 ≤ i ≤ r. Then we have = ∩ kn = V (g1, . . . , gr).
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General case.
It is well known that every field extension can be written as k ⊆ K ′ ⊆ K

with K ′/k purely transcendental and K/K ′ algebraic. So we can apply
subsequently Case 2 and Case 1.

Lemma 3.2. Let k be an infinite field, then kn is irreducible.

Proof. We want to show that the intersection of two non-empty open sets is
still non-empty.

For this it is clearly sufficient to show that if f, g ∈ k[T1, . . . , Tn] and
V (f) 6= kn, V (g) 6= kn then V (fg) 6= kn. We use induction on n. If n = 1
we consider the polynomial: fg = (f0 + · · ·+ fiT

l)(g0 + · · ·+ ghT
h). Fg = 0

has at most i+h solutions in k (and so in k) and this proves that V (fg) = k
because k is infinite.

Suppose now that the conclusion is true for any number of variables
smaller than n.

We have fg = (f0 + f1Tn + · · ·+ fiT
l
n)(g0 + g1Tn + · · ·+ gnT

h
n ) = f0g0 +

· · ·+ f1ghT
l+h.

With fjgl ∈ k[T1, . . . , Tn−1] for 0 ≤ j ≤ i and 0 ≤ l ≤ h observe that f1gh
is a polynomial in n−1 variables⇒ by the induction hypothesis, there exists
an element w = (k1, . . . , kn) ∈ kn−1 such that f1(k1, . . . , kn)gh(k1, . . . , kn) 6=
0. For this w we can find an element a ∈ k such that f(k1, . . . , kn, a)g(k1, ...,
kn, a) 6= 0 because the polynomial in a single variable f(k1, . . . , kn, Tn)g(k1,
. . . , kn, Tn) has at most i+ h solutions in k and k is infinite.

Then there exists kn such that y = (k1, . . . , kn−1, kn) ∈ V (fg).
From the above lemmas we get:

Proposition 3.3. Let K be an extension of infinite field k. If I is an open
dense subset of Kn then I ∩ kn is an open dense subset of Kn.

Proof. By Lemma 3.1 we know that I ∩ kn is open in kn. By Lemma 3.2 it
is enough to show that I∩kn is non-empty. It is sufficient to prove this fact
for I = kn − V (f) with f ∈ K[T1, . . . , Tn], by induction on n.

If n = 1, f(T ) = K0 + · · ·+KrT
r has at most r solutions in K and so in

k.
Suppose that it is true for any integer m < n. Put f(T1, . . . , Tn) =

f0 + f1Tn + · · ·+ fiT
l
n where fj ∈ K[T1, . . . , Tn−1] for 0 ≤ j ≤ i. By induc-

tion hypothesis there exists (k1, . . . , kn−1) ∈ kn−1 such that fi(k1, . . . , kn−1)
6= 0. Considering fi(k1, . . . , kn−1, T

n) we observe that f has at most j so-
lutions in k. Let a ∈ k be a non-solution for fi(k1, . . . , kn−1, T

n), then
(k1, . . . , kn−1, a) ∈ I ∩ kn.

4. Main result.

The main purpose of this paragraph is to give a local Bertini thorem for the
geometric properties. We need some definitions.
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Definition 4.1. A local ring (A,M,K) is a Flenner k-algebra if A is a
northerian k-algebra, k is an infinite field and K is separable over k.

Definition 4.2. Let P be a local property of commutative rings. We say
that P is a local Bertini property if, for every local Flenner k-algebra
(A,M,K) e.f.t. and every set of generators 〈x1, . . . , xn〉 of M , the following
condition holds:

LBk(P) for generic α = (α1, . . . , αn) ∈ kn ⇒
P(AxαA) ⊆ (A) ∩ V (xα) ∩ UP

where xα = Σα1x1, and UP is either SpecA or SpecA− {M},
depending on P.

We say briefly that LBk(P) holds.

Remark 4.3. We observe that LBk(P) holds for P = regular, normal,
reduced. Serre’s properties Rs and Sr (in fact more general statements
holds: See [F] Theorem 4.1 and Corollaries 4.2 and 4.3).

We want to prove that if A is a Flenner K-algebra of e.f.t. and LBk(P)
holds for some property P then LBk(GP) holds too for the corresponding
geometric property.

We need some lemmas.

Lemma 4.4. Let (A,M,K) be a Flenner k-algebra of e.f.t. and B = A⊗kk.
Then, for every M ∈ Ω(B), (BM , NBM ,KM ) is a Flenner k-algebra of e.f.t.

Proof. Recall that ϕ : A −→ B is a flat homomorphism.

Case 1. B is a semilocal k-algebra andMBM = MBM ∀M ∈ Ω(B). Clearly
B is a k-algebra of e.f.t. and, being integral over A, we haveMB ⊆ Rad (B).
B/MB = K ⊗A (A⊗k k) = K ⊗k k and dimK ⊗k k = 0. In fact K ⊗k k

is noetherian (because B is a K-algebra of e.f.t. by Prop. 2.2 (i) and so it is
noetherian) and integral over K and we can apply Theorem 20 in [M]. So
K ⊗k k is an artinian ring (Theorem 8.5 in [A-M]) and this proves that B
is semilocal.
K⊗k k is also reduced (because K/k is separable and we can apply (27.1)

Lemma 1 in [M]) and dim(K ⊗k k)M = dim(B/MB)M = 0. This proves
that (B/MB)M = BM/MBM is a field, that is MBM = MBM .

Case 2. KM is separable over k for everyM ∈ Ω(B) because every extension
of an algebraically closed field is separable.

Lemma 4.5. Let (A,M,K) be a Flenner k-algebra of e.f.t., {x1, . . . , xn}
a generator system of M and B = A⊗k k. If LBk(P) holds then:

a) for the generic α = (α1, . . . , αn) ∈ k
n : P(B/xαB) ⊆ P(B)∩V (xαB)∩

UP,
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b) for the generic α = (α1, . . . , αn) ∈ kn : P(B/xαB) ⊆ P(B)∩V (xαB)∩
UP,

where Xα = ΣαiXi and UP = SpecB − Ω(B).

Proof. a) In fact the condition LBk(P) holds for (BM ,MBM ,KM )∀M ∈
Ω(B) by Lemma 4.4. So we can find an open dense subset IM of kn such
that ∀α ∈ IM . P(BM/XαBM ) ⊆ P(BM ) ∩ V (XαBM ) ∩ UP. But B is
semilocal by 4.4 so it has a finite number of maximal ideals: M1, . . . ,Md.
Putting I = IM1 ∩ . . .∩IMd

. This is an open dense subset of kn (by Lemma
3.2), independent from M1 and so ∀α ∈ I we have P(B/XαB) ⊆ P(B) ∩
V (XαB) ∩ UP.

b) Use a) and Proposition 3.3.

Theorem 4.6. If LBk(P) holds for some local property P then LBk(GP)
holds for the corresponding geometric property GP.

Proof. If (A,M,K) is a Flenner k-algebra of e.f.t. and P ∈ GP(A)∩V (Xα)∩
UGP we have to prove that P ∈ GP(A/XαA).

Clearly we have: P ∈ GP(A/XαA)⇔ (AP/XαAP)⊗kk is P⇔ (A/XαA)
⊗A(AP ⊗k k) is P.

Considering ϕ : A −→ B = A ⊗k k and S = A − P ⇒ AP ⊗k k ∼= S−1B
by Prop. 3.5 in [A-M]. If Q ∈ Spec (AP ⊗k k), let Q be its image in S−1B.
Then, ∀ Q ∈ Spec (Ap ⊗k k), (Ap ⊗k k)Q ∼= BQ is P, i.e., Q ∈ P(B) It is
also Q ⊂ (Xα)e and Q ∈ UP (because p 6= M ⇒ Q 6∈ Ω(B)). Applying
Lemma 4.5 to B we have: (BQ)/(Xα)BQ ∼= (Ap⊗k k)Q/(Xα)(Ap⊗k k)Q is
P∀Q ∈ Spec (Ap⊗k k)⇒ (A/xαAp)⊗k k is P⇒ p ∈ GP(A/xαA).

Corollary 4.7. LBk(GP) holds for Flenner K algebra of e.f.t. (A,M,K)
if:

i) GP = geom. Regular and UGP(A) = SpecA;
ii) GP = Sr, geom. Serre’s property Rs, geom. normal, geom. reduced

and UGP(A) = SpecA− {M};
(with the notation given in Def. 4.2)

Proof. By Remark 4.3 and Theorem 4.6.
In connection with Theorem 4.6 it is important know that the GP-locus

of an e.f.t. K-algebra is open, at least for the properties P cited above. This
will be shown in Theorem 4.8 below.

Theorem 4.8. Let A be a K-algebra of finite type, then GP(A) is an open
subset of SpecA for GP = Sr, geom. Serre’s property Rs, geom. Regular,
geom. Normal, geom. Reduced.

Proof. We may assume that A is a K-algebra of finite type. Indeed if A is a
K-algebra of e.f.t. then (Def. 2.1) A = S−1C where C is aK-algebra of finite
type and S is a multiplicatively closed subset of C. If U is an open subset
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of SpecC and if we call ϕ the continuous map defined from Spec (S−1, C)
to SpecC induced by the canonical homomorphism ϕ∗ : C → S−1C, then
ϕ−1(U) is an open subset of Spec (S−1C) = SpecA. Moreover the properties
GP are preserved by localization.

(a) Case GP = geom. Normal, geom. Rn.
We use a proof that looks like Zariski’s Theorem in [EGA, Chap. IV,

6.12.5].
We consider A ⊗k K ′ where K ′ = KP−∞ . The morphism Spec (K ′) →

Spec (k) is a universal homomorphism and so the morphism Spec (A ⊗k
K ′)→ SpecA is a homomorphism.

Then the projection of P(A ⊗k K ′) in SpecA is just the set GP(A) (by
[EGA, Theorem 6.7.7 Chap. IV].

We have only to show that P(A ⊗k K ′) is open in Spec (A ⊗k K ′). But
this is true:

i) for P = regular by [EGA, Chap. IV 6.12.5];
ii) for P = Rn by i) and [EGA, Chap. IV 6.12.9];
iii) for P = normal by i) and [EGA, Chap. IV 6.13.5].

(b) Case GP = Sn and geom. Reduced.
A is a K-algebra of finite type and so it is excellent by Prop. 2.2 (ii). So

we can apply consideration [EGA, 7.9.7 Chap. IV] for P = Sn and Prop.
4.6.13 Chap. IV [EGA] for P = reduced.

Using Theorem 4.8 we have:

Corollary 4.9. If (A,M,K) is a Flenner K-algebra of e.f.t. then GP(A)
is an open subset of SpecA for GP = Sr, geom. Serre’s property Rs, geom.
regular, geom. normal, geom. reduced.

5. Application to Global Bertini Theorems.

We want now to deduce from Theorem 4.6 a global Bertini Theorem for
geometric properties of hypersurface sections of a projective variety over an
arbitrary field.

For this we use a standard technique involving the vertex of the affine
cone (see also [F, §5]).

We give some notation: Let k be a field, X ⊆ Pn
k a projective variety over

the field k and Y ⊆ X a closed subset of X. Let Y + ⊂ X+ ⊆ An+1

k be the
corresponding affine cones; put A = 0x+,v (where v is the vertex) and let I
be the ideal of Y + in A. Let X(k), Y (k) be the varieties obtained from X
and Y by making the base extension field → k.

Proposition 5.1. Let P be a local property which is preserved by polynomi-
als and fractions and which descends by faithful flatness. With the notation
given above, the following are equivalent:
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(i) X − Y is GP over k;
(ii) X+ − Y + is GP over k;
(iii) SpecA− V (I) is GP over k.

Proof. X − y is GP over k ⇔ X(k) − Y (k) is P ⇔
(1)

X+(k) − Y +(k) is

P(⇔ X+−Y + is GP over k)⇔
(2)

SpecA(k)−V (I(k)) is P⇔ SpecA−V (I)

is GP over k, where the equivalencies (1) and (2) are due to Proposition 2.1
in [CGM].

In the following let S = ⊗Sd be graded k-algebra of finite type so that
S0
∼= k and S = k[S1].

Theorem 5.2. S = k[S1] a graded k-algebra, k a field with infinitely many
elements and {f0, . . . , fn(q)} a generator system of Sq as a k-vector space.
Let P be as in 5.1.

If LBk(GP) holds for some geometrical property GP then, for the generic
α = (α0, . . . , αn(q)) ∈ kn(q)+1 we have that,

GP(Proj (S/fαS)) ⊆ GP(Proj (S)) ∩ V +(fα)

where fα = Σα1f1.

Proof. For q = 1 we can apply Prop. 5.1 and Th. 4.6. (Observe that K, the
residue field of A, coincides with k and so it is separable over k.) For q > 1
we can reduce to the hyperplane case using the Veronese map of degree q.

Corollary 5.3. With the hypothesis and notation as in Theorem 5.2 we
have GP(Proj (S/xαS)) ⊆ GP(Proj (S)) ∩ V +(Xα) for GP = Sr, geom.
Serre’s property Rs, geom. regular, geom. normal, geom. reduced, regular,
etc.

Proof. Apply Theorem 5.2 and Corollary 4.7.
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ON FINITE PRESENTABILITY OF MONOIDS AND THEIR
SCHÜTZENBERGER GROUPS

Nik Ruškuc

The main result of this paper asserts that a monoid with
finitely many left and right ideals is finitely presented if and
only if all its Schützenberger groups are finitely presented.
The most important part of the proof is a rewriting theo-
rem, giving a presentation for a Schützenberger group, which
is similar to the Reidemeister-Schreier rewriting theorem for
groups.

1. Introduction.

In [24, Theorem 4.1] it was proved that a regular monoid S with finitely
many left and right ideals is finitely presented if and only if all its maximal
subgroups are finitely presented. Recall that the maximal subgroups of S
are precisely the H-classes of S containing idempotents. Schützenberger
[25, 26] showed how one can assign to an arbitrary H-class H a group
Γ(H), called the Schützenberger group of H. Schützenberger groups have
many features in common with maximal subgroups; in particular, if the H-
class H contains an idempotent (and hence is a maximal subgroup) then H
and Γ(H) are isomorphic. Since their discovery, they have been used in the
structure theory of semigroups (see, for example, [9, 10, 15, 16, 20]), but
perhaps, as argued in [13], not as much as they deserve.

In this paper we consider connections between presentations for a monoid
and for its Schützenberger groups, and we prove the following:

Theorem 1.1. A monoid with finitely many left and right ideals is finitely
presented if and only if all its Schützenberger groups are finitely presented.

The theorem follows from Corollaries 3.3 and 4.4.
In proving the above theorem we show how one can combine presentations

of Schützenberger groups to obtain a presentation for the monoid; see The-
orem 3.2. More importantly, we prove a rewriting theorem (Theorem 4.2),
in many ways similar to the Reidemeister-Schreier theorem for subgroups
of groups, which gives a presentation for a Schützenberger group from a
presentation for the monoid. In fact, this presentation is effectively com-
putable, provided that the monoid has finitely many left and right ideals.

487
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This opens the way for our rewriting theorem to be used as a tool in com-
puting with finitely presented monoids, along the similar lines to the use of
the Reidemeister-Schreier theorem in computational group theory.

The best known consequence of the Reidemeister-Schreier theorem is that
a subgroup of finite index in a finitely presented group is itself finitely pre-
sented. Paralleling this are Corollary 2.11 and Proposition 2.16 of [24],
which combined give that a maximal subgroup H (i.e., an H-class con-
taining an idempotent) of a finitely presented monoid is finitely presented,
provided the R-class of H contains only finitely many H-classes. Given
the similarity between maximal subgroups and Schützenberger groups, one
could reasonably hope that this last condition would be sufficient to guar-
antee finite presentability of the Schützenberger group Γ(H) of an arbitrary
H-class (not necessarily containing an idempotent). However, in Section 6
we use our rewriting theorem to construct a finitely presented monoid which
contains an H-class H such that H is the only H-class in its R-class, but
the Schützenberger group Γ(H) is not finitely presented.

2. Preliminaries.

Green’s equivalences. Green’s equivalences were introduced in [8]. They
describe the ideal structure of a monoid (or a semigroup). Since their dis-
covery they have become the principal tool in describing the structure and
properties of monoids and semigroups; see [11]. We give definitions of the
relations R, L and H, and some of their basic properties that we need in the
sequel. For a more complete treatment we refer the reader to [11] or [12].

Let S be a monoid. Two elements s, t ∈ S are said to be R-equivalent
(respectively, L-equivalent) if they generate the same right (respectively,
left) ideal, i.e., if sS = tS (respectively, Ss = St); we write sRt (respectively,
sLt). Two elements are H-equivalent if they are both R-equivalent and L-
equivalent.

In the following proposition we list some properties of these relations that
we will require later.

Proposition 2.1. Let S be a monoid.
(i) Let s, t ∈ S be such that sRt, and let p, q ∈ S be such that sp = t and

tq = s. Then the mapping x 7→ xp is a bijection from the H-class of s
onto the H-class of t; its inverse is the mapping x 7→ xq. In particular,
any two H-classes within the same R-class have the same size.

(ii) If s, p1, p2 ∈ S are such that sp1p2Rs then sp1Rs.
(iii) The relation R is a left congruence, i.e., for all s, t1, t2 ∈ S, if t1Rt2

then st1Rst2.
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(iv) Let s, t, p ∈ S. If sRt and psHs then ptHt.
(v) For every s ∈ S the set sS is a union of R-classes.

The left-right dual statements hold for L-classes.

Proof. Part (i) is [11, Lemma 2.2.1, Lemma 2.2.3]. Parts (ii), (iii) and (v)
follow immediately from the definitions. For (iv), if q ∈ S is such that
sq = t, then the mapping x 7→ xq is a bijection from the H-class of s onto
the H-class of t by (i), and hence pt = psqHt. �

We remark that, unlike R and L, the relation H is not, in general, a one
sided congruence.

Theorem 1.1 concerns monoids S with finitely many left and right ideals.
Since the R-classes of S are in a one-one correspondence with the principal
right ideals of S, and since every right ideal of S is a union of principal right
ideals of S, we have:

Proposition 2.2. A monoid has finitely many right ideals if and only if it
has finitely many R-classes. Dually, a monoid has finitely many left ideals
if and only if it has finitely many L-classes. A monoid has finitely many left
and right ideals if and only if it has finitely many H-classes.

Schützenberger groups. The H-classes in a monoid S exhibit many prop-
erties of subgroups of groups. For example, Proposition 2.1 (i) shows that
the H-classes within a single R-class behave very much like cosets of a sub-
group in a group – a parallel that will be explored in more depth in Sections
4-6. Also it is known that an H-class which contains an idempotent is a
maximal subgroup of S, and that all maximal subgroups of S arise in this
way; see [12, Corollary 2.6].

Schützenberger [25, 26] showed how to assign a group to an arbitrary
H-class, so as to reflect the group-like properties of that class. Here we give
his construction and some of its basic properties. For more details we refer
the reader to [12].

Let S be a monoid, and let H be an H-class of S. Denote by Stab(H)
the (right) stabiliser of H in S, i.e., Stab(H) = {s ∈ S : Hs = H}. On
this set define a relation σ(H) = {(s, t) ∈ Stab(H) × Stab(H) : (∀h ∈
H)(hs = ht)}. It is easy to see that σ(H) is a congruence; we call it the
Schützenberger congruence of H. It is also relatively easy to see that the
quotient Γ(H) = Stab(H)/σ(H) is a group; it is called the Schützenberger
group of H. It turns out that Γ(H) has the following properties:

• Γ(H) acts regularly on H; in particular |H| = |Γ(H)|;
• if H1 is an H-class of S belonging to the same R-class, or the same
L-class, as H then Γ(H1) ∼= Γ(H);
• if H contains an idempotent then Γ(H) ∼= H.
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For proofs see [12, Section 2.3]. Of course, by left-right duality, one may
define the left Schützenberger group. It turns out, however, that the two
are isomorphic.

In the following proposition we list some properties that we will use later.
For proofs the reader is again referred to [12, Section 2.3].

Proposition 2.3. Let S be a monoid, let H be an H-class of S, and let
h0 ∈ H be an arbitrary element. Then:

(i) Stab(H) = {s ∈ S : h0sHh0};
(ii) σ(H) = {(s, t) ∈ Stab(H)× Stab(H) : h0s = h0t};
(iii) H = h0Stab(H).
Presentations. Along with transformations, presentations are the most
general means of constructing monoids. Throughout the development of
the theory of monoid presentations, one of the leitmotivs has been the con-
nection with group presentations; see, for example, [1, 4, 18, 19, 21, 24].
The results of this paper continue and deepen this theme.

A (monoid) presentation is a pair P = 〈A | R〉, where A is an alphabet,
and R ⊆ A∗×A∗ is a set of pairs of words over A. A typical pair (u, v) ∈ R
is usually written as u = v and is called a defining relation. A monoid S is
said to be defined by P if S ∼= A∗/ρ, where ρ is the smallest congruence on
the free monoid A∗ containing R. Thus every word w ∈ A∗ represents an
element of S. As is customary, we identify a word and the element of S it
represents. To lessen the likelihood of confusion in doing so, for two words
w1, w2 ∈ A∗ we write w1 ≡ w2 if they are identical, and w1 = w2 if they
represent the same element of S, i.e., if w1/ρ = w2/ρ.

For two words w1, w2 ∈ A∗ we say that w2 is obtained from w1 by one
application of a relation from R if w1 ≡ αuβ and w2 ≡ αvβ, where α, β ∈ A∗
and (u = v) ∈ R or (v = u) ∈ R. We shall often use the following standard
fact without explicit mention:

Proposition 2.4. Let 〈A | R〉 be a presentation, let S be the monoid defined
by it, and let w1, w2 ∈ A∗ be two arbitrary words. Then the relation w1 =
w2 holds in S if and only if w1 ≡ w2 or there exists a sequence w1 ≡
α1, α2, . . . , αm ≡ w2 of words in which each αi+1 (1 ≤ i ≤ m−1) is obtained
from αi by one application of a relation from R.

3. From the Schützenberger groups to the monoid.

In this section we show how one can combine presentations of the Schützen-
berger groups of a monoid to obtain a presentation for the whole monoid.
An immediate corollary of this result is the converse part of Theorem 1.1.

Let S be an arbitrary monoid, and let S/H = {Hi : i ∈ I} be the
collection of all H-classes of S. For each i ∈ I fix an element

hi ∈ Hi.(1)
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Without loss of generality assume that I contains a distinguished element 1
and that

1S = h1 ∈ H1.(2)

(In other words, H1 is the group of units of S.) For i ∈ I let Γi =
Γ(Hi) be the Schützenberger group of Hi. Recall that Γi = Ti/σi, where
Ti = Stab(Hi) is the stabiliser of Hi, and σi = σ(Hi) is the corresponding
Schützenberger congruence.

Proposition 3.1. With the above notation, if each Hi is generated by a
set Ai/σi (i ∈ I, Ai ⊆ S) then S is generated by the set B = {hi : i ∈
I} ∪ (

⋃
i∈I Ai).

Proof. Let s ∈ S be arbitrary. Then there is a unique i ∈ I such that
s ∈ Hi, i.e., s = hit for some t ∈ Ti by Proposition 2.3 (iii). Hence we
have t/σi ∈ Γi = 〈Ai/σi〉 = 〈Ai〉/σi, so that there exists w ∈ 〈Ai〉 such that
(t, w) ∈ σi. Now we have s = hit = hiw ∈ 〈B〉, completing the proof. �

Our aim now is to find a presentation for S in terms of the generating set
B given above. The idea is to note from the above proof that every element
of S can be written in the form hiw (i ∈ I, w ∈ A∗i ), and to find defining
relations which allow one to transform any word from B∗ into this form. To
do this we consider the results of multiplying representatives hi (i ∈ I) of
H-classes by arbitrary generators from B both from left and right.

First for each i ∈ I and each x ∈ B we let ζ(i, x) ∈ I be the unique
element such that

hix ∈ Hζ(i,x).(3a)

By Proposition 2.3 (iii) it follows that hix = hζ(i,x)s for some s ∈ Tζ(i,x).
From s/σζ(i,x) ∈ Γζ(i,x) = 〈Aζ(i,x)〉/σζ(i,x) it follows that there exists w ∈
A∗ζ(i,x) such that s/σζ(i,x) = w/σζ(i,x). For each choice of i and x we choose
(arbitrarily) and fix one such word w = µ(i, x). Thus we have

µ(i, x) ∈ A∗ζ(i,x)(3b)

and the relation

hix = hζ(i,x)µ(i, x) (i ∈ I, x ∈ B)(3)

holds in S. In a similar way, for any i ∈ I, x ∈ B we let

η(i, x) ∈ I, ν(i, x) ∈ A∗η(i,x)(4a)

be such that the relation

xhi = hη(i,x)ν(i, x) (i ∈ I, x ∈ B)(4)

holds in S, and we also let

θ(i, x) ∈ I, π(i, x) ∈ B∗(5a)
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be such that

hix ∈ Hθ(i,x)(5b)

and the relation

hix = π(i, x)hθ(i,x) (i ∈ I, x ∈ B)(5)

holds in S.

Theorem 3.2. If, with the above notation, each Schützenberger group Γi
(i ∈ I) is defined by a presentation 〈Ai | Ri〉 in terms of generators Ai/σi,
then S is defined by the presentation with generators B = {hi : i ∈
I} ∪ (

⋃
i∈I Ai) and relations (3), (4), (5) and

hiu = hiv (i ∈ I, (u = v) ∈ Ri),(6)
h1 = 1.(7)

Proof. First we note that all the relations obviously hold in S. So to prove
the theorem it is sufficient to show that every relation holding in S is a
consequence of the relations (3)-(7).

To this end we let w ∈ B∗ be arbitrary. Via a series of claims we show
that w can be transformed to a particular form using (3)-(7).

Claim 1. There exist i1 ∈ I and w1 ∈ B∗ such that the following two
conditions are satisfied:

(i) the relation w = w1hi1 is a consequence of the relations (3)-(7); and
(ii) for every suffix w′1 of w we have w′1hi1Lhi1 in S.

Proof. Write w ≡ x1x2 . . . xm (xi ∈ B). From (7) we have

w = h1x1x2 . . . xm.

By successively applying relations (5) we obtain

h1x1x2 . . . xm = π(j1, x1)π(j2, x2) . . . π(jm, xm)hjm+1 ,

where
j1 = 1, jk+1 = θ(jk, xk) (k = 1, . . . ,m).

So if we let w1 ≡ π(j1, x1) . . . π(jm, xm) and i1 = jm+1, the condition (i) is
satisfied. From (5b) we have

x1 = hj1x1Lhj2 , hj2x2Lhj3 , . . . , hjmxmLhjm+1 = hi1 .

Since L is a right congruence (the dual of Proposition 2.1 (iii)) it follows
that

w1hi1 = w ≡ x1x2 . . . xmLhj2x2 . . . xmL . . .LhjmxmLhjm+1 = hi1 .

Therefore, by the dual of Proposition 2.1 (ii), it follows that the condition
(ii) is satisfied as well. �
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Claim 2. There exist i2 ∈ I and w2 ∈ B∗ such that the following two
conditions are satisfied:

(i) the relation w1hi1 = hi2w2 is a consequence of the relations (3)-(7); and
(ii) for every letter x of w2 we have hi2x ∈ Hi2 .

Proof. Write w1 ≡ x1 . . . xm and apply (4) successively to obtain

w1hi1 = hj0ν(j1, x1) . . . ν(jm, xm),

where

jm = i1, jk−1 = η(jk, xk) (k = m, . . . , 1).

So, if we let i2 = j0 and w2 ≡ ν(j1, x1) . . . ν(jm, xm), the condition (i) is
satisfied.

We next claim that for every k (1 ≤ k ≤ m) we have

xkxk+1 . . . xmhi1 ∈ Hjk−1
.(8)

For k = m this follows from (4a) and (4). Assume inductively that (8) holds
for some k. Since, by Claim 1 (ii), we have

xk−1xk . . . xmhi1Lhi1Lxk . . . xmhi1 ,

it follows by (the dual of) Proposition 2.1 (i) that the mapping t 7→ xk−1t
is a bijection from the H-class of xk . . . xmhi1 onto that of xk−1xk . . . xmhi1 .
In particular, we have

xk−1xk . . . xmhi1Hxk−1hjk−1
Hhjk−2

by (4a) and (4), thus completing the inductive proof of (8).
By Claim 1 (ii) we now conclude that

hi2 = hj0Lhj1L . . .Lhjm = hi1 .(9)

By (4a) we have ν(jk, xk) ∈ A∗jk−1
(k = 1, . . . ,m). By the choice of Ajk−1

every letter from it stabilises Hjk−1
. Therefore by the dual of Proposition

2.1 (iv), Proposition 2.3 (i) and (9) it follows that every letter x of ν(jk, xk)
stabilises Hi2 ; in particular, hi2x ∈ Hi2 , as required. �

Claim 3. There exist i3 ∈ I and w3 ∈ A∗i3 such that the relation hi2w2 =
hi3w3 is a consequence of the relations (3)-(7).

Proof. Write w2 ≡ x1 . . . xm, and note that

ζ(i2, xj) = θ(i2, xj) = i2 (j = 1, . . . ,m)
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by (3a), (5b) and Claim 2 (ii). Therefore we have

hi2w2 ≡ hi2x1 . . . xm
= π(i2, x1) . . . π(i2, xm−1)hi2xm (by (5))
= π(i2, x1) . . . π(i2, xm−1)hi2µ(i2, xm) (by (3))
= π(i2, x1) . . . π(i2, xm−2)hi2xm−1µ(i2, xm) (by (5))
= π(i2, x1) . . . π(i2, xm−2)hi2µ(i2, xm−1)µ(i2, xm) (by (3))
= . . .
= hi2µ(i2, x1)µ(i2, x2) . . . µ(i2, xm).

Therefore it is sufficient to let i3 = i2 and w3 ≡ µ(i2, x1) . . . µ(i2, xm). �

Now let w′ ∈ B∗ be any word, and assume that the relation w = w′ holds
in S. Write w′ as w′ = hi′3w

′
3 as above. Then, since hi3Hw = w′Hhi′3 , we

must have i3 = i′3 = i and also w3/σi = w′3/σi in Γi by Proposition 2.3 (ii).
Since 〈Ai | Ri〉 is a presentation for Γi, it follows that w′3 can be obtained
from w3 by a sequence of applications of relations from Ri. We are now
going to show that this implies that hiw′3 can be obtained from hiw3 by a
sequence of applications of relations (3)-(7), which will complete the proof
that we indeed have a presentation for S.

Without loss of generality we may assume that w′3 is obtained from w3

by one application of a relation from Ri:

w3 ≡ αuβ, w′3 ≡ αvβ (α, β ∈ A∗i , (u = v) ∈ Ri).

Writing α ≡ x1 . . . xm, we have

hiw3 ≡ hix1 . . . xmuβ
= π(i, x1) . . . π(i, xm)hiuβ (by (5))
= π(i, x1) . . . π(i, xm)hivβ (by (6))
= hix1 . . . xmvβ ≡ hiw′3, (by (5))

as required. �

If the set I is finite (which, by Proposition 2.2 is the case precisely when S
has finitely many left and right ideals), and if all the presentations 〈Ai | Ri〉
(i ∈ I) are finite, then so is the above presentation for S. Therefore we have
the converse part of Theorem 1.1:

Corollary 3.3. Let S be a monoid with finitely many left and right ideals.
If all the Schützenberger groups of S are finitely presented then S is finitely
presented as well.

4. A rewriting theorem for the Schützenberger group.

The aim of this section is to state a theorem (Theorem 4.2) giving a pre-
sentation for the Schützenberger group of an H-class in a monoid defined
by a presentation, and to deduce some immediate corollaries, including the
direct part of Theorem 1.1. The theorem is proved in the next section.
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Let S be a monoid, and let 〈A | R〉 be a presentation for S. Let H be an
arbitrary H-class of S, and fix a word h ∈ A∗ representing an element of H.
Denote by Γ = Γ(H) the Schützenberger group of H; so Γ = T/σ, where
T = Stab(H) and σ = σ(H) is the Schützenberger congruence on T .

Let R be the R-class of h, and let {Hλ : λ ∈ Λ} be the collection of all
H-classes of S contained in R. For each λ ∈ Λ choose words pλ, p′λ ∈ A∗
such that

Hpλ = Hλ, h1pλp
′
λ = h1, h2p

′
λpλ = h2 (λ ∈ Λ, h1 ∈ H, h2 ∈ Hλ);(10)

such words exist by Proposition 2.1 (i). Without loss of generality assume
that Λ contains a distinguished element 1, and that

H1 = H, p1 ≡ p′1 ≡ ε,(11)

where ε denotes the empty word.
By Proposition 2.1 (i), (ii), for any s ∈ S and any λ ∈ Λ, either Hλs = Hµ

for some µ ∈ Λ, or Hλss1 ∩ R = ∅ for all s1 ∈ S. Therefore we can define
an action (λ, s) 7→ λ · s of S on the set Λ ∪ {0} (assuming 0 6∈ Λ) by

λ · s =
{
µ if λ, µ ∈ Λ and Hλs = Hµ,
0 otherwise.(12)

In the following theorem we give a generating set for Γ, resembling the
Schreier generating set for a subgroup of a group (see [17, Theorem 2.7]).
This result is not new – it is an immediate consequence of Schützenberger’s
original results [25, 26], and can also be found, in a slightly different notation
from ours, in [14, Corollary 2.3]. Nevertheless, we will give a proof of this
result, because it motivates the definition of a rewriting mapping to follow.

Proposition 4.1. With the above notation the Schützenberger group Γ of
H is generated by the set

X = {(pλap′λ·a)/σ : λ ∈ Λ, a ∈ A, λ · a 6= 0}.

Proof. First we claim that

Γ = {(pλsp′λ·s)/σ : λ ∈ Λ, s ∈ S, λ · s 6= 0}.

Denote the right hand side by Γ′. By using (10) and (12) we have

Hpλsp
′
λ·s = Hλsp

′
λ·s = Hλ·sp

′
λ·s = H.

Hence pλsp′λ·s ∈ T , so that Γ′ is well defined and Γ′ ⊆ Γ. Conversely, if
s/σ ∈ Γ, then from Hs = H it follows that 1 · s = 1, and hence s/σ =
(p1sp

′
1)/σ ∈ Γ′.

To complete the proof of the proposition we show that an arbitrary ele-
ment (pλsp′λ·s)/σ of Γ′ can be written as a product of elements of X. We
write s ≡ a1 . . . am (ai ∈ A) and proceed by induction on m. For m = 0
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there is nothing to prove, and for m = 1 we have an element of X. For
m > 1 write a = a1, t ≡ a2 . . . am; we have

(pλsp′λ·s)/σ
= (pλatp′λ·at)/σ
= (pλap′λ·apλ·atp

′
(λ·a)·t)/σ (by (10))

= ((pλap′λ·a)/σ)((pλ·atp′(λ·a)·t)/σ) (since pλap′λ·a, pλ·atp
′
(λ·a)·t ∈ T )

∈ 〈X〉, (by induction)

completing the proof. �

We are going to find a presentation for Γ in terms of the above generating
set X. To this end we introduce a new alphabet

B = {b(λ, a) : λ ∈ Λ, a ∈ A, λ · a 6= 0}.(13)

The letter b(λ, a) is thought of as representing the generator (pλap′λ·a)/σ.
To make this more formal we introduce a homomorphism

ψ : B∗ −→ A∗, b(λ, a) 7→ pλap
′
λ·a;(14)

we refer to ψ as the representation mapping.
Motivated by the proof of Proposition 4.1 we also define a mapping

φ : {(λ,w) ∈ Λ×A∗ : λ · w 6= 0} −→ B∗,

called the rewriting mapping, inductively by

φ(λ, ε) = ε, φ(λ, aw) = b(λ, a)φ(λ · a,w).(15)

The idea behind this definition is that φ simulates the process of rewriting
an element pλsp′λ·s into a product of generators from X as in the proof of
Proposition 4.1.

Since for each λ ∈ Λ, a ∈ A satisfying λ · a 6= 0 we have hpλap′λ·a ∈ H, it
follows that there is a word π(b(λ, a)) ∈ A∗ such that

hpλap
′
λ·a = π(b(λ, a))h.(16)

We extend the mapping b(λ, a) 7→ π(b(λ, a)) to a homomorphism π :
B∗ −→ A∗.

Recall that the relation R is a left congruence on S. Therefore there is a
natural left action (s,R′) 7→ s∗R′ of S on the set S/R of all R-classes given
by

s ∗R′ = R′′ ⇐⇒ sR′ ⊆ R′′ (s ∈ S, R′, R′′ ∈ S/R).(17)

Let {Ri : i ∈ I} be the inverse orbit of R under this action, i.e., let it be
the set {R′ ∈ S/R : (∃s ∈ S)(s ∗ R′ = R)}. Then the action of S on S/R
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induces a partial action on {Ri : i ∈ I}, which, in turn, translates into an
action (s, i) 7→ s ∗ i of S on the set I ∪ {0} (assuming 0 6∈ I) given by

s ∗ i =
{
j if i, j ∈ I and s ∗Ri = Rj ,
0 otherwise.(18)

For each i ∈ I choose a word ri ∈ A∗ representing an element of Ri.
Without loss of generality assume that I contains two distinguished elements
1 and ω, and that

1S ∈ R1, r1 ≡ ε, R = Rω, rω ≡ h.(19)

For each a ∈ A and each i ∈ I such that a ∗ i 6= 0 we have ari ∈ a ∗Ri =
Ra∗i by (17) and (18). Therefore we can choose words τ(a, i) ∈ A∗ such that
the relations

ari = ra∗iτ(a, i) (a ∈ A, i ∈ I)(20)

hold in S. We extend the mapping (a, i) 7→ τ(a, i) to a mapping

τ : {(w, i) ∈ A∗ × I : w ∗ i 6= 0} −→ A∗

inductively by

τ(ε, i) = ε, τ(wa, i) = τ(w, a ∗ i)τ(a, i).(21)

We can now formulate the result giving a presentation for Γ.

Theorem 4.2. With the above notation the Schützenberger group Γ of H
is defined by the presentation with generators B and relations

φ(λ, u) = φ(λ, v) (λ ∈ Λ, (u = v) ∈ R, λ · u 6= 0),(22)
φ(λ, τ(u, i)) = φ(λ, τ(v, i)) (λ ∈ Λ, i ∈ I, (u = v) ∈ R, Hλ ⊆ Sru∗i),(23)
φ(1, τ(π(b(λ, a)), ω)) = b(λ, a) (λ ∈ Λ, a ∈ A, λ · a 6= 0),(24)
φ(1, τ(h, 1)) = 1.(25)

The above presentation is finite, provided that A, R, Λ and I are all finite.
Therefore we have:

Corollary 4.3. Let S be a finitely presented monoid, and let H be an H-
class of S such that the following two conditions are satisfied:

(i) the R-class R of H has only finitely many H-classes; and
(ii) the inverse orbit of R under the left action of S on its R-classes has

only finitely many elements.
Then the Schützenberger group of H is finitely presented.

Bearing in mind Proposition 2.2, we obtain the direct part of Theorem
1.1 as a special case of Corollary 4.3:

Corollary 4.4. If S is a finitely presented monoid with finitely many left
and right ideals, then all Schützenberger groups of S are finitely presented.
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In conclusion to this section, we emphasise again the significant role of
the rewriting mapping φ in the above results. This notion is standard in
combinatorial group theory, in the context of Reidemeister-Schreier theory;
see [17]. It has proved equally important in the theory of monoid and
semigroup presentations, in which it occurs in a variety of contexts and
takes on a number of different forms; see [2, 5, 6, 7, 22, 23].

5. Proof of the rewriting theorem.

We prove Theorem 4.2 by showing that all the relations (22)-(25) hold in
the Schützenberger group Γ (Lemmas 5.5-5.8) and that any other relation
which holds in Γ is a consequence of these relations (Lemma 5.11). Since the
argument contains a considerable amount of technical detail, we break it up
into a number of lemmas. We use the notation introduced in the previous
section.

We begin by giving some properties of the rewriting mapping φ.

Lemma 5.1. (i) For every w1, w2 ∈ A∗ and every λ ∈ Λ such that λ ·
w1w2 6= 0 we have

φ(λ,w1w2) ≡ φ(λ,w1)φ(λ · w1, w2).

(ii) For every w ∈ A∗ and every λ ∈ Λ such that λ · w 6= 0 the relation

hψφ(λ,w) = hpλwp
′
λ·w

holds in S.
(iii) If w1, w2 ∈ A∗ are such that the relation w1 = w2 holds in S, and if

λ ∈ Λ is such that λ · w1 6= 0, then the relation φ(λ,w1) = φ(λ,w2) is
a consequence of the relations (22)-(25).

Proof. (i) The assertion is proved by a straightforward induction on the
length of w1, using (15).

(ii) This is proved by induction on the length of w, essentially repeating
the proof of Proposition 4.1.

(iii) If w1 = w2 in S then there is a sequence w1 ≡ α1, α2, . . . , αn ≡ w2

of words from A∗ in which each αi+1 is obtained from αi by one application
of a relation from R. If

αi ≡ βiuiγi, αi+1 ≡ βiviγi (i ∈ I, βi, γi ∈ A∗, (ui = vi) ∈ R)

then
φ(λ, αi) ≡ φ(λ, βi)φ(λ · βi, ui)φ(λ · βiui, γi) (part (i))

= φ(λ, βi)φ(λ · βi, vi)φ(λ · βiui, γi) (by (22))
≡ φ(λ, βi)φ(λ · βi, vi)φ(λ · βivi, γi) (since ui = vi in S)
≡ φ(λ, αi+1), (part (i))

a consequence of (22). Therefore φ(λ,w2) can be obtained from φ(λ,w1) by
using relations (22). �
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Next we prove two similar properties of the mapping τ .

Lemma 5.2. (i) For every w1, w2 ∈ A∗ and i ∈ I such that w1w2 ∗ i 6= 0
we have

τ(w1w2, i) ≡ τ(w1, w2 ∗ i)τ(w2, i).
(ii) For every w ∈ A∗ and i ∈ I such that w ∗ i 6= 0 the relation

wri = rw∗iτ(w, i)

holds in S.

Proof. (i) The assertion can be proved by a straightforward induction on
the length of w2, using (21).

(ii) We prove the statement by induction on the length of w. For |w| = 0
there is nothing to prove, and for |w| = 1 the statement is (20). Let |w| > 1
and write w ≡ w1w2 with |w1|, |w2| > 0. By using (i) and induction we have

wri ≡ w1w2ri = w1rw2∗iτ(w2, i) = rw1w2∗iτ(w1, w2 ∗ i)τ(w2, i) ≡ rw∗iτ(w, i),

as required. �

The following lemma describes the connection between the mappings ψ
and π.

Lemma 5.3. For every w ∈ B∗ the relation

hψ(w) = π(w)h

holds in S.

Proof. The assertion follows from (14), (16) and the fact that both ψ and π
are homomorphisms. �

Next we give two facts relating the mappings τ and π and the actions of
S on the sets I ∪ {0} and Λ ∪ {0}.

Lemma 5.4. For every w ∈ B∗ we have
(i) π(w) ∗ ω = ω; and
(ii) 1 · τ(π(w), ω) = 1.

Proof. By Proposition 4.1, Lemma 5.3, (14) and (19) we have

π(w)rω ≡ π(w)h = hψ(w) ∈ H ⊆ R = Rω,

proving (i). Now, by Lemma 5.2 (ii) and (19), we have

hτ(π(w), ω) ≡ rπ(w)∗ωτ(π(w), ω) = π(w)rω ≡ π(w)h = hψ(w) ∈ H = H1,

and (ii) follows. �
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We can now proceed to prove that the relations (22)-(25) hold in Γ. Re-
call that a generator b(λ, a) from B represents the element (pλap′λ·a)/σ =
ψ(b(λ, a))/σ of Γ. Therefore in order to verify that a relation α = β
(α, β ∈ B∗) holds in Γ one needs to verify that ψ(α)/σ = ψ(β)/σ, or,
equivalently, that hψ(α) = hψ(β) holds in S.

Lemma 5.5. For every relation (u = v) ∈ R and every λ ∈ Λ such that
λ · u 6= 0 the relation

φ(λ, u) = φ(λ, v)
holds in Γ.

Proof. Using Lemma 5.1 (ii) and the fact that u = v in S we have

hψφ(λ, u) = hpλup
′
λ·u = hpλvp

′
λ·v ≡ hψφ(λ, v),

as required. �

Lemma 5.6. For every relation (u = v) ∈ R and every λ ∈ Λ and i ∈ I
such that Hλ ⊆ Sru∗i the relation

φ(λ, τ(u, i)) = φ(λ, τ(v, i))

holds in Γ.

Proof. Since u = v holds in S it follows that uri = vri also holds in S and
that u ∗ i = v ∗ i. Therefore, by Lemma 5.2 (ii), the relation

ru∗iτ(u, i) = rv∗iτ(v, i)(26)

holds in S. Let q ∈ A∗ be such that hpλ = qru∗i. Premultiplying (26) by q
yields

hpλτ(u, i) = hpλτ(v, i);(27)

in particular λ · τ(u, i) = λ · τ(v, i). Now, using Lemma 5.1 and (27), we
have

hψφ(λ, τ(u, i)) = hpλτ(u, i)p′λ·τ(u,i) = hpλτ(v, i)p′λ·τ(v,i) = hψφ(λ, τ(v, i)),

as required. �

Lemma 5.7. For every a ∈ A and every λ ∈ Λ such that λ · a 6= 0 the
relation

φ(1, τ(π(b(λ, a)), ω)) = b(λ, a)
holds in Γ.

Proof. This time we have

hψφ(1, τ(π(b(λ, a)), ω))
= hτ(π(b(λ, a)), ω) (Lemmas 5.4 and 5.1 (ii) and (11))
= π(b(λ, a))rω (Lemma 5.2 (ii) and (19))
= hψ(b(λ, a)), (Lemma 5.3 and (19))

as required. �
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Lemma 5.8. The relation

φ(1, τ(h, 1)) = 1

holds in Γ.

Proof. From Lemma 5.2 (ii) and (19) we have

h ≡ hr1 = rh∗1τ(h, 1) ≡ rωτ(h, 1) ≡ hτ(h, 1),

and hence 1 · τ(h, 1) = 1. By Lemma 5.1 (ii) and (11) we now have

hψφ(1, τ(h, 1)) = hτ(h, 1) = h ≡ hψ(ε),

completing the proof of the lemma. �

We now turn to the second part of the proof of Theorem 4.2, that is to
show that every relation which holds in Γ is a consequence of the relations
(22)-(25). The technical part of the argument is contained in the following
two lemmas.

Lemma 5.9. For any word w ∈ B∗ the relation

φ(1, τ(π(w)h, 1)) = w

is a consequence of the relations (22)-(25).

Proof. We prove the lemma by induction on the length of w. If |w| = 0
then this is the relation (25), and if |w| = 1 this is one of the relations (24).
Assume that |w| > 1 and write w ≡ w1w2 with |w1|, |w2| > 0. Recall that π
is a homomorphism, so that π(w) ≡ π(w1)π(w2). Now we have

φ(1, τ(π(w)h, 1))
≡ φ(1, τ(π(w1), ω)τ(π(w2), ω)τ(h, 1)) (Lemmas 5.2 (i) and 5.4)
≡ φ(1, τ(π(w1), ω))φ(1, τ(π(w2), ω))φ(1, τ(h, 1))

(Lemmas 5.1 (i) and 5.4)
= φ(1, τ(π(w1), ω))φ(1, τ(h, 1))φ(1, τ(π(w2), ω))φ(1, τ(h, 1))

(by (25))
≡ φ(1, τ(π(w1)h, 1))φ(1, τ(π(w2)h, 1)) (Lemmas 5.1 (i), 5.2 (i), 5.4)
= w1w2 ≡ w, (induction)

as required. �

Lemma 5.10. Let α, β ∈ A∗ and (u = v) ∈ R be such that αuβ represents
an element of R. Then the relation

φ(1, τ(αuβ, 1)) = φ(1, τ(αvβ, 1))

is a consequence of the relations (22)-(25).

Proof. Since u = v in S it follows that uβ ∗ 1 = vβ ∗ 1, and hence

φ(1, τ(α, uβ ∗ 1)) ≡ φ(1, τ(α, vβ ∗ 1)).(28)
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Next we claim that

φ(1 · τ(α, uβ ∗ 1), τ(u, β ∗ 1)) = φ(1 · τ(α, vβ ∗ 1), τ(v, β ∗ 1))(29)

is one of the relations (23). Indeed, from αuβ ∈ R, uβ ∈ Ruβ∗1 and Propo-
sition 2.1 (iii), it follows that αruβ∗1 ∈ R. Next, by Lemma 5.2 (ii) and (19),
in S we have

αruβ∗1 = rαuβ∗1τ(α, uβ ∗ 1) ≡ rωτ(α, uβ ∗ 1) = hτ(α, uβ ∗ 1).

We conclude that 1 · τ(α, uβ ∗ 1) 6= 0 and αruβ∗1 ∈ H1·τ(α,uβ∗1) ∩ Sruβ∗1.
By the dual of Proposition 2.1 (v) we conclude that H1·τ(α,uβ∗1) ⊆ Sruβ∗1,
which is precisely the condition for (29) to be one of the relations (23).

Finally, by Lemma 5.2 (ii) and (19) in S we have

hτ(αu, β ∗ 1) ≡ rαuβ∗1τ(αu, β ∗ 1) = αurβ∗1 = αvrβ∗1 = hτ(αv, β ∗ 1).

Therefore 1 · τ(αu, β ∗ 1) = 1 · τ(αv, β ∗ 1), and hence

φ(1 · τ(αu, β ∗ 1), τ(β, 1)) ≡ φ(1 · τ(αv, β ∗ 1), τ(β, 1)).(30)

Using Lemmas 5.1 (i) and 5.2 (i) and (28), (29), (30) we obtain

φ(1, τ(αuβ, 1))
≡ φ(1, τ(α, uβ ∗ 1)τ(u, β ∗ 1)τ(β, 1))
≡ φ(1, τ(α, uβ ∗ 1))φ(1 · τ(α, uβ ∗ 1), τ(u, β ∗ 1))

·φ(1 · τ(α, uβ ∗ 1)τ(u, β ∗ 1), τ(β, 1))
≡ φ(1, τ(α, uβ ∗ 1))φ(1 · τ(α, uβ ∗ 1), τ(u, β ∗ 1))

·φ(1 · τ(αu, β ∗ 1), τ(β, 1))
= φ(1, τ(α, vβ ∗ 1))φ(1 · τ(α, vβ ∗ 1), τ(v, β ∗ 1))

·φ(1 · τ(αv, β ∗ 1), τ(β, 1))
≡ φ(1, τ(αvβ, 1)),

as a consequence of (22)-(25). �

Lemma 5.11. If w1, w2 ∈ B∗ are any two words such that w1 = w2 holds
in Γ then the relation w1 = w2 is a consequence of the relations (22)-(25).

Proof. The assumption that w1 = w2 holds in Γ is equivalent to the relation
hψ(w1) = hψ(w2) holding in S, which is, in turn, equivalent to the relation
π(w1)h = π(w2)h by Lemma 5.3. Therefore there is a sequence of words
π(w1)h ≡ γ1, γ2, . . . , γn ≡ π(w2)h from A∗ such that each γi+1 is obtained
from γi by one application of a relation from R. By Lemma 5.10 we have
that each relation φ(1, τ(γi, 1)) = φ(1, τ(γi+1, 1)) is a consequence of the
relations (22)-(25). Therefore the relation

φ(1, τ(π(w1)h, 1)) = φ(1, τ(π(w2)h, 1))(31)
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is a consequence of the relations (22)-(25). By Lemma 5.9 the relations

wj = φ(1, τ(π(wj)h, 1)) (j = 1, 2)(32)

are also consequences of the relations (22)-(25). Combining (31) and (32)
we conclude that w1 = w2 is a consequence of the relations (22)-(25). �

The proof of Theorem 4.2 is now complete.

6. Example: A non-finitely presented Schützenberger group.

Recall that if an H-class of a monoid S contains an idempotent then H is
a maximal subgroup of S and H ∼= Γ(H). Therefore, in this case, a presen-
tation for Γ(H) can be obtained from [24, Theorem 2.9]. In particular, by
[24, Corollary 2.11], we have that Γ(H) is finitely presented provided that
S is finitely presented and the R-class of H contains only finitely many H-
classes. Comparing this to Corollary 4.3, we see that, in this case, condition
(ii) is not needed. So one may ask whether the same is true in general. In
this section we present an example which answers this question in negative.
More precisely, we are going to construct a finitely presented monoid which
contains an H-class H which is the only H-class in its R-class, but Γ(H) is
not finitely presented. This difference in behaviour between the group and
non-group H-classes is relatively surprising, because Schützenberger groups
usually have the same properties as maximal subgroups. For instance, the
generation theorems for the two are essentially identical (compare Propo-
sition 4.1 and [24, Theorem 2.7]), leading to the same rewriting mapping
(compare (15) with [24, Equality (2)]), and also they satisfy the same global
results with respect to finite presentability (compare Theorem 1.1 and [24,
Theorem 4.1]). It is also worth pointing out that the presentation for Γ(H)
we have obtained here essentially contains the presentation for H from [24,
Theorem 2.9] – the relations (22), (24) and (25) correspond to [24, (3), (4),
(5)] respectively.

Let A be the alphabet

A = {a1, a2, a3, a4, a
′
1, a

′
2, a

′
3, a

′
4, b, c, d},

and consider the presentation

P = 〈A | aja′j = a′jaj = ε, a1a2 = a3a4, ajb = ba2
j , cb

2 = cb, ajd = daj ,

cbdaj = ajcbd (j = 1, 2, 3, 4)〉.
Let S be the monoid defined by P, and let H be the H-class of h ≡ cbd.
First we are going to show that H is the only H-class in its R-class, and
then we use our rewriting theorem (Theorem 4.2) to find a presentation for
Γ(H) and show that it is not finitely presented.

We begin by finding some properties of equal words in the semigroup S.
We denote by A0 the alphabet {aj , a′j : j = 1, 2, 3, 4}.
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Lemma 6.1. Let w1, w2 ∈ A∗ be arbitrary two words such that the relation
w1 = w2 holds in S. Then the following statements are true.

(i) If w1 contains a letter x ∈ {b, c, d} then w2 contains x as well.
(ii) The number of occurrences of each of the letters c and d is the same

for w1 and w2.
(iii) If w1 ≡ αxβ and w2 ≡ γyδ with α, γ ∈ (A0 ∪ {b})∗, x, y ∈ {c, d} and

β, δ ∈ A∗ then the number of occurrences of b in α is equal to the
number of occurrences of b in γ.

(iv) If w1 has an occurrence of b preceding an occurrence of c (i.e., if w1

has the form w1 ≡ αbβcγ, α, β, γ ∈ A∗) then so does w2.
(v) If w1 has an occurrence of d preceding an occurrence of c then so does

w2.
(vi) If w1 has an occurrence of d preceding an occurrence of b then so does

w2.

Proof. Each part can be proved by noting that the property in question is
invariant under the defining relations of S. �

Lemma 6.2. If w ∈ A∗ is such that cbdwRcbd in S, then w ∈ A∗0.

Proof. Let w1 ∈ A∗ be such that cbdww1 = cbd in S. By Lemma 6.1 (ii)
and (vi) it follows that the word ww1 contains no occurrence of either b, c
or d. Therefore w ∈ A∗0, as required. �

Lemma 6.3. H is the only H-class in its R-class.

Proof. Let s ∈ S be an arbitrary element which is R-equivalent to cbd. Then
s can be written as s = cbdw. By Lemma 6.2, it follows that w ∈ A∗0. By
using relations ajcbd = cbdaj , we see that s = wcbd, and, since all aj are
invertible, we conclude that sHcbd. �

In the notation of Sections 4 and 5 we have Λ = {1} and R = H. The
action of S on Λ ∪ {0} is given by

· aj a′j b c d

1 1 1 0 0 0
0 0 0 0 0 0

which follows immediately from Lemmas 6.2 and 6.3. The formal generators
(13) for Γ(H) are b(1, aj), b(1, a′j) (j = 1, 2, 3, 4). If we identify these symbols
with aj and a′j respectively, we obtain B = A0. The definitions (15) and
(16) of the mappings φ and π now simplify to

φ(w) ≡ π(w) ≡ w (w ∈ A∗0).(33)

Next we find the set I and the action of S on it.

Lemma 6.4. The words ε, bid (i ≥ 0), cbd, form a system of representatives
of R-classes in the inverse orbit of H.
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Proof. Recall that an R-class R′ is in the inverse orbit of H if and only if
there exists s ∈ S such that sR′ ⊆ H. Therefore, from cbdε = cb(bid) =
ε(cbd) = cbd, it follows that the R-class of each of the given words is indeed
in the inverse orbit of H. It remains to be proved that these are all the
R-classes in the inverse orbit, and that they are all distinct.

First of all, by Lemma 6.1 (i) there does not exist a word w ∈ A∗ such
that bidw = ε or cbdw = ε in S. Therefore ε is not R-equivalent to either
bid or cbd. Similarly, bid is not R-equivalent to cbd. Finally, if k 6= i, then
bid is not R-equivalent to bkd by Lemma 6.1 (iii).

Let w ∈ A∗ be any word whose R-class is in the inverse orbit of H. By
the dual of Proposition 2.1 (v) this means that there exists a word w1 ∈ A∗
such that w1w = cbd in S. By Lemma 6.1 (ii), w contains at most one
occurrence of the letter c, as well as at most one occurrence of the letter d.
Thus we can distinguish the following four cases:

Case 1: w contains no occurrences of c or d. By Lemma 6.1 (i), w1 must
contain occurrences of both c and d. Hence, by Lemma 6.1 (vi), w does not
contain any occurrences of b. In other words, w ∈ A∗0, and hence wRε.

Case 2: w contains one occurrence of c and no occurrences of d. By
Lemma 6.1 (i) w1 must contain an occurrence of d, but then we obtain a
contradiction with Lemma 6.1 (v). Therefore, this case never occurs.

Case 3: w contains one occurrence of d and no occurrences of c. By
Lemma 6.1 (vi), w cannot contain any occurrences of b after the only occur-
rence of d. Hence w can be written as

w ≡ α1bα2b . . . αmbαm+1dαm+2,

where m ≥ 0 and αk ∈ A∗0, k = 1, . . . ,m + 2. By using relations ajb = ba2
j

and ajd = daj we see that w is equal in S to a word of the form bmdα with
α ∈ A∗0, and hence wRbmd.

Case 4: w contains one occurrence of c and one occurrence of d. By
Lemma 6.1 (i), (iv), (v) and (vi) we have that w must have occurrences of b,
that all these occurrences must supercede the occurrence of c and also must
precede the occurrence of d. In other words, w has the form

w ≡ α1cα2bα3b . . . αmbαm+1dαm+2,

with m ≥ 2 and αk ∈ A∗0, k = 1, . . . ,m+2. By applying relations ajb = ba2
j ,

ajd = daj , cb2 = cb and ajcbd = cbdaj , we see that w is equal in S to a word
of the form cbdα, α ∈ A∗0, and hence wRcbd.

This completes the proof of the lemma. �

Following the notation from Sections 4 and 5, we let I = {1, 2, . . . }∪{ω},
and then we denote by R1 the R-class of r1 ≡ ε, by Ri (i = 2, 3, . . . ) the
R-class of ri ≡ bi−2d, and by Rω the R-class of rω ≡ cbd (i.e., H).

Lemma 6.5. The left action of S on I ∪ {0} is as given in Table 1.
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aj a′j b c d ∗
1 1 0 0 2 1
2 2 3 0 0 2
3 3 4 ω 0 3
4 4 5 ω 0 4
...

...
...

...
...

...
i i i+ 1 ω 0 i
...

...
...

...
...

...
ω ω 0 0 0 ω

Table 1. The left action of S on I ∪ {0}.

Proof. Since aj is a unit it follows that ajεRε, and hence aj ∗ 1 = 1. A
multiple application of the relation ajb = ba2

j yields ajbi = bia2i

j . Since we
also have ajd = daj it follows that aj(bi−2d) = bi−2da2i−2

j ∈ Ri, and so
aj ∗ i = i. Finally, from the relation ajcbd = cbdaj it follows that aj ∗ω = ω.
This completes the proof for the aj column of the table. The proof for the
a′j column is analogous.

Assume that b ∈ Ri for some i ∈ I. Since {Ri : i ∈ I} is the inverse orbit
of H, it follows that there exists a word w ∈ A∗ such that wb = cbd. Now w
must contain an occurrence of the letter d by Lemma 6.1 (i), and this yields
a contradiction with Lemma 6.1 (vi). Therefore b ∗ 1 = 0. Similarly from
Lemma 6.1 (iv) it follows that b(cbd) 6∈ Ri for all i ∈ I, and hence b ∗ω = 0.
Finally, we have b(bi−2d) ≡ bi−1d ∈ Ri+1, so that b ∗ i = i + 1, and this
completes the proof for the b column of the table.

For the c column we have c ∗ 1 = c ∗ 2 = c ∗ω = 0 by Lemma 6.1 (iii) and
(ii). We also have c ∗ i = ω (i ≥ 3) because cbi−2d = cbd ∈ Rω. Finally, for
the d column we have d ∗ 1 = 2, since dε ∈ R2, and d ∗ i = 0 for i ≥ 2 and
i = ω, by Lemma 6.1 (i). �

The mapping τ is defined by (21), once the values τ(x, i) (x ∈ A, i ∈ I,
x ∗ i 6= 0) are chosen in accord with (20). One possible choice is given
in Table 2. All the entries are easily verified by direct computation. For
example, the entry a2i−2

j in the position (aj , i) follows from

ajri ≡ ajbi−2d = bi−2a2i−2

j d = bi−2da2i−2

j ≡ ria2i−2

j .
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aj a′j b c d τ

aj a′j − − ε 1
aj a′j ε − − 2
a2
j (a′j)

2 ε ε − 3
a4
j (a′j)

4 ε ε − 4
...

...
...

...
...

...
a2i−2

j (a′j)
2i−2

ε ε − i
...

...
...

...
...

...
aj a′j − − − ω

Table 2. Values for τ(x, i) (x ∈ A, i ∈ I, x ∗ i 6= 0).

With (33) in mind, the presentation for Γ(H) given in Theorem 4.2 has
generators A0 and the relations

u = v ((u = v) ∈ R, 1 · u 6= 0),(34)
τ(u, i) = τ(v, i) ((u = v) ∈ R, i ∈ I, u ∗ i 6= 0),(35)
τ(x, ω) = x (x ∈ A0),(36)
τ(h, 1) = 1,(37)

where, as usual, R denotes the defining relations of S. The group (34)
clearly consists of the relations

aja
′
j = a′jaj = 1 (j = 1, 2, 3, 4), a1a2 = a3a4.(38)

Consider now the relations (35). Let u = v be the relation a1a2 = a3a4, and
let i ≥ 2 be arbitrary. By using (21) and Table 2 we have

τ(a1a2, i) ≡ τ(a1, a2 ∗ i)τ(a2, i) ≡ τ(a1, i)τ(a2, i) ≡ a2i−2

1 a2i−2

2

and, similarly, τ(a3a4, i) ≡ a2i−2

3 a2i−2

4 . Therefore we obtain the relations

a2i−2

1 a2i−2

2 = a2i−2

3 a2i−2

4 (i ≥ 2).(39)

In a similar way we may check that all the remaining defining relations are
identical. Therefore, as a group, Γ(H) is defined by (39). In particular,
Γ(H) is an amalgamated product of two free groups of rank two with a free
group of infinite rank amalgamated (see [17, Section 4.2]) and is not finitely
presented by [3]. To summarise:

Proposition 6.6. Let S be the semigroup defined by the presentation

P = 〈A | aja′j = a′jaj = ε, a1a2 = a3a4, ajb = ba2
j , ajd = daj , cb

2 = cb,

cbdaj = ajcbd (j = 1, 2, 3, 4)〉,
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and let H be the H-class of the element cbd. Then H is the only H-class in
its R-class. However, the Schützenberger group Γ(H) of H is defined by the
presentation

〈a1, a2, a3, a4 | a2i

1 a
2i

2 = a2i

3 a
2i

4 (i = 0, 1, 2, . . . )〉,
and is not finitely presented.
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Explicit realizations of certain representations of Sp(n, R) via the double
fibration transform 417

JODIE D. NOVAK

Real coboundaries for minimal Cantor systems 453
NICHOLAS S. ORMES

Application to global Bertini theorems 477
DR. LAILA E.M. RASHID

On finite presentability of monoids and their Schützenberger groups 487

0030-8730(200010)195:2;1-4

Pacific
JournalofM

athem
atics

2000
Vol.195,N

o.2

Pacific
Journal of
Mathematics

Volume 195 No. 2 October 2000


	Pacific Journal of Mathematics Vol 195 Issue 2, October 2000
	Copyright and Masthead
	Richard Friederich Arens (1919--2000)
	page 2

	K1 of separative exchange rings and C*-algebras with real rank zero
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

	K1 of separative exchange rings and C*-algebras with real rank zero
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

	On Stekloff eigenvalue problem
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20

	Biquantization of Lie bialgebras
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74

	On equivalence of two constructions of invariants of Lagrangian submanifolds
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46

	Explicit realizations of certain representations of Sp(n,R) via the double fibration transform
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36

	Real coboundaries for minimal Cantor systems
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24

	Application to global Bertini theorems
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

	On finite presentability of monoids and their Schützenberger groups
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24

	Author Index for Volume 195
	page 2

	Guidelines for Authors
	Table of Contents

