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RICHARD FRIEDERICH ARENS
(1919-2000)

Richard Friederich Arens, who made fundamental contributions to many
areas of mathematics and mathematical physics, and who was the managing
editor of the Pacific Journal of Mathematics for many years, passed away on
May 3, 2000. His many friends and colleagues from UCLA and the Pacific
Journal mourn his passing away, and remember him as a wonderful human
being, full of charm and wit, serene till the end, and above all, a great master
of mathematics.

Arens was born in Germany in 1919 and emigrated to the United States in
1925. He attended public schools in Pasadena, California and enrolled at the
University of California Los Angeles in 1937. In 1940 Arens won a full schol-
arship to Harvard University by placing first in the national William Lowell
Putnam mathematics competition for college students. After his Ph.D at
Harvard under Garrett Birkhoff, Arens went to the Institute for Advanced
Study at Princeton as an assistant to Marston Morse. In 1947 he joined
the department of mathematics at UCLA. He served with distinction till
his retirement in 1989. His work on functional analysis, on Banach algebras
and their deep connections with several complex variables, on relativistic
particle interactions, on geometric quantization, on Noether currents and
other differential geometric aspects of classical field theories, became widely
known and established him as a mathematician of the first rank.

He became a member of the editorial board of the Pacific Journal in 1965
and was formally named as the managing editor in 1973, a position he held
until 1979. It was during his long stewardship during the years 1965-79 that
the Pacific Journal grew out of its local roots and became an internationally
recognized mathematics journal of distinction and quality. This transforma-
tion of the Pacific Journal was almost entirely due to his broad vision and
the unlimited energy with which he looked after the Journal. Even after he
left the managing editorship his advice was always available for and eagerly
sought after by his successors. His way of running the Journal was relaxed,
but there was no compromise with quality. In his dealings with authors,
referees, editors and others connected with the operation of the Journal, he
was gentle, often humorous, never condescending, and above all, completely
human.

The range and depth of what he knew and understood, not only in math-
ematics but outside of it, were truly astonishing. Yet he wore his distinction
lightly. During the memorial service held at UCLA in June a friend remarked
to me that after we have said everything his personality still remains elusive.
He was truly sui generis.

V. S. Varadarajan
Managing Editor
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K; OF SEPARATIVE EXCHANGE RINGS AND
C*-ALGEBRAS WITH REAL RANK ZERO

P. ArA, K.R. GOODEARL, K.C. O’MEARA, AND R. RAPHAEL

For any (unital) exchange ring R whose finitely generated
projective modules satisfy the separative cancellation prop-
erty( ADPAZXAPBEBPB — A= B), it is shown
that all invertible square matrices over R can be diagonalized
by elementary row and column operations. Consequently, the
natural homomorphism GL;(R) — K;(R) is surjective. In
combination with a result of Huaxin Lin, it follows that for any
separative, unital C*-algebra A with real rank zero, the topo-
logical K;(A) is naturally isomorphic to the unitary group
U(A) modulo the connected component of the identity. This
verifies, in the separative case, a conjecture of Shuang Zhang.

Introduction.

The extent to which matrices over a ring R can be diagonalized is a measure
of the complexity of R, as well as a source of computational information
about R and its free modules. Two natural properties offer themselves as
“best possible”: (1) That an arbitrary matrix can be reduced to a diagonal
matrix on left and right multiplication by suitable invertible matrices, or
(2) that an arbitrary invertible matrix can be reduced to a diagonal one
by suitable elementary row and column operations. The second property
has an immediate K-theoretic benefit, in that it implies that the Whitehead
group K (R) is a natural quotient of the group of units of R. Our main goal
here is to prove property (2) for exchange rings (definition below) satisfy-
ing a cancellation condition which holds very widely (and conceivably for
all exchange rings). This theorem, when applied to C*-algebras with real
rank zero (also defined below), verifies a conjecture of Shuang Zhang in an
extensive class of C*-algebras.

The class of exchange rings has recently taken on a unifying role for certain
direct sum cancellation problems in ring theory and operator algebra. In
particular, exchange rings encompass both (von Neumann) regular rings
(this is an old and easy observation) on the one hand, and C*-algebras
with real rank zero [3, Theorem 7.2] on the other. Within this class, a
unifying theme for a number of open problems is the property of separative
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262 P. ARA, K.R. GOODEARL, K.C. O'MEARA, AND R. RAPHAEL

cancellation for finitely generated projective modules, namely the condition
ApA=AeB=B&®B — A=B

(see [2, 3]). For example, if R is a separative exchange ring, then the (K-
theoretic) stable rank of R can only be 1, 2, or oo [3, Theorem 3.3|, and every
regular square matrix over R is equivalent (via multiplication by invertible
matrices) to a diagonal matrix [2, Theorem 2.4]. We prove below that
invertible matrices over separative exchange rings can be diagonalized via
elementary row and column operations. Recently, Perera [25] has applied
our methods to the problem of lifting units modulo an ideal I in a ring R,
assuming that I satisfies non-unital versions of separativity and the exchange
property. In this case, a unit u of R/I lifts to a unit of R if and only if the
class of u in K;(R/I) is in the kernel of the connecting homomorphism
Ky(R/I) — Koy(I) [25, Theorem 3.1].

We defer discussion of the C*-algebraic aspects of our results to Section
3, except for the following remark. While earlier uses of the exchange prop-
erty and separativity for C*-algebras can easily be written out in standard
C*-theoretic terms — e.g., with direct sums and isomorphisms of finitely
generated projective modules replaced by orthogonal sums and Murray-von
Neumann equivalences of projections — our present methods do not lend
themselves to such a translation. In particular, although our main C*-
algebraic application may be stated as a diagonalization result for unitary
matrices, all of the steps in our proofs involve manipulations with non-
unitary matrices.

Throughout the paper, we consider only unital rings and C*-algebras. We
reserve the term elementary operation for the row (respectively, column) op-
eration in which a left (respectively, right) multiple of one row (respectively,
column) of a matrix is added to a different row (respectively, column). Sim-
ilarly, we reserve the name elementary matriz for a transvection I + re;;
where I is an identity matrix, e;; is one of the usual matrix units for some
1 # j, and r is an element of the base ring. Thus, as usual, an elementary row
(respectively, column) operation on a matrix A corresponds to multiplying
A on the left (respectively, right) by an elementary matrix.

Note that while odd permutation matrices usually cannot be expressed as
products of elementary matrices, certain signed permutation matrices can

be. For example,
0O 1| (1 1)}1 Off1 1
-1 0| |0 1] |-1 1|10 1}|°

In particular, the operation of replacing rows R; and R; (respectively,
columns C; and Cj) with the rows R; and —R; (respectively, the columns
C; and —C}) can be achieved as a sequence of three elementary operations.
Therefore any entry of a matrix can be moved to any other position by a
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sequence of elementary row and column operations, at the possible expense
of moving other entries and multiplying some by —1.

For any ring R, let E,(R) denote the subgroup of GL, (R) generated by
the elementary matrices. If GL,(R) is generated by E,(R) together with
the subgroup D, (R) of invertible diagonal matrices, then R is said to be
a GE,-ring [10, p. 5]. Further, R is a GE-ring provided it is a GE,-ring
for all n. If R is a GE,-ring then E,(R) is a normal subgroup of GL,(R),
and so GL,(R) = D,(R)E,(R) = E,(R)D,(R). Of course, this means that
every invertible n X n matrix over a GFE,-ring can be diagonalized using only
elementary row (respectively, column) operations.

It is easy to check that all rings with stable rank 1 are GFE-rings. Note
that if R is a GE-ring, then the natural homomorphism from GL(R), the
group of units of R, to K7 (R) is surjective. For comparison, we recall the
well-known fact that if R has stable rank d, then the natural map GL4(R) —
K1 (R) is surjective (e.g., [12, Theorem 40.42]).

1. Exchange rings and separativity.

Although our notions and results will be right-left symmetric, all modules
considered in this paper will be right modules. A module M over a ring
R has the finite exchange property [11] if for every R-module A and any
decompositions

A=MaeN=4,6---& A,
with M’ = M, there exist submodules A, C A; such that
A=M oA o oA,

(It follows from the modular law that A} must be a direct summand of A4;
for all 4.) It should be emphasized that the direct sums in this definition
are internal direct sums of submodules of A. One advantage of the result-
ing internal direct sum decompositions (as opposed to isomorphisms with
external direct sums) rests on the fact that direct summands with common
complements are isomorphic — e.g., N = ;" | A} above since each of these
summands of A has M’ as a complementary summand.

Following Warfield [29], we say that R is an exchange ring if Rp satisfies
the finite exchange property. By [29, Corollary 2], this definition is left-right
symmetric. If R is an exchange ring, then every finitely generated projective
R-module has the finite exchange property (by [11, Lemma 3.10], the finite
exchange property passes to finite direct sums and to direct summands), and
so the endomorphism ring of any such module is an exchange ring. Further,
idempotents lift modulo all ideals of an exchange ring [24, Theorem 2.1,
Corollary 1.3].
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The class of exchange rings is quite large. It includes all semiregular rings
(i.e., rings which modulo the Jacobson radical are (von Neumann) regular
and have idempotent-lifting), all m-regular rings, and more; see [1, 28, 29].
Further, all unital C*-algebras with real rank zero are exchange rings [3,
Theorem 7.2].

The following criterion for exchange rings was obtained independently by
Nicholson and the second author.

Lemma 1.1 ([17, p. 167]; [24, Theorem 2.1]). A ring R is an exchange
ring if and only if for every element a € R there exists an idempotent e € R
such that e € aR and 1 —e € (1 —a)R.

In the above lemma, it is equivalent to ask that for any aq,as € R with
a1R + as R = R, there exists an idempotent e € a1 R such that 1 — e € asR.
We shall also need the analogous property corresponding to sums of more
than two right ideals:

Lemma 1.2 ([24, Theorem 2.1, Proposition 1.11]). Let R be an exchange
ring. If I,..., I, are right ideals of R such that Iy + --- 4+ I, = R, then
there exist orthogonal idempotents ey, ...,e, € R such thate; +---+e, =1
and e; € I; for all j.

We reiterate that a ring R is separative provided the following cancellation
property holds for finitely generated projective right (equivalently, left) R-
modules A and B:

ApA=AeB=Be®B — A=B.

See [3] for the origin of this terminology and for a number of equivalent
conditions. We shall need the following one:

Lemma 1.3 (]2, Proposition 1.2]; [3, Lemma 2.1]). A ring R is separative
if and only if whenever A, B,C are finitely generated projective right R-
modules such that A C = B® C and C is isomorphic to direct summands
of both A™ and B™ for some n, then A = B.

Note, in particular, that if R is separative and A, B, C are finitely gen-
erated projective right R-modules, then we can certainly cancel C' from
A®C = B@C whenever A and B are generators in Mod-R.

Separativity seems to hold quite widely within the class of exchange rings;
for instance, it holds for all known classes of regular rings (cf. [3]). In fact,
the existence of non-separative exchange rings is an open problem.

It is clear from either form of the condition that a ring R is separative
in case the finitely generated projective R-modules enjoy cancellation with
respect to direct sums, which in turn holds in case R has stable rank 1. In
fact, for exchange rings, cancellation of finitely generated projective modules
is equivalent to stable rank 1 [31, Theorem 9]. Separativity, however, is much
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weaker than stable rank 1. For example, any regular right self-injective
ring is separative (e.g., [15, Theorem 10.34(b)]), but such rings can have
infinite stable rank — e.g., the ring of all linear transformations on an infinite
dimensional vector space.

2. K of separative exchange rings.

We use the notation A <% B to denote that a module A is isomorphic to a
direct summand of a module B.

Lemma 2.1. Let R be an exchange ring and eq,...,e, € R idempotents.
Then there exists an idempotent e € etR + --- 4+ e, R such that e1R < eR
and e;R <% eR for all i. In particular, ReR = Re1R + --- + Re, R.

Proof. By induction, it suffices to do the case n = 2. Now
R=e1R® (1 — 61)R =esR® (1 — 62)R

and e; R has the finite exchange property, so there exist decompositions
eoR=A® B and (1 —e3)R = A" & B’ such that R=e;R® A® A’. Then
we can choose an idempotent e € R such that eR = e R @ A. Obviously
e1R < eR, and since

etR2R/(AvA)Y~2Bop B,
we have eaR <% A @ e R = eR. O

Corollary 2.2. Let R be an exchange ring and a € R such that RaR = R.
Then there exist idempotents e € aR and f € Ra such that ReR = RfR =
R.

Proof. Write R = )" | xz;aR for some ;. By Lemma 1.2, there exist orthog-
onal idempotents ¢1,...,9, € R such that g1 +---+ ¢, =1 and ¢; € z;aR
for all i. Set g; = x;ay; with y; = y;g;. Then e; := ay;x; is an idempotent in
aR and ;R = g;R. By Lemma 2.1, there exists an idempotent e € > " | ¢;R
such that e;R <% e¢R for all i. Then e € aR and g; R <P eR for all i, so all
gi € ReR, and thus ReR = R.

The existence of f follows by symmetry. O

Lemma 2.3. Let R be any ring and A € GL,(R). If A has an idempotent
entry, then A can be reduced by elementary row and column operations to
the form

O =

)
*
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Proof. By elementary operations, we can move the idempotent entry, call it
e, into the 1,1 position. If n = 1, then e is invertible, so e = 1 and we are
done. Now assume that n > 1, and let

[e by by - by

be the first row of A. By elementary column operations, we can subtract eb;
from the i-th entry for each ¢ > 2. Thus, we can assume that bo,... b, €
(1 —e)R. Since A is invertible, eR + byR + - - - + b, R = R, and so it follows
that boR + -+ - + b, R = (1 — e)R. Hence, by elementary column operations
we can add 1 — e to the first entry. Now we have a 1 in the 1,1 position,
and the rest is routine. O

Since we shall need to perform a number of operations on the top rows
of invertible matrices, it is convenient to work with the rows alone. Recall
that any row [al ag - an] of an invertible matrix over a ring R is right
unimodular, that is, > " ; ;R = R. Elementary column operations apply
to such a row just by viewing it as a 1 X n matrix. Such operations amount
to multiplying the row on the right by an elementary matrix. Since our rings
need not be commutative, elementary column operations can only introduce
right-hand coefficients.

Lemma 2.4. Let R be an exchange ring and oo = [al ag - an] a right
unimodular row over R. Then « can be transformed by elementary column
operations to a row [bl by - bn] such that R = btR® --- ® b,R and

each b; € a;Ra;.

Proof. Since > ' ; a;R = R, Lemma 1.2 gives us orthogonal idempotents
€1,...,e, € R such that ey +---+ ¢, = 1 and e; € a;R for all i, say

e; = a;7;. By elementary column operations, we can subtract e;a; =
a;r;ap from the first entry of a for each ¢ > 2. This transforms a to
o = [elal as asg -+ an]. Note that e; € eja;R. Thus, we can
repeat the above process for each entry, and transform o' to the row
[elal eaty - enan], with entries e;a; € a;Ra;. Moreover, e;a; R = e; R,
and therefore R = @, e;a; R. O
Corollary 2.5. Let R be an exchange ring and o = [al as - an] a
right unimodular row over R, with n > 2. Then « can be transformed by
elementary column operations to a row [bl by --- bn] such that Rb1R =

R and b; € a;Ra; for all i > 2.

Proof. By Lemma 2.4, we may assume that R = @;"; a;R. It follows that
all a; € Rb; where by = a1+ - -+a, (multiply by on the left by the orthogonal
idempotents arising from the given decomposition of Rg). Thus Rb; R = R.
By elementary column operations, we can add as, ..., a, to the first entry
of a, and thus transform it to [bl as - an]. O
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Recall that an element z in a ring R is (von Neumann) reqular provided
there exists an element y € R such that zyx = x, equivalently, provided zR
is a direct summand of Rg. If y can be chosen to be a unit in R, then z is
said to be unit-reqular. A regular element x € R is unit-regular if and only
if R/xR = r.ann(x), where r.ann(z) denotes the right annihilator of x in R
(cf. [15, Proof of Theorem 4.1]).

Corollary 2.6. Let R be an exchange ring and o = [al ag - an] a
right unimodular row over R, with n > 2. Then « can be transformed by
elementary column operations to a row [01 cy - cn] such that co is a

reqular element, ca € Ras, and coR = (1 — g)R for an idempotent g with
RgR = R.

Proof. By Corollary 2.5, we may assume that Ra; R = R. By Corollary 2.2,
there exists an idempotent e € a1 R such that ReR = R. By elementary
column operations, we can subtract eas from the second entry of «, so there
is no loss of generality in assuming that a; € (1 — e)R. (At this stage,
our current as is only a left multiple of the original as. This is why the
conclusions of the lemma state ca € Rag rather than co € agRag.) Now
using Lemma 2.4, we can transform « to a row [cl cy v cn] such that
R=@; | ¢R and ¢z € agRas. Then ¢oR = (1 — g)R for some idempotent
g, and ¢y is regular. Moreover, (1 — g)R = coR C agsR C (1 — e)R and so
Re C Rg. Therefore RgR = R. U

Lemma 2.7. Let R be an exchange ring and A € GL,(R), with n > 2.
Then A can be transformed by elementary row and column operations to a
matriz whose 1,1 entry d is reqular, with dR = (1 —p)R and Rd = R(1 —q)
for some idempotents p, q such that RpR = RqR = R.

Proof. By Corollary 2.6, we can assume that the 1,2 entry of A is a regular
element ¢ such that ¢cR = (1 — g)R for some idempotent g with RgR = R.
With elementary operations, we can move ¢ to the 2,1 position.

Now apply the transpose of Corollary 2.6 to the first column of A. Thus,
A can be transformed by elementary row operations to a matrix whose 2, 1
entry is a regular element d such that d € ¢cR and Rd = R(1 — q) for some
idempotent ¢ with RgR = R. Since d is regular, dR = (1 — p)R for some
idempotent p. Then (1—p)R C (1—g)R, whence Rg C Rp and so RpR = R.

Finally, use elementary operations to move d to the 1,1 position. O

Theorem 2.8. If R is a separative exchange ring, then R is a GE-ring,
and so the natural homomorphism GL1(R) — Ki(R) is surjective.

Proof. We need to show that R is a GFE,-ring for all n. This is trivial for
n = 1, hence we assume, by induction, that n > 2 and R is a GFE,,_1-ring.
Let A be an arbitrary invertible n X n matrix over R.
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By Lemma 2.7, we may assume that the 1,1 entry d of A is regular, with
dR = (1 — p)R and Rd = R(1 — q) for some idempotents p,q such that
RpR = RqR = R. We claim that d is unit-regular. Note that because
RpR = RqR = R, the projective modules pR and ¢R are generators.

Now R = r.ann(d) ® B = dR & C for some B,C, and we have to prove
that r.ann(d) = C. Since B = dB = dR, we have r.ann(d) ® B = C & B.
From Rd = R(1 — q), we get r.ann(d) = ¢R and so r.ann(d) is a generator.
Since C' = R/dR = pR, we see that C is a generator too. By Lemma 1.3,
r.ann(d) & C as desired.

The unit-regularity of d gives d = ue for some unit v and idempotent e.
Set

w0 - 0
01 -~ 0
U= : ;
00 -+ 1

then the matrix U !4 has an idempotent entry. By Lemma 2.3, there exist
E,F € E,(R) such that

L 1o
EU-'AF = [o A,}
where A’ € GL,_1(R). By our induction hypothesis, A’€ E,,_1(R)D,_1(R).
It follows that

A € Du(R)En(R)Dn(R)En(R),

and therefore we have shown that R is a GE,-ring. This establishes the
induction step and completes the proof. O

Remarks 2.9. (a) Observe that the proof of Theorem 2.8 did not use the
full force of separativity, only the cancellation property (A& C =2 B&C —
A = B) for finitely generated projective R-modules A, B,C with A and B
generators.

(b) Theorem 2.8 includes, in particular, the result of Menal and Moncasi
that every factor ring of a right self-injective ring is a G E-ring [22, Theorem
2.2]. To make the connection explicit, recall that right self-injective rings
are semiregular (e.g., [13, Theorem 2.16, Lemma 2.18]) and hence exchange;
thus, all their factor rings are exchange rings. Further, any right self-injective
ring is separative (e.g., [14, Theorem 3]). It follows that factor rings of right
self-injective rings are separative [3, Theorem 4.2].

(c) As a special case of Theorem 2.8, we obtain that any separative regular
ring is a GE-ring, which gives a partial affirmative answer to a question of
Moncasi [23, Questié 5.
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(d) In the situation of Theorem 2.8, one naturally asks for a description
of the kernel of the epimorphism GL;(R) — K;(R). This has been an-
swered for unit-regular rings and regular right-self-injective rings by Menal
and Moncasi [22, Theorems 1.6, 2.6], and for exchange rings with primitive
factors artinian by Chen and Li [9, Theorem 3|. In all the above cases,
Ki(R) & GL1(R)* provided } € R [22, Theorems 1.7, 2.6]; [9, Corollary
7). Further, K;(R) & GL1(R)* when R is either a C*-algebra with unitary
1-stable range or an AW*-algebra [22, Theorem 1.3, Corollary 2.11] (here
the algebraic K is meant). The unit-regular and AW* results correct and
extend earlier work of Handelman [18, Theorem 2.4]; [19, Theorem 7].

Theorem 2.10. If R is a separative exchange ring and A is a
(von Neumann) regular n X n matriz over R, then A can be diagonalized
using elementary row and column operations.

Proof. By [2, Theorem 2.4], there exist P,Q € GL,(R) such that PAQ is
diagonal. By Theorem 2.8, P = U;V; and Q = V,Us, where Uy, Us € D,,(R)
and Vi,Va € E,(R). So V1AV, is a diagonal matrix obtained from A by

elementary row and column operations. ([

Remark 2.11. When applying Theorem 2.10, note the distinction between
invertible matrices and general matrices. An invertible matrix over a separ-
ative exchange ring can be diagonalized from either side (by Theorem 2.8),
whereas the diagonalization of a general regular matrix sometimes requires
elementary operations on both the rows and the columns. For example, the
2 x 2 matrix [} {] over a field cannot be diagonalized using only elementary
row operations.

Example 2.12. Non-regular matrices over separative exchange rings need
not be diagonalizable by elementary operations, even over finite dimensional
algebras. For example, choose a field F' and let

R= F[l‘1,$2,$3,$4]/<x1, .%'2,.%'3,.’,174)2.

Then R has a basis 1, a1, a2, a3, as such that a;a; = 0 for all 4, j. Since R is
clearly semiregular, it is an exchange ring; separativity is an easy exercise.
In fact, since R is artinian, it has stable rank 1. Recall that this also implies
that R is a GE-ring. Observe that every element of R is a sum of a scalar
plus a nilpotent element, and that the product of any two nilpotent elements
of R is zero.

Now consider the matrix A = [g} g2 ], whose entries are linearly indepen-
dent nilpotent elements of R. We claim that any sequence of elementary
row or column operations on A can only produce a matrix whose entries are
linearly independent nilpotent elements. For instance, consider a product

L bf|cn cz| _ |c1n+bear ¢z + be
0 1 Co1 €29 C21 C22
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where c11, c12, c21, co2 are linearly independent nilpotent elements. Then
b = B+mn for some B € F and some nilpotent element n, whence bcyy = (et
and bcoo = PBeoo, and so the entries in the matrix product above are linearly
independent (they are clearly nilpotent). The same thing happens with
other elementary operations, establishing the claim.

Therefore no sequence of elementary operations on A can produce a ma-
trix with a zero entry. In particular, A cannot be diagonalized by elementary
operations. Since R is a GE-ring, it follows that A cannot be diagonalized
by invertible matrices either, i.e., there do not exist X,Y € GLy(R) such
that X AY is diagonal. Thus the first of the natural properties discussed in
the introduction is not implied by the second.

3. K of separative C*-algebras with real rank zero.

In connection with his work on the structure of multiplier algebras (e.g.,
[32, 33, 34]), Shuang Zhang has conjectured [unpublished] that if A is any
unital C*-algebra with real rank zero, the topological Kj(A) is isomorphic
to the unitary group U(A) modulo the connected component of the identity,
U(A)°. We confirm this conjecture in case A is separative, which at the same
time provides a unified approach to all known cases of the conjecture. The
main interest of Zhang’s conjecture is in the case when the stable rank of A
is greater than 1, since it has long been known that K}°°(A) = U(A)/U(A)°
for all unital C*-algebras A with stable rank 1 (e.g., this is equivalent to
[26, Theorem 2.10]).

We consider only unital, complex C*-algebras in this section, and we
refer the reader to [4, 30] for background and notation for C*-algebras.
In particular, we use ~ and < to denote Murray-von Neumann equivalence
and subequivalence of projections, and we write My (A) for the (non-unital)
algebra of w X w matrices with only finitely many nonzero entries from an
algebra A. We write U(A) for the unitary group of a unital C*-algebra A,
and U(A)° for the connected component of the identity in U(A).

In the theory of operator algebras, it is customary to write K;(A) for the
topological Kj-group of A (e.g., [4, Definition 8.1.1]; [30, Definition 7.1.1]),
and we shall follow that practice here. Thus, K1(A) = GLxo(A)/GLoc(A)°.
We then use the notation Kflg(A) to denote the algebraic Kj-group of
A. Since K™8(A) is the abelianization of GLo(A) (e.g., [27, Proposi-
tion 2.1.4, Definition 2.1.5]) and K;(A) is abelian (e.g., [4, Proposition
8.1.3]; [30, Proposition 7.1.2]), there is a natural surjective homomorphism
K™8(A) — Ki(A). Finally, following Brown [5, p. 116], we say that A
has Kj-surjectivity (respectively, Kj-injectivity) provided the natural ho-
momorphism U(A)/U(A)° — K;i(A) is surjective (respectively, injective).
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The concept of real rank zero for a C*-algebra A has a number of equiva-
lent characterizations (see [6]). One is the requirement that each self-adjoint
element of A can be approximated arbitrarily closely by real linear combi-
nations of orthogonal projections. (This is usually phrased as saying that
the set of self-adjoint elements of A with finite spectrum is dense in the set
of all self-adjoint elements.) It was proved in [3, Theorem 7.2] that A has
real rank zero if and only if it is an exchange ring. Hence, the C*-algebras
with real rank zero are exactly the C*-algebras to which our results above
can be applied.

Given a C*-algebra A, all idempotents in matrix algebras M, (A) are
equivalent to projections (e.g.,[4, Proposition 4.6.2];[27, Proposition 6.3.12)).
Hence, A is separative if and only if

pOp~pDqg~qDyq == pP~q

for projections p, ¢ € Mo (A). An equivalent condition (analogous to Lemma
1.3) is that p@®r ~ g®r = p ~ q whenever r < n.p and r < n.q for some
n. Separativity in A is equivalent to the requirement that all matrix algebras
M, (A) satisfy the weak cancellation introduced by Brown and Pedersen [5,
p. 116]; [7, p. 114]. They have shown that every extremally rich C*-algebra
(see [7, p. 125]) with real rank zero is separative ([8], announced in [5, p.
116]). We would like to emphasize the question of whether non-separative
exchange rings exist by focusing on the C* case:

Problem. Is every C*-algebra with real rank zero separative?

By combining Theorem 2.8 with a result of Lin, we obtain the following
theorem.

Theorem 3.1. If A is a separative, unital C*-algebra with real rank zero,
then the natural map U(A)/U(A)° — Ki(A) is an isomorphism.

Proof. Lin proved Kj-injectivity for C*-algebras with real rank zero in [20,
Lemma 2.2]. Hence, it only remains to show K;j-surjectivity. It is a standard
fact that U(A) and GL1(A) have the same image in K;(A) (e.g., [4, pp. 66,
67] or [30, Proof of Proposition 4.2.6]). Now the natural map GL;(A) —
K1 (A) factors as the composition of natural maps GLi(A) — K&(4) —
K1 (A), the second of which is surjective. Since A has real rank zero, it is an
exchange ring, and so the map GLi(A) — Kflg(A) is surjective by Theorem
2.8. Therefore the image of U(A) in K;(A) is all of K1(A), as desired. O
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Brown and Pedersen have proved that every separative, extremally rich
C*-algebra has Kj-surjectivity ([8], announced in [5, p. 116]; [7, p. 114]).
Since there are C*-algebras with real rank zero that are not extremally rich
[5, Example, p. 117], Theorem 3.1 can be viewed as a partial extension of
the Brown-Pedersen result within the class of C*-algebras with real rank
Zero.

We thank the referee for the following remark.

Remark 3.2. While Theorem 3.1 is neither unexpected nor new in the case
of stable rank 1 (cf. the result of Rieffel cited above), it is perhaps surprising
that there are many C*-algebras of real rank zero and stable rank 2 to which
the theorem applies. To see this, consider C*-algebra extensions

0—-1—-A—-B—0

in which I and B have real rank zero and A is unital. By theorems of
Zhang ([35, Lemma 2.4]; cf. [6, Theorem 3.14]) and Lin and Rgrdam [21,
Proposition 4], A has real rank zero if and only if projections lift from B to
A, if and only if the connecting map Ko(B) — Ki(I) in topological K-theory
vanishes. In this case, by [3, Theorem 7.5], A will be separative provided I
and B are both separative, and in particular if I and B have stable rank 1.
However, by [21, Proposition 4], if I and B have stable rank 1, then A will
have stable rank 2 provided the connecting map K;(B) — Ky(I) does not
vanish. It is easy to find specific extensions satisfying the above conditions,
such as the examples analyzed in [21, End of Section 1] or [16].

We conclude with an application of Theorem 3.1 that extends an argument
of Brown [5, Theorem 1], relating homotopy and unitary equivalence of
projections, to a wider context within real rank zero. Projections p and ¢
in a C*-algebra A are unitarily equivalent provided there exists a unitary
element u € A such that upu* = ¢q; they are homotopic provided there is
a continuous path f : [0,1] — {projections in A} such that f(0) = p and
f(1) = ¢q. Tt is a standard fact that homotopic projections are unitarily
equivalent (e.g., [4, Propositions 4.3.3, 4.6.5]; [30, Proposition 5.2.10]).

Theorem 3.3. Let A be a separative, unital C*-algebra with real rank zero,
let p,q € A be projections, and let B = ApA+ C-1. Then p and q are
homotopic in A if and only if ¢ € B and p, q are unitarily equivalent in B.

Proof. If p and ¢ are homotopic in A, they are connected by a path of
projections within A. Each projection along this path is homotopic to p and
hence is unitarily equivalent to p. Thus, these projections all lie in ApA. In
particular, ¢ € B, and p and ¢ are homotopic in B. Consequently, p and ¢
must be unitarily equivalent in B.

Conversely, assume that ¢ € B and p, g are unitarily equivalent in B. By
[6, Corollary 2.8, Theorem 2.5], the closed ideal I = ApA has real rank zero
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(as a non-unital C*-algebra), and so the unital C*-algebras B and pIp have
real rank zero. We do not need separativity for B, just Ki-injectivity (by
Lin’s result). Since I is an ideal of A, any projections in My (I) which are
(Murray-von Neumann) equivalent in My (A) are also equivalent in Mo, (1)
(any implementing partial isometry necessarily lies in My (I)). Hence, the
separativity of A implies that I is separative, and so plp is separative.
Therefore, by Theorem 3.1, pIp has Ki-surjectivity.

With the above information in hand, Brown’s proof [5, Theorem 1] carries
through in the present setting. We sketch the details for the reader’s conve-
nience. By hypothesis, ¢ = upu™* for some unitary u € U(B); let a denote the
image of u in K1(B). Now K;(B) = K (I™) = Ki(I), and because pIp is a
full hereditary sub-C*-algebra of I, the natural map K;(pIp) — Ki(I) is an
isomorphism [5, Remark, p. 117]. Thus « is the image of some 3 € K1 (pIp).
Since pIp has Kj-surjectivity, 5 is the image of some unitary vy € U(pIp).
Let v = v1 +1 —p and w = wv*. Then w is a unitary in B such that
g = wpw*, and the image of w in K;(B) is zero. Since B has Kj-injectivity,
w € U(B)°, from which it follows that p and ¢ are homotopic. O
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K; OF SEPARATIVE EXCHANGE RINGS AND
C*-ALGEBRAS WITH REAL RANK ZERO

P. ArA, K.R. GOODEARL, K.C. O’MEARA, AND R. RAPHAEL

For any (unital) exchange ring R whose finitely generated
projective modules satisfy the separative cancellation prop-
erty( ADPAZXAPBEBPB — A= B), it is shown
that all invertible square matrices over R can be diagonalized
by elementary row and column operations. Consequently, the
natural homomorphism GL;(R) — K;(R) is surjective. In
combination with a result of Huaxin Lin, it follows that for any
separative, unital C*-algebra A with real rank zero, the topo-
logical K;(A) is naturally isomorphic to the unitary group
U(A) modulo the connected component of the identity. This
verifies, in the separative case, a conjecture of Shuang Zhang.

Introduction.

The extent to which matrices over a ring R can be diagonalized is a measure
of the complexity of R, as well as a source of computational information
about R and its free modules. Two natural properties offer themselves as
“best possible”: (1) That an arbitrary matrix can be reduced to a diagonal
matrix on left and right multiplication by suitable invertible matrices, or
(2) that an arbitrary invertible matrix can be reduced to a diagonal one
by suitable elementary row and column operations. The second property
has an immediate K-theoretic benefit, in that it implies that the Whitehead
group K (R) is a natural quotient of the group of units of R. Our main goal
here is to prove property (2) for exchange rings (definition below) satisfy-
ing a cancellation condition which holds very widely (and conceivably for
all exchange rings). This theorem, when applied to C*-algebras with real
rank zero (also defined below), verifies a conjecture of Shuang Zhang in an
extensive class of C*-algebras.

The class of exchange rings has recently taken on a unifying role for certain
direct sum cancellation problems in ring theory and operator algebra. In
particular, exchange rings encompass both (von Neumann) regular rings
(this is an old and easy observation) on the one hand, and C*-algebras
with real rank zero [3, Theorem 7.2] on the other. Within this class, a
unifying theme for a number of open problems is the property of separative

261
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cancellation for finitely generated projective modules, namely the condition
ApA=AeB=B&®B — A=B

(see [2, 3]). For example, if R is a separative exchange ring, then the (K-
theoretic) stable rank of R can only be 1, 2, or oo [3, Theorem 3.3|, and every
regular square matrix over R is equivalent (via multiplication by invertible
matrices) to a diagonal matrix [2, Theorem 2.4]. We prove below that
invertible matrices over separative exchange rings can be diagonalized via
elementary row and column operations. Recently, Perera [25] has applied
our methods to the problem of lifting units modulo an ideal I in a ring R,
assuming that I satisfies non-unital versions of separativity and the exchange
property. In this case, a unit u of R/I lifts to a unit of R if and only if the
class of u in K;(R/I) is in the kernel of the connecting homomorphism
Ky(R/I) — Koy(I) [25, Theorem 3.1].

We defer discussion of the C*-algebraic aspects of our results to Section
3, except for the following remark. While earlier uses of the exchange prop-
erty and separativity for C*-algebras can easily be written out in standard
C*-theoretic terms — e.g., with direct sums and isomorphisms of finitely
generated projective modules replaced by orthogonal sums and Murray-von
Neumann equivalences of projections — our present methods do not lend
themselves to such a translation. In particular, although our main C*-
algebraic application may be stated as a diagonalization result for unitary
matrices, all of the steps in our proofs involve manipulations with non-
unitary matrices.

Throughout the paper, we consider only unital rings and C*-algebras. We
reserve the term elementary operation for the row (respectively, column) op-
eration in which a left (respectively, right) multiple of one row (respectively,
column) of a matrix is added to a different row (respectively, column). Sim-
ilarly, we reserve the name elementary matriz for a transvection I + re;;
where I is an identity matrix, e;; is one of the usual matrix units for some
1 # j, and r is an element of the base ring. Thus, as usual, an elementary row
(respectively, column) operation on a matrix A corresponds to multiplying
A on the left (respectively, right) by an elementary matrix.

Note that while odd permutation matrices usually cannot be expressed as
products of elementary matrices, certain signed permutation matrices can

be. For example,
0O 1| (1 1)}1 Off1 1
-1 0| |0 1] |-1 1|10 1}|°

In particular, the operation of replacing rows R; and R; (respectively,
columns C; and Cj) with the rows R; and —R; (respectively, the columns
C; and —C}) can be achieved as a sequence of three elementary operations.
Therefore any entry of a matrix can be moved to any other position by a



Ki; OF SEPARATIVE RINGS AND C*-ALGEBRAS 263

sequence of elementary row and column operations, at the possible expense
of moving other entries and multiplying some by —1.

For any ring R, let E,(R) denote the subgroup of GL, (R) generated by
the elementary matrices. If GL,(R) is generated by E,(R) together with
the subgroup D, (R) of invertible diagonal matrices, then R is said to be
a GE,-ring [10, p. 5]. Further, R is a GE-ring provided it is a GE,-ring
for all n. If R is a GE,-ring then E,(R) is a normal subgroup of GL,(R),
and so GL,(R) = D,(R)E,(R) = E,(R)D,(R). Of course, this means that
every invertible n X n matrix over a GFE,-ring can be diagonalized using only
elementary row (respectively, column) operations.

It is easy to check that all rings with stable rank 1 are GFE-rings. Note
that if R is a GE-ring, then the natural homomorphism from GL(R), the
group of units of R, to K7 (R) is surjective. For comparison, we recall the
well-known fact that if R has stable rank d, then the natural map GL4(R) —
K1 (R) is surjective (e.g., [12, Theorem 40.42]).

1. Exchange rings and separativity.

Although our notions and results will be right-left symmetric, all modules
considered in this paper will be right modules. A module M over a ring
R has the finite exchange property [11] if for every R-module A and any
decompositions

A=MaeN=4,6---& A,
with M’ = M, there exist submodules A, C A; such that
A=M oA o oA,

(It follows from the modular law that A} must be a direct summand of A4;
for all 4.) It should be emphasized that the direct sums in this definition
are internal direct sums of submodules of A. One advantage of the result-
ing internal direct sum decompositions (as opposed to isomorphisms with
external direct sums) rests on the fact that direct summands with common
complements are isomorphic — e.g., N = ;" | A} above since each of these
summands of A has M’ as a complementary summand.

Following Warfield [29], we say that R is an exchange ring if Rp satisfies
the finite exchange property. By [29, Corollary 2], this definition is left-right
symmetric. If R is an exchange ring, then every finitely generated projective
R-module has the finite exchange property (by [11, Lemma 3.10], the finite
exchange property passes to finite direct sums and to direct summands), and
so the endomorphism ring of any such module is an exchange ring. Further,
idempotents lift modulo all ideals of an exchange ring [24, Theorem 2.1,
Corollary 1.3].
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The class of exchange rings is quite large. It includes all semiregular rings
(i.e., rings which modulo the Jacobson radical are (von Neumann) regular
and have idempotent-lifting), all m-regular rings, and more; see [1, 28, 29].
Further, all unital C*-algebras with real rank zero are exchange rings [3,
Theorem 7.2].

The following criterion for exchange rings was obtained independently by
Nicholson and the second author.

Lemma 1.1 ([17, p. 167]; [24, Theorem 2.1]). A ring R is an exchange
ring if and only if for every element a € R there exists an idempotent e € R
such that e € aR and 1 —e € (1 —a)R.

In the above lemma, it is equivalent to ask that for any aq,as € R with
a1R + as R = R, there exists an idempotent e € a1 R such that 1 — e € asR.
We shall also need the analogous property corresponding to sums of more
than two right ideals:

Lemma 1.2 ([24, Theorem 2.1, Proposition 1.11]). Let R be an exchange
ring. If I,..., I, are right ideals of R such that Iy + --- 4+ I, = R, then
there exist orthogonal idempotents ey, ...,e, € R such thate; +---+e, =1
and e; € I; for all j.

We reiterate that a ring R is separative provided the following cancellation
property holds for finitely generated projective right (equivalently, left) R-
modules A and B:

ApA=AeB=Be®B — A=B.

See [3] for the origin of this terminology and for a number of equivalent
conditions. We shall need the following one:

Lemma 1.3 (]2, Proposition 1.2]; [3, Lemma 2.1]). A ring R is separative
if and only if whenever A, B,C are finitely generated projective right R-
modules such that A C = B® C and C is isomorphic to direct summands
of both A™ and B™ for some n, then A = B.

Note, in particular, that if R is separative and A, B, C are finitely gen-
erated projective right R-modules, then we can certainly cancel C' from
A®C = B@C whenever A and B are generators in Mod-R.

Separativity seems to hold quite widely within the class of exchange rings;
for instance, it holds for all known classes of regular rings (cf. [3]). In fact,
the existence of non-separative exchange rings is an open problem.

It is clear from either form of the condition that a ring R is separative
in case the finitely generated projective R-modules enjoy cancellation with
respect to direct sums, which in turn holds in case R has stable rank 1. In
fact, for exchange rings, cancellation of finitely generated projective modules
is equivalent to stable rank 1 [31, Theorem 9]. Separativity, however, is much
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weaker than stable rank 1. For example, any regular right self-injective
ring is separative (e.g., [15, Theorem 10.34(b)]), but such rings can have
infinite stable rank — e.g., the ring of all linear transformations on an infinite
dimensional vector space.

2. K of separative exchange rings.

We use the notation A <% B to denote that a module A is isomorphic to a
direct summand of a module B.

Lemma 2.1. Let R be an exchange ring and eq,...,e, € R idempotents.
Then there exists an idempotent e € etR + --- 4+ e, R such that e1R < eR
and e;R <% eR for all i. In particular, ReR = Re1R + --- + Re, R.

Proof. By induction, it suffices to do the case n = 2. Now
R=e1R® (1 — 61)R =esR® (1 — 62)R

and e; R has the finite exchange property, so there exist decompositions
eoR=A® B and (1 —e3)R = A" & B’ such that R=e;R® A® A’. Then
we can choose an idempotent e € R such that eR = e R @ A. Obviously
e1R < eR, and since

etR2R/(AvA)Y~2Bop B,
we have eaR <% A @ e R = eR. O

Corollary 2.2. Let R be an exchange ring and a € R such that RaR = R.
Then there exist idempotents e € aR and f € Ra such that ReR = RfR =
R.

Proof. Write R = )" | xz;aR for some ;. By Lemma 1.2, there exist orthog-
onal idempotents ¢1,...,9, € R such that g1 +---+ ¢, =1 and ¢; € z;aR
for all i. Set g; = x;ay; with y; = y;g;. Then e; := ay;x; is an idempotent in
aR and ;R = g;R. By Lemma 2.1, there exists an idempotent e € > " | ¢;R
such that e;R <% e¢R for all i. Then e € aR and g; R <P eR for all i, so all
gi € ReR, and thus ReR = R.

The existence of f follows by symmetry. O

Lemma 2.3. Let R be any ring and A € GL,(R). If A has an idempotent
entry, then A can be reduced by elementary row and column operations to
the form

O =

)
*
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Proof. By elementary operations, we can move the idempotent entry, call it
e, into the 1,1 position. If n = 1, then e is invertible, so e = 1 and we are
done. Now assume that n > 1, and let

[e by by - by

be the first row of A. By elementary column operations, we can subtract eb;
from the i-th entry for each ¢ > 2. Thus, we can assume that bo,... b, €
(1 —e)R. Since A is invertible, eR + byR + - - - + b, R = R, and so it follows
that boR + -+ - + b, R = (1 — e)R. Hence, by elementary column operations
we can add 1 — e to the first entry. Now we have a 1 in the 1,1 position,
and the rest is routine. O

Since we shall need to perform a number of operations on the top rows
of invertible matrices, it is convenient to work with the rows alone. Recall
that any row [al ag - an] of an invertible matrix over a ring R is right
unimodular, that is, > " ; ;R = R. Elementary column operations apply
to such a row just by viewing it as a 1 X n matrix. Such operations amount
to multiplying the row on the right by an elementary matrix. Since our rings
need not be commutative, elementary column operations can only introduce
right-hand coefficients.

Lemma 2.4. Let R be an exchange ring and oo = [al ag - an] a right
unimodular row over R. Then « can be transformed by elementary column
operations to a row [bl by - bn] such that R = btR® --- ® b,R and

each b; € a;Ra;.

Proof. Since > ' ; a;R = R, Lemma 1.2 gives us orthogonal idempotents
€1,...,e, € R such that ey +---+ ¢, = 1 and e; € a;R for all i, say

e; = a;7;. By elementary column operations, we can subtract e;a; =
a;r;ap from the first entry of a for each ¢ > 2. This transforms a to
o = [elal as asg -+ an]. Note that e; € eja;R. Thus, we can
repeat the above process for each entry, and transform o' to the row
[elal eaty - enan], with entries e;a; € a;Ra;. Moreover, e;a; R = e; R,
and therefore R = @, e;a; R. O
Corollary 2.5. Let R be an exchange ring and o = [al as - an] a
right unimodular row over R, with n > 2. Then « can be transformed by
elementary column operations to a row [bl by --- bn] such that Rb1R =

R and b; € a;Ra; for all i > 2.

Proof. By Lemma 2.4, we may assume that R = @;"; a;R. It follows that
all a; € Rb; where by = a1+ - -+a, (multiply by on the left by the orthogonal
idempotents arising from the given decomposition of Rg). Thus Rb; R = R.
By elementary column operations, we can add as, ..., a, to the first entry
of a, and thus transform it to [bl as - an]. O
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Recall that an element z in a ring R is (von Neumann) reqular provided
there exists an element y € R such that zyx = x, equivalently, provided zR
is a direct summand of Rg. If y can be chosen to be a unit in R, then z is
said to be unit-reqular. A regular element x € R is unit-regular if and only
if R/xR = r.ann(x), where r.ann(z) denotes the right annihilator of x in R
(cf. [15, Proof of Theorem 4.1]).

Corollary 2.6. Let R be an exchange ring and o = [al ag - an] a
right unimodular row over R, with n > 2. Then « can be transformed by
elementary column operations to a row [01 cy - cn] such that co is a

reqular element, ca € Ras, and coR = (1 — g)R for an idempotent g with
RgR = R.

Proof. By Corollary 2.5, we may assume that Ra; R = R. By Corollary 2.2,
there exists an idempotent e € a1 R such that ReR = R. By elementary
column operations, we can subtract eas from the second entry of «, so there
is no loss of generality in assuming that a; € (1 — e)R. (At this stage,
our current as is only a left multiple of the original as. This is why the
conclusions of the lemma state ca € Rag rather than co € agRag.) Now
using Lemma 2.4, we can transform « to a row [cl cy v cn] such that
R=@; | ¢R and ¢z € agRas. Then ¢oR = (1 — g)R for some idempotent
g, and ¢y is regular. Moreover, (1 — g)R = coR C agsR C (1 — e)R and so
Re C Rg. Therefore RgR = R. U

Lemma 2.7. Let R be an exchange ring and A € GL,(R), with n > 2.
Then A can be transformed by elementary row and column operations to a
matriz whose 1,1 entry d is reqular, with dR = (1 —p)R and Rd = R(1 —q)
for some idempotents p, q such that RpR = RqR = R.

Proof. By Corollary 2.6, we can assume that the 1,2 entry of A is a regular
element ¢ such that ¢cR = (1 — g)R for some idempotent g with RgR = R.
With elementary operations, we can move ¢ to the 2,1 position.

Now apply the transpose of Corollary 2.6 to the first column of A. Thus,
A can be transformed by elementary row operations to a matrix whose 2, 1
entry is a regular element d such that d € ¢cR and Rd = R(1 — q) for some
idempotent ¢ with RgR = R. Since d is regular, dR = (1 — p)R for some
idempotent p. Then (1—p)R C (1—g)R, whence Rg C Rp and so RpR = R.

Finally, use elementary operations to move d to the 1,1 position. O

Theorem 2.8. If R is a separative exchange ring, then R is a GE-ring,
and so the natural homomorphism GL1(R) — Ki(R) is surjective.

Proof. We need to show that R is a GFE,-ring for all n. This is trivial for
n = 1, hence we assume, by induction, that n > 2 and R is a GFE,,_1-ring.
Let A be an arbitrary invertible n X n matrix over R.
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By Lemma 2.7, we may assume that the 1,1 entry d of A is regular, with
dR = (1 — p)R and Rd = R(1 — q) for some idempotents p,q such that
RpR = RqR = R. We claim that d is unit-regular. Note that because
RpR = RqR = R, the projective modules pR and ¢R are generators.

Now R = r.ann(d) ® B = dR & C for some B,C, and we have to prove
that r.ann(d) = C. Since B = dB = dR, we have r.ann(d) ® B = C & B.
From Rd = R(1 — q), we get r.ann(d) = ¢R and so r.ann(d) is a generator.
Since C' = R/dR = pR, we see that C is a generator too. By Lemma 1.3,
r.ann(d) & C as desired.

The unit-regularity of d gives d = ue for some unit v and idempotent e.
Set

w0 - 0
01 -~ 0
U= : ;
00 -+ 1

then the matrix U !4 has an idempotent entry. By Lemma 2.3, there exist
E,F € E,(R) such that

L 1o
EU-'AF = [o A,}
where A’ € GL,_1(R). By our induction hypothesis, A’€ E,,_1(R)D,_1(R).
It follows that

A € Du(R)En(R)Dn(R)En(R),

and therefore we have shown that R is a GE,-ring. This establishes the
induction step and completes the proof. O

Remarks 2.9. (a) Observe that the proof of Theorem 2.8 did not use the
full force of separativity, only the cancellation property (A& C =2 B&C —
A = B) for finitely generated projective R-modules A, B,C with A and B
generators.

(b) Theorem 2.8 includes, in particular, the result of Menal and Moncasi
that every factor ring of a right self-injective ring is a G E-ring [22, Theorem
2.2]. To make the connection explicit, recall that right self-injective rings
are semiregular (e.g., [13, Theorem 2.16, Lemma 2.18]) and hence exchange;
thus, all their factor rings are exchange rings. Further, any right self-injective
ring is separative (e.g., [14, Theorem 3]). It follows that factor rings of right
self-injective rings are separative [3, Theorem 4.2].

(c) As a special case of Theorem 2.8, we obtain that any separative regular
ring is a GE-ring, which gives a partial affirmative answer to a question of
Moncasi [23, Questié 5.
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(d) In the situation of Theorem 2.8, one naturally asks for a description
of the kernel of the epimorphism GL;(R) — K;(R). This has been an-
swered for unit-regular rings and regular right-self-injective rings by Menal
and Moncasi [22, Theorems 1.6, 2.6], and for exchange rings with primitive
factors artinian by Chen and Li [9, Theorem 3|. In all the above cases,
Ki(R) & GL1(R)* provided } € R [22, Theorems 1.7, 2.6]; [9, Corollary
7). Further, K;(R) & GL1(R)* when R is either a C*-algebra with unitary
1-stable range or an AW*-algebra [22, Theorem 1.3, Corollary 2.11] (here
the algebraic K is meant). The unit-regular and AW* results correct and
extend earlier work of Handelman [18, Theorem 2.4]; [19, Theorem 7].

Theorem 2.10. If R is a separative exchange ring and A is a
(von Neumann) regular n X n matriz over R, then A can be diagonalized
using elementary row and column operations.

Proof. By [2, Theorem 2.4], there exist P,Q € GL,(R) such that PAQ is
diagonal. By Theorem 2.8, P = U;V; and Q = V,Us, where Uy, Us € D,,(R)
and Vi,Va € E,(R). So V1AV, is a diagonal matrix obtained from A by

elementary row and column operations. ([

Remark 2.11. When applying Theorem 2.10, note the distinction between
invertible matrices and general matrices. An invertible matrix over a separ-
ative exchange ring can be diagonalized from either side (by Theorem 2.8),
whereas the diagonalization of a general regular matrix sometimes requires
elementary operations on both the rows and the columns. For example, the
2 x 2 matrix [} {] over a field cannot be diagonalized using only elementary
row operations.

Example 2.12. Non-regular matrices over separative exchange rings need
not be diagonalizable by elementary operations, even over finite dimensional
algebras. For example, choose a field F' and let

R= F[l‘1,$2,$3,$4]/<x1, .%'2,.%'3,.’,174)2.

Then R has a basis 1, a1, a2, a3, as such that a;a; = 0 for all 4, j. Since R is
clearly semiregular, it is an exchange ring; separativity is an easy exercise.
In fact, since R is artinian, it has stable rank 1. Recall that this also implies
that R is a GE-ring. Observe that every element of R is a sum of a scalar
plus a nilpotent element, and that the product of any two nilpotent elements
of R is zero.

Now consider the matrix A = [g} g2 ], whose entries are linearly indepen-
dent nilpotent elements of R. We claim that any sequence of elementary
row or column operations on A can only produce a matrix whose entries are
linearly independent nilpotent elements. For instance, consider a product

L bf|cn cz| _ |c1n+bear ¢z + be
0 1 Co1 €29 C21 C22
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where c11, c12, c21, co2 are linearly independent nilpotent elements. Then
b = B+mn for some B € F and some nilpotent element n, whence bcyy = (et
and bcoo = PBeoo, and so the entries in the matrix product above are linearly
independent (they are clearly nilpotent). The same thing happens with
other elementary operations, establishing the claim.

Therefore no sequence of elementary operations on A can produce a ma-
trix with a zero entry. In particular, A cannot be diagonalized by elementary
operations. Since R is a GE-ring, it follows that A cannot be diagonalized
by invertible matrices either, i.e., there do not exist X,Y € GLy(R) such
that X AY is diagonal. Thus the first of the natural properties discussed in
the introduction is not implied by the second.

3. K of separative C*-algebras with real rank zero.

In connection with his work on the structure of multiplier algebras (e.g.,
[32, 33, 34]), Shuang Zhang has conjectured [unpublished] that if A is any
unital C*-algebra with real rank zero, the topological Kj(A) is isomorphic
to the unitary group U(A) modulo the connected component of the identity,
U(A)°. We confirm this conjecture in case A is separative, which at the same
time provides a unified approach to all known cases of the conjecture. The
main interest of Zhang’s conjecture is in the case when the stable rank of A
is greater than 1, since it has long been known that K}°°(A) = U(A)/U(A)°
for all unital C*-algebras A with stable rank 1 (e.g., this is equivalent to
[26, Theorem 2.10]).

We consider only unital, complex C*-algebras in this section, and we
refer the reader to [4, 30] for background and notation for C*-algebras.
In particular, we use ~ and < to denote Murray-von Neumann equivalence
and subequivalence of projections, and we write My (A) for the (non-unital)
algebra of w X w matrices with only finitely many nonzero entries from an
algebra A. We write U(A) for the unitary group of a unital C*-algebra A,
and U(A)° for the connected component of the identity in U(A).

In the theory of operator algebras, it is customary to write K;(A) for the
topological Kj-group of A (e.g., [4, Definition 8.1.1]; [30, Definition 7.1.1]),
and we shall follow that practice here. Thus, K1(A) = GLxo(A)/GLoc(A)°.
We then use the notation Kflg(A) to denote the algebraic Kj-group of
A. Since K™8(A) is the abelianization of GLo(A) (e.g., [27, Proposi-
tion 2.1.4, Definition 2.1.5]) and K;(A) is abelian (e.g., [4, Proposition
8.1.3]; [30, Proposition 7.1.2]), there is a natural surjective homomorphism
K™8(A) — Ki(A). Finally, following Brown [5, p. 116], we say that A
has Kj-surjectivity (respectively, Kj-injectivity) provided the natural ho-
momorphism U(A)/U(A)° — K;i(A) is surjective (respectively, injective).
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The concept of real rank zero for a C*-algebra A has a number of equiva-
lent characterizations (see [6]). One is the requirement that each self-adjoint
element of A can be approximated arbitrarily closely by real linear combi-
nations of orthogonal projections. (This is usually phrased as saying that
the set of self-adjoint elements of A with finite spectrum is dense in the set
of all self-adjoint elements.) It was proved in [3, Theorem 7.2] that A has
real rank zero if and only if it is an exchange ring. Hence, the C*-algebras
with real rank zero are exactly the C*-algebras to which our results above
can be applied.

Given a C*-algebra A, all idempotents in matrix algebras M, (A) are
equivalent to projections (e.g.,[4, Proposition 4.6.2];[27, Proposition 6.3.12)).
Hence, A is separative if and only if

pOp~pDqg~qDyq == pP~q

for projections p, ¢ € Mo (A). An equivalent condition (analogous to Lemma
1.3) is that p@®r ~ g®r = p ~ q whenever r < n.p and r < n.q for some
n. Separativity in A is equivalent to the requirement that all matrix algebras
M, (A) satisfy the weak cancellation introduced by Brown and Pedersen [5,
p. 116]; [7, p. 114]. They have shown that every extremally rich C*-algebra
(see [7, p. 125]) with real rank zero is separative ([8], announced in [5, p.
116]). We would like to emphasize the question of whether non-separative
exchange rings exist by focusing on the C* case:

Problem. Is every C*-algebra with real rank zero separative?

By combining Theorem 2.8 with a result of Lin, we obtain the following
theorem.

Theorem 3.1. If A is a separative, unital C*-algebra with real rank zero,
then the natural map U(A)/U(A)° — Ki(A) is an isomorphism.

Proof. Lin proved Kj-injectivity for C*-algebras with real rank zero in [20,
Lemma 2.2]. Hence, it only remains to show K;j-surjectivity. It is a standard
fact that U(A) and GL1(A) have the same image in K;(A) (e.g., [4, pp. 66,
67] or [30, Proof of Proposition 4.2.6]). Now the natural map GL;(A) —
K1 (A) factors as the composition of natural maps GLi(A) — K&(4) —
K1 (A), the second of which is surjective. Since A has real rank zero, it is an
exchange ring, and so the map GLi(A) — Kflg(A) is surjective by Theorem
2.8. Therefore the image of U(A) in K;(A) is all of K1(A), as desired. O
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Brown and Pedersen have proved that every separative, extremally rich
C*-algebra has Kj-surjectivity ([8], announced in [5, p. 116]; [7, p. 114]).
Since there are C*-algebras with real rank zero that are not extremally rich
[5, Example, p. 117], Theorem 3.1 can be viewed as a partial extension of
the Brown-Pedersen result within the class of C*-algebras with real rank
Zero.

We thank the referee for the following remark.

Remark 3.2. While Theorem 3.1 is neither unexpected nor new in the case
of stable rank 1 (cf. the result of Rieffel cited above), it is perhaps surprising
that there are many C*-algebras of real rank zero and stable rank 2 to which
the theorem applies. To see this, consider C*-algebra extensions

0—-1—-A—-B—0

in which I and B have real rank zero and A is unital. By theorems of
Zhang ([35, Lemma 2.4]; cf. [6, Theorem 3.14]) and Lin and Rgrdam [21,
Proposition 4], A has real rank zero if and only if projections lift from B to
A, if and only if the connecting map Ko(B) — Ki(I) in topological K-theory
vanishes. In this case, by [3, Theorem 7.5], A will be separative provided I
and B are both separative, and in particular if I and B have stable rank 1.
However, by [21, Proposition 4], if I and B have stable rank 1, then A will
have stable rank 2 provided the connecting map K;(B) — Ky(I) does not
vanish. It is easy to find specific extensions satisfying the above conditions,
such as the examples analyzed in [21, End of Section 1] or [16].

We conclude with an application of Theorem 3.1 that extends an argument
of Brown [5, Theorem 1], relating homotopy and unitary equivalence of
projections, to a wider context within real rank zero. Projections p and ¢
in a C*-algebra A are unitarily equivalent provided there exists a unitary
element u € A such that upu* = ¢q; they are homotopic provided there is
a continuous path f : [0,1] — {projections in A} such that f(0) = p and
f(1) = ¢q. Tt is a standard fact that homotopic projections are unitarily
equivalent (e.g., [4, Propositions 4.3.3, 4.6.5]; [30, Proposition 5.2.10]).

Theorem 3.3. Let A be a separative, unital C*-algebra with real rank zero,
let p,q € A be projections, and let B = ApA+ C-1. Then p and q are
homotopic in A if and only if ¢ € B and p, q are unitarily equivalent in B.

Proof. If p and ¢ are homotopic in A, they are connected by a path of
projections within A. Each projection along this path is homotopic to p and
hence is unitarily equivalent to p. Thus, these projections all lie in ApA. In
particular, ¢ € B, and p and ¢ are homotopic in B. Consequently, p and ¢
must be unitarily equivalent in B.

Conversely, assume that ¢ € B and p, g are unitarily equivalent in B. By
[6, Corollary 2.8, Theorem 2.5], the closed ideal I = ApA has real rank zero
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(as a non-unital C*-algebra), and so the unital C*-algebras B and pIp have
real rank zero. We do not need separativity for B, just Ki-injectivity (by
Lin’s result). Since I is an ideal of A, any projections in My (I) which are
(Murray-von Neumann) equivalent in My (A) are also equivalent in Mo, (1)
(any implementing partial isometry necessarily lies in My (I)). Hence, the
separativity of A implies that I is separative, and so plp is separative.
Therefore, by Theorem 3.1, pIp has Ki-surjectivity.

With the above information in hand, Brown’s proof [5, Theorem 1] carries
through in the present setting. We sketch the details for the reader’s conve-
nience. By hypothesis, ¢ = upu™* for some unitary u € U(B); let a denote the
image of u in K1(B). Now K;(B) = K (I™) = Ki(I), and because pIp is a
full hereditary sub-C*-algebra of I, the natural map K;(pIp) — Ki(I) is an
isomorphism [5, Remark, p. 117]. Thus « is the image of some 3 € K1 (pIp).
Since pIp has Kj-surjectivity, 5 is the image of some unitary vy € U(pIp).
Let v = v1 +1 —p and w = wv*. Then w is a unitary in B such that
g = wpw*, and the image of w in K;(B) is zero. Since B has Kj-injectivity,
w € U(B)°, from which it follows that p and ¢ are homotopic. O
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tion and Larry Levy for helpful comments.
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ON STEKLOFF EIGENVALUE PROBLEM

ROGER CHEN AND CHIUNG-JUE SUNG

Let (M™,g) be a smooth compact Riemannian manifold
with boundary &M # (. In this article we discuss the first
positive eigenvalue of the Stekloff eigenvalue problem

{(—A +qQu(x) =0 inM

g—lu‘:)\u on OM,

where g(x) is a C? function defined on M, v, is the normal
derivative with respect to the unit outward normal vector
on the boundary d M. In particular, when the boundary M
satisfies the “interior rolling R—ball” condition, we obtain a
positive lower bound for the first nonzero eigenvalue in terms
of n, the diameter of M, R, the lower bound of the Ricci
curvature, the lower bound of the second fundamental form
elements, and the tangential derivatives of the second funda-
mental form elements.

1. Introduction.

Let (M™, g) be a smooth compact Riemannian manifold with boundary
OM # (). In local coordinates (z',22,...,2"), the Riemannian metric is
given by

ds?® = Z 9ij datda?,
ij=1
and the the Laplace operator is defined by
1O 0
A= — ij_—

7 2w (V55),
where (g) = (gi;)~! and g = det(g;;). We consider the following Stekloff
eigenvalue problem:

0
ozt

an {(—A +qQu(z)=0 inM

%:/\u on OM,

where ¢(z) is a C? function defined on M, dv, is the normal derivative

with respect to the unit outward normal vector on the boundary 0M. More
specifically, we shall find a lower estimate for the first eigenvalue of the
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problem (1.1) in terms of the dimension of M, the geometrical data of M
and OM, and the potential function q.

Problem (1.1) is known as the Stekloff problem as Stekloff first studied
it for bounded plane domains with potential function ¢ = 0, and he found
applications in physics. Also, it is important because the set of eigenvalues
for the Stekloff problem is the same as the set of eigenvalues of the well-
known Dirichlet-Neumann map. Also, it is well-known that when metrics on
manifolds with boundary are conformally deformed, the sign of the Sobolev
quotient Q(M) and Sobolev trace quotient Q(M,IM) of the manifold M
are important conformal invariants and they can be characterized by the
sign of the first eigenvalue of the problems (see [E])

Lu+mu=0 in M
Bu=0 on OM,

and
Lu=0 in M
Bu=XMu onJdM,

respectively, where L = Agy—[(n—2)/4(n—1)] Ry is the conformal Laplacian,
B = (0/0vy) + [(n — 2)/2]hy is the boundary operator, hy denotes mean
curvature of the boundary M with respect to vy, and R4 denotes the scalar
curvature on M. Hence, it is natural to study the first eigenvalue of the
associated equation (1.1) without the functions R, and hg. From the analysis
viewpoint, this problem closely corresponds to the study of the following
Neumann eigenvalue.

(1.2) {(—A +m)u(z) =0 in M

gu—0 on OM.

It is well known that the first nonzero Neumann eigenvalue of the Laplacian
on M will provide an optimal upper estimate for the Poincaré constant and it
is important from an analysis viewpoint to prove the Poincaré inequality on
the manifold M. Therefore, it is interesting to find a positive lower estimate
of the first nonzero eigenvalue, and this has been studied extensively by
many authors. We will simply refer the reader to [B], [Ch], [C], [C-L],
[L1], [L2], [L-T], [L-Y1], [L-Y2], [W] for further references. Analogously,
it is also interesting whether one may obtain a positive estimate for the lower
bound of the first eigenvalue of the problem (1.1).

In a recent paper [E|, Escobar generalized problem (1.1) with ¢ =0 to a
compact manifold (M", g) with boundary M. In the two-dimensional case,
if M has nonnegative Gaussian curvature and the geodesic curvature k4 of
OM satisfies kg > ko > 0, then he proved that the first nonzero eigenvalue A\
of the Stekloff problem satisfies \; > k. Also, he proved that the equality
holds only for the Euclidean ball of radius k; ! In higher dimensional cases,
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if M has non-negative Ricci curvature then he proved that A; > %0, where
ko > 0 is a lower bound for the second fundamental form elements of the
boundary. However, the lower bounds in the paper [E] will become zero
if one only assumes nonnegative geodesic curvature on the boundary for
dimension two case or nonnegative second fundamental form elements on
the boundary for higher dimension case.

From the interests of analysis, we shall try to obtain a positive lower
bound for A\; of the Stekloff problem on a more general class of manifolds.
In particular, we shall follow a similar gradient estimate argument as in [C]
and [W] to prove a quantitative generalization of some results in [E].

Theorem 1.1. Let (M", g) be a compact Riemannian manifold with bound-
ary OM . Suppose that OM satisfies the “interior rolling R—ball” condition.
Let K, H and H be nonnegative constants such that the Ricci curvature
Ricys of M is bounded below by —(n — 1)K, the second fundamental form 11
of OM is bounded below by —H and the absolute value of tangential deriva-
tives of 11 is bounded by H. By choosing R small, and fora =1 ora = 3, we
have the following estimate for the first eigenvalue \1 of the Stekloff problem

(1.1).

(1.3)

[NIE

2(1 + 014)
2d2(n — 1)2(1 + H)

(NI

sexp [ —1— (1+Cu)

]

<N [8(71 — 1)+ (n—1)*(24 + 12H) + 3ﬁmax{12n —8+6H,

2(n—1)<\/(n—1)K+(n—2)KR+]1%4—1)}

+ Bv/2(n — 1)(96 + 6C + 2Cy4) + E(

+ [36 sup |q| + Bv/2(n — 1)dsup |Vq| — 2(n — 1) inf q} ,

36n + 28 + 12(n — l)H)]

where 6 > 0 1s any constant, C1, Cy4, Cs5, Cg, are constants depending on n,
K, H, H, R, d = diameter of M,

,3/8—1 = exp [1 +(1+ 014)%} )

1
Ciy = d*(1+ H)? {3C5+C’6+(n—1)K+25 ;

and they can be explicitly computed.
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Remark. We shall choose the radius R < 1 of the interior rolling ball to
satisfy the following inequalities

Kg tan(R\/ KR) <

v I

1
27

9

DN |

= tan(RV/E) <

V(n—1)K + (n—2)Kp
2R/ (n—1)K+(n-2)Kr _ |

> H

where Kp denotes the upper bound of the radial curvatures in M (R) =
{zx € M UIOM|dist(z,0M) < R}.

Corollary 1.2. Let (M™,g) be as in Theorem 1.1 and let ¢ = 0 in (1.1).
By choosing R small, we have

(14) )\1 > Cl5a

for some constant Cy5, depending on n, K, H, H, R, d = diameter of M,
and it can be explicitly computed.

Using the same technique, we may also obtain the following estimate for
m in (1.2).

Theorem 1.3. Let (M™,g) be as in Theorem 1.1. By choosing R small, we
have

(1.5) m 2> Che,

where Cg is a positive constant depending on n, K, H, R, d = diameter of
M and both can be explicitly computed as in (3.13).

Corollary 1.4. Let (M™,g) be as in Theorem 1.1. Assume that the Ricci
curvature of M is nonnegative, the boundary OM is convex. By choosing R
small, we have

Ci7
(1.6) m = ol

where C17 is a positive constant depending only on n and it can be explicitly
computed as in (3.15).

Acknowledgments. We would like to thank Professor Jiaping Wang for
his interest in this work and many useful discussions. Part of this work
was done while the first author was attending a workshop on analysis on
manifolds organized by the IMS at the Chinese University of Hong Kong
from 8 July to 29 July 1998. He would like to express his gratitude to
the organizers Professors Luen-Fai Tam and Tom Wan, and the IMS at the
Chinese University of Hong Kong for their hospitality.
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2. Main Lemma.
We recall the following definition from [C].

Definition 2.1. M is said to satisfy the “interior rolling R-ball” condition
R
if for each point p € OM there is a geodesic ball B, <2> , centered at ¢ € M

with radius £, such that p = By(£) N 0M and B,(£) c M.

We may modify a gradient estimate method as in [C] and [W] to prove
our main lemma for a positive solution of the problem (1.1). In our case, we

need to define two functions on M by ¢(z) = p(r(x)) and ¥(x) = W(T%)),

where 7(x) denotes the distance from z € M to OM and ¢(r) and ¥(r) are
nonnegative smooth functions defined on [0, c0) such that

(2.1) {90(7’) < MR ?f relo,4)
o(r)y= MR ifre[R,0)

and

frozn wehy

with

(2:3) p(0)=0, 0<(r <2, ¢0)=X\

" (r)] < 2M1, " (7)) < 24,

and

(2-4) w(0)=0, 0<V¥'(r)<2H,
w'0)=H, ¥'(r)>-2H.

Letting

w=(1+¢)u, [f=1log(l+ ),
p=—q+|VI2-Af,

Equation (1.1) for w is transformed into the following equation for w.

(25) {Aw —2(Vf,Vw)+pw=0 inM

%‘/’:O on OM.

Lemma 2.2. Let (M",g) be as in Theorem 1.1. Normalize w such that
1 =supw. For a constant 3 > 1, we consider the function
5 |Vul?

(2.6) F(z) = (1+4(x)) B=w)?
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Assume that F(x0) = max ey F(z), and choose R small, we have

(2.7) Fwo) < (1+4)* |(2n—1)0 + (Zn__lm]
< (14 H)2 [2(n - 1)Cr2 + 2(2:?6’13 )

where § > 0 is any constant, and
C1 = (n—1)max{3H +1,\/(n — 1)K + (n — 2)Kg}
Cy =max{(3H +1)*,(n — 1)K + (n — 2)Kg} + Kr

RCy

_ RCy _
03 — em (H"’RQHKR)
04 = max{Cg, 03}

AH?
=
o _2n-DHEH 1) 2H
6~ R 2R2
Cr = 4)\3

Cs =)\ (8)\1 +6H—|—4)

1
G =20 (Vi = DK+ (0= 5Kz + 3, +1)
Cio = maX{C7 -+ (TL - 1)08; (n — 1)09}
Ci1 = 64)\? + 32A% + 2)\1(301 + 04)
[—infq+Cr + (n —1)Cs] B N (3n + 13)C;

Ciz = B—w 2(n —1)
1
+Cg+3C5+C6+(n—1)K+%
4
Cig = — [suplal” + Cfo] + 0 [sup[Vg* + C1]

Proof. The proof we give may be divided into the following steps.
(1) In Step (1), we determine the location of the maximum point of =g by
using a maximum principle.
(2) In Step (2), we apply the maximum principle to obtain an inequality

0 > aF(20)* — bF(x0) — ¢

for F(xg), where a > 0, b, ¢ > 0 are constants.
(3) In Step (3), we shall find estimates of b and ¢ which lead to an estimate
of F(:Bo)
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Step (1). The point zg is either a boundary point or an interior point of
M. Suppose that zo € 9M, we let {e;} be a local orthonormal frame field of

M™ such that e, = % on OM. If we let h;; denote the second fundamental
form elements of OM, then

0< %(950)
28|Vl + 2300 wiwin
(B —w)?
—2%\Vw[2 -2 Z?]_:ll hijw;w;
(B —w)?
—28|Vw|? + 2H|Vw|?
(B —w)?

<

<0,

which is a contradiction, as we may choose R to be smaller than 1. Hence
F(x) cannot attain its maximum at the boundary point. Therefore xo has
to be an interior point of M.

Step (2). Since F attains its maximum value at an point zg, we have

(2.8) VF($0) =0
(2.9) AF(zq) < 0.
Note that
(2.10) VF-(B_M>2+F-V<M>2—V]V ?
' 119 1+y) YD
and
AF-(ﬁ_w)2+2VF-V(_w>2+F-A<ﬁ_w>2:A|Vw\2
1+ 1+ 1+

which implies that, at xg,

p-w
1+
We may choose an orthonormal frame field {e;} near xo such that w;(zo) =
|Vw|(zo). Note that |Vw|(zg) # 0, otherwise F(z) = F(xg) = 0 for all
x € M which is a contradiction.

At zy, Equation (2.8) implies that

2w, 29
vwl2 (2% i) _ ,
Vel ( b —w 1+w> Jwrwny

2
(2.11) 0> —F(zg)A ( ) (z0) + A|Vw|* (o).
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for each j = 1,... ,n. Therefore, at xg, we have
_ v 0
(2.12) Wi =~y Ty
: w1 .
Wi = =Ty for j # 1.

Using the Ricci identity, w;jr —wir; = Z?:l wy Ry, and a direct calculation,
we get

(2.13) A|Vw|2 Z w” +Zw] (Aw); + Z Rijwiw;
1,5=1 2,7=1
1 —w)? 9 Aw |Vw|?
F oo (558) el [T
2(VwVy) Ay N 3|v¢\2]
Q+y)(B-w) 144  (A+¥)2]

Substituting (2.13) into (2.11) and using a direct calculation, we have

Aw |Vw|?
0> Zw”—FZwJ Aw);j + ZR”wzwj |Vw|? [ﬂ +(ﬂ—w)2
7.] 1 ,] 1

2T A mvw?}

(1+)(3 — w) 1+w+a+wﬁ

Using (2.5), we have

n n

w

= Z win + 2w Z(fjwj)l — wl(pw)l + Rijwiwy — 'u)% [ﬁp—
ij=1 j=1

_2f1w1 w% 271)11/11 N Aw |V1/}’2 ]

B-w G-wl T+ 9B -w) 1+ U107

n n
= Z w?j + 2wi f11 + 2wy Z fjwj1 — wip — wiwpy + Ryywiwy

ij=1 j=1
2 [ pw  2fiw w
f—w pf-—w (f—w)?
2w Ay |Vep? ]
+<+¢m%ﬂw 1+w+3u+w

_ w _ 2wyt
Z - B- w)2 (1 +9)(6 - w)

,j=1
n
2f1w?
+ 2wq ]Zl fjwjl + m — wiwpq
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2| PW Ay ’VWQ
- —— +p-— +3 -2fn1—R
o [ﬂ—w P Py M
_ zn: w2 — wi _ 2with
S50 B-w? (1+9)(8 - w)
- 2 fLw?
+ 2w ijwjl + Bfi L_ wW1wWp1
i=1 v
2| PP Ay [Vy?
_ _ —9fy —
“ [ﬂ—w o T T
Using (2.12), and the inequality 22 + y? > 22y, it is easy to see that
w?y wi 2w _wiyf
B-w)? B-w)d+v) (1+¢)?
2f1w} 2wi frihy
9 — 27l
3 + Jrwwyy = T+

n n 2 N

2 wi 2

2> wij 2w} fioy = -y f}
j=2 j=2 Jj=2

Putting these into the above, we have
(2.14)

wigi
0 > Z w — p1wwi + m

A 2 2|V
— w} ﬁpﬁ + = Zfz 2f11—1+¢w+1']11/;;4-(1_’_1:}))2—]%11

To prove our claim, we shall find an inequality for F'(xg) of the form
0> aF(xg)? — bF(xg) — ¢

where a > 0, b, c are nonnegative constants. To obtain the quadratic term of
F(z¢) with positive coefficient, we observe that Cauchy-Schwarz inequality
implies that

- 2 wﬁ/)l - U
PR RO WAR
1 wiy?
> —— (wn — Aw)” + Ator

Using (2.5), (2.12), and the inequality (x+y)? > % —y?, the above becomes

1 wy w1 2wk}
T n-—1 <ﬂw+1+1/1+Aw> +(1+1/1)2
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1 <w% +w1¢1>2_ 1 (Aw)? + wiyi

-1 \B-w 14v) n-1 (T+¢)?
Using the inequality (z + y)? 22(2:}%2 —2(n — 1)y?, the above becomes
> 1 < wi iy )- LN I
2n—1\(f-w)? (1+¢)?) n-1 (1+ )2
S ST S Sy T

2n—1(f—-w)? n-1
Using (2.5), and the inequality 2(z% + y?) > (z + y)?, we get

27/’1 1 wil

(2.15) Z T e T m_1(F—w)p?

2
I— (p2w2—|—4f1w1)

Substituting (2.15) into (2.14), we get

(2.16)
02 2nl—1(ﬂl—vilw)2 B ni 117211}2_27“”“)1_1”2 [gp_ﬂw nilfl
+;§ff T (21'?2'; - R
= 2n1— 1(83 fifw)z T n i 17’2’“’2 - gp%’wZ - %wQ w? [ﬁp_ﬁw
R
B 2nll( & w)? [n21p2+gpﬂ wt - wy {gpﬁwmggl !
B AP

where § is any positive constant. In order to see that we have almost ob-
tained the desired inequality for F'(zg), we shall simplify the notations by
setting

_ pB 8 1 ¢ 2
(2.17) 9—M+7Hf12+222:fj

2fivr Ay 2|V|? 1
T T T T e Mty
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2
n—1

and
)
(2.18) y= P+ ot

Also, note that if we set a = g,Lw, then we have

w 1 1
2.19 = < < .
(2.19) “ B-—w = f—w~ f-1
- (1+4)* : .
Multiplying (2.16) through by G-w) and using (2.17)-(2.19), we obtain
(2.20) 0> F?2 —0(1 +¢)°F — y(1 + ).

—2n—1

Step (3). In this step, we shall give estimates on §(1+)? and v(1+1)*a?
in (2.20). The inequality (2.20) implies that we have

@n—-10  [(2n—1)262
2 + \/ 4

(2.21)  F(zg) < (1+1)?

+ (2n — 1)7052]

< (1+)? [(Qn -0+ (2n— 1)7@} :

In order to prove our claim, we shall estimate each term in (2.17) and (2.18)
of § and 7, respectively. Since p = —q+|Vf|?—Af and f = log(1+é(r(x))),
we shall need to estimate Ar and |VAr| near the boundary OM if we want
to estimate the term |Vp| in v. Here, we shall first derive some estimates
for Ar and |VAr|. Let {e1,...,e,} be an orthonormal frame fields of M™
in a neighborhood OM(R) = {x € M U9OM|r(x) < R} of OM such that

en = —%, where v is the unit outward normal vector to dM. For any
x € OM x {r}, where OM x {r} = {x € OM(R)|r(x) = r}, we have r,, = 1,
and ry, =0fora=1,... ,n—1. When R is sufficiently small, we may write

each point € IM(R) as © = (y,r), where y € OM and dist (z,y) = r(z).
A direct calculation shows that

Tna =0, 7Tan =0, 74 = —Naa
fora = 1,...,n — 1, where hy, is a second fundamental form element of
OM x {r}. To estimate |VAr|, it suffices to obtain estimates of |e,,(Ar)| and
lea(Ar)| for a = 1,... ,n— 1. Differentiating 74, in the direction of e,, yields

n—1
€En (raa) = Taan — Z 7“21,
b=1

n—1

n
2
= Tana + E r1Rigan — Tab
=1 b=1
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n—1
2
= - 5 Tab — Rnanaa
b=1

where R,qnq denotes the curvature tensor of M. Hence, we have

n—1
(222) 6n(raa> = - Z T?Lb — Rpana
b=1

for each © = (y,r) € OM(R). Integrating (2.22) yields

r /n—1
T r) =T 7“2 — .
(223) aa( ) aa(y) +/0 (; ab Rnana> (yat)dt

Let Kr and Kg denote the upper bounds of the radial curvatures and of
the absolute value of covariant derivatives of radial curvatures, respectively,
in OM(R), i.e., Kp = max {Rpana(x)|z € OM(R),1 < a < n — 1} and
Kr = max {|Ruanap(z)| |z € OM(R),1 < a,b < n}. Since the boundary
OM satisfies the “interior rolling R—ball’ condition, its second fundamental
form element II is bounded from above by % and is bounded from below by
hypothesis. We shall follow an index comparison theorem [Wa] to obtain
estimates on 14, for a = 1,... ,n — 1. To apply it, we choose R small as in
[C] such that

H 1
t K -
NI an(R+\/ KR) 5
and
- 1)K - 2)K
V(n=1DK + (n—2) R
2R/ (n—1)K+(n-2)Kr _ |
Using an index comparison theorem, we have
H++Kpt vK
(2.24) rag > —o VAR an(Rv Kr)
1-— ﬁ tan(R\/ KR)
> —(3H + 1),

and if we set K = \/(n — 1)K + (n — 2) K we have

g [(e27@) — 1)k + (e27@) 4+ 1) 1]
(1) o+ (1) §

<k [(62“R +1) kR + (CQ‘HR + 1)]

- (62H7’(1‘) + 1) R

(2.25) Taa <

1 1
§&+§=\/(n—l)K+(n—2)KR+E,
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fora=1,... ,n— 1. Hence, we have
(2.26) |A7| < (n — 1) max{3H + 1,/(n — 1)K + (n — 2)KR}
= (.
Combining (2.22), (2.24), and (2.25), we have
(2.27) len(Ar)| < max{(3H 4+ 1)%,(n — 1)K + (n — 2)Kgr} + Kr
= (5.

Differentiating (2.23), we get

r n—1
(228) Taa,b(ya T) = Taa,b(ya 0) + / (2 Z TacTach — Rnana,b) (ya t)dt
0 c=1

forb=1,... ,n—1. We may assume that r,, for a = 1,... ,n — 1 denotes
an eigenvalue for the Hessian of r. Differentiating (2.28) with respect to r
and solving the first order differential equation

Taa,b(ya T) = 2TaaTaa,b(y7 T) - Rnana,b(y7 T),

we have
(2.29) ley(Ar)|(z) < en-t (H+Ren 1KR)
= Cs.
Combining (2.26) and (2.29), we have
(2.30) |IVAr|(z) < max{C2, C3}
= (4.

We are now ready to give estimates for 6, v in (2.17) and (2.18). Note that it
suffices to find estimates for terms |Vi| = &', Ay, |[Vf|2 = [Viog(1 + ¢)|?,
fij» p = —q + |Vf|?> = Af, and |Vp|. In the following, we shall give an
estimate for each of these terms. From the definition of ¥ and (2.24), it is
easy to see that

4H?

2
(2.31) V| = —sp’ <S5 =0
and
(2.32) Ay = EW Ar + —w”\w?
2(n — 1)H(3H +1) 20
= R TR

For the terms |V f|? = |[Vlog(1l + ¢)|*> and f;;, we apply (2.24), (2.25) to
obtain

72
233) VI = |Vieg(1+9)P = 7~

2
BT
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Uy gp”rz 2(70/27“2.
(2.34) fii = L 5 T oi 3
(1+¢)* (1+¢)? (1+9)

> 20\ (3H + 1) — 2\ — 8)?

= -\ (8/\1 +6H + 4) = —Cg,

and

(2.35) fii <2\ <\/(n ~ 1)K+ (n—2)Kp+ ;) +2)\
=2\ (\/(n— DK + (n—2)Kg + % + 1) = C.

For the term p = —q + |V f|2 — Af, we use (2.32)-(2.35) to get

(2.36) p=—q+|Vf|-Af < —infq+ C7+ (n—1)Cs,

(2.37) p=—q+|Vf?—Af>—supg— (n—1)Co.

Combining (2.36), (2.37), we get that

(2.38) |p| < suplq| + max{C7 + (n — 1)Cs, (n — 1)Cy} = sup|q| + C1o.
For the term |Vp|, we note that

2 o' Ar " 20"

¢ n _
(1+¢)? 1+0)2  (1+9¢)?* (1+¢)°

20/0"Vr 20 °Vr o Ar O'VAr  20'ArvVr
T+a2 1+ (+of (1+9? 1+
N 200"V 4PN 60V

U+e2 T (W+eP ~ (L+ofF  (1+o)

Hence, we use (2.26)and (2.30) to get

(2.39) |Vp| < 6423 + 3202 + 2)\,(3C, + Cy) + sup |Vg| = Cy1 + sup|Vq|.

Note that each constant Cv,..., (1 contains a factor A;. Combining esti-
mates (2.24)-(2.26) and (2.30)-(2.39), we have estimates for 6 and ~.

(2.40)
_ pB 8 2 ln 2
o= +n—1fl+2z2:fj

Vp=-Vq+V

=-Vqg+

8 —w
2fivr AY 2|V|? 1
A S T R R
[—infqg+ C7+ (n—1)Cs] B 8 1 9 P?

N Cs N 2C5
1+v¢  (1+79)

1
5+ (0= DK + o5
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< [—infg+C7r+ (n—1)Cs] B N (3n+13)C7

- 6—1 2(n—1)
1
+0s +3C5 4+ Co + (n — K + o5
= C’127
and
_ 2 9 0,
(2.41) V= TP T h
< —— [suplaf* + Cf] + 8 [sup [Va” + C1i] = Cus.
Finally, we may substitute (2.40), (2.41) into (2.21) to obtain
2n —1
F(zo) < (1+9)* |(2n - 1)0 + (6”_1)”]
2(n—1
< (1+H)? [2(n —1)C1a + (2_1)013

This completes the proof of Lemma 2.2.

3. Proof.
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In this section, we shall utilize Lemma 2.2 to give a proof to Theorem 1.1,

1.3 and Corollary 1.2, 1.4.
Proof of Theorem 1.1. Using (2.7), we have

F(z) < (1+v¢)? |[(2n—1)0 + (;n_—ll)'y]
<(1+H)? [2(n —1)C12 + W

for any x € M U OM. This implies that

V|

(3.1) < (1+H)

—w

2(n —1)Cha + Q(Z : 1)013

Let x1,x2 be two points in M such that w(x1) =0, w(xz) = supw = 1, and

let v C M be a minimal geodesic joining from x; to x2. Then we have

B _ [ IVu
ﬂil_ fyﬂ*w

(3.2) log

<(1+H)

2(n — 1)012 + 2(2:?013
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where d denotes the diameter of M. Recall that constants C, ... ,Cg do not
depend on A;. We shall group them together. Hence, we have

1 8\’
(3.3) EOT ) <log ﬂ—1>
2(n —1)Cq3
5-1
2(n—1)p[—infqg+ C7 + (n — 1)Cy]

1
+2(n—1)Cs +2(n —1) [3054—06—1—(71—1)[(4—25}

< 2(n — 1)012 +

8 [sup|q|* + C%,] + 2(n — 1)d [sup [Vq|* + CF ]

6—-1
n— n—1)2
B L PN CUET S

n 3C10 n V2(n—1)6Chy N 3sup |q| N v2(n — 1)dsup |Vq|
g—1 -1 g—1 g—1
2(n — 1)Binf
—(B3€q+2m ﬂ&%+&ﬁ%n—DK+2J
Multiplying (3.3) through by %, we have
(3.4)

-1 (. B Y
o (725 3)

SN SHS) P PR ST
+38C10 + Bv/2(n = 1)6C11 + 3Bsup |q| + B+/2(n — 1)d sup|Vq|

g -
g

< [2(n —1)Cr7 + 2(n — 1)2Cs + 36C10 + B+/2(n — 1) ou}
-1
5

1
—2(n—1)infqg+2(n—1)—— [3C5+06+(n—1)K+25}

[(3n +13)C7 + 2(n — 1)C%]

+ [35 sup|q| + Bv/2(n — 1)d sup |Vq| — 2(n — 1)infq]

2n—1 —1 1
+ (n (8 ) 3C5+Cs+ (n— 1)K + —
8 20
To finish the proof, we shall estimate constants C7,... ,Ci1 in terms of Aq.

Since we have either \; > Xf or )\‘;’ > A1, we define a to be the number such
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that

(3.5) A = max{Ai, A3},

Using the definitions of the constants C7,... ,C1; in Lemma 2.2, we have
(3.6)

Cr = 403 < 4\}
Cs =)\ (8)\1+6H+4) < (12+6H)X11

Cy =2\ <\/(n—1)K—|—(n—2)KR+]1%+1)

< 2)\8 <\/(n—1)K+(n—2)KR+;—|—1>

Cro = max{C7 + (n — 1)Cs, (n — 1)Cy }

< A¢ max {12n — 84 6H,2(n—1) <\/(n —1)K+(n—2)Kg + % + 1)}

C11 = 6423 + 3202 + 2)\;(3C1 + Cy) < A{(96 + 6C + 2Cy).

Substituting these into (3.4), we get

(3.7)
motie e (977)
21+ H)2 \ 51
_2n— 1;“ D) [305 s+ (n—1)K + 215]
< [2(n — 1)C7 +2(n — 1)2Cs + 36C10 + B/2(n — 1) CH}
+ ﬁﬁ [(3n + 13)07 + 2(n — 1)08]
ﬁ sup |q| + Bv/2(n — 1)dsup |Vq| — 2(n — 1)1nfq}
[ n—1)+ (n—1)%(24 + 12H) —|—3ﬁmax{12n—8+6H,
2(n — 1) (\/(nl)K+(n2)KR+R+1> }
+ By/2(n — 1)(96 + 6Cy + 2Cy) + ”%1(3671 +28 +12(n — 1)H)]

+ [Bﬂsup lg| + Bv/2(n —1)dsup |[Vg| — 2(n — 1) inf q} .



294 ROGER CHEN AND CHIUNG-JUE SUNG

It is clear that the term
p—1 5\ 2n-1)(5-1) 1
PB(1+ H)? (log 3 1) - 3 [305 +Co+ (n— K + o

in (3.7) can be made to be positive by choosing [ sufficiently close to 1. It
is easy to see that this term attains maximum value with

3.8 o _ 14 (1+C)2
(3.8) ﬁ—exp[—k(—k 14)],
where
(3.9) Ciy = 2d2(n — 1)2(1 + H)2 [305 + Cg + (n — l)K + 215] .
Putting this into (3.7), we have
(3.10)
2(1 + Chy)? .
mexp |:—1 - (1 + 014) }

<A [S(n— 1)+ (n —1)*(24 + 12H) +3ﬁmaX{12”—8+6H7

2(n — 1) <\/(n—1)K+(n—2)KR+1+1>}

R
-1
+ 8v/2(n —1)(96 4+ 6C1 + 2Cy) + ﬂﬂ(%n +28+12(n — 1)H)]
+ [3ﬂsup lg| + Bv/2(n —1)dsup |Vg| — 2(n — 1) inf q} )
This completes the proof of Theorem 1.1. O

The proof for Corollary 1.2 is immediate by setting ¢ = 0 in (3.10).

Proof of Theorem 1.3. In this case ¢ = —m; A1 = 0, then we have ¢(x) =
f(x) = 0. Hence, the proof of Lemma 2.2 will be simplified by setting con-
stants C7,... ,Cq1, and § to be zero. Then (3.2) will take the form

g < (1+H) 2(n—1)012+—vz(n_1)013’ 2d

11 1
(3.11) o 51
with
(3.12) Clg = ﬁm_ﬁl +2054 Cs+ (n— 1)K
2
Cig = &



where
in the

(3.13)

where

(3.14)
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C5, Cg are constants given in Lemma 2.2. Following the argument as
proof of Theorem 1.1, we obtain
2(1+ C’14)%
d*(1+ H)?

NI

exp {—1 — (14 C14) } <m {Q(n —1)+ V83

Cry =2d*(n —1)(1 + H)?[2C5 4+ Cs + (n — 1) K]
Oy
f= Ciy—1°
0

When the Ricci curvature is nonnegative, the boundary is convex, ¢ =
—n1, and A = 0, it is easy to see that C5s = C4 = 0 and K = H = 0.
Therefore, one may apply (3.12) to obtain

(3.15)

where

(3.16)

1
e2
@ <m [2(n—1)+\/§/8
1
e?2
ﬁ —
e% -1
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BIQUANTIZATION OF LIE BIALGEBRAS

CHRISTIAN KASSEL AND VLADIMIR TURAEV

For any finite-dimensional Lie bialgebra g, we construct
a bialgebra A, ,(g) over the ring Clu][[v]], which quantizes
simultaneously the universal enveloping bialgebra U(g), the
bialgebra dual to U(g*), and the symmetric bialgebra S(g).
Following Turaev, we call A, ,(g) a biquantization of S(g). We
show that the bialgebra A,, , (g*) quantizing U (g*), U(g)*, and
S(g*) is essentially dual to the bialgebra obtained from A,, . (g)
by exchanging u and v. Thus, A, ,(g) contains all informa-
tion about the quantization of g. Our construction extends
Etingof and Kazhdan’s one-variable quantization of U(g).

Résumé. FEtant donné une bigébre de Lie g de dimension finie, nous con-
struisons une Clu][[v]]-bigébre A, (@) qui quantifie simultanément la bigébre
enveloppante U(g), la bigebre duale de U(g*) et la bigebre symétrique S(g).
Suivant Turaev, nous appelons A, ,(g) une biquantification de S(g). Nous
montrons que la bigébre A, ., (g*) qui quantifie U(g*), U(g)* et S(g*) est en
dualité avec la bigébre obtenue a partir de A, ,(g) en échangeant u et v. La
bigebre A, ,(g) contient ainsi toutes les informations sur la quantification
de g. Notre construction généralise la quantification en une variable de U(g)
par Etingof et Kazhdan.

Introduction.

The notion of a Lie bialgebra was introduced by Drinfeld [Dri82], [Dri87] in
the framework of his algebraic formalism for the quantum inverse scattering
method. A Lie bialgebra is a Lie algebra g provided with a Lie cobracket g —
g®g which is related to the Lie bracket by a certain compatibility condition.
The notion of a Lie bialgebra is self-dual: If g is a finite-dimensional Lie
bialgebra over a field, then the dual g* is also a Lie bialgebra.

Drinfeld raised the question of quantizing Lie bialgebras (see loc. cit.
and [Dri92]). For any Lie bialgebra g, its universal enveloping algebra U(g)
is a co-Poisson bialgebra. The quantization problem for g consists in find-
ing a (topological) bialgebra structure on the module of formal power se-
ries U(g)[[h]] which induces the given bialgebra structure and Poisson co-
bracket on U(g) = U(g)[[h]]/(h). This problem is solved in the theory of

297
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quantum groups for certain semisimple g. Recently, P. Etingof and D. Kazh-
dan [EK96] quantized an arbitrary Lie bialgebra g over a field C of charac-
teristic zero. Their construction is based on a delicate analysis of Drinfeld
associators.

Besides U(g), there are other Poisson and co-Poisson bialgebras associated
with a Lie bialgebra g. One can consider, for instance, the (appropriately
defined) Poisson bialgebra U(g)* dual to U(g), as well as similar bialgebras
U(g*),U(g*)* associated with g*. Note also that the symmetric algebra
S(g) = @,,~0 S™(g) is a bialgebra with Poisson bracket and cobracket ex-
tending the Lie bracket and cobracket in g. The Etingof-Kazhdan theory
provides us with quantizations of U(g) and U(g*) in the category of topo-
logical bialgebras. It is essentially clear that, taking the dual bialgebras, we
obtain quantizations of U(g)* and U(g*)*. The bialgebras S(g) and S(g*)
stay apart and need to be considered separately. At this point, the relation-
ship between all these bialgebras and their quantizations looks a little messy
and needs clarification.

The aim of our paper is to sort out and unify these quantizations. We
shall show that there is a bialgebra A(g) quantizing simultaneously U(g),
U(g*)*, and S(g). Moreover, the bialgebra A(g*) quantizing U(g*), U(g)*,
S(g*) is essentially dual to A(g). Thus, we can view A(g) as a “master”
bialgebra containing all information about the quantization of g.

To formalize our results, we appeal to the notion of biquantization in-
troduced in [Tur89|, [Tur9l]. It was inspired by a topological study of
skein classes of links in the cylinder over a surface. The idea consists in in-
troducing two independent quantization variables, u and v, responsible for
the quantization of multiplication and comultiplication, respectively. Let us
illustrate this idea with the following construction. Let A be a bialgebra
over the ring of formal power series C[[u,v]]. Assume that A is topologi-
cally free as a C[[u, v]]-module, commutative modulo u, and cocommutative
modulo v. It is clear that A/uA is a commutative bialgebra with Poisson
bracket

ab — ba
{pu(@):pu(0)} = pu (),
where a,b € A and p, : A — A/uA is the projection. The morphism p,, is a
quantization of the Poisson bialgebra A/uA. Similarly, the comultiplication
A in A induces on A/vA the structure of a cocommutative bialgebra with
Poisson cobracket

8(pu(@)) = (opy) (

where a € A and p, : A — A/vA is the projection. The morphism
py : A — AJvA is a quantization of the co-Poisson bialgebra A/vA. By
similar formulas, the quotient A/(u,v) = A/(uA+wvA) acquires both a Pois-
son bracket and a Poisson cobracket, and becomes a bi-Poisson bialgebra.

Afa) = A%(a) )

[
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The projections of A/uA and A/vA onto A/(u,v) quantize the comultipli-
cation and the multiplication in A/(u,v), respectively. We sum up these
observations in the following commutative diagram of projections

A —— AJuA

(0.1) | |

AfvA —— A/(u,v)

called a biquantization square. This square involves four bialgebras and
four bialgebra morphisms quantizing either the multiplication or the comul-
tiplication in their targets. The bialgebra A appears as the summit of the
square, quantizing three other bialgebras. We say that A is a biquantization
of the bi-Poisson bialgebra A/(u,v). The notion of a biquantization allows
us to combine four quantizations of three bialgebras in a single bialgebra.
Note that instead of the ring C[[u,v]] one can use subrings containing u
and v. In this paper, as a ground ring for biquantization, we use the ring
Clu][[v]] consisting of the formal power series in v with coefficients in the
ring of polynomials Clu].

Our main result is that, for any finite-dimensional Lie bialgebra g over
a field C of characteristic zero, the bi-Poisson bialgebra S(g) admits a bi-
quantization. More precisely, we construct a topological Clu|[[v]]-bialgebra
Ay v(g) biquantizing S(g). Specifically, A, ,(g) is free as a topological
Clu][[v]]-module, is commutative modulo u and cocommutative modulo v,
and A, ,(g)/(u,v) = S(g) as bi-Poisson bialgebras. This gives us a biquan-
tization square (0.1) with A = A, ,(g).

Our second result computes the left-bottom corner A/vA of the biquan-
tization square (0.1), where A = A, ,(g). Consider the C[ul-algebra V,,(g)
defined in the same way as the universal enveloping algebra U(g), except
that the identity xy — yz = [x,y] is replaced by zy — yz = ulz,y|, where
xz,y € g. We view V,(g) as a parametrized version of U(g); note that
Vu(g)/(w — 1) = U(g). Similarly to U(g), we provide V,,(g) with the struc-
ture of a co-Poisson bialgebra. We prove that A, ,(g)/vAu.(g) = Vu(g)
as co-Poisson bialgebras. According to the remarks above, the projection
Aun(g) = Aun(g)/vAus(g) = Vul(g) is a quantization of V,,(g). This is a
refined version of the Etingof-Kazhdan quantization of U(g). Indeed, quo-
tienting both A, ,(g) and V,,(g) by v — 1, we obtain the Etingof-Kazhdan
quantization of U(g) (cf. Remark 8.4).

Our third result concerns the right-top corner A/uA of the biquantization
square for A = A, ,(g). Namely, we prove that A/uA is isomorphic to a
topological dual of V,,(g*) consisting of C|v]-linear maps V,(g*) — C][v]]
continuous with respect to the wv-adic topology in C[[v]] and a suitable
topology in V,(g*). This dual is a Poisson bialgebra over Cl[v]]. It is
isomorphic to the Poisson bialgebra E,(g) of functions on the Poisson-Lie
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group associated with g*®cC[[v]], cf. [Tur91, Sections 11-12]. (As an al-
gebra, E,(g) = S(g)[[v]].) According to the remarks above, the projection
Auv(9) = Auw(g)/uAyn(g) = Ey(g) is a quantization of E,(g).

To sum up, the Clu][[v]]-bialgebra A, ,(g) quantizes S(g), Vi (g), and the
topological dual E,(g) of V,(g*).

We can apply the same constructions to the dual Lie bialgebra g*. It
is convenient to exchange u and v, i.e., to consider the Clv][[u]]-bialgebra
Ay (g*) obtained from A, ,(g*) via an appropriate tensoring with Clv][[u]].
As above, A, ,(g") quantizes S(g*), V4, (g*), and the topological dual E,(g*)
of V,(g). Observe that the three lower level corners of the biquantization
square for A, ,(g*) are dual to the lower level corners of the biquantization
square for A, ,(g). We prove that the bialgebras A, ,(g) and A, ,(g*) are
essentially dual to each other.

Our definition of A, ,(g) is obtained by an elaboration of Etingof and
Kazhdan’s quantization of U(g) and can be regarded as an extension of
their work. The definition goes in two steps. First we replace the variable h
by the product uv, which allows us to introduce two variables into the game.
In particular, the universal R-matrix Rj constructed in [EK96] gives rise
to a two-variable universal R-matrix R, ,. Then we separate the variables
u, v in an expression for R, , by collecting all powers of u (resp. v) in the
first (resp. second) tensor factor. The algebra A, ,(g) is generated by the
first tensor factors appearing in such an expression.

The plan of the paper is as follows. In Section 1 we recall the notions
of Poisson, co-Poisson, and bi-Poisson bialgebras, as well as the definitions
of quantizations and biquantizations. In Section 2 we formulate the main
results of the paper (Theorems 2.3, 2.6, 2.9, and 2.11). In Section 3 we
recall a construction due to Drinfeld producing certain linear maps out of
a bialgebra comultiplication. We use these maps to show that every bialge-
bra over C[[u]] has a canonical subalgebra that is commutative modulo w.
In Section 4 we collect several useful facts concerning C[[u, v]]-modules. In
Section 5 we recall the basic facts concerning Etingof and Kazhdan’s quan-
tization Uy(g) of a Lie bialgebra g. In Section 6 we define A, ,(g) and show
that it is a topologically free module. The proof that A, ,(g) is an algebra
is also given in Section 6; it uses Lemma 6.10 whose Aproof is postponed to
Section 7. In Section 7 we introduce a completion A, ,(g) of Ay, (g) and
define a bialgebra structure on A, ,(g). Section 8 is devoted to the proofs
of Theorems 2.3 and 2.6, and the first part of Theorem 2.9. In Section 9 we
investigate the two-variable universal R-matrix R, , and construct a nonde-
generate bialgebra pairing between A, ,(g) and a certain bialgebra AP, In
Section 10, using the pairing of Section 9, we relate S(g)[[v]] to the topolog-
ical dual of V,(g*), which allows us to complete the proof of Theorem 2.9.
In Section 11 we compare Etingof and Kazhdan’s quantization for a Lie
bialgebra and the dual Lie bialgebra. In Section 12 we use the results of



BIQUANTIZATION OF LIE BIALGEBRAS 301

Section 11 to show that AP = Ay u(g*) and prove Theorem 2.11. In the
appendix we describe explicitly the biquantization of a trivial Lie bialgebra.

We fix once and for all a field C of characteristic zero.

1. Poisson bialgebras and their quantizations.

We introduce the basic notions used throughout the paper. All objects will
be considered over a field C of characteristic zero. Given a commutative C-
algebra x, we recall that a x-bialgebra is an associative, unital k-algebra A
equipped with morphisms of algebras A : A — A®.A, the comultiplication,
and € : A — &, the counit, such that

(A@idA)A = (idA(X)A)A and (€®idA)A = (idA®8)A =idy,

where id 4 denotes the identity map of A. We shall also consider topological
bialgebras. A topological bialgebra A is defined in terms of a two-sided
ideal I C A. The definition is the same as for a k-bialgebra, except that the
comultiplication takes values in the completed tensor product

AB, A= lim (A/I” D A/I”).

The topological bialgebra A is equipped with the I-adic topology, namely
the linear topology for which the powers of I form a fundamental system of
neighbourhoods of 0 (see [Bou61, Chap. 3)).

1.1. Poisson Bialgebras. A Poisson bracket on a commutative algebra B
over the field C is a Lie bracket { , } : B x B — B satisfying the Leibniz
rule, i.e., such that for all a,b,c € B we have

(1.1) {ab,c} = a{b,c} + b{a,c}.
A Poisson bracket on B defines a Poisson bracket on B ® B by
(1.2) {a®@d,baV}=ab®{d, b} + {a,b} @dV

where a, d’, b, V' € B.

A Poisson bialgebra is a commutative C-bialgebra B equipped with a
Poisson bracket such that the comultiplication A : B — B®DB preserves the
Poisson bracket:

(1.3) A({a,b}) = {A(a), A(b)}

for all a,b € B.

The following well-known construction yields examples of Poisson bialge-
bras. Let A be a bialgebra over the ring Clu| of polynomials in a variable w.
Assume that A is commutative modulo v in the sense that ab — ba € uA for
all a,b € A. If the multiplication by w is injective on A, then the quotient
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bialgebra A/uA is a Poisson bialgebra with Poisson bracket defined for all
a, b e A by

(L4) {p(a),p()} = p(

where p: A — A/uA is the projection.

The inverse of this construction is called quantization. More precisely,
a quantization of a Poisson C-bialgebra B is a Clul-bialgebra A which is
isomorphic as a C[u]-module to the module Blu] of polynomials in u with
coefficients in B, is commutative modulo w, and such that A/uA is iso-
morphic to B as a Poisson bialgebra. The latter condition implies that
Equality (1.4) holds for all a,b € A, where p : A — A/uA = B is the
projection and { , } is the Poisson bracket in B.

One can similarly define quantization over the ring C[[u]] of formal power
series. To shorten, we call Cl[u]]-bialgebra a topological C[[u]]-algebra A
where the topology is the u-adic topology, i.e., is defined by the ideal uA.
In this case,

(1.5) A @)CHUH A= lln(A/unA Qcu]]/(un) A/unA>.

OLb—ba)7

A quantization over Cllu]] of a Poisson C-bialgebra B is a (topological)
C[[u]]-bialgebra A which is isomorphic as a C[[u]]-module to the module
B([u]] of formal power series with coefficients in B, is commutative modulo u,
and such that A/uA = B as Poisson bialgebras.

1.2. Co-Poisson Bialgebras. It is straightforward to dualize the defini-
tions of Section 1.1. A Poisson cobracket on a cocommutative C-coalgebra
B is a Lie cobracket § : B — B ® B satisfying the Leibniz rule, i.e., such
that

(1.6) (id® A)d = (§ ®id + (¢ ®id)(id ® 0)) A,

where A : B — B®B is the comultiplication of B and o is the permutation
a®b — bRa in BRB. Recall the notation A°? = oA for the opposite
comultiplication.

A co-Poisson bialgebra is a cocommutative C-bialgebra B equipped with
a Poisson cobracket § such that

(1.7) 5(ab) = 5(a)A(D) + A(a)S(b)

for all a,b € B.

We obtain co-Poisson bialgebras by dualizing the constructions of Sec-
tion 1.1. Here again we have the choice between the ring C[v] of poly-
nomials and the ring C[[v]] of formal power series in a variable v. In the
context of co-Poisson bialgebras, it will be more relevant to work with formal
power series. So let A be a bialgebra over C[[v]] in the sense of Section 1.1.
Assume that A is cocommutative modulo v, i.e., for all a € A we have
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A(a) — A% (a) € VAR A, where A denotes the comultiplication and A°P
the opposite comultiplication of A. If v acts injectively on A @)CHUH A, then
the quotient bialgebra A/vA is a co-Poisson bialgebra with cobracket

(1.8) d(p(a)) = (p®p)(w>

for a € A, where p: A — A/vA is the projection.

A coquantization of a co-Poisson C-bialgebra B is a C[[v]]-bialgebra A
which is isomorphic to B[[v]] as a C[[v]]-module, is cocommutative modulo v,
and such that A/vA is isomorphic to B as a co-Poisson bialgebra. This
implies that Formula (1.8) holds for any a € A, where p: A — A/vA = B
is the projection and ¢ is the Poisson cobracket in B.

1.3. Bi-Poisson Bialgebras. Following [Tur89, Tur91], we combine the
definitions given above and define the concepts of bi-Poisson bialgebras and
their biquantizations. A bi-Poisson bialgebra is a commutative and cocom-
mutative bialgebra B equipped with Poisson bracket { , } and Poisson co-
bracket ¢ turning B into a Poisson and co-Poisson bialgebra, and satisfying
the additional condition:

(1.9) 6({a,b}) = {0(a), A(b)} + {A(a),0(b)}
for all a,b € B.

In order to introduce biquantization, we use two variables v and v and the
ring Clu][[v]] which consists of formal power series in v whose coefficients
are polynomials in u. The following definitions can easily be adapted to the
rings Clu, v], Cl[[u,v]], and C[v][[u]].

By a Clu][[v]]-bialgebra A we mean a topological Clu][[v]]-algebra A,
where the topology is defined by the ideal vA, so that the comultiplication
takes values in

(1.10) A @)C[U][[U]] A= @(A/U”A Qcu[[o]]/(v") A/vnA>.

Let A be a CJu][[v]]-bialgebra that is commutative modulo u and cocommu-
tative modulo v. If v and v act injectively on A, then the quotient bialgebra
A/(uA + vA) is a bi-Poisson bialgebra over C with Poisson bracket given
by (1.4) and Poisson cobracket given by (1.8), where p: A — A/(uA 4 vA)
is the projection. Inverting this construction, we obtain the following notion
of biquantization.

Definition 1.4. A biquantization of a bi-Poisson C-bialgebra B is a
C|u][[v]]-bialgebra A which is isomorphic to Blu|[[v]] as a C[u][[v]]-module,
is commutative modulo u and cocommutative modulo v, and such that
A/(uA 4+ vA) = B as bi-Poisson bialgebras.

Any biquantization A gives rise to a “biquantization square” as follows.
Observe that A/vA is a cocommutative co-Poisson bialgebra over Clu] and
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that A/uA is a commutative Poisson bialgebra over C[[v]]. We form the
commutative square

A 2 AJuA

(1.11) pvl J((I'u

AlvA -2 B

where py, Dy, qu, ¢» are the natural projections. The morphisms p, and g,
are quantizations whereas p, and ¢, are coquantizations. The projection
p : A — B can therefore be factored in two ways as a composition of a
quantization and a coquantization: p = q,py = quPes-

2. Statement of the main results.

Any Lie bialgebra g gives rise to a bi-Poisson bialgebra S(g). In this sec-
tion, after recalling the necessary facts on Lie bialgebras, we state our main
theorems concerning a biquantization of S(g).

2.1. Lie Bialgebras (cf. [Dri82]). A Lie cobracket on a vector space g
over C is a linear map 0 : g — g ® g such that

(2.1) 0§ =—6 and (id+7+73)(®id)=0

where o (resp. 7) is the automorphism of g ® g (resp. of g ® g ® g) given
by oc(z®y) =yQx (resp. T(z Ry ®z) = y® 2z @x). It is clear that the
transpose map 0% : g*®@g* C (g®g)* — g* is a Lie bracket in the dual space
g* = Homc(g, C).

A Lie bialgebra is a vector space over C equipped with a Lie bracket
[,]:9®g— gand a Lie cobracket 0 : g — g ® g such that

(22) 6([z,y]) = z0(y) — y(x)
for all z,y € g. Here g acts on g ® g by the adjoint action (z, 2,2’ € g):
r(2®7)=[r,2]® +2®z,7].

Let g be a Lie bialgebra with Lie bracket [ , ] and Lie cobracket §. It
is easy to check that, if we replace [, ] by —[, | without changing the Lie
cobracket, then we obtain a new Lie bialgebra, which we denote g°P. If we
leave the Lie bracket in g unaltered and replace § by —d, then we obtain
another Lie bialgebra denoted g“®. The opposite —idg of the identity map
of g is an isomorphism of Lie bialgebras g°®? — g°®P and g — (g°P)“P.

When the Lie bialgebra g is finite-dimensional, then the dual vector space
g* with the transpose bracket and cobracket is also a Lie bialgebra. Clearly,

(g*>0p — (gcop)* and <g*)cop — (gop)*.
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2.2. A Bi-Poisson Bialgebra Associated to g (cf. [Tur89, Tur91]).
For any vector space g, the symmetric algebra S(g) = €,,~, S"(g) has
a structure of bialgebra with comultiplication A determined by A(z) =
r®1+1®azforall x € g = S'(g). If g is a Lie algebra with Lie bracket [, ],
then S(g) is a Poisson bialgebra with Poisson bracket determined by

(2.3) {z,y} = [2,9]

for all z,y € g. If g is a Lie coalgebra, then S(g) is a co-Poisson bialgebra
with the unique Poisson cobracket such that its restriction to S'(g) = g is
the Lie cobracket of g. If, furthermore, g is a Lie bialgebra, then S(g) is a
bi-Poisson bialgebra ([Tur91, Theorem 16.2.4]).

We now state our first main theorem.

Theorem 2.3. Given a finite-dimensional Lie bialgebra g, there exists a
biquantization A .(g) for S(g).

The construction of A, ,(g) will be given in Section 6. It is an extension
of Etingof and Kazhdan’s quantization of U(g), as constructed in [EK96].
As in loc. cit., our definition of A, ,(g) is based on the choice of a Drinfeld
associator. We nevertheless believe that it is unique up to isomorphism. We
shall not discuss this point in this paper.

The fundamental feature of our construction is that the bialgebras in the
lower left and the upper right corners in the biquantization square (1.11)
when A = A, ,(g) are closely related to the universal enveloping bialgebra
U(g) of g and to the dual of U(g*). We shall give precise statements in the
remaining part of this section. We begin with a short discussion of U(g) and
its parametrized version V,,(g).

2.4. The Bialgebra V,(g). Let g be a Lie algebra over C. Consider the
C|ul-algebra T'(g)[u] of polynomials with coefficients in the tensor algebra
T(g) = D,>¢ 8°". Let V,,(g) be the quotient of T'(g)[u] by the two-sided
ideal generated by the elements

TRy —y®r—ulz,yl
where z,y € g. The composition of the natural linear maps g = T (g) C
T(g) C T(g)[u] — Vu(g) is an embedding whose image generates V,,(g) as

a Clul-algebra. The algebra V,(g) is a bialgebra with comultiplication A
determined by

(2.4) Alz)=z1+1®

for all € g. Clearly, V,,(g)/(u — 1)V,(g) = U(g) and V,(g)/uV,(g) = S(g).
In this paper, we will use the fact that V,,(g) embeds in the polynomial

algebra U(g)[u]. The algebra U(g)[u] is equipped with a Clu]-bialgebra

structure whose comultiplication A is also given by (2.4). Let i : V,,(g) —
U(g)[u] be the morphism of C[u]-bialgebras defined by i(z) = ux for all
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x € g C Vu(g). Using the Poincaré-Birkhoff-Witt theorem (cf. [Dix74,
Chap. 2]), we see that V,,(g) is a free C[u]-module and that ¢ is injective.
To describe its image, recall the standard filtration U°(g) = C C Ul(g) C
U?(g) C -+ of U(g): The subspace U™(g) is the image of @}, g** under
the projection T'(g) — U(g). Then

i(Vu(g) =4 > amu™ € U(g)[u] | am € U™ (g) for allm >0
m>0

We also have U™(g)/U™ !(g) = S™(g) for all m > 0. From now on, we
identify V,(g) with i(V,(g)) and S(g) with the graded algebra

@ Um( ) Um 1(

m>0
Under these identifications, the natural projection ¢, : Vi, (g) — S(g) sends
any element » o anu™ € V(@) to 3, <o am € S(g), where a,, € S™(g)

is the class of a,, € U™(g) modulo U™ !(g). These observations lead to the
following easy fact.

Lemma 2.5. The Clu]-bialgebra V,,(g) is a quantization of the Poisson bial-
gebra S(g).

Suppose now that g is a Lie bialgebra with Lie cobracket §. It was shown
in [Tur91, Theorem 7.4] that ¢ induces a co-Poisson bialgebra structure
on V,(g) with Poisson cobracket d,, determined for all x € g by

(2.5) Su(ux) = u?5(x) € ug@ug C Vi (g) ®cu] Vu(g)-

The projection ¢, : V,(g) — S(g) preserves the co-Poisson structure; in
other words, V,(g) is a quantization of S(g) in the category of co-Poisson
bialgebras.

Theorem 2.6. For the bialgebra A, ,(g) of Theorem 2.3, there is an iso-
morphism of co-Poisson Clu]-bialgebras

Au,v (g)/UAu,v(g) = Vu(g)

Theorem 2.6 will be proved in Section 8.

2.7. The Bialgebra E,(g). Let g be a finite-dimensional Lie coalgebra
with Lie cobracket §. By Section 2.2 the cobracket ¢ induces a co-Poisson
bialgebra structure on S(g).

Turaev ([Tur89, Sections 4-5] and [Tur91, Sections 11-12]) constructed
a (topological) C[[v]]-bialgebra E,(g) which may be viewed as the bialgebra
of functions on the simply-connected Lie group associated to the dual Lie
algebra g*. As an algebra, E,(g) is the algebra of formal power series with

coefficients in S(g):
Ey(g) = S(g)[[v]]-
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To define the comultiplication in E,(g), consider the Campbell-Hausdorff
series

(2.6) w(X,Y)=log(e*e")
1 1
=X +Y+ o (X Y]+ 55 (X XY+ (XY Y]) +
where X,Y € g*. Let us multiply all Lie brackets of length n by v™. This
yields the modified Campbell-Hausdorff series

1
(27) (X, Y) = ~ log(e"Xe™)

2
= X4V 43 [X.Y]+ 5 (X X0V +[[X, Y], Y]) +
The comultiplication A" in E,(g) is given by a — a o p,,, which makes sense
when we identify elements of FE,(g) with C[[v]]-valued polynomial functions
on g*. For x € g C E,(g) we have
2
(28) A(2) =201 +103+53(0)+ 15 > (@iaf @) +al' @ ajal) -,
i
where (id ® 0)0(z) =), o} ® ] ® . For details, see loc. cit.

Let ¢, : Ey(g) — S(g) be the algebra morphism sending an element
of E,(g) to its class modulo vE,(g). Formula (2.8) implies that the induced
map E,(g)/vE,(g) — S(g) is an isomorphism of co-Poisson bialgebras. This
leads to the following.

Lemma 2.8. The Cl[v]]-bialgebra E,(g) is a coquantization of the co-Pois-
son bialgebra S(g).

If the Lie coalgebra g has a Lie bracket [ , ] turning it into a Lie bialgebra,
then E,(g) carries a structure of a Poisson bialgebra whose Poisson bracket
{, } is uniquely determined by the condition

(2.9) {o1,@2} = [21,72) mod (€D 5™(e))([v])

for all z1,x2 € g (cf. [Tur91, Theorem 11.4 and Remark 11.7]).

Theorem 2.9. For the bialgebra A, ,(g) of Theorem 2.3, there is an iso-
morphism of Poisson Cl[v]]-bialgebras

Au,v(g)/UAu,v(g) =L, (g)

Theorem 2.9 will be proved in two steps: In Section 8.2 we prove that
Ayv(g)/uAyy(g) = S(g)[[v]] as an algebra; in Section 10.7 we determine its
coalgebra structure.
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2.10. Duality. By Theorem 2.3 we have a biquantization square
Auw(9) S Auw(9)/uAyv(9)
(2.10a) pvl J/Q'u

Auw(9)/vAuw(g) S S(g)-

Replacing g by the Lie bialgebra g’ = (g*)°P (see Section 2.1 for the nota-
tion) and exchanging u and v, we obtain the biquantization square

Apu(g) — Apu(9)/vAyu(g")
(2.10b) pul lqu
Av,u(g,)/UAv,u(g/) L S(g,)'

We prove that these squares are in duality as follows.

Let K be a commutative C-algebra together with two subalgebras K
and K. Given a Kij-module A and a Ks-module B, a C-bilinear map
(,):Ax B — K will be called a pairing if

()\1(1, )\gb) = )\1)\2 (a, b)
forall \y e K1 C K, \s € Ko C K,a € A, and b € B. We say that the
pairing ( , ) is nondegenerate if both annihilators
{a€A|(a,b)=0 forallbe B} and {be B|(a,b)=0 forallac A}
vanish. The pairing A x B — K induces a pairing ( ,) : (A®x,A) X
(B®x,B) — K by
(a®d’,bb) = (a,b) (a’, V)
for all a,a’ € A and b,/ € B. Suppose, in addition, that A and B are
bialgebras over K and Ky, respectively. The pairing (, ) : A x B — K is
a bialgebra pairing if
(2.11) (a,bb') = (A(a), bV'),
(ad’,b) = (a®d’, A(b)),
(av 1) = E(a)7
(1,0) = &(b)
for all a,a’ € A and b,/ € B, where A denotes the comultiplication and &
the counit.

Theorem 2.11. Let g be a finite-dimensional Lie bialgebra and g’ = (g*)°P.
Then there is a nondegenerate bialgebra pairing

Au(9) % Avu(g’) = Cllu, v]],

which induces the standard bialgebra pairing
S(g) x S(g) = Auw(9)/(u,v) x Avu(g’)/(u,v) — C,
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uniquely determined by (x,y) = (x,y) for all x € g and y € g’ = g*, where
(,):gxg"— C is the evaluation pairing.

Theorem 2.11 will be proved in Section 12. Note that, quotienting by u
(resp. v), we obtain nondegenerate bialgebra pairings

Ey(g) x Vo(g') — C[[v]] and  Vi(g) x Eu(g") — C[[u]].

3. The maps §".

Let A be a C[[u]]-bialgebra in the sense of Section 1.1. In [Dri87, Section 7]
Drinfeld used a general procedure to construct a C[[u]]-subalgebra A’ of A.
In Drinfeld’s terms, if A is a quantized universal enveloping algebra, then
A’ is a quantized formal series Hopf algebra. The subalgebra A’ is defined
using a family of linear maps (6" : A — A®™),,>0, whose definition will be
recalled below.

In this section, we prove that A’ is commutative modulo u. To this end,
we establish some properties of the maps ™.

3.1. Definition of §". Starting from a bialgebra A over a commutative
ring x with comultiplication A and counit &, we define for each n > 0
a morphism of algebras A" : A — A®" as follows: A = ¢ : A — &,
Al =idy : A — A, the map A% : A — A%®? is the comultiplication A and,
for n > 3,
A" = (AgidF" AT,

Let us embed A®" into A®("*1) by tensoring on the right by the unit 1 €

A. We thus get a direct system of algebras

A— A®? 5 A®3 .
whose limit we denote by A®>°. In this way, each A®" is naturally embedded
in A%,
Let I be a finite subset of the set of positive integers N’ = {1,2,3,...}.

If n = |I| is the cardinality of I, we define an algebra morphism j; :
A®T — A®® a5 follows. If I = {iy,... iy} with i1 < ... < i,, then
J1(a1®---®an) = b1®bo®---, where b; = 1if i ¢ I and b;, = a, for
p=1,...,n. If I =0, then j; : K — A®> is the k-linear map sending the

unit of x to the unit of A%,

Suppose we have a r-linear map f : A — A®" for some n > 0. For
any set I C N’ of cardinality n, we define a linear map f; : A — A®> by
fr=grof. It I ={1,...,n}, then fr is equal to f composed with the
standard embedding of A®"™ in A®>°. This shows that knowing the linear
map f : A — A®" is equivalent to knowing the family of maps f; : A — A®>®
indexed by the subsets I of N’ of cardinality n. In particular, from each
A" : A — A®" we obtain the family of linear maps (A7) indexed by the sets
I C N of cardinality n and defined by A; = (A™);: A — A®>.
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After these preliminaries, we define the maps 6" : A — A®" for n > 0 by
the following relation in terms of finite sets I ¢ N’:

(3.1) or=>_ (-)M=7lA,.
JCI

By the inclusion-exclusion principle, we have the equivalent relation

(3.2) Ar=> 6,
JC1I

It follows immediately from (3.1) that

1 ifI=90
3.3 or7(1) = ’
(3:3) 1(1) {O otherwise.
Lemma 3.2. Let a,b € A and K be a finite subset of N'. Then
(3.4) Sc(ab) = > 67(a)dy(b

I1,JCK

IUJ:K

Moreover, if K # (), then
(3.5) Silab—ba)= Y (61(a)d;(b) — 6,(b)dr(a)).

1,JCK
TUJ=K,INJ#0

Proof. In order to prove (3.4), we first observe that by (3.2),
(3.6) > bxr(ab) = Ax(ab) = Ak (a = Y dla

K'CK LICK
We rewrite (3.6) as follows:

(3.7) > dxolab) = > > 61(a)ds(b)

K'CK K'CcK I,JCK'
IuJ=K'

Let us prove (3.4) by induction on the cardinality of K. If K = (), then
dx = jp o e, which is a morphism of algebras. Suppose now that (3.4) holds
for all sets of cardinality < |K|, in particular for all proper subsets K’ of K.
Thus, the right-hand side of (3.7) equals

Z (SKI ab Z (5[

K/CK I,JCK
K'#K TUJ=K

We get the desired formula by substracting the summands corresponding to
the proper subsets K’ of K from both sides of (3.7).

Formula (3.5) follows from (3.4) and the fact that d;(a) and (b)) com-
mute when I NJ = 0.
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3.3. Remark. Note that, if I and J C N’ are disjoint finite sets, then
(38) (51®5J)OA:(51U].

Eric Miiller observed (private communication) that 6" : A — A®™ can also
be defined as §" = (idg — )%™ o A",

3.4. Definition of A’. Let A be a bialgebra over Cl[[u]] in the sense of
Section 1.1. Using the comultiplication A : A — A@C[M] A, we define
C|[u]]-linear maps 6" : A — A®™ as in Section 3.1. Observe that Formulas
(3.1)-(3.5) hold in this setting as well. Following Drinfeld [Dri87, Section 7],
we introduce the submodule A’ of A by

(3.9) Al = {a €A | 6"(a) € u"A®" for alln > 0} :
It follows from (3.3) and (3.4) that A’ is a subalgebra of A.

Proposition 3.5. If the multiplication by u is injective on A®n for alln >
1, then the algebra A’ is commutative modulo u, i.e., ab — ba € uA’ for all

a,be A.

Proof. Let us first observe that there exists a; € A such that a = ua;+¢(a)l.
This follows from the fact that idq = A! = §1+6% = 61 +¢1 and §'(a) € uA.
Similarly, there exists by € A such that b = ub; +(b)1. Hence, ab—ba = uc,
where ¢ = u(aiby — bray). It suffices to show that ¢ € A’. To this end, it is
enough to check that dx (c) is divisible by ul X! for any nonempty finite subset
K of N’. Since the multiplication by w is injective on ABIK |, it is enough
to check that dx(ab — ba) is divisible by ul®I*1. We apply Formula (3.5).
Let I and J be subsets of K such that TUJ = K and I NJ # (). Then
|I| + |J| > |K|+ 1. Since §;(a) is divisible by ul/l and 6;(b) is divisible
by ul’l, it follows from (3.5) that 0 (ab — ba) is divisible by u//I*!/l hence
by w1, O

3.6. Remark. If A is topologically free, i.e., isomorphic to V[[u]] as a C[[u]]-
module for some vector space V, then so is A’. A similar, but more compli-
cated statement will be proved in Lemma 7.2.

3.7. Example. Consider a Lie algebra g and its universal enveloping bial-
gebra U(g). Let U(g)[[u]] be the C[[u]]-bialgebra consisting of the formal
power series over U(g), with comultiplication A given by (2.4). Using the

notation of Section 2.4, we introduce a subalgebra V,(g) of U(g)[[u]] by

(3.10) Vu(g) =3 > amu™ € U@)[[ul] | am € U™(g) for all m >0

m>0
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Clearly, Vy(g) C Vi(g). Let I, be the two-sided ideal of V,(g) generated by
uVy(g) and by ug C uU'(g) C Vy(g); it is the kernel of the morphism of

algebras
o) 5(0)— 5@/ (P 5"(@) ) =

n>1
cf. Section 2.4. It is easy to check that ‘A/u(g) is the I,-adic completion
of Vi,(g).
Proposition 3.8. If A = U(g)[[u]], then A’ = V,(g).

Proof. Let a = }_ -y amu™ be a formal power series with coefficients
in U(g). For n > 1, the condition §"(a) € u"U(g)®"[[u]] implies that
0" (ap—1) = 0. We claim that

(3.11) Ker(6" : U(g) — U(g)®") = U" '(g)
for all n > 1. It follows from this claim that a,_; € U™ !(g), hence,
a € Vyu(g).

Equality (3.11) is probably well known, but we give a proof for the sake of
completeness. The standard symmetrization map n : S(g) — U(g) is known
to be an isomorphism of coalgebras (cf. [Dix74, Chap. 2]). Hence, n®"§" =
d"n, where 0" stands for the corresponding maps both on S(g) and U(g).
Moreover, n~H (U™ 1(g)) = @Z;(l) S*(g). Therefore, Equality (3.11) is equiv-
alent to

n—1
Ker(é” :S(g) — S(g)®n) = @ Sk(g)
k=0

If (x;); is a totally ordered basis of g, we get a basis of S(g) by taking
all words w = z;, ...x;, such that x;; < --- < x;,. We call subword of
a word w any word obtained from w by deleting some letters. With this
convention, the comultiplication A of S(g) is given on a basis element w by
A(w) = > wi®ws, where the sum is over all subwords wy, we of w such
that w = wyws. Iterating A, we get for all n > 1

:Zw1®...®wm

where the sum is over all subwords w1, ... ,w, of w such that w = wy ... w,.
This, together with (3.1) or (3 2), implies that

(3.12) §M(w) =" wi® - Qwp,

where the sum is now over all nonempty subwords wi, ... ,w, of w such that

w = wj ...wy. This shows that, if w is of length < n, then the right-hand
side of (3.12) is empty and (5"( ) = 0. Therefore,

@ S*(g) C Ker(5").
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To prove the opposite inclusion, it is enough to check that the restriction
of 6™ to the subspace @y>, S¥(g) is injective. This is a consequence of the
following observation: If w is a basis element of length > n and p is the
multiplication in S(g), then (3.12) implies that pdé™(w) = [Jw||w, where
||lw]| > 0 is the number of summands on the right-hand side of (3.12). O

4. Topologically free C[[u,v]]-modules.

In this section, we establish a few technical results on modules over the ring
Cl[u,v]] of formal power series in two commuting variables v and v with
coefficients in C. They are modelled on similar results for modules over the
ring C[[h]] of formal power series in h.

4.1. Modules over CJ[h]]. We recall a few facts about C[[h]]-modules (see,
e. g., [Kas95, Sections XVI.2-3]). A CJ[h]]-module M is called topologically
free if it is isomorphic to a module V[[h]] consisting of all formal power series
with coefficients in the vector space V. A C][h]]-module M is topologically
free if and only if there is no nonzero element m € M such that hm = 0
and the natural map M — @ln M/h"™M is an isomorphism. We define a

topological tensor product ®C[[h]] for C[[h]]-modules M and N by
M &cypy N = lim (M /h"M @cyp)j/ () N/B"N).

For all vector spaces V, W, we have V[[h]] @y W[h]] = (VRcW)][[R]].
Let us extend these considerations to C[[u, v]]-modules.

4.2. Basic Definitions. Let M be a C[[u,v]]-module. We say that M is
u-torsion-free (resp. v-torsion-free) if there is no nonzero element m € M
such that um = 0 (resp. such that vm = 0).

We say that M is admissible if any element divisible by both u and v
in M is divisible by uv in M. In other words, M is admissible if, for any
m € M such that there exists mi,ms € M with m = umy; = vms, there
exists mg € M such that m = uvmy.

Observe that, if M is admissible and u-torsion-free, then any element of
M divisible by u™ and by v is divisible by u"v, where n > 0.

We denote by ]\/Z(um) the (u,v)-adic completion of M: It is the projective
limit of the projective system (M /(u, v)"M),>1, where (u, v)M = uM+vM.
The projections M — M/(u,v)"M induce a natural C[[u,v]]-linear map
i M — J/\Z(u,v)' The kernel of i is the intersection of the submodules
((u,v)"M)p>1. We say that the module M is separated (resp. complete) if
the map i : M — ]\/Z(U,U) is injective (resp. surjective).

Given a vector space V over C, consider the vector space V{[u,v]] con-
sisting of formal power series Zm7n>0 Tmn w0, where the coefficients x,,
(m,n > 0) are elements of V. The standard multiplication of formal power
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series endows V[u, v]] with a C[[u,v]]-module structure. A Cl[u, v]]-module
M isomorphic to a module of the form V{[u,v]] will be called topologically
free.

It is easy to check that a topologically free C[[u, v]]-module is u-torsion-
free, v-torsion-free, admissible, separated, and complete. We now prove the
converse.

Lemma 4.3. Any u-torsion-free, v-torsion-free, admissible, separated, com-
plete C[[u,v]]-module M is topologically free.

Proof. Let V' be a vector subspace of M supplementary to the submodule
(u,v)M. We claim that for all n > 0 we have the direct sum decomposition
of vector spaces

(4.1) (u,v)"M = (u,v)" "' M @ @ uFotv.

k,£>0
k+l=n

From (4.1) we derive

M = (u,v)" "' M @ @ uFotv.

k,0>0
k+e<n
Consequently,
M/(u,0)" "M = @ u*o'V = Vu, o]/ (u,0)" V][, 0]
k,£>0
k+e<n

Using the hypotheses, we get the following chain of C[[u, v]]-linear isomor-
phisms:
M= M(u,'u) = VHU,UH(U,U) = V[[’LL, UH
It remains to check (4.1). We shall prove it by induction on n. If n = 0,
the identity (4.1) holds by definition of V. If n > 0, let us first show that

(4.2) (,0)"M = (u,0)" "M+ > uFo'V.

k,£>0
k+l=n

Indeed, any element of (u,v)"M is of the form um’ + vm”, where m’,m” €
(u,v)" M. By the induction hypothesis, m’ and m/” belong to
(u,v)"M + Z uFotV.

k,£>0
k+f=n—1

This implies (4.2).
Suppose now that we have elements m € (u,v)" ' M and xg,1,... , T, €
V such that

(4.3) m+ Y R, =0
k=0
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We have to show that m = g = 21 = --- = x, = 0. The element m €
(u,v)" M is of the form m = u""tmg + vm”, where mg € M and m” €
(u,v)"M. The element u™zo + v img = u™(xg + umyg) is divisible by u".
It follows from (4.3) that it is also divisible by v. Since M is admissible
and u-torsion-free, there exists m; € M such that u"(xg + umg) = u"vm;.
Hence, xg + umg — vmy = 0. Now, z¢g € V and umg — vmy € (u,v)M
belong to supplementary subspaces. Therefore, zg = umg — vmp = 0 and
m = u"lmy + om” = vm where m’ = u"my + m” € (u,v)"M. Now,
(4.3) becomes v(m + Zk 0 Dukon1hy n—k) = 0. Since M is v-torsion-
free, we get m 4+, Lykyn—l-ky = 0. By the induction hypothesis,
m =z = =x, =0. O

4.4. Topological Tensor Product. Given Cl[u,v]]-modules M and N,
we define their topological tensor product over C[[u, v]] by

M &¢u N = lim (M/(% V)" M@¢(fu))/(uw)r N/ (U, U)"N)-

n

—~

For example, M<§>c[[u,v}] Cllu, v]] = My,).-

Lemma 4.5. (a) If M = V{[u,v]] and N = W{[u,v]] are topologically free
C|[u, v]]-modules, then M®C[[u,v]] N s topologically free:

M &cjjuu N = (VocW)|[u, v]).

(b) If i : M' — M and j : N' — N are injective C[[u,v]]-maps of topo-
logically free modules, then so is the map 1®j7 : M’ ®C[[u,v]] N —
M &cuo N-

Proof. (a) Proceed as in the proof of [Kas95, Proposition XVI.3.2].

(b) Since i®j = (id®j)(i®id), it is enough to prove Part (b) when N = N’
or M = M'. We give a proof for N = N'.

Let V, V', W be vector spaces such that M = V{[u,v]], M" = V'[[u, v]],
and N = W][u,v]]. Take a basis (fm)m of W. By Part (a), any element
Y of M@C[[um” N can be uniquely written as ¥ = > =~ X,,® f;n, where
Xm € M. Set j(Y) = X,,. This defines for all m a Cl[u,v]]-linear map
Jm M ®C“u o] N — M. Using the same basis of W, we define a linear map
Jr s M’ ®C[[u QN — M’ similarly. Clearly, jp, o (i®id) = i o j/, for all m.
Now, take Y' € M’ ®C[[u’v” N such that (i®id)(Y’) = 0. By the previous
equality, we have i(j/,(Y’)) = 0 for all m. The map i being injective, we
get 4/, (Y") = 0 for all m. Therefore, Y' =5 4/ (Y')®fm = 0 and i®id is
injective. (]
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4.6. From One Variable to Two Variables. One of the crucial steps
in our constructions will be to transform a module N over CJ[[h]] into a

module N over C[[u,v]]. This is done as follows.

Let ¢ : CJ[h]] — C][[u,v]] be the algebra morphism sending h to the
product uv. Observe that ¢ factors through the subalgebras Clu][[v]] and
C[v][[u]]. The morphism ¢ sends the ideal (R") into the ideal (u,v)?". Given
a C[[h]]-module N, we consider the projective system of C[[u,v]]-modules

N/(hn) ®C[[h”/(hn) C[[u, UH/(U, v)2n
where n =1,2,3,... and set

(4.4) N =l (N/(") @y Clls ]/ (1))

Clearly, for any x € N, there is defined a corresponding element = € N.

Lemma 4.7. (a) If N = V][h]] for some vector space V over C, then
N = V[[u,]].
(b) If N and N’ are topologically free C|[h]]-modules, then
(N N')™ = Nocipu N
(¢) Leti: N'— N be an injective map of topologically free C[[h]]-modules.
Then the induced C|[u,v]]-map 7 : N' = N is also injective.

Proof. (a) We have the following chain of C[[u, v]]-linear isomorphisms
N =lim V[[n]]/(B")@cyqn /oy Clls v])/ (u, v)*"

= lim VocC[[R])/(W")@cny ) Cllu, v]]/ (u, )*"
= @ V®CCHU7 U]]/(uv U)2n

= lim V/{[u, v]]/(u,v)*"
= V[u,v]].

The first isomorphism follows from the definition of N , the second
and the fourth ones from the finite-dimensionality of C[[h]]/(h") and of
Cllu, v]}/(u, v)*".

(b) This is an easy exercise which follows from Part (a) and the prop-
erties of the topological tensor products over C[[h]] and C[[u,v]] stated in
Section 4.1 and in Lemma 4.5 (a).

(c) We assume that N = V[[h]] and N = V'[[h]] for some vector spaces V
and V'. Let (eg)r be a basis of V' and (f;); a basis of V. The C][h]]-linear

map ¢ : N' — N is determined by i(ex) = > /50, ; xie fj b, where (acfC )ikt
is a family of scalars such that for each couple (k, £) the set of j with :z:i; 70
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is finite. Any element X € N’ is of the form X =37 o, ok ep h", where

(akF)y.n, is a family of scalars such that for each n > 0 the set of k with

of £ 0 is finite. We have

i(X) = Z xijgaﬁ [ pétn — Z Z xiveaﬁ fi | hP.

£n>0; 5,k p>0 \ £n=>0;45.k
L+n=p

The coefficient of f;h? in i(X) is

Jj ok _ ik
D TheOn= D T
£,k

£,n>0; k s
l+n=p 0<e<p

This allows us to reformulate the injectivity of ¢ as follows: The equations
on a family of scalars (af ). >0

(4.5) > alak =0
USZ’;SP
holding for all j and p > 0 imply that o = 0 for all £ and n > 0.
By Part (a) we have N = V([[u, v]] and N’ = V'[[u, v]]. On the basis (ex)y
the map 7 is defined by 7(e;) = Zezo;j z . [ u‘v’. Any element Y € N’
is of the form Y = >~ B, er u™v"™, where (8K, )i mn is a family of

scalars such that for each m,n > 0 the set of k with 8% # 0 is finite. We
have

~ |k 4 ¢
uy) = Z x?c,éﬁmn fiu Tyt

£,m,n=>0; j,k

_ i gk
=2 Do Tl fy |

p,q>0 £,m,n>0; 5,k
- L+m=p,l+n=q

Note that the sum in the brackets is finite. Suppose that 7(Y) = 0. For all
p,q > 0 and all j7 we have

J ko _ J k _
Z xk,zﬁmn = Z $kz,£6p—&q—f = 0.

£,m,n>0;k L,k
L+m=p,l+n=q 0<£<min(p,q)

Fixing ¢ > p > 0 and setting of = gF . we get (4.5) for all j. This
implies that (F = of =0 for all k,n,p,q. If p > q > 0, we set
k

n

q—p+n

oy = ﬁjg_q +n,n and we conclude likewise. Therefore, ¥ = 0. (]

We define a Cl[u, v]]-bialgebra as a topological Cl[u, v]]-bialgebra A with
respect to the ideal (u,v) = uA + vA. As a consequence of Lemma 4.7, we
have the following:
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Corollary 4.8. If A is a C[[h]]-bialgebra that is topologically free as a
C[[h]]-module, then A is a C[[u,v]]-bialgebra that is topologically free as
a C[[u, v]]-module.

Proof. The C[[u,v]]-module A is topologically free by Lemma 4.7 (a). It is
a Cl[u, v]]-bialgebra as a consequence of Lemma 4.7 (b). O

5. On Etingof and Kazhdan’s quantization of a Lie bialgebra.

In this section, we recall the results from Etingof and Kazhdan’s work
[EK96| needed in the sequel.

5.1. The Co-Poisson Bialgebra U(g). Let g be a Lie bialgebra with Lie
cobracket 0. Consider the universal enveloping algebra U(g) of g with stan-
dard cocommutative comultiplication given by (2.4). By [Dri87], the bial-
gebra U(g) has a unique co-Poisson bialgebra structure with a Poisson co-
bracket whose restriction to g C U(g) is the Lie cobracket . Recall from
Section 1.2 that a coquantization A of U(g) is a CJ[[h]]-bialgebra A such
that A = U(g)[[h]] as a CJ[[h]]-module and A/hA = U(g) as co-Poisson
bialgebras.

In [EK96] Etingof and Kazhdan constructed a coquantization Uy(g) of
U(g) in this sense. To this end, they first constructed a coquantization Uy ()
of U(?), where 0 is the double of g. We recall the definition of .

5.2. Double of a Lie Bialgebra. Let g = g, be a finite-dimensional Lie
bialgebra over C with Lie bracket [, ] and cobracket §. Let g = (g3")* =
(g% )°P be the dual Lie bialgebra modified as in Section 2.1.

Consider the direct sum ? = g4 @ g—. Drinfeld [Dri82, Dri87] showed
that there is a unique structure of Lie bialgebra on 0, which he called the
double of g, such that

(a) the inclusions of g4 and g_ into 0 are morphisms of Lie bialgebras
and

(b) the Lie bracket [z,y] for x € g4 and y € g_ is given by

(5.1) [z, 9] = (yo1) () + 2 -y,

where z -y € g_ C 0 is defined by (z - y)(z') = —y([z,2']) for 2’ € g..
The Lie cobracket on ? (hence on gy) is given by

d
(5.2)  dX)=[X@l+leXr]=) <[X, 7] @ yi + 7 ® [X,yi})

for X € 9. Here r = Zgzl x; ®y; is the canonical element of g4 ®g_ C 0®0,
where (7;)%_, is a basis of g4 and (y;)%_, is the dual basis of g_.
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5.3. The bialgebra Uxd. By [EK96, Section 3] there exists a C[[h]]-bi-
algebra Uy (0) with the following features:

(i) As a C|[[h]]-algebra, U (d) = U(d)[[R]], i.e., the multiplication is the
standard formal power series product.

(ii) There exists an invertible element J, € (Ud @ U0)|[[h]] with constant
term 1®1 such that the comultiplication Ay, of Up(0) is given for all a € U(0)
by
(5.3) An(a) = J; A} h,
where A is the standard comultiplication in U(9). The first terms of the
formal power series J; are given by

(5.4) Jp =11 + gr mod h?

where r € 0®0 was defined in Section 5.2. From (5.2-5.4) it follows that for
x €0 C Up(d) we have

(5.5) Ap(z) — AP(z) = hé(z) mod h?,
where A} is the opposite comultiplication and ¢ is the Lie cobracket (5.2).
(iii) If we set t =7 + 191 = Z?Zl (z; ® y; + y; ® z;), then the element

(56) R =y exp( ) Ju € (U@ UD)[[H]) = Un(0) Sy Un(d)

defines a quasitriangular structure on U, (9). This means that AjP(a) =
RyAp(a)R, ! for all a € Up(2) and that

(5.7) (Ah®id)(Rh) = (Rh)lg(Rh)Qg and (id@Ah)(Rh) = (Rh)lg(Rh)lg.
Formula (5.4) implies
(5.8) Ry = 1®1 + hR},

where R}, € U,(9) @y Un(9) such that R}, = r mod h.
From (i) and (ii) it is clear that Uy (0) is a coquantization of the co-Poisson
bialgebra U ().

5.4. The bialgebras Up(g+). In [EK96, Section 4] Etingof and Kazhdan
constructed a C|[[h]]-bialgebra Up(g+) (with h-adic topology) with the fol-
lowing properties:

(i) As a C[[h]]-module, Uy (g+) is isomorphic to U(g+)[[R]].

(ii) Up(g+) is a C[[h]]-subbialgebra of Uy(d). The map pp : Up(gs) C
Un(®) = U®)[[h]] — U®) = U®)[[h]]/RU®)[[h]] induces a bialgebra iso-
morphism

Un(g+)/hUn(g=) = U(g+) C U(2).

(ili) The element Rj, € Uy(@)®cyUn(d) of (5.8) belongs to

Uh(g+)(§>c[[hHUh(g_). So does the universal R-matrix Rj,.
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(iv) The coalgebra structure on Uy (g+) induces an algebra structure on
the dual module Uy (g+) = Homgy) (Un(g+), C[[R]]). By (iii) we can define
linear maps p+ : Uy (g+) — Un(g+) by
(5.9) p+(f) = (1@ [f)(Rn) and  p_(g) = (9®id)(Rn)
for all f € Uj(g-) and g € Uj(g+). In [EK96, Propositions 4.8 and 4.10]
it was shown that py is an injective antimorphism of algebras and p_ is an
injective morphism of algebras.

The construction of Up(0) and Up(g+) depends on a Drinfeld associator,

see Sections 11.2-11.4. Nevertheless, it was shown in [EK97] (and in Sec-
tion 10 of the revised version of [EK96]) that the assignment (g+,9,9-) —
<Uh(g+) — Up(d) <« Uh(g_)> is functorial when the Drinfeld associator is
fixed.
5.5. The Linear Forms f,. Choose a CJ[[h]]-linear isomorphism «a_ :
Un(g—) — U(g-)[[h]] such that a_(1) =1 and a— = id modulo h. Choose
also a C-linear projection 7_ : U(g_) — U'(g_) = C@®g_ that is the identity
on Ul(g_). For any x € g, we define a C-linear form (x,—) : Ul(g_) — C
extending the evaluation map (z, —) : g— — C and such that (z,1) =0.

Given z € g4 we define a C[[h]]-linear form f; : Un(g—) — C][[h]] by

(5.10) fo(b) = (z,m_a—(b)) = Y (&, m—(ba)) h",

n>0
where b € Up(g—) and the elements b, € U(g_) are defined by a_(b) =
> n>0 bnh™. It follows from the definition that f,(1) = 0.

Applying the map p4 of (5.9) to f, € Uy (g—), we get an element p(f;) €
Un(g+). Fix a basis (z1,...,24) of gy. Given a d-tuple j = (j1,... ,ja) of
nonnegative integers, we set |j| = ji +---+jg and x; = 21" ... 2} € U(gy).
Note that (z;); is a basis of U(g).

Lemma 5.6. (a) For any d-tuple j = (j1,...,jq) of nonnegative integers,
there exists an element t; € Up(g+) such that

pr(For ) pg(fa)? = Bl tj and pp(tj) =z,
where pp, = Up(g+) — Un(g+)/hUn(g+) = U(gy) is the canonical pro-
jection.
(b) For any a € Up(g4), there is a unique family of scalars /\gn) € C in-
dexed by a nonnegative integer n and a finite sequence j = Zjl, )
of momnegative integers such that

=N )\én)tl A",

n20 \|j|<e(n)

where c(n) is an integer depending on a and n.
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(¢) If a € Impy, then c(n) = n, that is, )\én) = 0 whenever n < |j|, where

)\g-n) are the scalars above.

Proof. (a) For any = € g4, we have p(f;) = ht, for some t, € Up(g+) such
that pp(tz) = =. This follows from (5.8) (cf. [EK96, Lemma 4.6]). We set
bty =t

~ (b) The proof of Proposition 4.5 of [EK96] implies that any a € Uy, (g4)

can be expanded as above. Let us check that such an expression is unique.
If

(5.11) 3 ( 3 )\é-”)ti) h" =0,

n20  j;|jl<c(n)

then ZIQISC(O) )\S;O)xl = 0 by application of the projection p;. Since the

elements (z;); form a basis of U(g,), we conclude that )\;0) = 0 for all j.
We may then divide the left-hand side of (5.11) by h and start again. This
implies the vanishing of /\§l) =0 for all j, and so on.

(c) Clearly, Uz (g) = U(g_)*[[h]] where U(g_)* = Homo(U(g.), C).
We provide Uj(g—) with the multiplication induced by the comultiplication
of Up,(g—). We claim that the family of linear forms (fie ... f! )j €Up(g-)is
linearly independent and that the C[[h]]-module it spans is dense in U} (g-)

for the I;-adic topology, where I} is the two-sided ideal of U;(g—) gen-
erated by h and f;, (kK = 1,...,d). It suffices to prove that the images
0% ...0% € U(g-)* of fi4...fi} under the algebra morphism U (g_) —
Ur(g—)/hUs(g—) = U(g-)* are linearly independent and that their linear
span is dense in U(g_)* for the Ij-adic topology, where Ij is the two-sided
ideal of U(g—)* generated by 6,, (k=1,...,d). Now, by definition of f,,,
we have 6, = (z;,7_(—)). This implies that, for all 4,5 =1,... ,d, we have

(5.12) 9%(1) =0 and Hxl(y]) = (Sz'j,

where (y1,...,yq) is the dual basis of the basis (z1,...,z4). We compute

the values of the linear form Hﬁ;‘fi .. 9%11 on the basis (ygd . --ylfl)kl,...,kdzo
of U(g-):

(632 ... 091 ) (yht . yf) = (0590 - @05 ) (ALl (yhe L yih)).

A simple computation, using (5.12) and the definition of A (cf. the proof of
Proposition 3.8), shows that
(5.13)

(@8 O o) = {0 i byt g <t
x4 x1

5j1»k1"‘5jd7kd if /{71—|—~'—|—k‘d:j1—|—-~-+jd.
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The claim about the linear forms 62% ...62% € U(g_)* follows immediately
from (5.13).

Part (a) of this lemma and the claim established above imply that the
C[[h]]-linear span of the set (pi(fz; )" ... p+(fz,)?4); is dense in Im p, for
the h-adic topology. It is enough to prove (c) for an element a in this
span. By Part (a), a=3_,50; P Rl t; with P; € C[[h]]. By Part (b), the

element a can be written uniquely as a = ano, j A§n) h"t;. Hence, for any

J, the formal power series ano )\gn) h™ is divisible by h‘i‘, which implies the

(n)

vanishing of A;™ for n < |j|. O

6. The algebra A, = A, ,(g9+)-

We first define a two-variable version U, ,(g+) of Etingof and Kazhdan’s
quantization. Then we construct the algebra A, = A, ,(g4) appearing in
Theorem 2.3. We use the notation g1, 0 defined in Section 5.

6.1. The bialgebras U, ,(?) and U, ,(g+). Applying the construction of
Section 4.6 to the C[[h]]-bialgebras Uy (?) and Up(g+), we obtain Clu,v]]-
modules

P

(6.1) Uu,v(D): h(b) and Uu,v(gi):Uh(gi).

As a consequence of Lemma 4.5, Lemma 4.7, Corollary 4.8, and of the results
summarized in Sections 5.3 and 5.4, we get the following proposition.

Proposition 6.2. (a) The Cl[u,v]]-modules U, ,(0) and U, ,(g+) are to-
pologically free.

(b) Uy (d) has a bialgebra structure whose underlying algebra is the algebra
U(0)][[u, v]] of formal power series with coefficients in U (D).

(c) Uupw(g+) has a bialgebra structure such that the Clu,v]|-linear map
Uuw(9+) — Uuow(0) induced by Up(g+) C Up(d) is an embedding of
bialgebras.

(d) There are canonical isomorphisms of bialgebras

Uuw(0)/(u, 0)Uup(0) = UQ)  and  Uuu(g+)/ (1, 0)Uno(92) = U(g)-

By Proposition 6.2 (c) we may view U, ,(g+) as a subset (in fact, a sub-
bialgebra) of U, ,(9). We denote the comultiplication in U, ,(d) and in
Uuw(9+) by Ayuy. To Etingof and Kazhdan’s universal R-matrix R), €
U (0) ®C[[h}] Ui (0) corresponds an element Ry, € Uu7v(0) ®C[[u,v}] Uu,v(b).
By Section 5.4 (iii) and Lemma 4.5 (b), we have

Ryy € Unw(g+) ®C[[u,vﬂ Uu,w(9-)-
The following is a consequence of (5.7) and (5.8).
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Lemma 6.3. (a) We have
(Au,v®id> (Ru,v) = (RU,U)13(RU,U)23 and
(id@Au,v>(Ru,v) = (Ru,v)l3(Ru,U)12-
(b) There is a unique R € Uyu(9+) @c|u,e Uuw(9=) such that Ry, =
1®1 +uvR'. The image of R’ under the projection
Uu,v(g+) @)C[[u,v]] Uu,v (9—) - (Uu,v (g+) ®C[[u,v]] Uu,v (g—))/(u7 U)
=U(g+) ®@cU(g-)

is the element r = Z?:l xi®y; defined in Section 5.2.

Following 5.4, consider the dual spaces

Unw(9+) = Homgyy,o)) (U, (94), Cllu, v]]),

and define C[[u, v]]-linear maps p, : Uy ,(9-) — Uyp(g+) and p— : Uy ,(9+)
— Uu(g-) by

(6.2) p+(f) = (1d®f)(Ryy) and p_(g9) = (g®id)(Ruy,v)

for f € U, ,(9-) and g € Uy ,(9+). The dual space Uy ,(g+) carries a
C[[u, v]]-algebra structure. The map py is an antimorphism of algebras
and p_ is a morphism of algebras. This follows by a standard argument
from Lemma 6.3 (a) (cf. [EK96, Proposition 4.8]).

6.4. The Linear Forms f,. In Section 5.5 we constructed a C[[h]]-linear
form f; : Up(g—) — CJ[[h]] for all z € g4. The construction depends on
the choice of an isomorphism a_ : Up(g—) — U(g—)[[h]] and a projection
7_ :U(g—) — Ul(g-). By extension of scalars, we obtain a C|[u,v]]-linear
form f, : Uyy(g_) — Cl[u,v]]. We have f,(1) = 0.

Let us apply py : Uy ,(9-) — Uuw(g4) to fi. The following is a conse-

quence of Lemma 6.3 (b).

Lemma 6.5. The element ,0+(fw) € Uyv(9+) is divisible by uv.

6.6. Definition of A.. Let (z1,...,24) be the basis of g4 fixed in Sec-
tion 5.5. The set (ul z;), where j = (j1,...,Jjq) runs over all d-tuples of
nonnegative integers, is a basis of the free C[u]-module V, (g, ) introduced
in Section 2.4. In view of Lemma 6.5, we can define a C[u]-linear map

1/1+ : Vu(g-i-) - Uu,v(g-‘r) by ¢+(1) =1 and
(6.3) Wy (ull z;) = v o (Fo ) (fan),

where j = (j1,...,ja) is a d-tuple of nonnegative integers with [j[ > 1.
This map extends uniquely to a Clu][[v]]-linear map, still denoted 1, from
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Vu(g)[[v]] to Uuw(gy) by

(ox Z wpv" | = Z Yy (wn)v",

n>0 n>0
where wq, w1, ws, ... € V,(g+). We define the Clu|[[v]]-module A1 by

(6.4) Ay = (Vulg)[l]]) € Uuw(gy)-

The remaining part of Section 6 is concerned with the study of A.. The
relevant results are stated in Theorem 6.9.

We choose a C[[h]]-linear isomorphism «ay : Up(g+) — U(g+)[[h]] such
that a4 (1) = 1 and a4 = id modulo h. Such an isomorphism exists by
Section 5.4 (ii). Extending the scalars, we get a Cl[u, v]]-linear isomorphism
ag : Uyp(g+) — U(g4)[[u, v]] such that a4 = id modulo uv. Let us consider
the composed map

po : Uno(gy) <5 Uge)llu, vl — U(g)[[ul],

where the second map is the projection v — 0. We equip U(g4)[[u]] with
the power series multiplication and the comultiplication (2.4).

Lemma 6.7. The map p, : Uy(g+) — U(g+)[[u]] is a morphism of bialge-
bras.

Proof. The multiplication and the comultiplication of Uy (g4) transfer, via
the C[[h]]-linear isomorphism a : Up(g+) — U(g+)[[R]], to a multiplication
pp, and a comultiplication Ay, on U(gs)[[h]]. Expanding up and Aj into
formal power series, we obtain

(6.5) pn = po + by 4+ h2pg + -+ and
Ap = Ao+ hAy + A2 Ay + -

where p; : U(g:)®? — U(gy) and A; : U(gy) — U(gy)®? are linear maps
foralli =0,1,... Since Up(g+)/hUp(g+) = U(g+) as bialgebras, we see that
uo and Ag are the standard multiplication and comultiplication of U(g.).

The multiplication and the comultiplication of U, ,(g+) give rise, via a4,
to a multiplication p,, and a comultiplication A, on U(gy)[[u,v]] of the
form
(6.6) fuw = fo + uvpy + u*v?pg + -+ and

Ay = Do +uvAr + w2 Ay + -

where the maps p; and A; are the same as in (6.5). It follows that p, is a
morphism of bialgebras, where U (g4 )[[u]] is equipped with pg and Ay. O

The following result is an elaboration of Lemma 5.6 (a).
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Lemma 6.8. (a) For any d-tuple j = (j1,... ,ja), the element Yy (uld! ;)
defined by (6.3) belongs to ulZ! Uuwv(g4) and

po (Vs (W ay)) = ulll 25 € U(gy)([u]].
(b) We have py(At) = Vu(g+) and py o by Vau(ge)[[v]] — Vu(gy) is the

projection sending v to 0.

Proof. (a) By multiplicativity of p,, it suffices to prove that v~—1 p+(fz) be-
longs to uw U, »(g+) and that p, (v_1p+(f;)) = uz for any x € g4. The first
assertion follows from Lemma~6.5.

Let us compute p,(v"'p1(fz)). Recall the isomorphism a_ : Up(g-) —
U(g-)[[h]] from Section 5.5 and the isomorphism a : Uh(g+) — U(g+)[[h]]
defined above. Let X; € Up(g4) be defined by X; = a'(z;) and Y; € Uh( -)

Ya)

by Y; = a:l(yi), where (z1,...,24) is the fixed basis of g4 and (y1,... ,yq
is the dual basis. By (5.10),

(6.7) f2(Yi) = (2, ma- (Vi) = (&, 7 (y:)) = (2, 4i)-
It follows from (5.8) that

d
(6.8) Ry =121+ h)  X®Y; +h’Z,
i=1

where Z € Up(g+) @cya Un(9—). By extension of scalars from C[[h]] to
Cl[u, v]], we get

d
(6.9) Ry =1®1 +uv Z X;2Y; + uQUZZ
i=1
where X; € Uyo(g4), Yi € Unu(g-), and Z € Uyy(94) Bc(u) Uuw(g-)-
Moreover, using the definition of p, and Formula (6.7), we have

(6.10) pv(Xi) = Ty, and J};(E) = <x7yi>'

Applying id®f, to R, and using (6.9) and (6.10), we obtain
p+(fe) = (0 f)(R uv)
= f.(1 +uvZsz ) + u*?(id® f,)(2)

=1
d

= uv Z (z,y:) X; + v (1de f)(2).
i=1
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Therefore,

v o4 () —“Z (2, y) X; + u*0(id® f,)(Z).

This implies, in view of (6.10),

d d
po(v o (fo)) = u D (wya) po(Xi) = u)_ (w,y:) 3 = uz.
i=1 i=1
(b) It follows from Part (a) and the definition of A. O

Theorem 6.9. (a) The map ¥4 : V,(g+)[[v]] — Ay is an isomorphism of
Clu][[v]]-modules.
(b) AL is a subalgebra of Uy (g4 ).
(¢) The algebra Ay is independent of the choices made in Section 5.5.

Proof. (a) The map 14 is surjective by definition of A, . Let us check that
it is injective. Let w = ) oy wpv™ € Vi(g4)[[v]] with wo, wi, wo,... €
Vu(gy). Assume that w # 0. Take the minimal N > 0 such that wy # 0
and define w’ by w = vNw'. By Lemma 6.8, we have p, (14 (w')) = wy # 0,
hence ¢4 (w') # 0. As Ay C Uy, (g+) has no v-torsion, we see that ¢4 (w) =

vNipi (w') # 0.
b) Let us check that o (ulilz;) ullz;) € Ay for all d-tuples i =
(b) + i) P+ J + p
(i1,... ,iq) and j = (j1,...,Jq). Since py : Up(g—) — Un(gs) is an anti-
morphism of algebras, the product

p-l—(fm)il s p+(f$d)idp+(fx1 )jl s p-i—(fxd)jd

belongs to the image of p;. Therefore, by Lemma 5.6 (b-c), it can be
expanded as

p+(fx1)i1 T p-‘r(fxd)idp-‘r(fm)jl . 'p—i-(fl‘d)jd = Z Z )\(En)tﬁ hn’
nz0 \|k|<n
where )\(E") € C. By Lemma 5.6 (a),

pr(fa)™ oo P (fo) s (far ) p (frg )
- Z )‘(En)P—k(fxl)kl '-'P—s—(fxd)kdh”*@.

0;k, |k|<

By extension of scalars from CJ[h]] to C[[u,v]], we have pi(fz,) = p+(f;i).
Therefore,

P (fo) oo (Foa) i (for )+ pi(frg)
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= 3 A (Fe) (e Bl

n>0;k, |k|<n

Using (6.3), we obtain
ol g (ultly) 4y (u \J\:EJ) Z )\(E")quu'@':%) un kL yn

n>0;k, |k|<n

=3[ X A @y ) o

n>0 \k;|kl<n

Thus, 04y, (ulile;) ¢, (uldlz ;) is a formal power series in v whose coef-
ficients belong to the C[ul-linear span of the elements w+(u|k|xk) Hence,
ol H3ly (ulilay) 4y (u mx]) € Ay. Applying Lemma 6.10 below |i] + |j]
times, we obtain ¥ (ul!lz;) ¥ (u |l|:nj) €Ay
(¢) The definition of A, in Section 6.6 was based on the choice of a
C|[[h]]-linear isomorphism a_ : Up(g—) — U(g—)[[h]] such that a_(1) =1
and a_ = id modulo h, of a C-linear projection 7_ : U(g_) — U'(g_) that
restricts to the identity on U'(g_), and of a basis (z1,...,74) of g4. We
have to check that A, is independent of these choices as a subset of Uy, ., (g+ ).
(i) Suppose that we take another C[[h]]-linear isomorphism o’ : Up(g_)
— U(g-)[[h]] such that ¢’ (1) =1 and o/ = id modulo h. This gives us a
new linear form f! : Up(g—) — CJ[[h]] and, by extension of scalars, a new

linear form f7, : Uy ,(g—) — C[[u,v]] for all z € g;. Lemma 6.5 also holds

for f/. By Part (b) it is enough to check that v~ p4 (f.) belongs to A..
Since o = a_ modulo h, we have f, = f, modulo h. By the proof of
Lemma 5.6 (c), we see that

(6.11) =fot D B Z >\ :

n>1

n)

where )\g» € C are indexed by a nonnegative integer n and a d-tuple j =

(j1,--. ,ja) of nonnegative integers. Applying p, we get

p+(fe) = pefo) + D 1" ZA pa (for 0 o oy (fing P

n>1
By extension of scalars, we have

pr () = pe(Fa) + 3w o | 3N (Fa) g (Fag)

n>1 J
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Using (6.3), we obtain

v (fl) = P+(f)+zu Z)‘ Pt (fur )t pi(fy)
n>1
wr _|_Zu " Z)\( |J|¢ wld! )
n>1

=g (uz)+ > o8 |30 AWkl ()

k>1 J; lg1<k

This shows that v=' p,(f.) is a formal power series in v whose coeffi-
cients belong to the Clul-linear span of the elements w+(u|1|xj). Hence,
v pi(fy) € Ay

(ii) Suppose now that we take another projection 7’ : U(g_) — U'(g_)
whose restriction to U'(g_) is the identity. We denote by f/ the new linear
form Up(g—) — C]J[h]] obtained by using n’_. By extension of scalars, we

obtain a new linear form f/, : Uuw(g-) — Cllu,v]] for x € g.
Since 7 —m_ =0 on U'(g_), it follows from the proof of Lemma 5.6 (c)
that

(6.12) f;:fx+ZAéo) N e Z)\ ,

131>2 n>1

where Ag-n) € C are scalars. Note the difference with (6.11): In (6.12) there

are extra terms of degree 0 in h. Nevertheless, the same arguments as in
Part (i) allow us to conclude.

(iii) Since x + f; is linear, it follows that A, is independent of the basis
in g+. O

Lemma 6.10. We have AL NoUy,,(g9+) = vA4.

Lemma, 6.10 will be proved in Section 7.7.

7. Bialgebra structure on A,.

In this section we establish that Ay has a C[u][[v]]-bialgebra structure. We
begin with a C[[u, v]]-subalgebra Ay of U, ,(g+) in which A sits as a dense
subalgebra.

7.1. The Algebra A, . Using the comultiplication Ay of Uyy(gy) and
proceeding as in Section 3.1, we obtain Cl[u, v]]-linear maps 6" : Uy, ,(g+) —
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Uu’v(ng)@” forallm > 1. Formulas (3.1)—(3.5) hold in this setting. We define
a C[[u,v]]-submodule A of Uy ,(g+) by

(71) A, = {a € Uuolgy) | 0"(a) € Uy o(gs)®" for all n > 1}.
It follows from (3.3) and (3.4) that A, is a subalgebra of Unw(9+)-

Lemma 7.2. A, is a topologically free C[[u,v]]-module.

Proof. By Lemma 4.3 it is enough to check that EJF is a u-torsion-free,
v-torsion-free, admissible, separated, and complete Cl[u, v]]-module.

We use the fact that E+ is a submodule of the topologically free module
Uuw(g+). Since the latter is separated, u-torsion-free, and v-torsion-free,
so is any of its submodules. We are left with checking admissibility and
completeness.

Admissibility: Let a,a1,as € A\Jr be such that a = wa; = vas. Since
Uuw(g+) is topologically free, hence admissible, there exists ag € Uy (g+)
such that a = wvag. We shall prove that ag € XJF, i.e., that 0"(ag) €
u”Uum(ng)@”. Since u(vag — a1) = 0 and U, (g+) has no u-torsion, we
have a; = vag. Therefore, v6™(ag) € u”Uuyv(ng)@". In other words, vd"(ap)
is divisible both by v and by «™ in Uy, (g+)®", which is topologically free.
By an observation in Section 4.2, v6"™(ag) = u"vZ for some Z € Uuyv(g+)®".
Since Uu7v(g+)®” has no v-torsion, 6" (ag) = u"Z.

Completeness: Let (an)n>0 be a sequence of elements of /T+ such that for
all n > 0 the image of a,1 in 121\+/(U,’l))n+1 maps onto the image of a,, in
Ay /(u,v)™. Since Uy,(g) is complete, it contains an element a such that

a—apn € (u,v)"Uyp(g+) for all n > 0. We shall show that a € AL, ie., that
0P(a) is divisible by u? for all p > 1. For any n > p,

57(a) — 8% (an) € (u,v)"Uuu(g)® and () € w’Uuu(g)®,

which implies that 6 (a) € upUu,U(ng)@p%— (u, v)"Uu,v(ng)@p. Consequently,
dP(a) is divisible by u” in lim Uy, (84)%7/(u,v)" = Uw(g+)P. O

Consider the morphism p,, : Uy »(g+) — U(g+)[[u]] of Lemma 6.7. Recall
from (3.10) the algebra

Vage) =4 Y amu™ | am € U™(gy) for allm >0 p C U(g)[[ul]-
m2>0

Lemma 7.3. (a) The morphism p, sends A, into vu(ng).
(b) We have Ker(pv P AL — Vu(g—i-)) = Ay NvUyp(g+) =v Ay,
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Proof. (a) By (3.1) and (6.6) the map 6™ for U, ,(g+) is of the form
0" =6y + wvdy,

where §( is obtained by (3.1) from the standard comultiplication A of
U(gy)[[u]]. Hence, p&6™ = 6fp,. Therefore, Part (a) follows from the
definitions and Proposition 3.8.

(b) Let a € A, and b € Uuv(9+) be such that a = vb. We have to check

that b € Ay. For any n > 1, the element 6" (a) = vd™(b) is divisible both
by v and by ™ in Uu,v(ng)@”. Since the latter is topologically free, there
exists Z € Uuﬂ,(gpr)@’1 such that vd"(b) = u"vZ. Hence, §"(b) = u"Z, which
shows that b € /TJF. O

Lemma 7.4. We have A4 C ﬁ+.

Proof. Let us first prove that ¢ (uzx) = v_1p+(fx) belongs to A\Jr for all

r € gy. Given n > 1, we have to check that §"(v='p,(f;)) is divisible
by w". Formula (A, ,®id)(R) = Ri3Re3 for R = R,,,, implies

(A%,®id)(R) = Ry nr1Ro 1 Ruo1np1 Bont1-
Therefore,
(5"®id)(R) = (Rl,n+1 - 1)(R2,n+1 - 1) U (Rn—l,n-H - 1)(Rn,n+1 - 1)-
Since R = 1®1 + uvR’, we have
(5n®1d) (R) =u"v" Rll,n+1R12,n+1 e R;L,17n+1R;L’n+1.
It follows that
" (ps(fr)
= 0"((id® f;)(R))
- (5n®f:c)(R)
= (id®f,) ((6"®id)(R))
= unvn(id@)ﬁv)( /1,n+1R/2,n+1 e Rngl,nJrlR;L,nJrl) € unUu,v(g+)®n'
Hence, for n > 1,
5w pe (1)
= w0 (id® f) ( L1 Bona1 Bt 1 B i) € u U (g4) %"
Since A, is a subalgebra of Unv(94), W (ul! zj) € A, for any d-tuple J:
Since A, is topologically free (hence complete) by Lemma 7.2, the map

Vi Va(g+)[[v] = Uno(g+)

takes its values in A,. We conclude with Formula (6.4). O
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Lemma 7.5. The Clul[[v ]] linear map ¥ : V(g4 )[[v]] = Uup(g+) extends
to a Cl[u,v]]-linear map s : Viu(gy)[[v]] — Uuv(g+). The map 4 is
injective, its image is A, :

~

by <Au<g+>nvn> = Ay,

and py o Py : V() [[v] = Vilgy) is the projection sending v to 0.

Proof. Any element of V,(g.) is of the form w = > m>0 amu'™, where

> oy

Jilil<m

and V](m) € C. By Lemma 6.8 (a), the element v (am, u™) belongs to

u™U,(g+). Since Uy,(gs) is topologically free over C[[u,v]], the series
> om>0 Y+ (am u™) converges in Uy,y(g+), so that we can define

= Z Yy (amu™)

m>0
By Lemma 7.4 and (7.1), for each m > 0, 6™ (¢4 (an, u™)) is divisible by u"
for all n > 1. It follows that §” (1/4( )) is also divisible by u™ for all n > 1.
Therefore, ¢ (w) € Ay. Now any element of Vi (g.)[[v] is of the form
Y om0 Wpv", where wy, € Va(gy) for all n > 0. Clearly, Y >0 by (wp o™

converges in A,. We set 1 (Zn>0 wnv”) =2 n>0 1Z+(wn)vn.

Lemma 6.8 (b) implies that p, ot is the identity on V. (g+)- Proceeding
as in the proof of Theorem 6.9 (a), we see that ¢+ is injective on V, (g1)[[v]].
It remains to prove that the image of 1,/1+ is A+ For a € A+, set wy =
po(a) € Vu(gy), of. Lemma 7.3 (a). Viewing wg as a constant formal power
series in V,, (g4 )[[v]], we consider the element a— 14 (wg) € A_; it clearly sits
in the kernel of p,, which is vA, by Lemma 7.3 (b). Therefore, there exists
a1 € A, such that a — ¢+(w0) = vay. Similarly, there exist wy € Vy(gy)
and as € A+ such that a1 — w+(w1) = vas. Repeating this construction and
using the separatedness of A\+, we obtain an element w = ) ., w,v" €

Viu(g4)[[v]] such that a = iy (w). O
Corollary 7.6. We have
AL n ’U.Z{_i_ =vA:+ and AinN UA\+ =uAy.
Proof. By Theorem 6.9 (a) and Lemma 7.5, it is enough to check that
Va(a+) (W]l NoVu(g) (0] = V(g4 [[v]

and

Va(a+)[[0]] N aVu(g)[[v] = uViu(a4)[[0])-
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The former is clear; the latter is a consequence of Vi (gy) N uVy(gy) =
uVy(g+), which is easy to check. O

7.7. Proof of Lemma 6.10. It is a consequence of Lemmas 7.3 (b) and 7.4,
and the first inclusion of Corollary 7.6. O

We can now show that A, has a bialgebra structure. (For the definition
of ®C[u][[u]} and ®C[[u,u}}7 see Sections 1.3 and 4.4.)

Proposition 7.8. (a) We have the inclusions
Ay B A+ € At B At € Uuw(84) Bcque) Uuw(8+).
(b) If A, denotes the comultiplication of U, (g4 ), then
Auu(At) C Ay Bcpp) A+
and

Au,v ("21\4-) - A\-l- ®C[[u,vﬂ A\-F‘

Proof. (a) The inclusion A ®C[[u,v]] AL CUyw(gy) ®C[[u,vﬂ Uy,v (94 ) follows
from Proposition 6.2 (a), Lemma 7.2, and Lemma 4.5 (b).

Let us consider the first inclusion. By Theorem 6.9 (a) and Lemma 7.5,
it is enough to prove that the natural map

(7.2)  Valo) 0] Bcpey Valg)[0]] = Vo) V] @iy Valg+) 0]

induced by the inclusion V(g1 )[[v]] € Vi(g4)[[v]] is injective. By definition
of ®C[u}[[v]]7 we see that

Vu(g0)[[v]] @cpuie)) Vulas) (V]
= (Vulo+)@cpyVale+)) [v]] = Vulg+ © g+)[[v]].
On the other hand,

V() [0]] @ciung Valgs)[[v]]
Va(g0) [[V1)/ (1, 0)™ @]} w0 V(8 )[[U]]/(%U)”)

(9:4)[0)/ (1, 0)" Dty Vala o]/ (,0)")

/—\
=

V(&O®CHV(QQ)WVOAW”

uw(g+ © g4)[v]/(u, 0)"

=

Il

<>

uw(g+ @ g0)[[0l]/ (u, v)"

I
= s

uw(g+ © g4)[[v]]-



BIQUANTIZATION OF LIE BIALGEBRAS 333

The last equality holds because V(gy @ g+)[[v]] is a topologically free
C[[u, v]]-module. The injectivity of (7.2) follows.

(b) In order to prove that the image of A under A, , lies in the subal-
gebra A @C[u”[v]] A4, it is enough to show that Ay, (¢4 (uz)) belongs to
this subalgebra for all x € gy.

Let us consider the linear form f, € U;(g—) of Section 5.5. Since p, :
Ui(g—) = Up(g4)isa morphism of coalgebras (see [EK96, Proposition 4.8]),
we have Ap(p+(fz)) € Im py @cypy) Im p4-.

It follows from Lemma 5.6 that for any element a € Uy (g4 ) ®C[[h]] Un(g+),
there exists a unique family VJ(ZC) € C indexed by a nonnegative integer n

and two d-tuples j and k such that

a=> | > viten|

>0\ |j|+k|<c(n)

where ¢(n) is an integer depending on a and n. If, in addition,
a € Impy ®C[[h}} Im py, then ¢(n) = n, ie., VJ(? = 0 whenever n < |j| + ||.

Applying this to a = Ap(p+(fz)), we obtain a family sz € C as above such

that
An(p+(fz))

=S Y et |

n>0 \j\+|k|<n N

= Z ]k; p+(fw1) "'p+(fxd)jd®p+(f$1)kl "'p'i‘(fl‘d)kd hniu\il&l?

n>0,5.k
|71 +]E|<n

where j = (j1,...,Jq) and k = (ki1,... ,kq). Extending the scalars from
C[[h]] to C[[u,v]] and using (6.3), we obtain

Auv(p-i-(fl’))
- Z (77];) P+ fm s p-‘r(};d)jd ®p+(f$1)k1 s p+(f$d)kd(uv>”_@_|ﬁ|

n>0;j5,k
l3]+|k|<n

=Y el @ (ulay) wr

n>0;5.k, |j|l+kl<n

= Z Z 1/3(1) Pl VA 1 ¢+(u\j\ )®w+( k) o,

n>0 \jk;ljl+kl<n
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Therefore, v Ay (V4 (uz)) = Ayy (p+(ﬁ)) is a formal power series in v
whose coefficients belong to the Clu]-linear span of the elements

w+(u‘1‘m1) @4 (ulblzy). Hence, v Ay, (¢4 (ux)) belongs to A4 ®C[U]H’UH Al
The element Ay, (¢4 (uz)) € Uyo(g+) ®C[[u,vﬂ Uuw(g+) can be expanded
as

uv w—l— ux g ;@24

where (a;); is a basis of the topologically free Cl[u, v]]-module U, ,(g+) and
zi € Uyp(g4). Since

~

D ai@vz = v Ay (U (uz)) € Uno(94) Ocipua) A+

we have vz € Ay for all i. By Lemma 7.3 (b) it follows that z; € A, for
all i. Now taking a basis (b;); of the topologically free C[[u, v]]-module A,
we can write

Ao (s (uz)) =D 2i@b;,
J

where 2} € Uuﬂ,ﬁg”. Since ZjAUz;-@bj =0 Ay (Vg (uz)) € AL ®C[[u,vﬂ Ay,
we have vz} € Ay, hence z; € Ay for all j. Therefore,

Au,v (¢+ (’LLJ,‘)) € A\-l- (%\)C[[u,v}] A\+‘
The desired inclusion Ay, (¥4 (uz)) € A ®C[u}[[v}] A follows from

(7.3) A%Q Nv <2§2> = <A§2>.
In view of Theorem 6.9 (a) and Lemma 7.5, Equality (7.3) is equivalent to

Valg) [ 0o (Ve [%2) = v(Vala)[0]12),
which is proved by using the identifications of the proof of Part (a). We
have thus established that A, U(A+) C Ay ®C[u}[[v]] Al
We now check that Auv(A+) - A+ ®C[[u o] A+ By Lemma 7.5 any
element of A, is of the form v (a), where a € V,(g.)[[v]]. For any N >
0, there exists b € V,(g4)[[v]] such that a —b = > o, apv™ with a, €

®,=n UP(g+)u?. Now, ¢y (b) = 4 (b) € Ay, and 9 (a — b) € uN Uy (g+)
by Lemma 6.8 (a). Therefore,

(7.4) Avo(h1(a)) = Ayo(tby (b)) mod u.

It follows from the considerations above that

~

Auw(1h1 (b)) € A Bcpu) A+ C Ay B A+
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The latter Cl[u,v]]-module being topologically free, Formula (7.4) for all
N > 0 implies
Ay p(Py(a)) € Ay Ocfju,e)] A+
(]

Corollary 7.9. The algebras A and Ay are subbialgebras of Uuw(g4)-

7.10. Remark. The bialgebra A has the following alternative definition.
Define the C[u][[v]]-bialgebra

Upo(g+) = lim Un(g+) @cypag)/nmy Clull[v]]/ ("),

where Clul[[v]] is a C[[h]]-module by the morphism ¢ of Section 4.6. One can
check that Uj, ,(g+) embeds as a subbialgebra into the bialgebra Uy ,(g+)
of Section 6.1, that the map a4 of Section 6.6 sends the Clu|[[v]]-module
U,.»(g+) isomorphically onto U(gy)[u][[v]], and that the bialgebra mor-
phism p, of Lemma 6.7 maps U,, ,(g+) onto the bialgebra U (g )[u] of poly-
nomials with coefficients in U(g4 ).

Adapting the proofs of Sections 67, one can prove that A, isin U&,v(ng)

and that
Ay = {a €U, ,(g4) | 0"(a) € u"U;’v(g+)®” for all n > 1} .

8. Proofs of Theorems 2.3, 2.6, and 2.9 (I).

Let Ay »(g+) = A4 be the bialgebra constructed in Sections 6-7. We first
prove Theorem 2.6 and then determine A, /uA, as an algebra (Part I of
Theorem 2.9). The proof of Theorem 2.3 follows.

8.1. Proof of Theorem 2.6. It follows from Lemma 6.7, Lemma 6.8 (b),
Theorem 6.9, and Corollary 7.9 applied to g+ = g that the morphism of
bialgebras p, : Uy v(9+) — U(g4)[[u]] restricts to a surjective morphism of
bialgebras p, : Ay — V,(g+) whose kernel is vA,. Therefore, the induced
map Ay/vAy — V,(g4+) is an isomorphism of bialgebras. It remains to
check that this isomorphism preserves the cobracket.

The bialgebra structure on A, induces on V,,(g4+) a Poisson cobracket ¢’
given by (1.8), where p = p,. We have to check that ¢’ coincides with the
Poisson cobracket d,, of V,(g+) defined by (2.5). Since the algebra V(g ) is
generated by the elements uz with x € g, it suffices to show that ¢'(ux) =
du(ux) for all z € gy.

We identify the module U, ,(g+) with U(gy)[[u,v]] via the isomorphism
a4 of Section 6.6. Let a € a,'(ux) C Uyu(gs). We have p,(a) = uz.
Viewing U, ,(g+) as a subbialgebra of U, ,(?), we see by (5.3)-(5.4) that
the comultiplication A, , of U, ,(g+) satisfies

Ayy(a) = Ala) +uv [A(a), g} mod u?v? Uuﬂ}(D)@Q7
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where A is the standard comultiplication (2.4) on U, ,(d) = U(d)[[u,v]].
Therefore,

AU,U(Q) - Azf)v (a)

v

T —T21
2

=y [A(a), ] mod 1% Uy, (2) €2,

It follows that

¥ (us) = (o)

Ayp(a) — Aﬁ?v(a))

—u [A(ux), ’”_7“21]

2

=2 [m@l + 1®z, - T21}

2
2 ].
=u” | [z®1 + 1®z,7] — 3 [z®1 + 1®z,7 + ro1]

= u? [2®1 + 1@z, 7] = u*6(x) = 6, (uz).

The vanishing of [z®1 + 1®x,r 4 r21] is due to the invariance of the 2-
tensor 7 + r21. The identity 6(x) = [z®1 + 1®z, r] follows from (5.2). O

8.2. Proof of Theorem 2.9. Part I. We prove here that A /uA; =
S(g+)[[v]] as a C|[v]]-algebra. We first observe that the algebra Ay /uA; is
commutative. Indeed, Ay /uA; C Al / uA, by the second equality of Corol-
lary 7.6. By Proposition 3.5, the quotient algebra EJF / UA\+ is commutative;
hence, so is A4 /uAy.

Consider the Clu][[v]]-linear isomorphism ¢4 : V,,(g4)[[v]] — A+ of The-
orem 6.9 (a). It induces a C[[v]]-linear isomorphism

Wy S(go)llv]] = Vule)[[v]l/uValg)[lv]] — Ay /udy.
By definition,

(8.1) \P+(x{1 . ..a:ff) = vl (fu ) ...p+(ﬁcd)jd modulo u Ay

for all d-tuples j = (j1,...,Jq). (Recall that (x1,...,zq) is a fixed basis
of g4+.) Since Ay /uA; is commutative, ¥, is an algebra morphism. O

8.3. Proof of Theorem 2.3. By Theorem 6.9 (a), the C|u][[v]]-module
A, is isomorphic to V(g4 )[[v]], hence to S(g+)[u][[v]] (see Section 2.4 and
Lemma 2.5). As a consequence of Theorem 2.6 and Section 8.2, the bialgebra
AL is commutative modulo u and cocommutative modulo v. It follows
from Theorem 2.6 and Lemma 2.5 that A4 /(u,v) = S(g) as bi-Poisson
bialgebras. ([
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8.4. Remark. Since A, is a C[u][[v]]-module, we may set v = 1. We claim
that the quotient bialgebra Ay /(u — 1) is isomorphic to Etingof and Kazh-
dan’s bialgebra U,(g+) of Section 5.4 (with h replaced by v). Indeed, the
bialgebra inclusion Ay C U{w(ng) of Remark 7.10 induces a bialgebra mor-
phism ¢ : Ay /(u—1) — Uy, ,(g+)/(u—1) = Uy(g4). It remains to show that &
is an isomorphism. The isomorphism v of Theorem 6.9 (a) induces a C[[v]]-
linear isomorphism v, : U(gy)[[v]] = Vu(g4)[[v]]/(u — 1) — Ay /(u —1). It
now suffices to check that the composite map £ o ¢, is an isomorphism.
By Sections 5.5, 6.4, and 6.6 the map & o ¢, sends z; = x{l ...xljf €

U(g)[[v] to v py (fo)7 ... pi(fu,)i for all d-tuples (j1,... ,ja). In view
of Lemma 5.6 (a) it follows that £ o) . is an isomorphism modulo v; hence,
it is an isomorphism of topologically free C[[v]]-modules.

9. A nondegenerate bialgebra pairing.

In this section, we construct a pairing between A and a Clv][[u]]-bialgebra
A_, using the element Ry, € U, (g+) ®C[[u,vﬂ Uy,v(g—) introduced in Sec-
tion 6. We start by defining A_, then we prove an important property
of R, . We resume the notation of Sections 5-8.

9.1. The Bialgebras A_ and A_. They are defined by analogy with A
and A,. Let us begin with the definition of A_. Consider the CI[h]]-
linear isomorphism oy : Up(g+) — U(g+)[[h]] of Section 6.6. We have
ay(l) = 1 and a;r = id modulo h. Choose a C-linear projection 7 :
U(gy) — Ul(gy) = C @ g, that is the identity on Ul(gy). For any y € g_
we define a C-linear form (—,y) : U'(gy) — C extending the evaluation
map (—,y) : g+ — C and such that (1,y) = 0. We obtain a C[[h]]-linear
form gy, : Un(g+) — CI[[h]] by

(9-1) gy(a) = (mras(a),y) =) (m4(an),y) h",

n>0
where a € Up(g+) and the elements a,, € U(gy) are defined by a4 (a) =
> n>0 anh™. We have g,(1) = 0.

By extension of scalars, we obtain a C[[u,v]]-linear form g, : U, »(g+) —
Cl[u, v]] such that g,(1) = 0. We apply the map p_ : Uy ,(9+) — Uun(9-)
of (6.2) to gy. By Lemma 6.5 adapted to this situation, p_(gy) € Uy,(g-)
is divisible by uwv.

Let V,,(g—) be the C[v]-bialgebra introduced in Section 2.4, where we have
now replaced u by v. Let (y1,...,yq) be the basis of g_ dual to the fixed
basis (1, ... ,24) of g. The family (vEly,.), where k runs over all d-tuples
of nonnegative integers, is a C[v]-basis of V,,(g—). We define a C[v]-linear

map - : Vy(g-) = Uuw(g-) by ¢¥—(1) =1 and
(9.2) o (0 ) = p_ (g, )" - (Gya)F,
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where k = (k1,... ,kq) is a d-tuple with |k| > 1. This map extends uniquely
to a Clv][[u]]-linear map, still denoted ¢_, from V,(g_)[[u]] to Uy.(g-) by

(1 (Z wnu”) = Z Y_(wy)u",
n>0 n>0

where wg, w1, wa, ... € V,(g—). We then define the C[v][[u]]-module A_ by

(9-3) A= (Vo(g)[[ull) C Uuo(g-)-

Recall the isomorphism «a_ : Uh(g_) = U( _)[[R]] of Section 5.5. It
induces a Cl[u,v]]-linear isomorphism a_ : U,,(g—) = U(g-)[[u,v]] such
that a_ = id modulo uv. Consider the composed map

Pt Unn(8-) = Ug-) ([, 0] — Ug-)[[o],

where the second map is the projection u — 0. The map p, is a morphism
of bialgebras when we equip U(g_)[[v]] with the power series multiplication
and the comultiplication (2.4). Moreover, p, sends A_ onto V,(g—) and
pu oY : Vy(g-)[[u]] — Vi(g-) is the projection sending u to 0. This is
proved as in Section 6.

By analogy with Section 7.1, we define a C[[u,v]]-subalgebra A_ of
Uuw(g-) by

04) A = {a € Uun(g) | 0™(a) € v"Uyo(g—)®" for all n > 1}.

It is clear that the results of Sections 6-8 apply to A_ and A\,, namely
we have the following properties.

(i) The map o_ : Vy(g-)[[u]] — A— is an isomorphism of C[v][[u]]-
modules. It extends to an isomorphism of C[[u, v]]-modules 1_ : V,(g_)[[u]]
— A,

(i) A_ C A_ are subalgebras of U, w(g-).

(iii) A— is independent of the choices of the isomorphism a4 : Up(g4) —

U(gy)[[h]], of the projection my : U(gy) — U'(gy), and of the basis of g_.

)

(iv) A and A_ are topological bialgebras for the u-adic topology and
the (u,v)-adic topology, respectively.

(v) A_ and A_ are commutative modulo v and cocommutative modulo u.
There are isomorphisms of co-Poisson bialgebras

(9.5) A Jud- = Vi(g_),
isomorphisms of bi-Poisson bialgebras

(9.6) A /(u,v)A- = S(g-),
and isomorphisms of algebras

(9.7) A JvA- = S(g-)[[ul)-
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Recall the two-variable universal R-matrix

Ry € Uuw(+) ®C[[u,v]] Uu,o(9-)

of Section 6. We now give a stronger version of Lemma 6.3 (b).
Lemma 9.2. The element R, ., — 1®1 belongs to the submodules

v AL Bciu) Uno(g-)  and  Uyy(g+) @cju u A-
of Uuw(84) @] Uuw(9-)-

Proof. Recall the element R € U, ,(g+) @c[[um” Uuw(g—) of Lemma 6.3 (b).
It is enough to show that

uR' € A\+ @)C[[%U]] Uuﬂ)(g_> and vR € Uu7v(g+) ®C[[u,vﬂ A\_.
We shall prove the first inclusion. The second one has a similar proof.

Let (bj); be a basis over C[[u,v]] of the (topologically free) Cl[u,v]]-
module Uy, (g-). We can expand R’ as R' = 3, z;®b;, where 2; are el-
ements of Uy, (g+). The proof of Lemma 7.4 shows that (6"®id)(uvR') is
divisible by u™ for any n > 1. Hence,

(0"®id)(R) = Z " (z)®

is divisible by ™ 1. The elements b; belng linearly independent, it follows
that 0"(z;) is divisible by «"~! for all n > 1 and all j. Therefore, uz; € Ay
for all j and uR' € Ay @) Uuw(9-)- O

Corollary 9.3. The element R, belongs to the submodules
Ay Bcfun) Uuw(a-)  and  Uuw(g+) Ocfuu A--

We consider the dual Cl[u,v]]-modules gfr = Homc[[u7vl](ﬁ+,C[[u,v]])
and A* = Homgjfy,.))(A-, C[[u, v]]). In view of Corollary 9.3, Formulas (6.2)
now define C[[u, v]]-linear maps A* — U, ,(g+) and A% — Uy, (g—), which
we still denote by p4 and p_ respectlvely The comultlphcatlons of A+ and

of A_ induce algebra structures on A and A* . As in Section 6, the map
p+ is an antimorphism of algebras and p— is a morphlsm of algebras.

Lemma 9.4. We have
Ay Cp(A*)C Ay and A Cp (AL)C A

Proof. Let us prove the first two inclusions. The other two inclusions have
similar proofs.

(a) We use the notation of Sections 6.4 and 6.6. We first show that,
for any = € gy, the element v py(f,) € Ay sits in py (A\i) Indeed,

if b € A_, then 6'(b) = b — £(b)1 is divisible by v in Uy, ,(g_). Hence,
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F2(b) = fo(b)—e(b) f2(1) € C[[u, v]] is divisible by v. We then define f, € A*
by

(9.8) Fa(b) = v f2(b) € Cl[u,v]]

for any b € A_. Tt follows that the restriction of fx to A_ equals vﬁc.

Therefore, v p (f) = pi(f2) € py(A%).
By Section 6.6, any element a € A, is of the form

a=Y 0" [ > P o (fo )t (fa) |
2 J

where the sums inside the brackets are finite and P;j(u) € C[u]. The formal
power series

Dot | D Bi(w) fi . f
n>0 j

converges to an element f in the topologically free C[[u,v]]-module A* .
Since py : A* — Uyo(g+) is an antimorphism of algebras, we have p4 (f) =
a. This implies that A, C p;(A*).

-~

(b) Let us prove that py(A*) C A,. Given f € A*, we have to check
that 6" (p4(f)) is divisible by u" for all n > 1. By Lemma 9.2, vR' €

Uu,o(84) ®c(u,)) A— hence

/ / / / &n 5 n
Gl 1,n+1R2,n+1 e Rn—l,n+1Rn,n+1 € Uu,v (g+)®n ®C[[u,v}] A_.

This allows us to apply id®f to v" Ry, 1 Ry, 1 -+ Ry, 1 011, 01 A com-
putation similar to the one in the proof of Lemma 7.4 yields

8" (p+(f))
= u"(d@f) (V"R 1 Ry gy Rry g1 Ry ) € 0" Uno(94) %"

Lemma 9.5. Fora € Ay and b€ A_, the formulas

(9.9) (@,D)up = (p31(@)) () = (p=' (1) (a),
yield a well-defined bialgebra pairing Ay x A“P — Cl[u,v]].

Here AP denotes the bialgebra A_ with the opposite comultiplication.
The pairing ( , )y, is in the sense of Section 2.10 with K; = Clu][[v]],
K3 = Clv][[u]], and K = C[u, v]].

Proof. Let us prove that the expression (pjl(b)) (a) is well defined. It suffices
to check that, if g € E”; satisfies p_(g) = 0, then g(a) = 0. Suppose first
that a = 1[)+(u‘1‘xj) for some d-tuple j. By (6.3), vdla = py(f), where
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f= T 3 € Uiu(a-)- Applying g®f to Ruy € Ar 8cjuu) Uusla-),
we obtain

ol g(a) = g(p+(f)) = (90f)(Ru) = f(p-(9)) = 0.
Since C[[u,v]] is v-torsion-free, we obtain g(a) = 0. By C[[u, v]]-linearity,
gla)=0forallae Ay.

A similar argument proves that (,of(a)) (b) is well defined. Let us show
that

(9.10) (o3 (@) () = (p='() (a).
By linearity, it suffices to consider the case a = 1/1+(u|1|xi) as above. We
have vl a = p, (f) with f € Usy(g-). Let g € p_t(b) C A\i Then

o3l (p31(@)) () = £(5) = F(p-(9)) = (42F) (Rus)

= g9(p+ () = v¥ g(a) = vl (pZ' (1)) (a).
Hence, (9.10) holds.
That (, )4 is a bialgebra pairing follows directly from the fact that py
is an antimorphism of algebras and p_ is a morphism of algebras. ([

9.6. Remark. Proceedlng as in the proof of Lemma 9.5, we can show that
the maps p4 : A* - A+ and p_ : A* — A_ are injective.

9.7. Induced Bialgebra Pairings. Passing to the quotient modulo u, the
pairing (, )y, induces a bialgebra pairing

(9.11) (, v:Ay/uldy x A_JuA_ — Cl[v]].

(The bialgebra A_ /uA_ is cocommutative by (9.5), so that (A_ /uA_)*P =
A_/uA_.) Recall the isomorphism of algebras ¥ : S(g4)[[v]] — A+/uAt
defined by (8.1). On the other hand, the composition of ¢ : V,(g—) — A_

defined by (9.2) and the projection A — A_/uA_ is an isomorphism of
Clv]-bialgebras ¥’ : V,(g—) — A_/uA_, which is defined on the C[v]-basis

(v yp) of Vi(g-) by
(9.12) ' (v ) = (v ) mod uA

~I& pP— (gyl)kl TP (gyd)kd mod uA_,

where k = (k1,... , kq) and the maps g,, were introduced in Section 9.1.

=Uu

Lemma 9.8. If j = (j1,... ,ja) and k = (k1,... ,kq) are d-tuples of non-
negative integers, then
0 if 151> |Kl,
(\Ij+($l)7\I/L(v|E| y&))v = 6j1,l€1 ""(de7kdj1!--~jd! if |l| = |E|7
e oE-ll C[fo]] if 13| <Kl



342 CHRISTIAN KASSEL AND VLADIMIR TURAEV

Proof. We first claim that for any « € g4 and any d-tuple k = (k1,... , kq),

= {Slk—l o) it >0

Indeed, consider the diagram

Uno(g-) —— U(g)[[u, ] = Cllu, 0]

[ | l

Ug )] —*— U] E=Ch cp

where the unmarked vertical maps are the projections sending w to 0. The
left-hand and the right-hand squares commute by definition of p, and by
linearity, respectively. It follows that, for any b € U, ,,(g-),

(9.14) F2(b) mod uC[[u, v]] = (z, 7 (pu(b)))-
Since ¥ (z) = v~ py(fz) mod uA, and W (vl& yp) = ¥_ (v y) mod
uA_, we have
(U (@), U (0 yp))y = v Fo(wo- (v gp)) mod uClfu, v]]
= v~ (2, 1 (pu (- (v )
= v (2, oM 7w (yp)) = o (o m ()

for all k. If [k| = 0, then vl& yr = 1, on which (z,—) vanishes. This
proves (9.13).

Formula (9.13) implies that Lemma 9.8 holds for any j and k such that
|7] = 1. For the general case, observe that

(0.15)  (Wy(ay), W (o yp)),

= (W ()t W (), W (0l ),

— (U4 ()@ @ (20) 4, AL (U (08 ),
= (U (2)® 0 @y (2g) 0, (U) 2 (AL Ik, ),

in view of Lemma 9.5, and the fact that ¥, preserves the multiplication
and U"_ preserves the comultiplication. Here A is given by (2.4). Then the
formulas of Lemma 9.8 for a general j follow from (2.4), (9.15), and the
formulas for j such that |j| = 1. O

Passing to the quotients modulo v and modulo (u, v), the pairing (, )y
induces bialgebra pairings

(9.16) ( )u: A oAy x (A_JuA_)P — C[[u]]
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and
(9.17) Ay /(u,v) x A_/(u,v) — C.

The latter can also be obtained from the pairing ( , ), of (9.11) by setting
v =0.

The isomorphism ¥y : S(gy)[[v]] — A4 /uAt defined by (8.1) induces a
canonical isomorphism of bialgebras S(g+) = A4+ /(u,v). The isomorphism
U Vy(g—) — A_/uA_ defined above induces a canonical isomorphism
of bialgebras S(g—) = A_/(u,v). We denote by ( , )o the bialgebra pair-
ing S(g+) x S(g—) — C obtained from (9.17) under these identifications.
Lemma 9.8 implies that

0 it |j] # [kl
(9.18) (j,yk)0 = . S
12 9% Sjrkr - Ojara - dal if |j| = |K]

for all d-tuples j = (j1,...,ja) and k = (k1,... ,kq).
Corollary 9.9. The pairings
(i A X AP = Cllll, (4 )os As/udy x A_JuA_ — C[[o],

(5 Ju s Ay foAy X (A JoA )P = C[[u]], and (, )o:S(g+)xS(g-) = C
are nondegenerate.

Proof. Tt follows from (9.18) that (, )¢ is nondegenerate. (Actually, (, )o is
the standard pairing between S(g4) and S(g—).)

We check that ( , ), is nondegenerate. Let a € A;/uA; such that
(a,—)y = 0. If a denotes the image of a under the projection A, /uAd, —
S(g+), then (a,—)o = 0. It follows from the nondegeneracy of ( , )o that
a = 0, which implies that a € vAy/uA;. Let a1 € Ay /uAy be such that
a = va;. We now have (ai,—), = 0. A similar argument shows that a; is
divisible by v, hence a is divisible by v? in A, /uA, . Proceeding in the same
way, we see that a is divisible by any power of v, which is possible only if
a = 0. A similar argument shows that (—,b), = 0 implies b = 0.

The nondegeneracy of (, ), and (, )y is proved in a similar fashion. [

10. Completion of the proof of Theorem 2.9.

Before proceeding to prove Theorem 2.9, we establish a few facts about a
topological dual of the C[v]-bialgebra

Vo(g-) =q > bv" € U(g-)[v] | by € U™(g-) for alln >0
n>0
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10.1. A Topological Dual. Inside the dual

Vv*(g*) = HomC[v}(‘/U(g*)a CHUH)
of V,(g—) there is a C[[v]]-submodule V,°(g_) consisting of all f € V,*(g_)
satisfying the following condition: For every m > 0 there exists N > 0 such
that

(10.1) f(UP(g-)v") Cv™C[[v]]

for all p > N. In other words, V,2(g_) consists of all C[v]-linear forms that
are continuous when we equip C[[v]] with the v-adic topology and V(g-)
with the I-adic topology, where I is the two-sided ideal

1= UP(a )" < Vilgo)

p>1

Lemma 10.2. The C|[[v]]-module V?(g_) is topologically free and

V2g-) () vV (e-) = v V(o).

Proof. For the first statement, it is enough to check that, if (f,)p>0 is a
family of elements of V,?(g—) such that f,, = fn,+1 mod v™ for all n > 0, then
there exists a unique f € V2(g_) such that f = f,, mod v™ for all n > 0.

Indeed, since the linear forms f,, are with values in C[[v]], there exists a
unique f € V;(g—) such that f = f, mod v"™ for all n > 0. Let us show
that f belongs to V,°(g_). Fix m > 0. By definition of V,°(g_), there exists
N > 0 such that f,,(UP(g—)oP) C v™C|[[v]] for all p > N. Since f = fp,
mod v™, we have f(a) = fiu(a) mod v™ for all a € V,(g_), hence

FUP(g-)vP) = fr(UP(g-)v*’) =0 mod v™

for all p. Therefore, f(UP(g—)vP) C v™C][[v]] for all p > N.
The second statement is an easy exercise left to the reader. O
)

We now relate V,°(g_) to S(g+)[[v]]. As before, we fix a basis (z1,... ,2q4
of g4+ and the dual basis (y1,...,yq) of g—. The family of elements z; =
x7' ...z} indexed by all d-tuples j = (ji,... ,jq) of nonnegative integers is
a C-basis of S(gy); the family of elements (v/%! y) indexed by all d-tuples
k of nonnegative integers is a C[v]-basis of V,(g_).

Suppose there exists a pairing (, ) : S(g+)[[v]] X Vu(g—) — C[[v]] (in the
sense of Section 2.10 with K = K; = CJ[v]] D K2 = CJv]) such that for all
j=01,--.,Jq) and k = (k1,... ,kq) we have

0 if || > |k,
e vlE=lil ¢[fo]] if |j] < |&|.

The pairing ( , ) induces a C[[v]]-linear map ¢ : S(g+)[[v]] — V. (g—) defined
for a € S(g+)[[0]] by ¢(a) = (a, ).
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Proposition 10.3. Under Condition (10.2) the map ¢ sends S(g+)[[v]] iso-
morphically onto V,*(g—).
Proof. The same argument as in the proof of Corollary 9.9 shows that the
pairing ( , ) is nondegenerate. This implies the injectivity of ¢.
Let us prove that ¢ sends S(g4)[[v]] into V,°(g—). Any element of
S(g+)[[v]] is of the form
a = Z Ml’n fL’iUn,

n>0; j

where (ftjn)n>0;; is a family of scalars indexed by a nonnegative integer n
and a d-tuple j of nonnegative integers, such that for all n there exists an
integer N,, with fjn = 0 whenever [j| > Nj,.

In order to check that ¢(a) lies in V,°(g_), we have to prove that, given
m > 0, there exists N such that for all p > N we have

p(a)(UP(g+) v?) C v™C[[v]].

Let N/, be any integer such that N/ > N, for alln =0,... ,m —1. It is
clear that ypj, = 0 when |j| > N/, and 0 < n < m — 1. For any p > 1,
the family (vPy;) with |k|] < p is a basis of UP(g_)vP. Let us compute
¢(a)(vPyg) when |k| < p. Using (10.2), we get

p(a) (0P yr) = (a, " yp)

= D g (07 ) 0"
n>0; j

_ k n+p—|k
= E Hjn (3717 v/t yp) 0" &
n>0;7

= Z Pl(v)¢

Z
[J1<Ik]

where Pj(v) = (ano 1.n v”) (xl,vw yp) vP Bl TF j| > Ny, then

D V" =) Hjnv"

n>0 n>m

is divisible by v™. Hence P;(v) is divisible by v™. If |j| < N/, and |j| <
k|, then by (10.2) (x;, vl y,,) is divisible by o=l Therefore, Pj(v) is
divisible by v?~4, hence by vP~NmHt1. If |j| < N/ and |j| > |k|, then
p — |k| > p— N/, + 1. Therefore, Pj(v) is divisible by vP~Vm+!. Summing
up, we see that ¢(a)(UP(g4)vP) C v™C[[v]] for all p > m + N, — 1. Hence,
pla) € V,(g-).
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It remains to show that V°(g_) C (S(g4)[[v]]). Since (v y;); is a C[v]-
basis of V,(g—), a C[v]-linear form f € V;(g—) is uniquely determined by
the family (v;(v)); of formal power series defined by

vi(v) = f(vly;) € C[v]].

Suppose that f € V,2(g—). Then for every m there exists N such that for
all j with [j| > N the formal power series v;(v) is divisible by v™. Consider

the formal sum
vj(v)
a0 = =
~ 4l L
J
where j! = ji!...jq! if j = (j1,... , ja). By the divisibility property of v;(v)

obtained above, ag is a well-defined element of S(g)[[v]]. Let us compute

p(ao) € V(g-).
Given a d-tuple k = (k1,... ,kq), we have

|E| |E|

y) = (a0, 0™ yk)

= V]j(‘v) (25,0 )
j J

- ¥

gilil=lk| = J;

p(ao)(v

From (10.2) we derive

>, Vl.(:}) (g, 0¥ ) = > Vlgv) 0 K = vi(v),

gilil=lkl = J;13l=lkl

where 0; 5 = 0j, ky ---0j k.- On the other hand, by (10.2), (xl-,v@' V) is
divisible by v if [j| < |k|. It follows that, for all ,

pla0) (yev™!) = v (v) + 0 Cl[o]] = f(yro™) + v Cllo]).

Therefore, f = p(ap) + vfi1, where f; is a linear form on V,(g_) such that
vf1 belongs to the subspace V°(g—). By Lemma 10.2, this implies that
f1 € VP2(g—). Starting all over again, we get an element fo € V°(g_)
and an element a; € S(g4+)[[v]] such that fi = ¢(a1) + vfa. Hence, f =
©(ag + vai) + v2fa. Proceeding in this way, we see that for all n > 0

Vo (g-) = @(S(g)[[v]]) + 0"V (8-)-

Together with the topological freeness of V,°(g_) proved in Lemma 10.2, this
implies that V,?(g_) sits inside the image of (. O
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Recall the nondegenerate bialgebra pairing (9.11)
(3 )o: Ap/udy x A_JuA_ — C[[v]]

and the bialgebra isomorphism ¥/ : V,,(g—) — A_/uA_ of Section 9.7. They
give rise to a C[[v]]-linear morphism of algebras ¢ : A /uAdy — V. (g-)
defined for a € Ay /uAy and b € V,(g—) by
(10.3) p(a)(b) = (a, UL (b))
Corollary 10.4. V2(g_) is a subalgebra of V. (g—) and ¢ : Ay /uA; —
Vi (g-) is an injective morphism of algebras whose image is V,*(g—).

Proof. By Lemma 9.8 the pairing

(= =) = (T4(=), ¥L(=))v  S(g4)[[v] x Vo(g-) — Cl[v]
satisfies Condition (10.2). By Proposition 10.3 the map ¢ o ¥ is injective
with image V,°(g—). Since ¢ oW is an algebra morphism, its image V,*(g_)
is necessarily a subalgebra of V,*(g_). One concludes by recalling that ¥ :
S(g+)[[v]] = A4/uAL is an algebra isomorphism. O

Consider the Poisson C[[v]]-bialgebra FE,(g+) of Section 2.7. As an al-
gebra, F,(g+) = S(g+)[[v]]. By (2.8) its comultiplication A’ fulfills the
following condition: For all z € g4+ C F,(g+),

(10.4) N(r) =201+ 101+ Xk,
E>1

where Xi, € @, ,—1 SP(9+)®5%(g4) for all £ > 1. The Poisson bracket
{, } of E,(g+) is uniquely determined by Condition (2.9).

In [Tur91, Section 12| a bialgebra pairing ( , )! : Ey(g+) x Vio(g-) —
C|[[v]] was constructed such that
(10.5) (z,vy), = (,y) € C

for all x € g+ C S(g4)[v]] = Eu(g+) and vy € vg- C V,(g—), where
(,):g4+ x g — C is the evaluation pairing. The pairing ( , )! has the
following properties.
Lemma 10.5. Let Xq,... , X €94 and Y1,..., Y, €g_. If m > n, then
(10.6) (X1 Xy 0" Y7+ Yy, = 0.

If m = n, then
(107) (Xl EEP. CULD CREE Yn); = Z <X0'(1)7 Y1> e <Xa(m)? Ym>7

g
where o runs over all permutations of {1,... ,n}.
If m < n, then

(10.8) (X1 X, 0" Y1 -+ Yp), € 0™ C[[u]l.

v
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Proof. (i) We prove (10.6) and (10.7) by induction on n, using (2.11) and
(10.5). The case m = n = 1 follows from (10.5). If m > n = 1, then by (2.4)
and (2.11)

(Xl o Xm,UYi);

= (X1®X2 - X, A(Q} Yl)); = (X1®X2 v X, 0Y1®1 + 1®’UY1)2)

= (Xh UYI)Z) (XQ co X, 1)2} + (Xla 1);; (X2 T Xm7UYl);; =0.

Suppose we have proved (10.6) and (10.7) for 1,... ,n — 1. By (2.4),
A(Y; - Yy)

= 1®Y1 Y + Z Z o(1) " U(p ®Y o(p+1) Y o(n) -+ Y1 s Yn®1,

p=1 o

where o runs over all (p,n — p)-shuffles, i.e., all permutations of {1,... ,n}
such that o(1) < --- < o(p) and o(p+ 1) < --- < o(n). Therefore,

(X1-"Xm,U"Y1"'Yn)/

= (X1®X2~--Xm,A(U"Y1--~Yn));
= (X171); (Xz'”Xm,Yy--Yn)ﬁ)

+ Z Z (Xb oP Yo(l) T Ya(p)); (XZ o Xy, 0" Ya(p—I—l) T Ya(n))g)
p=1 o

+ (X1, 0" Y1 Vo) (Xa -+ X, 1),

v

where o runs over the same set of permutations as above. The first and last
terms vanish by (2.11). If m > n, the middle sum is zero by the induction
hypothesis on (10.6). If m = n, by (10.6), the only nonzero term is for p = 1,
so that

(X1'~Xm,v"Y1'~Yn)'

v

= (X1, 0 Y50y (X2 X, 0" Yooy -+ Yo s

where ¢ runs over all permutations of {1,... ,n} such that ¢(2) < --- <
o(n). Therefore,

(Xl---Xm,v"Y1-~Yn)'

v
n

:Z X1,0Y) (Xo o X, 0" LYy Y V)
=1

where the hat on Y; means that it is omitted from the product. We conclude
with (10.5) and the induction hypothesis on (10.7).
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We also prove (10.8) by induction on n. If n = 1, then necessarily m = 0
and the claim follows from (2.11). For the inductive step, observe that (10.4)
implies that, for X1,..., X, € g4,

A/( Z Xk®X// k:’
k>0

where X; @ X} € @, j—prm SP(9+)®S(g+). By (2.11), we obtain
(X1 X, 0" V1 Yo )y = (A (X7 X)), 0Y1@0" Yo - Vo),

v

=) (X o), (X YY)
k>0

By (10.6) the only case where (X;,vY7), may be nonzero is when X} €
S'(g+), therefore when X}/ € S¥¥m=1(g ). If k+m —1 < n — 1, we use
(10.7) and the induction hypothesis on (10.8). Thus, (X}, 0" 1Ys---Y,))
is divisible by v ™% If k+m —1>n—1, then (X}, v" 1 Y2---Y,), =0
by (10.6). Therefore, (X}, v" 1Yy ---Y,), is divisible by v =™ in all cases.
Hence, (Xj -+ X, 0" Y7 -+ Y,), is divisible by o™~ ™. O

From the bialgebra pairing ( , )/, we get a morphism of algebras ¢’

Eu(9+) — V;(g-) defined by ¢'(a) = (a,~), for a € B, (g+).

Corollary 10.6. The bialgebra pairing ( , ). is nondegenerate and the mor-
phism of algebras ¢’ induces an isomorphism

¢ Ey(gy) = Vo (e-) C V) (g-).

Proof. By Proposition 10.3 it is enough to check that the pairing ( , )] sat-
isfies Condition (10.2). An easy computation shows that (10.2) is equivalent
0 (10.6-10.8). O

10.7. Proof of Theorem 2.9. Part II. By Corollaries 10.4 and 10.6 we
have two algebra isomorphisms ¢ : A /udy — V2(g—) and ¢’ : Ey(g4+) —
V2(g-). Composing ¢ with the inverse of ¢/, we obtain an algebra isomor-
phism
x=¢ o Ay /udy — Ey(gy).
Let us check that y is a morphism of coalgebras. By definition of ¢, ¢’
and ¥,

(10.9) (a, UL (b))v = @(a)(b) = ¢’ (x(a)) (b) = (x(a), D),
for all @ € Ay /uAy and b € V,(g—). (For the definition of W', see Sec-
tion 9.7.) Using (2.11) and (10.9), we obtain

(A'(x(a)), b1®b2), = (x(a), biba),

= (a, \I/I, (blbg))v
= (a, \I/I, (bl)\ll/, (bg))v
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= (A(a), V(b)) (b))

= ((x®X)(A(a)), bi@bs)|

for all @ € Ay /uAy and by, by € V,(g—). Here A’ is the comultiplication
in E,(g+) and A is the comultiplication in A} /uAy induced by A, ,. Since
the pairing (, )! is nondegenerate, A’y = (y®x)A.

The bialgebra Ay /uA is a (commutative) Poisson bialgebra with Poisson
bracket { , }, defined for aj,as € Ay by

(10.10) (plan).plan)), =p (2220,

where p : Ay — A, /uA; is the projection. The bialgebra isomorphism
X : Ay /uAy — E,(g4) transfers this Poisson bracket to a Poisson bracket
{, } on E,(g+). In order to show that y is a morphism of Poisson bialgebras,
we have to prove that {, } = {, }. Tt suffices to check that { , }’ satisfies
Condition (2.9).

The pairing of Lemma 9.5 pairs the bialgebras A, and A®P. Conse-
quently,

(a1az — aza1,b)y = (a1®az, AP (b) — Ay (b))
for all a;,a2 € Ay and b € A_. The bialgebra A_ being cocommutative
modulo u (see Section 9.1), it follows that A, (b) — A, ,(b) is divisible by u;
hence,

_ op o
(10.11) (Wb> :<a1®a2’Au,v(b) Au,v(b)>

U,

U U wv

By Section 8.1 applied to A_ and by (9.5), the isomorphism 1_ : V,,(g—)[[u]]

— A_ of Section 9.1 induces the isomorphism ¥" : V,(g_) — A_/uA_ of

co-Poisson bialgebras. Therefore,

Au,v(b) - Agl,)v(b)
u

(10.12) (T @T)(6,(vy)) = mod u A_ @) A-

for vy € vg_ C V,(g-) and b € A_ mapped onto ¥’_(vy) under the projec-
tion A- — A_/uA_. Here, 6, : Vi(g-) — Viu(9-)®cy) Vo (g-) is the Poisson
cobracket defined by (2.5), where we have replaced u by v, and the Lie
cobracket 0 of g by the Lie cobracket _ of g_. By definition of g_ = (g)*,

(10.13) (21Q22,0-(y)) = —([21®22], y)

for all z;,29 € g+ and y € g_.
Combining (10.10)-(10.12), we obtain

(10.14)  ({p(a1), p(a2)}v, T (vy))w = —(p(ar)®p(az), (TLOV)(dy(vy))),

for all aj,a2 € Ay and y € g_—. It follows from (2.5), (10.9), (10.13), and
(10.14) that

(10.15)  ({z1, 22}, vy), = (X ({z1,22}), UL (vy)),,
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= ({x @), x H(@2) }o, U (vy)),
—(x"Hz)ex (z2), (PLeUL)(0u(vy))),
= — (x1®x2, (5v(vy));
= — (x1®:L‘2, v o (y))/

v

= ([, 22), vy),,

for all 21, zo € g4 and y € g_.
On the other hand, the Poisson bracket { , }’ induces the Poisson bracket
(2.3) on Ey(g4+)/vEy(g+) = S(g+). Consequently, for all x1,z2 € g4,

(10.16) {w1, 22 = [z, 22] + D Xpmo™

m>1

where X,,, € S(g+). Let X be the component of X,, in SP(g4). In order
to check Condition (2.9) for {, }', it is enough to show that X =0 for all
p=0,1and m > 1.

For the case p = 0, we use the counits ¢ of the bialgebras involved. Since
e vanishes on commutators in A4, we have £({ai,a2},) = 0 in the quo-
tient bialgebra A, /uAy. The map x being also a morphism of bialgebras,
e({z1,22}) = 0 for all 1, x2 € g4+. The map e vanishing on SP(gy) for
p > 1 and being the identity on S°(g, ), Formula (10.16) implies

0=c({zr,m}f) =c(fzr,ma)) + > e(Xp)v™ =Y XDy

m>1 m>1

Hence, XT(,?) =0 forallm>1.
For p = 1, we use Lemma 10.5, (10.2), (10.15) and (10.16) in the following
computation holding for all 1, 2 € g+ and y € g_:

0= ({a1, 22} — [ml,m] vY)y

:Z(X(l) vy), ™ + Z m,vy o™

m>1 m>1;p>2
=D (X )"
m>1

Hence, <X,g),y> =0 for all y € g_ and all m > 1. Therefore, X =0 for
all m > 1. O

10.8. Remark. Our definition of the Poisson bracket { , }' gives a con-
struction of a Poisson bracket on F,(g4) that is independent of [Tur91,
Theorem 11.4]. We have also proved that the topological dual V2(g_) has
a natural structure of a Poisson C[[v]]-bialgebra.
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10.9. Remark. There are similar versions of Theorems 2.3, 2.6, and 2.9
for the bialgebra Ja\_l’_ of Section 7.1. To state them, we need the bi-Poisson
bialgebra S (g+). As an algebra, it is the completion of S(g) with respect to
its augmentation ideal Ip = €P,,~; S (g+):

S(g+) = H S™(a+)-
n>0
The bi-Poisson bialgebra structure on S(g+) defined in Section 2.2 extends
to a topological bi-Poisson bialgebra structure on S(g; ), where the comul-
tiplication and the Poisson cobracket take values in the completed tensor
product
8(a) Eo S(g) = lim (S(a)/ 11 @c S(6)/13 )
n

The natural projection ¢, : V,(g4+) — S(g+) of Section 2.4 extends to a

— S

bialgebra morphism V(g )
of bi-Poisson bialgebras

(g+) that induces a canonical isomorphism

Va(a+)/uVu(g+) = S(g+)-
Similarly, the Poisson C[[v]]-bialgebra structure on E,(g+) = S(g+)[[v]] ex-

-~

tends uniquely to a topological Poisson C[[v]]-bialgebra structure on F,(g+)

= S(g4)[[v]]. The projection E,(gs) — S(g4) sending v to 0 induces a
canonical isomorphism of bi-Poisson bialgebras

Eu(9+)/UEv(g+) - §(9+)~

Proceeding for A\+ as we did for A4 in Sections 8-10, we can prove that
there is an isomorphism of co-Poisson bialgebras g_i'_ /fUJ?{\_A'_ = XA/u(ng), an
isomorphism of Poisson bialgebras A / u2+ ~ B, (g+), and an isomorphism
of bi-Poisson bialgebras A /(u,v) = S(gy).

11. Exchanging g, and g_.

Consider the Lie bialgebra g/, = g_ and its double d’. By definition of the
double, d’ contains g’ = (g/.*)°? as a Lie subbialgebra. Following Sec-
tions 5.3-5.4 for g’,, we obtain three C[[h]]-bialgebras Uy(g’,) — Up(?') <
Un(g"). The aim of this section is to prove the following addition to [EK96],
[EK97]. Here, for a bialgebra A, we denote by AP the bialgebra A obtained
by replacing the comultiplication by the opposite comultiplication.

Theorem 11.1. There is an isomorphism of C[[h]]-bialgebras
Un(®') = Up(2)P
sending Up(g') onto Up(g—)®? and Uy(g") onto Up(g4)®P.
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Theorem 11.1 does not follow directly from the functoriality of Etingof
and Kazhdan’s quantization because in general there is no isomorphism
between the triples (g4, 0,g—) and (g/,,0’,g") (nevertheless, see the proof of
Theorem 1.18 in [EK98]). We have chosen to give a proof of this theorem
using the original definitions of the bialgebras Uy (0), Up(g+), Un(g—) as
given in [EK96]. These definitions will be recalled in Sections 11.2-11.4
below.

11.2. A Braided Monoidal Category. Consider the double Lie bialgebra
0 =gy ®g_ of gy and let S be the category of U(?d)-modules. This is a
symmetric monoidal category: The tensor product of two U(0d)-modules is
given by M@N = M ®c N on which U(?) acts through its comultiplication,
and the symmetry oy n : M®N — N®M by the standard transposition
m@n — n®m. The category S has an infinitesimal braiding ty7,n : MQN —
M ® N in the sense of Cartier [Car93] (see also [Kas95, Definition XX.4.1]).
The morphism #7 x is given by the action of the two-tensor ¢t = r +ro; =
Zgzl (z; ® y; + y; @ ;) of Section 5.3.

We now fix a Drinfeld associator @, as defined, e.g., in [Dri89], [Dri90],
[Kas95, Section XIX.8], [KT98, Section 4.6]. This is a series ®(A, B) in
two non-commuting variables A and B with coefficients in C and constant
term 1, subject to a certain set of equations (for details see the references
above). Such a ® exists by [Dri90] and can be assumed to be the exponential
of a Lie series in A and B.

From & and ® we construct a braided monoidal category C as follows:
The objects of C are the same as the objects of S. A morphism from M
to N in C is a formal power series ), ., f,h", where f, € Homgs(M,N) =
Homys ) (M, N) for all n. The composition in C is defined using the com-
position in § and the standard multiplication of formal power series. The
identity morphism of an object M in C is the constant formal power series
Ym0 fuh™, where fo = idy and f, = 0 when n > 0. The category C
has a tensor product: On objects it is the same as on the objects of S; on
morphisms it is obtained by extending C[[h]]-linearly the tensor product of
morphisms of §. The unit object is the same as in S, namely the trivial
module C on which U(g) acts by the counit.

For any triple (L, M, N) of objects in C we define an associativity isomor-
phism ay, a ny and a braiding ¢y n by

(11.1) apan = ®(htr y®idy, hid, @ty ) : (LOM)ON — Lo(M®@N)

and
h ~
(11.2) CM,N = OM,N eXp(gtM,N> T MRN-—NXM,

where o7 v is the transposition. For details, see [Kas95, XX.6].
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The construction of C, Formulas (11.1-11.2), and ®(0,0) = 1 imply that
the braided monoidal category obtained as the quotient of C by the subclass
of morphisms whose constant term as a formal power series in h is 0 is
nothing else than the category S we started from. In this sense, C is a
quantization of S.

11.3. Definition of J,. Following [EK96, Section 2.3], we first define
U(0)-modules My = U(?) ®y(q4,) C, where C is the trivial U(g+)-module.
The Verma module My is a free U(g+)-module on a generator 1.4 such that
a-1y =¢e(a)ls for all a € U(g+), where ¢ is the counit of U(g+). There is
an isomorphism ¢ : U(®) — M4 ® M_ of U(d)-modules such that

(11.3) p(1) =1, ®1_.

There are also U(d)-linear maps iy : My — Mi®@My defined by iy(1y) =
1.®14.

In the braided monoidal category C of Section 11.2 consider the isomor-
phism

x=0"to({ids®en, . ®id_)oa: (My@M)R(M_®@M-)
— (My@M_)®(Mi@M-),
where id4 is the identity morphism of My, ey, p- : My@M_ — M_®QMy

is the braiding, « is the composition of the associativity isomorphisms

—1
ONL @My M_ M_
R S

(My@My)@(M_®M_) (My®My)@M_)@M-_

My My M_ ®id_ l
(My®(My®@M_))@M-_

and (3 is the composition of the isomorphisms

—1
OML@M_ My M_
S et M

(My@M_)Q(MiQM_) (My@M_)®M;)@M_
an, m_ i, ®id- l
(My@(M_@M))©oM-_.
Then, by [EK96, Formula (3.1)], the element J;, € (U(2)QU(0))[[h]] de-
termining the comultiplication of Uy (0) in (5.3) is defined by

(11.4) (@) (Jn) = x(1+®14@1_®1_) = x(i+®i-)(p(1)).

11.4. Definition of Up(g+). For any f € Home (M ®M_, M_) consider
the endomorphism p4 (f) € Ende(M®M_) defined as the following com-
position of morphisms in the monoidal category C of Section 11.2:

(11.5) iy ®id_ a id+®f
Mi@M_ — (Mi@M)QM_ — M @(Mi@M_) — M @M_,
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where a = apr, m v is the associativity isomorphism defined by (11.1).
Conjugating by the isomorphism ¢ of (11.3), we obtain the endomorphism
oty (f)p € Ende(U(0)). Applying this endomorphism to the unit element
in U(0d)[[h]], we get the formal power series

Fr= (¢ e (o) (1) € U@)][R].
By [EK96, Section 4.1], Uy(g4) is the image of the map f — f* from
Home(Mi®@M_, M_) to Ux(d) = U(d)[[R]].
There is a similar definition for Uy (g—_). For any g € Home(My@M_, M)
define p—(g) € Ende(M1®M_) as the following composition of morphisms
in C:

(11.6) id, @i a1 g®id_
M @M_ — Mi@(M_-®M_) — (M @M_)QM_ "— M,QM_.

Applying the endomorphism ¢~ !p. (f)e € Ende(U(2)) to 1 € U(d)[[h]], we
obtain

g~ = (¢ u-(9)¢) (1) € UQ)][A]].
By [EK96, Section 4.1, Up(g—) is the image of the map g — ¢~ from
Homg (M. M, M) to Un(0) = U()][[H]).
11.5. Proof of Theorem 11.1. By Section 2.1,

gL = (g}.7)*P = (g2)"P = (g2)*P
is isomorphic to g4 via the map —idg, . Let o' = g/, @ g’ be the double Lie

bialgebra of g/,. We have ?' = g_ @ gy = g4+ @ g— as vector spaces. The
following lemma is easily checked.

Lemma 11.6. The endomorphism o of g+ @ g— that is the identity on g_
and the opposite of the identity on gy is an isomorphism of Lie bialgebras
o : 0 — 0 which fits in the following commutative diagram of Lie bialgebras,
where the horizontal morphisms are the natural injections:

g- = D e g+

id l - l —id l
gy =9- — ¥ < g =(g)r
The morphism ¢ sends the 2-tensor r = Zle TiQY; € 0Q0 to
d
o(r)= Z (—z;)®y; = —r € V'®0.
i=1
Consequently, for the symmetric 2-tensor ¢ = r + 721, we have o(t) = —t.
The Lie bialgebra isomorphism o : 9 — 0’ induces a bialgebra isomor-

phism o : U(9) — U(?’), hence an algebra isomorphism between their quan-
tizations (cf. Section 5.3):

o : Up(0) =UQ)[[A]] — U@[[1]] = Un(®).



356 CHRISTIAN KASSEL AND VLADIMIR TURAEV

For the definition of the comultiplication A) of Uj(?') we follow Sec-
tion 11.2 and construct a braided monoidal category C’, using now the dou-
ble Lie bialgebra ?" = ¢(?), the same Drinfeld associator ® as above, and
the two-tensor ¢ = o(t). The morphism o induces a canonical isomorphism
C = (' of braided monoidal categories.

We also need Verma modules for d'. Following Section 11.4, they are
defined by ML = U(?') ®y(q,) C. As a U(gy)-module, M} is free on a
generator 17,. There is an isomorphism ¢’ : U(d') — M/ @M’ defined by
¢'(1) = 1/, ®1"_. The homomorphism ¢ : © — ' induces canonical algebra
isomorphisms U(g+) = U(g%), hence canonical isomorphisms

My =U(d) QU (gs) C= U(D/) ®U(g’¥) C= M%

Using these isomorphisms, we henceforth identify o' with d, M/, with M_,
M! with M4, ¢' : U(®") — M/ @M with the isomorphism of U (d)-modules
¢ U(D) — M_®@M, determined by

(11.7) Y1) =1_®14.
By (5.3) the comultiplication A} of the bialgebra Uy (d') = Up(9) is given
for a € U(0)[[h]] by

Aj(a) = (J5) " A(a) T,
where A is the standard comultiplication and J; is the element in
(UR)U@))[[R] = (U®)RU(0))[[h]] defined, according to (11.4) and us-
ing the above identifications, by
(11.8) (P'@¢")(Jh) = X' (1-81-81+81+) = X' (i-®i)(¢'(1))

where x’ is obtained from the morphism y of Section 11.3 by exchanging

My and M_.
Consider the U(0d)-linear automorphism v of U(9) defined by

(11.9) v=(¢)  enmm_p,

where cpr p- c My@M_ — M_®DM, is the braiding. The morphism v is
the right multiplication by the invertible element w = v(1) € U(d)][[h]]:

(11.10) v(a) = aw
for all a € U(d)[[h]].
Lemma 11.7. We have w =1 mod h and
J, = A(w) Lexp(ht/2)(Jp)21 (wQw).
Proof. By (11.2), (11.3), (11.7), and (11.9) we have
w = () (explht/2)(1r@1)),,
=(¢)'(1_®1y)=1 mod h.
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Let us compute J;. Below we shall prove that
(11.11)

e M_oMy (e v Qe v )x(i4®i-) = X' (i—®iq)enr, v,
where car_gnr, ooy - (M_@M)Q(M_@M,) — (M_Q@M, )&(M_QM,)
is the braiding. Then, (11.9), (11.11) and the naturality of the braiding im-
ply

(1112) () @) (i )g'v
= ()@ (@) X (i—®it)en, m_p
= ((¢") ') Nem_omy m_onm, (ear . ®enr, v )x(14®i_)p
= ()U(a)(( ,)_1®(90/) 1>(CM+,M,®CM+7M7)X(Z+®Z_)gp

= cu()u() (reV) (@ )x(iy @i ).

Let us apply both sides of (11.12) to the unit in U(2d)[[h]]. By (11.8) and
(11.10), we obtain for the left-hand side

() @) N (-@is)e'v) (1)
= ((¢") (@) TN (1214 )¢) (@)
= Aw)(((¢) (@) (i-®is)¢) (1)
= A(w)J},.
For the right-hand side, using (11.2), (11.4), (11.10), and the symmetry of ¢,
we obtain
(o) v ver) (¢ ee x(i+@i-)e) (1) = cu@)ue) (v@r)(Jh)
= (exp(ht/Q)Jh(uJ@w))Ql
= exp(ht/2)(Jh)21 (w®w).
Putting both computations together, we obtain the desired formula for Jj .
Let us prove (11.11). By a well-known result of Mac Lane’s, any braided
monoidal category is equivalent to a strict braided monoidal category. It is
therefore licit to omit the associativity isomorphisms in the computations.
To simplify notation, we replace in the braidings the subscripts My by
4+ and we omit the tensor product signs. With these conventions, x =

id;®cq —@id_ and x' = id_®c_ 4 ®id. In C we have the following sequence
of equalities implying (11.11) and justified below:

(11.13) Ct =t (Cq — @y ) x (14 i)
= g~ (cq —®cy ) (id1 @y - @id_ ) (i4.@i-)
= (1d-®c_ 1 ®id4)cpq ——(cy +@c— ) (i4®i)
— (d_®e_ 4 ®idy)ery—_(i+®i)
— (@4 @id,) (i_ @iy )er
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Here, the first and the last equalities hold by definition of ¥ and x’. The
second one is a consequence of the equality

(11.14) Cp it (cq,-®cy ) (idy @cy, - ®id-)
= (ld-®c_ 1 ®idy )y, ——(c4,+®c— ),

which holds in any braided monoidal category. This equality follows from
the identity

(11.15) 09010302010309 = 030103020103,

which holds in Artin’s braid group on four strands By, where o1, 03, 03 are
the standard generators of By.
The third equality in (11.13) is a consequence of

(11.16) ct 4+ = id+®id4.

Since both sides of (11.16) are U(0d)-linear, it suffices to check this equality
on the generator 1:®14 of ML®My. Now, by (11.2) and the vanishing of
t(11®14), we have

Ci,i(li@)li) = (exp(ht/Q)(li(X)li))m = (1i®1i)21 =14+®14.

This proves (11.16). The fourth equality in (11.13) holds by naturality of
the braiding. O

Corollary 11.8. Let o, : Up(d) — Ux(?') be the algebra isomorphism de-
fined by o,(a) = o(wtaw) for all a € Uy(0). Then o, is a bialgebra iso-
morphism Up(0)%°P 2 Uy (?').

Proof. We have to check that
(11.17) Aoy, = (0L®0,) AP,
It follows from Lemma 11.7 that, for all a € U(0d)[[h]],
(W ew AP (a)(wew)
= (W lew ™) (I, Ha1A@) (Jn)2 (wew)
= (J})'A(w) " exp(ht/2)A(a) exp(—ht/2) A(w).J),.

The 2-tensor ¢ being invariant, A(a)t = tA(a), hence A(a)exp(ht/2) =
exp(ht/2)A(a). Therefore,

(Wl ew AP () (wew) = (J;) " Aw) T A(a) A(w) Iy,
= (J))'A(w taw) T},
= Aj (v taw).

This implies (11.17). O
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We now complete the proof of Theorem 11.1 by establishing that the
bialgebra isomorphism oy, : Up(0)°P? — Up(d’) sends Up(gx) onto Up(gl).
We give the proof only for g/, . The proof for g’ is similar.

For f' € Home (M, ®@M! ,M’) consider the endomorphism p/, (f') €

Endc (M ®M' ) defined as the following composition of morphisms in C':

(11.18) i, ®id_ a

’ id, ®f
M @M — (M,@M, )M — M, (M, M) 2%

M oM.
Here id/, is the identity morphism of Mi, s M — M,®M/ is the
analogue of iy : My — My ®M,, and d’ is the correspondlng associativity
isomorphism. Conjugating by the isomorphism ¢’ : U(®') — M/, @M, we
obtain the endomorphism (¢')~!u/, (f')¢" € Ende/(U(d')), hence the formal
power series

() = (@) (F)¢) (1) € UR)[[R]).
By definition, Up(g/,) is the image of the map [ — (f')" from
Home (M, @M’ ,M") to Up(d') = U(®')[[h]]. Under the above identifica-
tions, the morphism (11.18) in C’ becomes for f € Home(M_®M,, M) the
composition of morphisms in C

i ®1d+
(

(11.19) wp(f) - M_@M, M_®@M_)M,

s M_e(M_eM,) =Y

M_®M,.
Therefore, the submodule o~ (U (g',.)) of U,(d) is the image of the map

fe o= (@) e )

from Home (M_®M., M) to Up(9) = U(0)[[h]], where ¢ : U(2) — M_@ M.
is defined by (11.7).

Let us compare the map f — f_ with the map g — ¢~ of Section 11.4.
We shall prove below that
(11.20) ety v p—(9) = (gent, a )enr, v
for all ¢ € Home(Mi®@M_, M,). It follows from (11.9), (11.10), (11.20),
and from the definitions of g_ and of f_ that
p(ge M+M )‘Pl)(l)

(g¢n, MJr v )-= (¢
(V‘P M+M M(QCMJrM )CM+7M—90V_1)(1)

(V v ()
v )(w_l)
= Z/(w p-(9)p)(1))
=v(w™? )—w Ly w=10,(97).
Consequently, o, (Up(g—)) = Un(g/,).
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It remains to prove (11.20). We use the simplified notation introduced in
the proof of (11.11). By functoriality of the braiding in C, we have
(11.21)

(i—@idy)er - =cq——(dy®io) and cq _(g®id_) = (Id-®g)cq— —

for g € Home (M ®M_, M,). Therefore, by definition of p,
cl}_,u(gcf_)arr = c;l_ (id_®(gc;1_))a(i_®id+)c+7_
= c;l, (id,®g)(id,®cl},)a(i,®id+)c+7,
= (g@id-)c;l _(id-®c;')acy ——(idy®i_).

Since p—(g) = (g®id_)a~t(id4 ®i_), it suffices to observe that by the general
properties of braided categories and (11.16),

(11.22) acy—— =acy __(idy®@c_ ) = (id_®cy _)er_ _a .

This completes the proof of (11.20) and Theorem 11.1. O

We end this section by computing the universal R-matrix R} of Uj(?') in
terms of the universal R-matrix Ry, of Uy (0) and the invertible element w €

Un(0).
Lemma 11.9. We have R), = (0,®0)(Rp)a1.
Proof. By (5.6) and Lemma 11.7 we have
Rj, = (J)q1 exp(ht/2) J;,
= (W lew I exp(—ht/2)A(w)
-exp(ht/2) A(w) ™ exp(ht/2)(Jp)o1 (WBW).

As observed in the proof of Corollary 11.8, A(a) commutes with exp(ht/2)
for any a € Up(0). Hence,

R}, = (w_1®w_1)J,;1 exp(ht/2)(Jp)21 (wRw) = (w_1®w_1)(Rh)21(w®w).
O

12. Proof of Theorem 2.11.

The aim of this section is to identify the bialgebra A_ of Section 9. As an
application, we prove Theorem 2.11.

Let us apply the constructions of Sections 6-7 to the Lie bialgebra g/, =
g— of Sections 5.2 and 11. We obtain a C[[u, v]]-bialgebra U, . (g/,) contain-
ing a Clu][[v]]-bialgebra A, (g’ ).
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12.1. Exchanging u and v. Any Cl[[u,v]]-module M gives rise to a
C|[u,v]]-module 7(M) defined as follows. As a vector space 7(M) = M,
but the action of u, v is different: The new action of w is defined as the
multiplication by v and the new action of v is defined as the multiplication
by u. Clearly, 7(7(M)) = M. Similarly, exchanging the actions of v and v,
we transform any Clu|[[v]]-module M into a C[v][[u]]-module 7(M).

For the Lie bialgebra g/, = g_, we obtain a C[v][[u]]-bialgebra A, ,(g’,)
and a Cl[u,v]]-bialgebra U, (g’,) by

(12.1) Apu(gly) = T(Auﬂ,(gﬂr)) and Uy u(g) = T(Uu,v(g;)).
It is clear that A, (g') C Upu(d,).

Theorem 12.2. There is an isomorphism of C[[u,v]]-bialgebras

05t Uup(9-)P — Uv,U(QQ—)
sending AP onto A, (g)).

Proof. After extending the scalars from C[[h]] to Cl[[u,v]] and exchanging
u and v, the C[[h]]-bialgebra isomorphism o, : Uy (2)°P = U,(d') of Theo-
rem 11.1 gives rise to a C[[u, v]]-bialgebra isomorphism

(12.2) 05 Uy p(0)°P — Uy (2)

sending Uy, (g—)®P onto U, (¢,) and Uy (g4)®P onto Uy (g’ ). The iso-
morphism o is given by a — &(w 'aw), where 7 : Uyy(g-) = Uyu(g)
is the algebra isomorphism induced by extension of scalars from the al-
gebra isomorphism o : Up(0) = Up(d') of Section 11.5, and where @ is
the invertible element of U, ,(d) = U(0d)[[u,v]] coming from the element
w € Up(d) = U(D)[[R]], cf. Section 4.6. As a consequence of Lemma 11.7, we
have

(12.3) w=1 moduwv.
The bialgebra U, ,(?") contains a universal R-matrix
R;’v € Uu,U(D/) ®C[[u,v]] Uu,v(a’)

defined in the same way as the element R, € U,,(?) ®C[[u,vﬂ Uuwn(0) in
Section 6. As an immediate corollary of Lemma 11.9,

(12.4) R, , = (05005)(Ruy)21-

We have to show that oz maps A_ onto A,,(g/ ). We first describe
Ayo(gy) following Sections 5.5 and 6.6. To begin with, we need a C[[h]]-
linear isomorphism o’ : Up(g_) — U(g_)[[R]] such that o/ (1) = 1 and

/

o’_ = id modulo h, and a C-linear projection 7’ : U(g"_) — Ul(g") = Cog’_
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that is the identity on U'(g’ ). We choose them in such a way that the
following squares commute:

Un(g+) —— Ulg+)[[B]  Ulg+) —— U'(g+)

oy e
Un(e") —— U@ )[R, U(g") —— U'(g")

where ay : Up(g+) — U(g+)[[h]] has been chosen in Section 6.6 and m :

U(gy) — Ul(gy) in Section 9.1.

For any y € g_, let o(y) be the corresponding element in g/, and (o (y), —)":
Ul(g") — C be the C-linear form extending the standard evaluation map
(o(y),—) : ¢~ — C and such that (o(y),1)’ = 0. Following Section 5.5,
given y € g_, we define a C[[h]]-linear form fé(y) : Up(g) — CJ[[h]] for
a € Up(g") by

(12.6) f;(y)(a) = (o(y), " (a)).

By extension of scalars, we obtain a Cl[[u, v]]-linear form f:’y(y) Uy p(g-) —
Cl[u, v]]. By Lemma 6.5, the element

(12.7) P (o) = (95 (R,,) € Uno(g})
is divisible by uv. Let (y1,...,yq) be the basis of g_ dual to the ba-
sis (x1,...,2q) of g4. In view of Section 6.6, Ay.(g/,) is the Clu][[v]]-

submodule of U, (g, ) generated by the elements

Ca ’OlJr(J}?f(zn))k1 o 'pzr(ﬁ(yd))kd’

where k runs over all finite sequences of nonnegative integers.
Therefore, Ay (g,) = 7(Auw(g/)) is the C[v][[u]]-submodule of U, ., (g’,)
generated by the elements

(12.8) w (T P (o)™

where k runs over all finite sequences of nonnegative integers.
In view of the definition of A_ (see Section 9.1), in order to prove that
o5(A-) = Ay (g, ), it suffices to check that for all y € g_

(12.9) o5 (p-(9y)) = *P;(ﬁ(y)),

where p_ is defined by (6.2) and gy : Uyu(g+) — Cllu,v]] is the C[[u, v]]-
linear form extended from the linear form g, : Uy(g+) — CJ[[h]] defined
by (9.1).

Let us prove (12.9). First observe that, since 0 = —id on g4 and ¢ = id
on g_, we have

(12.10) (o(y),o(x)) = —(z,9)
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for all z € g4 and y € g_. It follows from (9.1), (12.5), (12.6), and (12.10)
that
fo(ow(@)) = (o(y), m_a’ (0u(a)))’
= (a(y),omai(a))
—(mrai(a),y) = —gy(a)
for all y € g— and a € Up(g+). By extension of scalars, we obtain
(12.11) Tow)(05(a) = ~g,(a)

for all y € g— and a € Uy ,(g+)-
As a consequence of (6.2), (12.4), (12.7), and (12.11),

2.
P (o) = (d2f)(RY,,)
= (1d2f] () ((05205) (Ruu)2 )
a(y)®ld)(0w®%)( Ryy)
= 05 (T 05®1d) (R )
o ((G,21) (Ru) )

= —0z(p-(9y))-
This proves (12.9) and completes the proof of Theorem 12.2. O

12.3. Proof of Theorem 2.11. Under the bialgebra isomorphism AP =
Ayu(gl) of Theorem 12.2, the nondegenerate bialgebra pairing ( , )y, of
Lemma 9.5 and Corollary 9.9 gives rise to a nondegenerate bialgebra pairing
Auw(g+) x Apu(gl) — Cllu,v]]. The second assertion in Theorem 2.11
follows from (9.18) and (12.3). O

Appendix A. Biquantization of the trivial bialgebra.

Let g+ be a d-dimensional Lie bialgebra with basis (x1,...,z4) and with
dual basis (y1,...,yq). Assume throughout the appendix that g, is the
trivial Lie bialgebra, i.e., with zero Lie bracket and cobracket:

(A.1) [, 2] =0 and d(z;) =0

for all 4 and j = 1,...,d. We now give a complete description of the
biquantization A, ,(g+) and of the pairing (9.9) under the hypothesis (A.1).

The dual Lie bialgebra g_ = (g% )°°P is also trivial, whereas the double
Lie bialgebra 0 = g4 @ g_ is not: It follows from (5.1) and (5.2) that the
Lie bracket of 0 is equal to zero, but not its Lie cobracket, which is given by
d(u) = [u®l + 1®u, r], where r = Z?:l T QY;-



364 CHRISTIAN KASSEL AND VLADIMIR TURAEV

We first determine the bialgebras U (0) and Up,(g+) of Section 5. Since 0
is a trivial Lie algebra, we have

(A.2) Un(0) = U(@)[[n]] = S@)[[A]]-

This is not only an isomorphism of algebras, but also of bialgebras. Indeed,
since Up,(0) is commutative, it follows from (5.3) that its comultiplication is
the standard one: Ay = A.

In order to determine the subbialgebras Up(g+) of Uxp(0), we need Sec-
tions 11.2-11.4, whose notation we use freely. Consider the braided monoidal
category C of Section 11.2. We claim that the associativity isomorphims are
trivial:
(A.3) ar,m,N = ldrgmen
for any triple (L, M, N) of objects in C. Indeed, since the Lie algebra 0
is abelian, the morphisms ¢, s ® idy and id; ® tj7,n coming up in (11.1)
commute with one another. Now, the Drinfeld associator ®(A, B), being
the exponential of a Lie series in the variables A and B, is equal to 1 if A
and B commute. This proves (A.3).

On the Verma modules M4, the braiding cpz, a_ is given by

earyr (14@1) = exp(ht/2)(1-@15)

in view of (11.2) and the symmetry of t. Since 0 is abelian, we have

exp(ht/2) = H exp(h(x;®y;)/2) exp(hra1/2).
Now, ro1(1-®14) = Z —1 yi1,®xi1+ = 0. Therefore

(A.4) evy v (14®12) Hexp (;®y:)/2)(1_®14).

Let us give a formula for the 1somorph1sm @ :U@®) - Mi@M_ of (11.3).
Since ? = g4 @ g— as Lie algebras, any element of U(d) = S(?) is a linear
combination of elements of the form ab, where a € S(g4) C S(d) and b €
S(g—) C S(d). We have

(A.5) p(ab) = bl ®al_.

Indeed, using Sweedler’s notation, the definition of M1 as modules, and the
commutativity of U(d) = S(?), we have

p(ab) = Aab)(14 ©1-)

= 2 ambm1+®acbe)1-
(@®)

= 2 boapli@apbe)l-
(@(®)
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= Z b(l)a(a(l))1+®a(2)5(b(2))1_
(a)(b)

Z b 1+ X Z 8(@(1))a(2)1_
(a)
= b1+®a1_.

It follows that, for a € S(g+) and b € S(g-),
(A.6) p(exp(ab)) = exp(b®a)(14+®1_).
Proposition A.1. U(g+) = S(g+)[[h]] as bialgebras.

Proof. We prove this for Up(g+). There is a similar proof for Up(g-).

By Section 11.4, Up(gs) is the image of the map f ~— fT from
Home(Mi@M_,M_) to Up(d) = U(®)[[h]]. We claim that this image
is exactly the submodule U(g4)[[h]] of U(0)[[h]] consisting of the formal
power series with coefficients in U(gs) C U(?). Indeed, an element f €
Home (M ®@M_, M_) is of the form f = Y ,., fih' where the maps f; :
M, ®M_ — M_ are U(0)-linear. Since M, ®M_ is a rank-one free mod-
ule generated by 1,.®1_, the map f; is determined by the element a; 1_ =
fi(ly®1_) € M_, where a; is a well-defined element of U(g+). The claim
will be proved if we show that f™ =3",., a; h'.

By (11.5), (A.3) and (A.5) we have

= («flu+(f)s0)(1)
= (¢ (1 ®f) a(iy@id_)p) (1) b’

>0

= (¢ (s @ fi)(ipid-)p) (1) B

1>0

= (¢ (dr@fi)(ir@id ) (1y@1-) b

120

=Y (¢ (de@fi) (14@14@1-) '

i>0
= Z 0~ (1+®az Z a; h'.
>0 >0

The fact that Up(g+) = U(gy)[[h]] is a subbialgebra of U(d)[[h]], hence
has the standard product and coproduct, follows from the obvious fact that
U(g+) is a subbialgebra of U(0). The Lie algebras 0 and g4 being abelian, we
have U(g+) = S(g+). Consequently, Up(g+) = S(g+)[[h]] as bialgebras. O
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Corollary A.2. The bialgebra A, is the subbialgebra of S(g4)[[u,v]] con-
sisting of the formal power series mezo A u™V™  such  that
Am.n € @i S*(g4) for all m > 0.

Proof. By (6.1), Proposition A.1 and Lemma 4.7, we have U,,(g+) =
S(g+)[[u, v]]. We conclude in view of (7.1) and of Proposition 3.8. O

Similarly, the bialgebra A_ of Section 9.1 is the subbialgebra of
S(g-)[[u,v]] consisting of the formal power series 3, ~q bmnu™v" such

that by, € Dr_y S*(g-) for all n > 0.
In order to determine the subalgebras A, ,(g+) and A_ defined in Sec-
tions 6.6 and 9.1, we have to make explicit the element

Ryw € Uuw(g+) ®C[[u,v]] Uu,w(9-)

of Section 6. Let J;, and Ry, be the elements of (U(d)®cU(0))[[h]] given by
(11.4) and (5.6), respectively.

Lemma A.3. We have J, = exp(hr/2) and Ry, = exp(hr).
Proof. By (11.4), (A.4) and (A.5), we have

(p®p)(Jn) = x(1401101_®1_)
= exp(ht23/2) - (14.01_®1,®1_)
= exp(hres/2) - (14+®1_®1,®1_)

d n
h’n
=Y oo (Z 1®xi®yi®1> (1, ®1_®1,®1_)
" \i=1

n>0
[
=L@ | D gy DL @ @y Ly | 1
n>0 iy yin=1
oG
n>0 i1y sin=1
= (@) (exp(hr/2)).
Formula (5.6) implies
1 ht h
Ry, = (J;, )21 exp 5 Jp =exp | (=ro1 + 7+ 1o + 7“)5 = exp(hr).
([
Corollary A.4. We have
umo" d
Ry,y = exp(uvr) = Z ol Z Ty Tiy, QYiy ** Yiyy-

n>0 i1 yin=1
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From Ry, we get maps py : Uy ,(9-) — Uun(g+) and p— : Uj,(9+) —
Uuw(g—) as in Section 6. Formula (5.10) defines a C][h]]-linear form f, :
Un(g—) = S(g-)[[h]] — CIJ[h]], where we may take a_ = id and m_ :
U(g-) = S(g-) — — Ul(g_) = C @ g_ the natural projection. It follows
that the map fy : Uyo(g_ ) = S(g-)[[u,v]] = CJ[u,v]] of Section 6.4 is given
for =2, n>0 bmnu™v™ € S(g-)|[u, vl] by

(A.7) Fo0) =D (@, 7 (b)) u™".

n>0
Lemma A.5. We have v—! p+(]§) =wux for all x € g4.

Proof. By (6.2), (A.7) and Corollary A.4 we get

p+(f:;c) = (1d®]?m)( uv)
Z fz(yzl' yzn)xnx%n

n>0 01 4eeyin=1
d
uom™
= py > (wm (e Yi) T T,
n>0 T e in=1
d d

= uv Z (x,m(y;)) x; = uv Z (x,yi) x; = uv .

i=1 =1
U

Corollary A.6. A, ,(g+) consists of the formal power series
Ym0 Gmpn V" such that amy € DiL, Sk(gy) for all m > 0, and for
all n > 0 there exists N with ap,, =0 for all m > N.

Similarly, the bialgebra A_ consists of the formal power series
> mn>0 bmp u™™ such that by, € @ Sk(g_) for all n > 0, and for
all m > 0 there exists M with b, = 0 for all n > M. Together with
Corollary A.6, this implies that

A- = Ay u(e-).

Let us describe the bialgebra pairing (, )y : Auo(g+) X AZP — C[[u, v]]
defined by (9.9). By (2.11) and Corollary A.6, it suffices to compute
(uz,vy)y, when x € gy and y € g—. The following result shows that
the pairing (, )y, is the standard one.

Lemma A.7. We have (ux,vy)y, = (z,y) for allz € g+ andy € g_.
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Proof. By (9.9), (A.7), and Lemma A.5 we have

(uz, vy)up = (p3 (uz)) (vy) = v fo(vy) = v~ "0 (2,7(y)) = (2,y).

O

A.8. Remark. The reader may check, using (A.4) and (A.6), that the in-
vertible element w € Uy () = S(0)[[h]] defined by (11.10) is given by
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ON EQUIVALENCE OF TWO CONSTRUCTIONS OF
INVARIANTS OF LAGRANGIAN SUBMANIFOLDS

DARKO MILINKOVIC

We give the construction of symplectic invariants which
incorporates both the “infinite dimensional” invariants con-
structed by Oh in 1997 and the “finite dimensional” ones con-
structed by Viterbo in 1992.

1. Introduction.

Let M be a compact smooth manifold. Its cotangent bundle T*M carries
a natural symplectic structure associated to a Liouville form 8 = pdq. For
a given compactly supported Hamiltonian function H : T"M — R and a
closed submanifold N ¢ M Oh [30, 27| defined a symplectic invariants of
certain Lagrangian submanifolds in T*M in a following way. Let v*N C
T*M be a conormal bundle of N. Denote by HF}(H, N; M) the Floer ho-
mology groups generated by Hamiltonian orbits v starting at the zero section
and ending at v*N such that Ay (y) := f7 pdg— Hdt < X (see, e.g., [30]). In
particular, for A = oo we write HF,(H,N; M) := HF>(H,N;M). These
groups are known to be isomorphic to H,(N) [31]. We denote the corre-
sponding isomorphism by F. For a € H.(N) one defines

(1) p(a,H : N) :=inf{\ | Fy(a) € Im(j2) ¢ HF.(H,N; M)},

where j) : HF} — HF,(H,N;M) is a well defined inclusion homomor-
phism. It is proved in [30] that p is a well defined invariant which (after
a suitable normalization of H) depends only on a Lagrangian submanifold
L := ¢ (Oy) and not on a particular choice of H. We refer the reader to
[26, 29, 30, 27| for more details.

This construction can be considered as an infinite dimensional version
of a construction given earlier by Viterbo [38]. Let L be a Hamiltonian
deformation of the zero section ops. It is known [21] that L can be realized

T {6 D)e0e () 0}

where S : M x R™ — R is a smooth function fiberwise quadratic outside a
compact set. Using that result, Viterbo [38] defined symplectic invariants
of L associated to a homology classes of a base M in a following way. For

371
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a class a € Hy(N) denote by Ta its lift to H.(SY,Sy>), where Sy is the
restriction of S to N x R™ and S := Sy'((—o0,\]) =: Sy for large \.
Note that this makes sense since S is quadratic at infinity. Then one sets

(2) c(a,S: N) :=inf{\Ta € Im(j}) C H,(5%°,8>)},

where j : H.(S7, Sy®) — H.(SE,Sy™) is an obvious inclusion homo-
morphism. Viterbo proved that these invariants essentially depend only on
L, and not on S. Viterbo carried out the construction for N = M (which
generalizes easily to closed N C M) and for an arbitrary vector bundle
E — M. As Viterbo’s invariants do not change under a stabilization (i.e.,
replacing S : E — Rby S@ Q : E® F — R), it is enough to consider the
case E = M x R™. We refer the reader to [38] for more details. For an
alternative construction via Morse homology see [25].

The natural question of the equality between the two invariants is raised
in [30]. In [26] we outlined a proof, constructing the invariants which in-
terpolate the above two. The main technical tool, which we omitted in [26]
was the construction of the interpolated Floer-Morse theory on T*(M x R™)
with an arbitrary coefficient ring. The purpose of this paper is to give the
details of this construction. Another way of interpolating Floer and Morse
homologies for generating functions, in the case M = N was given by Viterbo
in [39, 37].

The dependence of the above invariants on the subset N C M, in par-
ticular the continuity with respect to the C'-topology of submanifolds is
an interesting question, which was further studied by Kasturirangan and
Oh [18, 19]. Some applications to wave fronts and Hofer’s geometry are
given in [30].

At the end, we give an application of our result to Hofer’s geometry of
Lagrangian submanifolds.

2. Preliminaries and notation.

Let M be a compact smooth manifold and E := M x R™. The cotangent
bundle T*E = T*M x C™ carries the natural symplectic structure w @ wy.

For a fixed relatively compact open set K C E and a Riemannian metric
gu on M we denote

Ggudgo = the set of metrics on F

which coincide with gps ® go outside K,

where g is a standard Euclidean metric on R™. For a given non-degenerate
fiberwise quadratic form @) on E, we denote by S(g ¢) the set of all smooth
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functions S : F — R such that S = @Q outside K and

(3) > enllS = Qller < oo
k=0

for some sequence e}, of positive real numbers.
Similarly, let H(E) denote the set of smooth functions H : T*E x [0, 1] —
R such that outside K
H(z,§) = Hy @ Hy(x,§) := Hi(z) + Ha(§)

for some compactly supported functions Hy : T*M — R and Hy : C™ — R
and

(1) S eplHllox < .
k=0
Equipped with norms (3) and (4) the spaces
Spa)—Q:={5-Q|5€Spqp}

and H(E) become separable Banach spaces which are (for suitably chosen
sequence ¢;) dense in L?(E) and L*(T*E) (see [11]).

For a closed submanifold N C M and a function S € S(g g) we define the
space of paths

Q(S;N):={T:[0,1] = T*E | T'(0) € Graph(dS), I'(1) € v*(N x R™)},
and

Plioc(Si N) = {U : R = Q(S;N) | U € Wl (R x [0,1], T*E)}.

loc
After restricting Ay to Q(S; N), for a given path I' :== (v,2) : [0,1] — T*E
and a pair (H,S) € H(E) x S(g ) the first variation formula gives

dAp(T)n = /01 {w (Zm) - dH(’V(t),t)n} dt — 0n(0)
-/ 1 o (%n) - @t (0.0n) dt - aS (OO TR((0)

where 7w : T*E — F is the natural projection. Therefore, to get a good
variational problem, we set

Ar,s)(T) = Au (') + 5(x(1(0)))
(c.f. [30]). Straightforward computation yields:
dAm,s)(T)n

1
- /0 (@ ® wo) (T, ) — dH(T)n)dt
T {T(1), Tr(n(1))) — (D(0), Tr(n(0))) + dS(x(T(0))) T (n(0)).
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After restricting to Q(S; N)

1
(5) dA11.5)(T)n = /0 [(w ® wo) (F, ) — dH (T))dt.

Hence, the critical points I' := (v,2) : [0,1] — T*E of Ay,g) on Q(S;N)
are the solutions of

I'=Xpu(I)
(6) (7(0), 2(0)) € Graph(dS)
v(1) € v*N, 2(1) € ogm.

Note that I" — I'(1) establishes the one-to-one correspondence

Crit(Ag) ={I":[0,1] — T*E | T satisfies (6)}
>~ ¢ (Graph(dS)) Nv* (N x R™).

For a given Riemannian metric gy on M, we denote by J,,, the almost
complex structure which satisfies the following conditions:

1) J

4, 18 compatible with the canonical symplectic structure w on T M.
2) J,

4n Maps the vertical tangent vectors to the horizontal vectors with
respect to the Levi-Civita connection of gyy.

3) On the zero section oy C T*M Jg,, assigns to each vector v € T,M

the cotangent vector Jg,, (v) = ga(v,.) with obvious identifications.

Denote by j& (M) the set of w-compatible almost complex structures which
coincide with Jj,, outside a compact set in T*M, and by J5(M) the set of
smooth paths J; : [0,1] — j&(M).

For a path {J;} € JS(M), the family of product almost complex struc-
tures

J @i :={Jt ®ito<<1

is compatible with the product symplectic structure w®wyon T*E = T* M x
C™. Denote by JS(E) the set of almost complex structures on T*E which

coincide with product structure J,,, ©4 outside a compact set. Those almost

complex structures induce the family of metrics

(n1,m2) 5, == w ® wo(m, Jin2)

and hence an L2-type metric

1
() = /0 (1 (£), 72 () st

on Q(S; N).
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In terms of metric ((.,.)) s the gradient flow U := (u,v) € P}, (S;N) of
A(m,s) restricted to Q(S; N) satisfies
0guU =% +J (% - XyU)) =0
7) (u(r,0), v(r, 0)) € Graph(dS)
u(r,1) € v*N, v(7,1) € ogm.

Denote by CF(H, S : N) the set of critical points of Ay, s)las;n)- Then
CF(H,S:N)={I' = (v, 2) | I satisfies (6)}.
The set of critical values of A g) in R
Spec(H,S : N) := Ags)(CF(H,S : N))
is called the action spectrum of Ay, s)-
In the construction of Floer homology we will impose on the functions in
S(E,q) the generic transversality condition

(8) Graph(dS) M (o)1 (*N x R™).

Under assumption (8), the sets CF(H,S : N) and Spec(H, S : N) are finite.
In the general case, we have the following lemma, which describes the size
of set Spec(H,S : N). Similar results were established in [17, 30].

Lemma 1. The action spectrum Spec(H,S : N) is a compact nowhere
dense subset of R.

Proof. For the smooth function

f:V'N xogm — R

f(a) = As) (@1 o (61) " (2))
we have, by (5)

df (x) = =0((¢1) " (@) T (1)) (z) + dS(n(o1) (@) T (é1) " (2)

and thus the set Spec(H,S : N) is contained in the set of critical values of
f. The latter is nowhere dense in R by the classical Sard’s theorem.

Since H = Hy ® Hs and Graph(dS) = op; x Graph(dQ) outside some
compact subset K C T*FE and supp(H;) C K;, i € {1,2} for some compact
subsets K1 C T*M and Ko C C™, it follows that for x = (x1,22) € V*N x
orm outside Ko := Uy¢(o 1 [0t o (pHh®H2) =1 ([0

f(x) = g1(z1) + g2(2),
where
g1 :V'N = R, gi(z1) = A, (¢ o (617) " (1))

g2 opm — R, ga(w2) = Ay (617 0 (61%) ! (22)) + Q(mem ((6172) " (22))).
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Here wem : C™ — R™ denotes the natural projection. Denote Ky := KoN
V*N X ogm, K1 = KiNv*N, Kg = KsNogm. Since g; = 0 outside K1 and
g2 = 0 outside K>, all critical points of g are contained in the compact set

B = g(Ko) U (gl(Kl) + 92(K2)> U {0}
Hence Spec(H, S : N) is compact as a closed subset of a compact set B. [

Let CF,(H,S : N) denote the free abelian group generated by CF(H, S :
N) and CF*(H,S : N) := Hom(CF.(H,S : N),Z). Further, denote by
M 51,9 (N : E) the set of solutions of (7) with finite energy, i.e., of those
which satisfy the condition:

o Ew):z/j/;(gf

More generally, consider the 7-dependent families
59 = 820 € S o), H := H’ e H(E), J*F = J*P € J5(E),
such that for some R > 0 and 7 < —R
5B = g« g = g g = Je,
for some fixed 5S¢, HY, J¢ and, similarly,
S8 =58 HeP = HP Job = JB,
for 7 > R and S°, HP, JP fixed. Denote the sets of all such homotopies by
H(E), S0y Tu(E).
We define M jap fas Saﬂ)(N : E) as the set of solutions of

2 oU 2

Bt - Xyu(U)

) dtdr < oo.

J

Dyas g, U =92 + J (% — X4rap(U)) =0
(10) (u(r,0),v(7,0)) € Graph(dS*?)
u(r,1) € v*N, v(7,1) € of

which satisfy

an /+OO/ ( o7

It is a standard result in elliptic regularity theory that the solutions of (10)
are smooth.

Finally, for two solutions x, y of (6) we denote by My )(x,y) the set
of solutions U of (7) such that

lim U(r,t) = z(t),
T—00

2

2
oUu
] Xy (U)

ot

> dtdr < oo.

Jos JoB

lim U(r,t) =y(t).

T——00



ON EQUIVALENCE OF TWO CONSTRUCTIONS... 377

In an analogous way, we define M jas s gas)(2?, 27) to be the set of so-
lutions U of Equation (10) such that

lim U(r,t) = z%(t)

lim U(r,t) = 2P(t),
where
7% = Xpa(2%) b = Xp5(29)
(12) x*(0) € Graph(dS®) 2°(0) € Graph(dS?)
z* € V*N X ogm 2?(1) € v*N X ogm.

3. CY-estimates.

In this section we will prove that the solutions of (7) and (10) remain in a
compact neighborhood of zero-section. The essential ingredient of the proof
is the version of maximum principle which states that a J-holomorphic curve
cannot touch certain kind of hypersurfaces.

3.1. Contact type hypersurfaces.

Definition 2 ([40]). A smooth hypersurface A in a symplectic manifold
(V,w) is said to be of a contact type if there exists a vector field X defined
in a neighborhood U of A and transversal to A such that d(X|w) = w in
U. Such vector field is called conformal.

It is easy to see that g := X |w defines a contact structure ¢ := Ker (p)
on A.

Definition 3 ([7]). Let A be an oriented hypersurface in an almost complex
manifold (V,J) and ¢, the maximal J-invariant subspace of T;A. Then A
is called J-convez if for some (and hence any) defining 1-form ¢ for ¢, we
have do(Y, JY') > 0 for all non-zero vectors Y € (.

For a contact type hypersurface A in symplectic manifold (V,w) there
exist an w-compatible almost complex structure J such that A is J-convex.

Example 4. The sphere S?*~! ¢ C" is an i-convex hypersurface.

Example 5. Let J; be an almost complex structure on 7*M defined in
Section 2 and || - ||, the fiberwise norm induced by g. Then the hypersurface

Aw={peT"M||plly =1}
is Jg-convex.

For the sake of completeness we give the proof of the following version of
the maximum principle for subharmonic functions (c.f., [23, 30]).
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Lemma 6. Let u : D — V be a J-holomorphic disc in an almost complex
manifold V- and A C V a J-convex hypersurface. Then u(D) cannot be
tangent to A.

Proof. Suppose that Im(D) is tangent to A at the point u(z), for some
z € D. Since u is J-holomorphic, u.(T.D) C () for ¢ as in Definition 3.
Assume that A = f71(0) for some f:V — R.

We first prove that fow: D — R is subharmonic near z, or, equivalently
(see [7]) that a two-form di*d(f o u) is positive definite in a neighborhood
of z. Here i* : T*D — T*D is the operator adjoint to i : TD — TD,
n— /—1n.

Choose Y € (). Then, according to Definition 3, JY € (,(;) and thus
J*df(Y) :=df(JY) = 0. Therefore,

Jdf|a = pola + Adf|a
for ¢ as in Definition 2 and for some p : V. — (0,400) and A : V — R.

Hence
dJ*df‘Cu(z) = dp Q’Cu(z) + lu'dQ‘Cu(z) +dA A df‘Cu(z)
Since u is J-holomorphic, ¢*u* = u*J* and thus
di*d(fou) = wu*dJ*df
= u'(udo) at u(z)
= (pdo)uy.
Since u« (T, D) € y(z), and since do|¢y(») is positive definite (by Definition 3),
two-form di*d(f ou) is positive definite near z. Hence, fou is subharmonic.
Now, we finish the proof arguing indirectly. Suppose that Image (D) is
tangent to A. Then f ow attains its maximum at z. If z is an interior point

in D it contradicts the maximum principle for subharmonic functions. If

z € 0D then ;
g le=1((fou)(t2)) =0

which contradicts Hopf lemma (see [32]). O

3.2. The structure of the space of trajectories.
In this section we prove the following analogue of well-known Floer’s
theorem (see [11, 15, 35]).

Proposition 7. IfU := (u,v) is a solution of Equation (10) which satisfies
the condition (11), then there exist the limits

z(t) = lim U(r,1?)
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and
2P (t) = lim U(r,t).

T—00
Moreover, z® and z° are solutions of Equation (12) and hence
M gos gros sosy(N : B) = | ) Mjap pros gosy(z®, 2”).
za,x@

Proof. Choose a sequence 7, — —oo, and consider the sequence U, :=
U(7g,t). We claim that Uy, is bounded in W12([0, 1], T*E).
By assumption (11) we have

ap 1

Therefore, it remains to prove L?-estimate. We will prove that U(t) is
contained in a compact subset of T*E. We embed T*F properly in RP and

2

ou dt — 0, as k — oo.

E(Tk,t) — Xpo(U(Tg, t))

denote by | - | the standard Euclidean norm on RP. Assume first that
(14) lim |Uk(1)] = oc.
k—o0

Recall that S*? = Q outside a compact set K C E. By compactness of K
and (14) we have

(15) lim dist(Ug(1), Graph(dS®®|x)) = cc.

k—o0
Since

Ur(1) := (ug(1),vx(1)) € v*N X ogm
and

Graph(dSaB]E\K) = o) X Graph(d@),
(14) implies

Jim [dist(U (1), Graph(dS®’|pmk)))* = Jim. [dist (ug (1), onr)]?
+ lim [dist(vy(1), Graph(dQ))]?
(16) = o0.

Therefore, from (15) and (16) we get
(17) Jlim dist(Ux (1), Graph(dS°%)) = co.

Since Uy (0) € Graph(dS®?) (17) gives
(18) klim |Uk(1) — U (0)] = oo.
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g
/det‘
o dt

1
< / dUy,
0

< C

However

[Ur(1) = Ur(0)] =

1
2 2
dt>

by (13), which contradicts (18). Therefore, there exists a compact set K; C
T*E such that

(19) Uy(1) € Ky for all k.

dt

Assume now that there exist a sequence t € [0,1] such that |Ug(tx)| is
unbounded. By (19) that means

(20) lim [Ug(1) — Ug(tg)| = o0

k—o0

for some subsequence (denoted again by) Uy. Then, by the same argument

as above,
1
tr 2 2
UL(1) - Ti(0)] < (/ dt>
0

< C

which contradicts (20). Therefore, Uy is C° (and hence L?) bounded.
Hence we deduce that Uy is bounded in W'2([0, 1], T*E). Therefore, by
Rellich Theorem,

dUy,

dt

A

Up(t) — z%(t) as k — oo (in L?).

Moreover, since dd% is L2-bounded (by (13)), the family Uy, is equicontinuous

and thus, by Arzela-Ascoli Theorem
Ug(t) — 2%(t) as k — oo (in C?).

From (13) we conclude that x® is a (weak) solution of Equation (6). Smooth-
ness of z% follows from the smoothness of X go. Since this is true for every
sequence T, it is easy to see that

lim U(r,t) =x%(t).

T——00

The case 7 — ¢ is treated analogously. ([

Remark 8. The converse of previous proposition also holds: If U is a solu-
tion of Equation (10) which satisfies (13) then U is bounded in sense of (11).
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1 1 [t rt(loUu
lpwy = 2 / / ou ou
2 2) . Jo \|or ot

2
>dtd7'
o Jeh
too b/ oU oU
= X,
/_OO / <8T,8t HTB>JQ6dth

oo aﬂaﬁ
= Aws.so) (@) = Aggra ge)( / ;

< +00.

3.3. The image of the evaluation map.

In this section we prove the C° estimate necessary for defining Floer ho-
mology on a non-compact manifold (see [8, 15, 30] for similar propositions).
In fact, we will prove that the image of the evaluation map

ev : MJaB,HaB7SaB(N N E) X [0’ 1] X R — T*E

defined by
ev(U,T,t) .= U(1,t)

is bounded.
Proposition 9. Consider a family of parameters (JO‘B,HO‘B,SW) chosen
as in Section 2, so that there exist a compact set K C T*E such that

HY = H o HS®, J*P = J, ® i outside K
and

5 = Q outside 7 (K),

where w : T*E — E is the natural projection. Then there exists a compact
set Ko D K, depending on (J*P, H*? S%8), such that

e’U(MJa/@7Haﬁ7Sa/B (N . E)) C KO
Proof. Let Ky O K be a compact subset of T*F such that
Graph(dSo‘B]W(K)) C Ky
and
m1(Ko) D supp(Hi), m2(Ko) D supp(Ha)
where
m T*E2XT"MxC" - T'M, m : T*E — C™
are natural projections. It is clear that outside Ky Equation (10) splits onto
0j,u— JgXHfg(u) =0 v — iXHgﬂ(v) =0
(21) u(7,0) € oy v(7,0) € Graph(dQ)
u(r,1) €e v* N v(T,1) € ogm.
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Let U := (u,v) be a solution of (21) outside Ky. Assume
m1(Ko) C Dr, »= {(g;p) € T"M | ||plly < Ro}.

af
Ry —sup{Has (e) |e€E’}.
9

Note that Ry is finite since S*?(¢, &) = Q(€) (and hence ag = 0) outside
a compact set. Set

Let

Ry = sup{ sup |ly(t)|lg | « := (y, z) solves (12)} .
te(0,1]
Since H® = 0 outside 7 (Kp) and H*® = H* ¢ HSP | Graph(dS®f) =
Graph(dQ) outside Ky it follows that
max{Rl, RQ} S Ro.
We will first prove that
Rg(u) == sup |u(7,t)]l, < Ro.
(m,t)ERX%[0,1]
Arguing indirectly, assume that
(22) Rs(u) > Ry, fori € {0,1,2}.
Then v component of Equation (21) outside the set {(¢,p) € T*M | ||pllq
< Ry} becomes
dju =0,

i.e., u is J-holomorphic. Denote

A:=A{(g,p) e T"M [ |lplly = R3(u)}.
By Example 5 A is Jg-convex. Choose T' € R such that

sup_sup [Ju(r, By < Rs(uw).
Ir|>T 0<t<1
Since max ||u(7,0)|| < Ry it follows from (22) that max ||u(7,t)|| is achieved
at some point (19,%0) € [-T,T] x (0,1] and there exists a neighborhood B.
of (10,t0) such that u|p, is a Jg-holomorphic disc.
If (70, t0) is an interior point of (0,1) x (=7, T), then u(B;) is tangent to
the Jg-convex hypersurface A, which is, by Lemma 6, a contradiction.
Therefore, assume that tg = 1. Then wu(7,1) is a curve tangent to A
at 79. But, since u(7,1) € v*N and v*N is Lagrangian, J%u(r,l) must
be perpendlcular to v*N. In particular, it is perpendicular to the confor-
mal vector ﬁeld ~ € Tv*N (see Definition 2 and Definition 3). Therefore,
JLu(r,1) € TA and hence u(B;) is tangent to A, which is again a contra-
diction by Lemma 6.
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Consider now mo : T*E = T*M x C™ — C™ and assume that
7T2(K0) C M x B(O, R4),
where B(0, Ry) is the standard Euclidean ball of radius R4 in R™. If

Rs :=sup< sup |z(t)| | z:= (y, 2) solves (12) »,
te(0,1]

where | - | is the standard Euclidean norm on C™ then Rs < Ry. Now

sup  |v(7,t)| < Ry.
(r,t)ERX[0,1]
Indeed, arguing as above, we rule out the interior points easily. For the
boundary points, we use the fact that the radial vector field 6% e TC™
is tangent to both Graph(d@) and ogm and perpendicular to the standard
Euclidean sphere in R™. Assume that sup |v| was achieved at some point
(70, t0), for tg = 0 or 1. Then the curve v(7,tg) is tangent to S*™~! at 7y and
perpendicular to the radial vector field 6% € TR™. Since both Graph(dQ)
and ogrm are Lagrangian, i%U(T, to)|r, is also perpendicular to a%’ i.e., tan-
gent to S?™~1. Since S?*™~! is i-convex (see Example 4), this again contra-
dicts Lemma 6. O

Once we have established C estimates, the standard compactness result
follows as in [12, 11, 28, 35]:

Proposition 10. For any sequence Uy € M jas gos gas)(z?, 2P) there exist

a subsequence (denoted by Uy, again), sequences 73, € R (0 < j <) and an
integer s (0 < s <) such that

1) for 0 < 7 < s—1Ug(rt + T]z) and all its derivatives converge uni-
formly on compact sets to U7 € M(J57H@755)(:Uj,xj*1), where 27 are
the solutions of Equation (12) and 2° = 2%,

2) Up(t +73) and all its derivatives converge uniformly on compact sets
to UJ € M(Jaﬁ}Haﬁ7Saﬁ)(xS7$S_1), where x° is the solutions of Equa-
tion (12),

3) fors+1<j<I Uk(7'+7',g) and all its derivatives converge uniformly on
compact sets to UJ € M(J&7H047Sa)<x'j, 2971 where x7 are the solutions
of Equation (12) and ! = z°.

The complementary concept to the compactness property of Proposi-
tion 10 is the gluing construction. It is now standard (see [12, 22]) and
can be summarized in the following

Proposition 11. For any pair of trajectories

(U™, U) € M(ja fra 50y (2%, 4%) X M jap gras gam (y*, 2°)
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there exists a sequence Uy, € M(JQB7HQB7SQ/B)($&,ZIB> converging to (U, U?)
in the sense of Proposition 10.

4. Fredholm theory.

Assume that H € H(FE) and S € S ) are chosen as in (8), i.e., assume

that Graph(dS) intersects (¢}/) ' (v*N x ogm) transversely. Then, for each
two solutions z, y of Equation (6) there exist a smooth Banach manifold

Pr(,9) C Phoe(w,y) = {U € Py (S N) | lim U =z, lim U =y}
such that (7) defines a smooth Fredholm section
(23) 01 P(z,y) — L,
where £ is a smooth Banach bundle over Pf(z,y) with fibers
Ly =WFLP(R x [0,1], U'T(T*E)).

The linearization of 0 g at U € M 51,5 (7,y) is a Fredholm operator

(24) Ey :=D(0n) : TuPY(z,y) — Lu,
oU
Eu€ = Vet + J(U)ViE + Ve (U) 5 + VeVH(E,U)

where V;, V;, V¢ denote the covariant derivative with respect to Levi-
Civita connection associated to metric w(-,J-) and TyPy (x,y) is the set of
all ¢ € WEP(R x [0,1],U*T(T*E)) such that £(7,0) € T(Graph(dS)) and
&(r,1) € T(v*(N % ogm)). Furthermore, for fixed J and S,

F:(UH):= (u,v,H)— d;uU
defines a smooth section of the Banach bundle
L — P,f(a:,y) x H(E)

transversal to the zero section. Hence, F~1(0) is a (Banach) manifold. The
projection
IT: F1(0) — H(E)
(UH)— H

is a Fredholm map. The point U € M ;g ) (z,y) is a regular point of
Section (23) if and only if (U, H) € F~1(0) is a regular point of II. Hence,
by Sard-Smale Theorem applied to II, the set of points in H € H(FE) for
which Section (23) is regular is dense in H(E). Similarly, one can use J5(E)
or S(g,g) in place of H(E).

Indeed, Floer’s proof of the above statements in [11] (see also [28, 35])
carries over in our situation with slight modifications. Hence we have the
following
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Proposition 12. Let N and Q be fized as in Section 2. Then there exists
a dense set

(Ts5(E) X Sg,g) X H(E))reg C T5(E) X Sg,q) X H(E)

such that for every (J, S, H) € (TS(E)XS(g,g) <X H(E))reg the linearization of
Section (23) at U € M ;) (N : E) is onto. Consequently, for (J,S,H) €
(TS(E) x Sg,g) X H(E))reg M(j,1,5)(,y) is a smooth finite dimensional
manifold.

Similarly, we have the parameterized version of Proposition 12 (see [9,
11]):
Proposition 13. Let N and Q be fized as in Proposition 12, and

(J*, 8 H*), (J°,8° HP) € (JXE) x S(5,g) X H(E))reg-
Then there exists a dense subset (T (F) x S(£,Q) X H(E))reg in a set of all
homotopies T, (E) x S(5,q) X H(E) defined in Section 2 such that for
(J*7, 50, H) € (T, (E) % S(p,) X H(E))reg

Equation (10) defines a smooth Fredholm section
(25) (05, 0) : P(a*,2") — L,
on a smooth Banach bundle L over PY(z®,z%) C PY, (2, 2P), where

PP (a2’ ={U ePL, (S;N)| lim U=z lim U= 2"},

T——00 T—00
which is regular at any U € M(JaB7Ho¢B’SaB)(Ia,xB)
Example 14. The case S =510 So, H=H,® Hy, J =J1 D Jo.

Assume that S(q,&) = Si(q) + S2(§) and H(z,y) = Hi(z) + H2(y). Then
Equations (6) and (7) split onto

¥ =X (7) 2= Xmy(2)
~(0) € Graph(dsS) 2(0) € Graph(dSs)
v(1) € v*N z(1) € ogm

and
G+ (5 — Xy (w) =0
u(7,0) € Graph(dSh)
u(r,1) €e v*N

and the linearization (24) splits onto

2 4+ Jy(3 — Xigy(u)) = 0
v(1,0) € Graph(dSs2)
v(1,1) € ogm,

EyOFE, : T(u,v)P]f((xla x2)7 (yla y2)) - TuP}f(xb yl)@TU,P]f(x% yQ) — Ly®L,.
Hence, if Hy € (H(M))reg and Hy € (H(R™))reg then H € (H(M X R™));eq.



386 DARKO MILINKOVIC

Example 15. The case H = 0.
In this case we have the Morse complex of S|y, which is regular for a dense
subset (S(g,@))reg € S(i,@) (see Proposition 27).

In this section we will compute the Fredholm index of Sections (23)
and (25) in terms of Maslov indices of Hamiltonian paths 2 and 2. Next,
we relate this computation to the Morse index of S and give the groups
CF.(H,S : N) canonical grading. The existence of such grading is estab-
lished in [10] and similar computations to ours are given for the case S =0,
m = 0 in [30] and for the periodic orbits problem in [6, 36].

4.1. The Maslov index.

Maslov index for paths of Lagrangian subspaces has been studied by sev-
eral authors (see [1, 3, 34, 33]). We will follow the notation and terminology
of [34] and [33]. Denote by A(k) the Lagrangian Grassmanian, i.e., the man-
ifold of Lagrangian subspaces in C¥. The Maslov index assigns to every pair
of paths

L,L':00,1] — A(k)
a half integer y(L, L') € $Z characterized by:

Naturality: For any path ¥ : [0,1] — Sp (2k)

p(R(E)L(E), T()L'(t) = u(L(t), L'(2))-

Homotopy: Two paths L, L' : [0,1] — A(k) with L(0) = L'(0) and
L(1) = L'(1) are homotopic with fixed endpoints if and only if they
have the same Maslov index.

Zero: If L(t) N L'(t) is of constant dimension, then pu(L, L") = 0.

Direct Sum: p(Ly @ LY, Ly & L) = (L1, L2) + p(Ly, LY).

Catenation: For 0 <ty <1

p(L, L) = 1(Lljo,t0); L/‘[O,to]) + (Lo 175 L/|[t0,1})-

Localization: If L'(t) = R¥ x 0 and L(t) = Graph(A(t)) for a path

A:[0,1] — End (R")

of symmetric matrices then

(L, 1) = % sign A(1) — % sign A(0).

The Maslov index of a symplectic path
U :[0,1] — Sp (k)
with respect to a fixed Lagrangian submanifold V' C CF (say V = 0 x R¥)

is defined by
p(V) == p(¥V, V),
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or, equivalently, (see [33])
(V) = p(Graph(¥),V x V).
Following [34], we consider the perturbed Cauchy-Riemann operator

0s1.1C = % +J% +1T¢
(26) ¢:RFx[0,1] — C*

(¢(,0),¢(7,1)) € R* x L(1) c C* x CF.
Here we assume that (c.f., [34, 30]):

1) L:R — A(k) is C* and L(7) = 0 x R* for large |7|.

2) The almost complex structure .J : Rx[0,1] — End (R?*) is compatible
with symplectic form wy = dzi A dy; + --- + dxg, A dy,, on CF and
independent of 7 for || large enough; J(+o0,t) = J*(t).

3) T:R x[0,1] — End (R?¥) is the continuous family of matrices such
that

(27) lim sup ||T(7,t) = T&(t)]| =0
T—F00 0§t§1

for some paths Ty : [0,1] — End (R¥) of symmetric matrices.
4) If ¥+ :[0,1] — Sp (2k) is a solution of

(28) o JE®)TE()TE =0, ¥E(0) =1d

then W*(RF) is transverse to 0 x R¥.
We will need the following;:
Proposition 16 ([34]). The operator

Ay Wi — L*(R x [0,1],C")

where

W= {¢ e WH(R x [0,1],C%) | (¢(7,0)),¢(r,1) € RF x L(7)}
18 Fredholm with the index given by

Index(B7,1) = —p(W7) + (U + (A, RF x L(7))

where A is the diagonal in CF x CF.
Remark 17. The Proposition above has been proved in [34] under the
assumption J = —i (i.e., for the operator 0 instead of 9). In index formula
in [34] the Maslov indices p(¥*) appear with the opposite sign. Since the
change of variables ¢ — —t transforms the operator 9 to 0 and changes
the sign of Maslov index, these two difference give the index formula in
Proposition 16 if J = i. The general case is an easy consequence of the

contractibility of set 5 of wp-compatible almost complex structures in C*
and the continuity of Fredholm index.
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4.2. The dimension of My (N : E).
Our goal is to to assign the Maslov index to the Hamiltonian path
z=X H (Z)
(29) 2(0) € Graph(dS)
z(1) e v*(N x R™).
However, in a manifold instead of a linear space the Maslov index of a
Hamiltonian path would depend on the choice of a trivialization of a tangent
bundle along that path. Hence, we have to choose some class of admissible

trivializations. In the case S = 0, m = 0 this is done in [30] and we will
adapt that exposition to our situation. Let

N A C R R LI G Cr O R
o1 07 T o (o1 06T %) o (g1 o (o))
= ¢ o] "o (¢F %) o(gf) 7,

The transformation

(30) U(r,t) = U = ¢y (U(7,t))
transforms Equation (10) to
gj,Hﬁw*SU =0
(31) (1,0) € opr x R™
U(r,1) € v*(N x R™),
where J = 17.J, and (29) is equivalent to

z=X Hin* s(z)
(32) 2(0) € oprxrm
z(1) € v*(N x R™).
Hence, we will compute the dimension of /\/l( JoB_faB, Saﬁ)(N : E) by com-
puting the dimension of the space of solutions of (31) and give the grading
to CF.(H,S) by assigning the Maslov index to each solution of (32).
For given z, we choose the class 7 of trivializations
¢ : 2*T(T*(E)) — [0,1] x C"*™
such that
O(H, ) =R"™™, o(F,p) = R"™,
where H, and F, are horizontal and vertical subbundles with respect to

Levi-Civita connection on T*E. Note that 7 # & since [0, 1] = *.
For ¢ € T and a solution z of (32), we define the symplectic path

(33) WE (1) = oT%F 5(2(0)(p) ' - M — Cni,

Then we have:
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Lemma 18 ([30]). If p1,92 € T then pu(V,,) = u(Vy,).

We give the groups CF.(H,S : N) the grading by assigning to each
solution of (29) (i.e., the generator of CF,(H,S : N)) the Maslov index of
the corresponding solution. More precisely, we have the following:

Definition 19. 1) We call the index of the solution of (32) with respect
to some (and thus any) trivialization ¢ € 7T the Maslov index of a
solution z of (29) and denote it by pu(z).

2) We denote by CF,(H,S : N) the group generated by solutions z
of (29) with p = $dim(N x R™) — u(z) and set CFP(H,S : N) =
Hom(CF,(H,S : N),Z).

According to Theorem 2.4 in [33] p is an integer. We will see later (see
Remark 21) that it depends on the rank of the eigenbundle of @ (= S at
infinity) but not on the rank of E.

Consider the case H = 0. Let Sy : N — R be a Morse function and
let S : E — R be an extension of Sy such that Sy o rxy = S in a tubular
neighborhood 7y : V. — N xR™ of N x R™ C E. Let z € N x R™ be a
critical point of Sy. We identify the neighborhood of z in N x R™ with R/
and the neighborhood of x in E with R! x R**™~!_ In these coordinates

TS (q1, g2, 1, p2) = (q1, 92, p1 + dSn(q1), 2)
and
I 0 0 0
s 0 I 0 0
TE2@ =1 425y 0 1 0
0 0 0 I

Since T % (x)(R™™ x {0}) = Graph(tD2S), applying the localization
property of Maslov index to A(t) := tD?S(z) we get

(34) p(TUF 5(x)) = JsignA(1) — signA(0)

1
= isignDQS(x)
1.
= 531gnD25N(q1)
1
= —mY(q1) + Fdim(N < R™),

where m]SV is the Morse index of S . Therefore, in that case p is the Morse
index of Sy.
Now we have the following analogue of Theorem 5.1 in [30]:

Proposition 20. For the regular choice of parameters,

dimM ( jas pras gesy (2, 2P) = —p(x®) + p(?).
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In particular, for H =0 and S as above

dimM (s 1,5 (2,y) = m§ (x) —mg (),

where mY is the Morse index of S|n.
Proof. Since

M(Jaﬁ7Ha57Saﬁ)(xa7Iﬁ) = (gJaﬁ,Haﬁ)fl(O)a
we have

dimM(JaﬁvHaﬁ,Saﬁ)(fEa, .7}”8) = II’ldeX(EU),
where Ep is the linearization of gJagvHa@ at U € M(Ja67Haﬁ7Saﬁ)(xa,xﬁ).
Since Index(Ey ) depends only on the homotopy type of U, we can assume
that

U(—,t) = z%(t), and U(r,t) = 2P (t) for 7 > 7.
Choose a symplectic trivialization
0 : U*T(T*E) — R x [0,1] x C"t™

such that

()O(HU(T,t)) = Rn—l—m’ SD(FU(T,t)) = {R"™.
The same computation as in Theorem 5.3 [36] shows that

cpEUgo_l =0 Jo,T,I. + compact perturbation,
where 0, 7.1, is the operator (26) with Jo = ¢.J, L(7) = ¢(T(v*N x ogm))
and T satisfies (27) and (28) with
+ g g
Ur=wg, U= Vg

(see (33)). Since a compact perturbation does not change Fredholm index,
we have

Index(Ey) = Index(dj,7.1)
= () + pla?) + (AR x I(7))
by Proposition 16. Since the trivialization ¢ is chosen so that dim(A N
R™™ x L(7)) is constant, by zero axiom we have
Index(Ey) = —p(a®) + p(z”).

This proves the first statement. The second statement follows from the first
one and (34). O

Remark 21. Let H = H; ® 0 for some compactly supported Hamiltonian
Hy : T*M — R and S(q,€) = Q(£). Then the grading by p = 3dim(N x
R™) — u(z) does not depend on a fiber dimension m but only on the index
of Q. Indeed, consider the stabilization

Q:ExR™ R, Q=Qa Qo



ON EQUIVALENCE OF TWO CONSTRUCTIONS... 391

for some quadratic form @y : R™ — R with zero index. The critical
points of A(H1EBO,C2) are of the form (z,0) : [0,1] — T*E x C™ where
z:[0,1] — T*FE is the critical point of Ay, a0,0)- Let ¢ := (¢1,92) € T be
a trivialization of T*E x C™. By Direct Sum Axiom

1
§dim(N x R™HM) — 1y(2,0)

1 .
= S (dim(N) + m +mq) — p(Ve, @ \Ilg2)

2
— %(dim(N) +m+my) — M(‘I’ipl) - N(\I’?oz)
- %(dim(]\/) +m+mi) — pu(2)

~ (~tndex(@u) + gm )by (30)

_ %dim(N « R™) — u(2).

4.3. Orientation.

In order to define Floer homology for arbitrary coefficients we need the
orientation of manifolds M g ) and M jap pras gas). Contrary to the case
of holomorphic spheres or cylinders (see [14], [24]), manifolds of holomorphic
discs with Lagrangian boundary conditions need not to be orientable in
general. However, in case of cotangent bundle such manifold are orientable
under the boundary conditions of a conormal type. More precisely, we have
the following:

Proposition 22 ([30]). For each (J*%, H*? S°%) € (T (E) x H(E) x
S(E7Q))reg and each x%, x” the determinant bundle

Det — M(JaﬁvHaﬁ,Saﬁ)(xa,x’B)

is trivial. Hence, the manifold M(JaB’Haﬁ’Suﬁ)(xa,xﬁ) is oriented. More-
over, there exists a coherent orientation in the sense of Definition 11 in [14]
of all M(5n,5)y and M jap pas sesy in each isotopy class of (J, H,S).

Remark 23. In [30] the proof Proposition 22 is carried out for the case
S = 0. The general case follows from the fact that the transformation (30)
defines a diffeomorphism

Mgm,5) () - M(j,Hﬁn*S,O)(CE’ y).
Hence the orientation on M( J Hir*$,0) (Z,y) induces the pull-back orientation
on M m.s)(7,y).
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Remark 24. In Section 5.2 we will prove that in the case H = 0 for a
suitable choice of a J, .S, g there exists a diffeomorphism

M (2, y) = MYESe (2, y)

for z,y € Graph(dS) N v*(N x R™) = Crit(S|yxgm). We will choose the
orientations of Mo g)(%,y) and Mg (z,y) so that this diffeomorphism
is orientation preserving.

The one dimensional components of M ;g s) and M jap pas gas) carry
two orientations: one given in Proposition 22 and another given by orienting
each trajectory in the direction of %—g. Define

) 1 if these two orientations coincide
n _
—1  otherwise.

Coherent (compatible with gluing) definition of orientation in Proposition 22
has the following consequence:

Lemma 25. If (U1, V1), (Uz2,V2) € My u,5)(z,y) X M1 m,5)(y,2) are two
ends of the component of M u s)(x,2) (in sense of Propositions 10), then
n(Up)n(V1) + n(Uz)n(Vz) = 0.

O

Similar statement is true in parameterized version. The proof follows the
same lines as the proof of analogous statements in [12, 14, 15].

5. Floer homology.

5.1. Construction.
For x € CF,(H,S : N) and y € CF,_1(H,S : N) we define n(x,y) to be
the number of points in (zero dimensional) manifold

Mg, (N : E) = M5 (N : E)/R
counted by their orientations, i.e.,
n(z,y) = > n(U),
U

where n(U) is defined in Section 4.3. Here R acts on Mz ) (N : E) in a
standard way, by the translation in 7-variable.
According to Propositions 12, 13 and 10 for (J, H, S) in a dense subset

(TS (E) x H(E) X S(p,q))reg C T5(E) x H(E) X Sp,q)

the number n(z,y) is finite.
The following proposition is a reformulation of the result proved in [12]
and [28] for the compact case.
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Theorem 26.
(1) For (J,H,S) € (TS(E) x H(E) X S(g,q))reg the homomorphisms
0:CF,(H,S:N)— CF,_1(H,S:N)

0x = n(z,y)y
Y
and
§ := Hom(9) : CFP(H,S : N) — CFPTY(H,S : N)
satisfy
000=0,006=0.
We define
HF,(J,H,S;N : E) := Kerd/Imo

and

HFP(J,H,S;N : E) := Kerd/ImJ.
(2) For two given parameters
(J*, H, 5%, (J7, H?, 8%) € (TS(E) x H(E) X 8(5,0)res:
there exist canonical isomorphisms
hap : HE,(J* H* S N : E) — HF,(J?, H? S°; N : E)
and
hP . HFP(J* H* S N : E) — HFP(J°,HP SP: N : E)
which satisfy
(i) hyg o hpa = hya
(ii) haa = id.
The analogous equalities hold for hP.

Proof. Once we established the C? -estimates as in Proposition 9, the proof
follows the same lines as in Theorem 4 in [12] (see also [28]). For the later
purpose, we only recall the main points. By definition of 0, we have

(35) Px) = a(Zn(az,wy)

y
= Z Z n(z,y)n(y, z)z.

According to Propositions 10 and 11, the split trajectories in

M gm,9) (%, y) X M(1m,5)(Y, 2)

are the boundaries of one dimensional manifolds contained in M g 5)(, 2)
and oriented as in Section 4.3. Hence, they appear in (35) in pairs with
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opposite signs and thus they add to 0. That proves d o d = 0. For the proof
of the second statement, we define

(hap)g : CFp(H®, S : N) — CF,(H",5° : N)
by

(hag)pr = Z n(z®, ") z?,
B

where n(z®,z%) is the number of points in (zero dimensional by Proposi-
tion 20) manifold M jas fas, Saﬂ)(l‘a,l'ﬂ ), counted with their orientations.
Set

(h®P)f .= Hom((h"®)y) : CFP(H®, 8% : N) — CFP(H", 8" . N).

Note that the grading is preserved by Proposition 20. Homomorphisms
(hap)y and (h*%)* commute with & and d respectively. The proof is based on
the same gluing arguments as the proof of 92 = 0 (see [12, 15]). Therefore,
they define the mappings h,g and h*8 in homology (resp. cohomology).

If hag and hg, are defined via regular homotopies

(Haﬁ’ Saﬁ’ Jaﬁ) and (Hﬁv, Sﬂ’y, Jﬁv)
then for large R the regular homotopy (H®7, S, J*7), where

(36)

B B ¢
o {Hgﬁ’ PO oy {S%R’ TE0 {Jf‘+R, <0
T H 7>0 T S >0 T
—r 720, —r 720,

defines the homomorphism hq~ which satisfies property 2 (i). The proof is
again based on the same argument as the proof of 9% = 0 [12].

Finally, homomorphisms h,g and h*? are independent of the choice of
homotopy H*?. We only sketch the proof of this fact, referring the reader
to [12, 15] for the details. Choose two homotopies Hfﬁ, Sf‘ﬁ, Jf‘ﬁ, Hgﬁ, S’gﬁ,
Jy P Let (hag)é and (hag)§ be the corresponding chain homomorphisms.
Consider the one-parameter families of homotopies {H5"}oer, {S9°} e,
{J5P},cr such that

HYP = g 598 = §9P - job = job for 1 < 0

and

HYP = HP 598 = 597 joB = JoF for v > 1.
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Let 72(z®, %) denote the algebraic number of the solutions of
( «
W+ TG = X pes(U)) =0
(u(7,0),v(r,0)) € Graph(dS;”)
(37) u(r,1) € v*N, v(7,1) € ogm
lim, o U(T,t) = 2%(t),
lim; oo U(7, 1) = zB(t).

Define
% . CF,(H*, 8 : N) — CF,11(H", 8" : N)
by
(1) = Z a(z®, 7).
Then

Hod¥ o= (hag)§ — (hag)g,

i.e., ®* is a chain homotopy ([12, 15]). Therefore, hiﬁ = hiﬁ'
Statement 2 (ii) now follows by choosing the constant homotopy H** =
H~. O

5.2. Computation.
In [13] Floer proved that if

h:M—R
is a C? Morse function, then
HE,(J,hom, M) = HMoe(h).

We incorporate this result and the generalization [31] in our framework.
Consider the tubular neighborhood W = Wy x R™ of N x R” C E and the
projection

y W — N xR™

given locally by
(38) TN : (xayvg) = (mag)

Following [31], assume that the metric g in T*F is chosen in the following
way. Choose a metric gpy on M such that the fibers of mx are orthogonal to
N x R™ with respect to the metric g := gur @ go, where gg is the standard
metric on R™. The Levi-Civita connection associated with g provides the
splitting
Te(T*E) = He @ Fe

into horizontal and vertical subbundles. F¢ and H¢ are canonically isomor-
phic to T;(g)E and T E. Let g be a metric on T*FE such that He is
orthogonal to F¢ and that the above isomorphisms are isometries.
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Let
Sy : N xR™ —=R

be a Morse function obtained by restricting S € Sg ) to N x R™. Let
V C W be another tubular neighborhood of N x R™ and let k : E — R be
a smooth function such that

k(e) = lforeeV

= Ofore¢W.
We denote by
SY:E—R

an extension of Sy defined by

SV (e) = | (SN (TN () + (1= A(e))S(e)  fore e W
M) for e ¢ W.

Then S]‘\/[ : F — R is smooth and
Sx(e) = Sy omn(e) fore c V.

Note that from (38) and the definition of S) it follows that S} (x,y,&) =
Q(&) whenever S(z,y,£) = Q(¢) and hence S} belongs to the parameter
space S(g,q)- Since we proved in Proposition 9 that images of all solutions
of (7) are contained in some relatively compact open submanifold Ky C T*FE,
we have

sup HVdSXH < 00,
Ko

where [|[VdSY| is defined with respect to gp and the induced Levi-Civita
connection on T*E| (k,). Hence we can assume, after replacing gr by xgr
with

x(e) = &, fore € Ky
= 1, fOr€€K13K0
if necessary, that
(39) sup ||[VdSy|| < e
Ko
for small ¢ > 0. Note that the Levi-Civita connection on T*FE| (k) is

invariant under the rescaling gg ~» €0gg and thus remains unchanged. Since
X = 1 outside K7, xgr remains in parameter space Gg, aq-

Proposition 27 (Compare [31]).
HF,(J,0,55; N : E) = H)(Sy).
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Proof. Since H = 0, Equation (6) becomes
I'=0
I'(0) € Graph(dSY)
I'(1) € v*N X ogm
i.e.,
I'(t) = p € v*(N x R™) N Graph(dSY) = Crit(Sy).
Hence, we have one-to-one correspondence

(40) CF,(0,SX; N : E) = Crit(Sy).

Since SY is constant along the fibers of 7y and the fibers are orthogonal
to N x R™ we have, for e € N x R™

(41) v9ESY (e) = VIE Sy (e),

where gg is a restriction of gg to V.
Let v be a solution of

d
(42) L+ VI Sn(y) =0,

Consider, modifying Lemma 5.1 in [13]
U(r,t) := t1-4(y(7))
and
Je = (Y1-¢)«Jy
where 1 = w:*s}\’, and J; := Jg,, @i for Jy,, is as in Section 2. Then

oU U dy

5 Thgr = T+ (Wr-hJgTr-e[ = Xogy (V1-4(7))]
d
= T%ftdfz — (1)« JgT1 1 X 57 (7)

d
= Ti14 <dz - JgXﬂ*sx(7)>

d
— Ty, (dj i vgw*sxm) .

Since dﬂ*SX, vanishes on the vertical subbundle F' it follows that VQW*SX] -
H, and since T'rr|g : H — TE is an isometry by the choice of g, we have

vIn*Sk = VvIESK

= VIESy (by (41)).
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Therefore, U satisfies
U+ 190 =0
U(T 0) = 91(7()) € ¢1(N) C Graph(dSy)
U(r,1) =~(r) € N C V*N,
i.e., U € M(Jt,O,S%)( . E)
Conversely, for every solution U of
U+ 1,97 =0
U(T, 0) € Graph(dSN)
U(r,1) € v*N X ogm

we define
7(7—7 t) = (wl—t)il(U(ﬂ t))
Note that
0 0 oUu oUu
g+ 9 (G~ Xesy) = @)™ (G + w0 Gy )

= 0,
i.e., v satisfies
gT+Jggz+v SY(v) =0
(43) (7, 0) = ¢ {(U(7,0)) € o
(T 1)=U(r,1) € v*(N x R™).

We will prove that 6t = 0. Let us write y(7,t) = (z(7,t),y(7,t)) with
xz(1,t) € E and y(7,t) € Ty nE. Since J; maps horizontal vectors to

vertical ones, we can write (43) in the form

— Viy + VIS (2) =0
ox
(44) Vey+ % =0
y(7,0) =0, z(r,1) € N x R™, y(r, 1)61/( (VX R™).

1
— / ly(r, )|2dt.
0

Note that, by the construction of S},
Craph(dSX) Nv*(N x R™) € N x R™.

Therefore, we have

Define

lim y(r,t)=0

T—+00

and hence

lim f(r)=

T—+00
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Following the same lines as in [31] we prove that f is convex, and hence
constant. We identify T¢(T*E) = T E & T¢ £ and compute

1
30 = [ (Val+ ()

1 ox
_ 2 el
= /0 (IVTyI <VtaT,y>>dt
1
- /0 (1Yo — (V0.) + (Ve dSK(2). 0)) .

Here we used the fact that the Levi-Civita connection is torsion free, and
thus VT% = Vt%. Since y(7,0) = 0, integrating by parts we compute

1 1
/ (V2ygdt = (Vey(m 1), y(m 1)) — / Vey Pt
0 0

1
_ <+vsx<x>,y<r, 1>>— JRTRE
87’ 0

1
= - |Vy|2dta
0

since % + VSX(z) € T(N x R™) and y(7,1) € v*(N x R™). Hence

1
iy = /0 (Vo2 + [Viyl? — (V. pdSY(2), 1)) dt

2
> 2 2 v
> | Veyllze + IVeyllze = [[VASK || e IVl 22 Tyl 2
2 2 2

> | Veyllze + I Veyllze — [[VASK || Vel 72
by Poincaré inequality, since y(7,0) = 0. Hence f”(7) > 0 if € in (39) is
small enough. Therefore y = 0 and, by (44) % = 0. Hence %;Y = 0. By (43)
this means that v solves

dry

dr

Therefore, we have one-to-one correspondence

+ V9E SY(y) = 0.

Mo.s%) = Misy.g)
Together with (40) this finishes the proof. O
Theorem 28. For reqular parameters

(J,H,S) € (TS5E) x H(E) X S5.q))res
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and (J,H) € (J5(M) x H(M))eg there exist the isomorphisms
HFE, 1 (J,H,S;N : E)~ HF,(J,H,N : M) = H,(N),

where HFE.(J,H,N : M) is the ordinary Floer homology of the pair
(onr, v*(N)) of Lagrangian submanifolds in T*M and H.(N) the singular
homology of submanifold N. Analogously, there exist the isomorphisms

HFP™ (J H,S;N : E)= HFP(J,H,N : M) = H?(N).

Furthermore, the above isomorphisms commute with isomorphisms hag
(resp. h®B) constructed in Theorem 26.

Proof. The second isomorphism
HF.(J,H,N : M) = H,(N),

follows from Proposition 27, and we will prove only the first one.
According to Theorem 26 we can assume that

H=H®0, J=J&i and S = Q.

With such choice of parameters, the critical points I' := (v, 2) of A(gao,g)
on Q(Q; N) are the solutions of

Y=Xu()
~v(0) € opr, v(1) € v*N
z2=0

2(0) € ogm, 2(1) € Graph(dQ).
Hence z = 0 and thus
CF.(H®0,Q: N)=CF,(H,N)
where the last group is the usual Floer chain group for the pair (ops, v*N)

in T*M.
The gradient flow of A(pg0,0) satisfies

Oypu = % + J(% — Xp(u)=0
u(7,0) € opr, u(r,1) € v*N

v = % + i% =0

v(7,0) € Graph(dQ), v(7,1) € ogm

and therefore M jg; Hao,0) (N @ E) is diffeomorphic to M jm)(N : M).
Hence, the above isomorphism between Floer chain groups defines the iso-
morphism between the corresponding Floer homologies, and, consequently,
cohomologies. O
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6. Invariants.

6.1. Definition.

Observe that, since Equation (7) is the negative gradient flow of Ay g),
the boundary operator 9 preserves the level sets of A, g). More precisely,
we define

CFMH,S:N):={I' € CF(H,S:N) | A5 T) <A}
and
CF)H,S : N) := the free abelian group generated by CF*(H, S : N).

Then, the boundary map

0:CF.(H,S:N)— CF.(H,S:N)
induces the relative boundary map

o CFMNH,S:N)— CF)H,S:N)
which satisfy the obvious identity

o0t =0.
Therefore, we can define the relative Floer homology groups
HF? := Ker(9)/Im(0™).

The natural inclusion

j*: CFMH,S:N)— CF(H,S:N)
induces the group homomorphism

ji : CF)MH,S:N)— CF.(H,S:N)
which commutes with 0, i.e.,

do ]ji)\ = ]ﬁ)\ 0.
Hence, jﬁ/\ induces the natural homomorphism
j)  HFMJ,H,S: N) — HF,(J,H,S : N).
Furthermore, we define
CF;(H,S: N):=Hom(CF)H,S: N),Z)

and denote by ¢* the restriction of § to CF;(H,S : N). Now jﬁ)‘ induces
dual homomorphism

ji:CF*(H,S:N)— CF{(H,S: N)

such that
jrod =8 ok,
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Hence, we have the homomorphism
Jx:HF*(J,H,S: N)— HF\(J,H,S: N).
Definition 29. (1) For (a,J, H,S) € Hi(N) X (JS5(E)xH(E) X S(E,Q))reg
we define
o(a,J,H,S : N):=inf{\ | a € Image(j, F,)}.
(2) For (u, J, H,S) € H*(N) x (J5(E) x H(E) x §(g,))ses we define
o(u,J,H,S : N) :=inf{\ | jiF*u # 0}.

Here

F,:H,(N)— HF,(J,H,S: N)
and

F*:H*(N)— HF*(J,H,S: N)
denote the isomorphisms in Theorem 28.

Next lemma shows that the above definition is correct.

Lemma 30. Fora # 0, u # 0 and generic (J, H,S), the numbers o(a, J, H,
S:N) and o(u,J, H,S : N) are the critical values of Ay s). In particular,
they are finite numbers.

Proof. The set of critical points of Ay g) is in one-to-one correspondence
with

(45) Graph(dS) N (o)L (* N x ogm).
Since H = H; @ Hz and S = @ at infinity, the set (45) is
(oa N (1) (¥*N)) x (Graph(dQ) N (¢12) ™ (omm))

outside a compact set. Since H; and Hy have compact supports, all points
in (45) are contained in a compact set. From transversality assumption (8)
we conclude that the set (45) is finite. Hence, if A is not a critical value of
A(n,s), then there exists u < A such that there is no critical values of Ay g)
in closed interval [p, A]. In that case,

CF)H,S:N)=CF/H,S:N), CF;(H,S:N)=CF;(H,S:N)

and
i =t 55 =gk
Hence, z € Im(j}) (resp. j; # 0) is equivalent to z € Im(jL') (resp. in #0).
It follows that A cannot be detected by o.
Finally, since there are only finitely many critical values of Ay g), we
deduce that both o(a,J, H,S : N) and o(u,J, H,S : N) are finite numbers.
O

We next show that the definition of o does not depend on an almost
complex structure J used in construction of Floer homology.
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Proposition 31. The numbers o(a,J,H,S : N) and o(u,J,H,S : N) are
independent of the regular choice of J.

Proof. For J*,J% € J¢(E) we chose any path J, € J.(FE). Recall from
the proof of Theorem 26 that the isomorphism

hop : HF.(J* H,S : N) — HF.(J? H,S: N)

is induced by the group homomorphism

(46) hy : CF.(H,S: N) — CF,(H,S:N),
he(a®) = 3 n(a®, 2%)a?,
B

where n(z®, z) is the algebraic number of points in zero dimensional mani-
fold M jas 1,5y (2, ). We compute the difference A g)(¢”) — A (g 5y (z%)
for every ” which appears in sum (46). For such 27, the set M jes m,5)(x,
2”) is nonempty (n(z%,2%) # 0). For any U € M jas 1.5)

Am,s)(2°) — A ) (a)

+00 d
:/oo %.A(H’S)(U)dT

+oo ou
:/ dA(H,S)(U)EdT
ool oU oU ou

too b/ (0U oU
_ /Oo /0 <JT (at —XH(U)> ,8T>JT dtdr
+oo 1 8U 2
__ / ) /0 S| dar
<0.
Here we used (5) and (10). Hence, A(g,s)(z%) > Am,s) () and therefore

hag is level preserving, i.e.,

(47) hog : HFNJ®, H,S: N) — HF)JP, H,S : N),

hag © 32 = 3 © hag
Assume that F%a € Im(j7), where
F®: H.(N) — HF,(J* H,S: N)
is the isomorphism in Theorem 26. Then, by (47), hagF%a € Im(j2). Since
hagFg = FP? by Theorem 26, we have Flae Im(j7) and hence
o(a,J* H,S:N)<o(a,J° H,S:N).
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Since the above argument is valid for any J®, J?, the opposite inequality
also holds and therefore

o(a,J*H,S: N) zo(a,Jﬁ,H,S:N).

As a consequence, we can introduce the following notation.

Definition 32. For regular choice of parameters (J, H,S) we denote the
numbers o(a,J,H,S : N) and o(u,J,H,S : N) by o(a,H,S : N) and
o(u,H,S: N).

6.2. Continuity.

In order to extend Definition 32 from (JS(E) x H(E) X S(g,Q))reg to the
whole manifold JS(E) x H(E) x Sg,g) we need the following continuity
result:

Theorem 33. For a € H,(N) the function
o (T5(E) x H(E) X S(g,q))reg — R,
(H,S)—o(a,H,S:N)
is continuous in CO topology. The analogous statement is true for u €
H*(N) and o(u,H,S : N).
Proof. We fix regular parameters (H®, S%) and (H?, %) and choose the C>

function
p:R—R

such that

p(t)=1, forT > 1

p(1) =0, for 7 <0.
Denote by (H,, S;) a regular homotopy connecting (H®, S®) and (H?, S?)
which is e-close in C''-topology to (possibly non-regular) homotopy

(p(T)H" + (1 = p(7))H*, p(7)S” + (1 = p(7))S).

Then, as in the proof of Proposition 31 we compute .A(H,G’S,B)(l‘ﬁ)—
A(gre,gey(2%) for a pair 29, 2P connected by trajectory U satisfying (10).
Since

d ou ' OH, 9S;
EA(F‘IWgT)(U(T)) = dA(ﬁTug‘r)(U)E — 0 67- dt + 87’

and since the last two terms are e-close to

1
_/0 P(r)(H® — H®)dt + (r)(5” — 5),
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we have

too g
— A, 5,)U(7))dr

T

Ao 59) (@) = Aggre o) (2)
[

' 1 oU )
- /oo {/0 [dA<HmST>(U)8T — p(7)(H® — H*)| dt
(7)(8° - Sa)}dT .

/—i—oo 8U
< U
B —00 67’

Here, again, we used (5) and (10). Hence, we have the well defined homo-
morphism

dT—/ min(H? — H*)dt + max(S” — %) + ¢

hag : HEMJ,H® : S : N) — HF**"*(J,H?; S : N)

where A\, 5 1= )\—fol min(H? — H*)dt+max(S® — S%), such that the diagram

X\
HF)MJ,H*:8*:N) 25 L(J, H*; S : N)

[ R

)‘a5+5

HF) (1, 05,8 . N) 7—  HF,(J,H% 8% : N)

commutes. By the same argument as in Proposition 31 we deduce, for
a € H,(N)

o(a,H?,58% : N) — o(a, H?, S : N)
1
—/ min(H® — H*)dt + max(S® — ) + ¢
0
Letting € — 0 this becomes
o(a, H?,8% : N) — o(a, H*, 5% : N)
1
—/ min(H” — H*)dt + max(S° — §%).
0
By changing the role of @ and § we get
o(a, H? S? : N) — o(a, H*,5% : N)

1
—/ max(H” — H*)dt + min(S” — S%)
0
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and therefore
lo(a, H?,S” : N) — o(a, H*, 5% : N)|
< |H? — H*|co + 1157 = 5% co.

As a consequence we have the following:

Definition 34. For (a, H,S) € Hi(N) x H(E) X Sg ) we define
o(a,H,S: N) := klim o(a,Hg, Sk : N)
—00
where the limit is taken over any sequence
(JT5(E) x H(E) X S(g,Q))reg 2 (J, Hi, Sk)
such that
C° — lim (Hy, Sk) = (H, S).
k—o0

We define o(u, H, S : N) for w € H*(N) in the same way.

The following lemma extends Lemma 30:

Lemma 35. For a # 0, u # 0 and arbitrary (not necessarily generic)
(J,H,S), the numbers o(a,J,H,S : N) and o(u, J, H,S : N) are the critical
values of A(p,s)-

Proof. For any (H,S) € H(E) x S(g ) there exists a sequence (Hy, Sk) €
(H(E) X S(E,Q))reg of generic functions such that

(48) ct - Jim (Hy, Sg) = (H, S).
According to Lemma 30 there exists a sequence of points
1, € ¢ (Graph(dSy)) N v* (N x R™)
such that
Hy Hi\—1
o(a,J, Hg, Sk : N) = A, 5,) (91 " 0 (617%) 7 (zk))-

Note that xj is bounded and hence, after taking a subsequence, we can
assume that

(49) klim T = Tp.
Define
(50) fifu : v (N xR™) - R,

Fi(@) = A, 5 (61 0 (61%) 7 ()
F(@) = A, (61" o (o) (2)).
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From (48) it follows that

lim ¢y (2) = o7 ()
for all z € T*E and hence
(51) Jm fi(w) = /()

Since fi are smooth, by Arzela-Ascoli Theorem the convergence above is
uniform on compact subsets of v*(N x R™). Similarly, by (48)

(52) klim dfy, = df
uniformly on compact subsets of v*(IN x R™). According to Definition 34
and by (49) and (51)
ola,J,H,S: N) = klim o(a,J, H, Sk : N)
=
= f(zo)
= Am,g)(91 o (¢1) (x0))-
By (49) , (50) and (52) we have
dA(r,s)(97" o (61) " (w0)) = df(wo)
= lim dfi(wy)
=0
and hence ¢f o (¢f1) ™ (z0) € Crit(Am,g))- O

6.3. Normalization.
Consider the Hamiltonian

Kt = X(t)(Ht + Co)
where x : T*M — R is a smooth function with compact support, such that
X = 1in a neighborhood of Useo 1)¢f! (0ar). Then ¢t (0rr) = ¢ (oar), but
pla, K : N)=p(a,H : N)+ co.
More generally, it can be shown that for any two Hamiltonians H and K
such that ¢ (0pr) = ¢ (0pr) we have
p(CL?K:N) :p(CL?H:N)"i'CO

for some ¢y € R [30]. Similar considerations apply to the case of invariants ¢
and o. Hence, in order to consider the constructed invariants as the invari-
ants of Lagrangian submanifolds, we have to impose certain normalization on
the choice of parameters in (H, ) € H(E)xSg ). Assume that H = H1©0
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for some compactly supported Hamiltonian function H : T*M — R. De-
note by Lg C T*M the Lagrangian submanifold having S as a generating
function quadratic at infinity. We will need the following result.

Theorem 36. If H*, H? are two compactly supported Hamiltonians defined
on T*M and S*,SP two generating functions quadratic at infinity such that

o1 (L) = 1" (Lgo),

then there exists a constant cg € R such that for any N C M
(53) Spec(HY @ 0,5% : N) = Spec(H” ©0,5° : N) + cp.
In particular, if voo € M is fived and

Sfp\éc(HeBO,S : N) :=Spec(H ®0,S: N)—Spec(H® 0,5 : xo)

={r—s|reSpec(H®0,S:N), scSpec(HD0,5:2x)}

then
(54) Spec(H® ® 0,8 : N) = Spec(H” &0, 5% : N).

Proof. The critical points of A(pa ga) and .A( HP,56) are in one-to-one corre-
spondence with points of

(55) VNNl (Ls) = "N ol (Lg).
More precisely, the solutions of

9 = Xpeo(T)

I'(0) € Graph(d$)

I'(1) € v*N x ogm

are of the form I' = (v, z) where

O = Xp(y)
&z =
(7(0), 2) € Graph(dS), (1) € ¥*N, 2 = (€,0) € ogn.
Denote ,
L= ¢ (Lsa) = 61" (Lgp)
and consider the function f : L — R defined by
f@) = Apese (@ A5 (iga((61) ' (2)))))
— Aurs 500" (i3 ((677) 7 (@)))).
Since (¢H#*)"1(L) = Lg~ and and (¢”)"1(L) = Lgs, for z € L

i1 () = igh (qa, - (qa,fa>> = (¢,
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A o) =i (o ‘fq €)= (@€,
where
(56) (¢%,6%) € Bga, (¢%,67) € Tgp
and

0 0S*\ | pe._ 98P\  me
o0 () =6l e (5 =6l
Hence
dse(igd((eff") Hx)) = dS(g*,€)
_ @%%i@%a)g e ,fa>)
— (5 amee0) (o 60)
= (¢ (x)),£%,0) (by (57)),
and similarly
dSP(igH(01") (@) = (((611°) " (2)), €, 0).
Therefore, the paths
(58) t gy 20(dS*(iga((¢f")"(2)))) and
t— o "0(dSP (i (o) (2)))
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respectively start at Graph(dS®) (respectively Graph(dS?)) and end at the

points (in local coordinates)
1 20dS (iga((617)H@) = (@1 (61" (1)), €%,0)
= (2,£%,0)
and
oS (igh (o) M (@))) = (2,€7,0)
respectively. Let
xR = i (L) = 61" (Ls)

be a smooth path connecting two points in (55). Since the paths (58) are
Hamiltonian and start at Graph(dS®) and Graph(dS?), the same computa-

tion as in (5) shows that

d% F(x(5)) = 007%(s)) — 0(n° (5))
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where

W) = IS g (611°) " (x())

(0
- ds’ ds )’

with (dgzs(s) ,0) € T(ogm). Similarly,
dx déP(s)
B — | ZA
0= (55 0).
Since 0 = p; @ Ogm and Ogm (£,0) = 0 it follows that

L H(x(s) =0.

Hence f = ¢, for some constant ¢y € R independent of N. This proves (53)
and (54). O

Definition 37. Fix zo, € M. Let S be a generating function quadratic at
infinity for the Lagrangian submanifold Lg = ¢ (0ps) € T*M. We define
the normalized parameters (H,S) by

- 1 ~ 1
S:S—ﬁa(l,H@O,S:xm), H:H+§a(1,H@O,S:a}OO).

Remark 38. Strictly speaking, (H,S) ¢ H(E) x S(e,)- However, it is
allowed to add a constant to the parameters in H(E) x S(g o) since Floer
theory depends only on the first derivatives (VH,V.S) which remain un-
changed.

The normalization described above also gives the normalization of invari-
ants p and ¢ defined by (1) and (2). Indeed, these invariants are the special
cases of invariant o, as we show in the following lemma:

Lemma 39. For (H,S) € H(M) x Sg,q) and a € H.«(N)
o(a, H®0,Q : N)=pla,H : N)

and

0(a,0,S:N)=c(a,S:N).
Analogous statements hold for any u € H*(N).
Proof. The first equality follows from Theorem 28. To prove the second
one, we first observe that, if S]‘\/[ is as in Proposition 27 and SX, = S outside
U DV, then

c(a,S: N)=0(a,0,SX : N).

Since || Sk — S||co — 0 as U — N, the conclusion follows from Theorem 33.
([
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Definition 40. Fix z, € M. Let S be a generating function quadratic
at infinity for the Lagrangian submanifold Lg = ¢{(op;) € T*M. For a
submanifold N C M and a € H*(N), u € H*(N) we define

cla,Ls: N):=c(a,S: N), e(u,Lg : N) :=c(u, S : N),
where S = S — ¢(1,S : Zoo). In a similar way, define

pla, Ls : N) := p(a, H - N), p(u, Ls : N) := p(u, £ : N),
with H = H + p(1, H : 2.

By Lemma 39 the definition of the parameters (H, 5’) in Definition 37
and Definition 40 agree in a sense that in the cases H =0 and S = @ both
definitions give the same functionals

A(HEBQQ) - A(H@O’Q) - 0'(17 Ho O, Q : .’L'OO)
and
A((),S) == ./4(075) - 0(1, 0, S : ﬁl?oo)

Invariants in Definition 40 are well defined invariants of Lagrangian sub-
manifolds of 7* M Hamiltonian isotopic to the zero section.

6.4. Equality between the two invariants.

In this section we will show that the invariants p and ¢ give the same
invariants of Lagrangian submanifolds of 7*M. The proof below is sketched
in [26], we present it here for the sake of completeness.

Theorem 41 ([26]). Let Lg = ¢! (0p) € T*M be a Lagrangian submani-
fold generated by generating function S quadratic at infinity. Then for any
submanifold N C M and any a € H.(N)

(59) c(a,Ls : N) = p(a, Lg : N).
The analogous equality holds for any uw € H*(N).

Proof. Denote by S; : E — R a generating function of (¢f1)~!(Lg), such

that So = S, S1 = S. Let H(t) denote a Hamiltonian such that ¢f(t) = ol
Note that

o' (Ls) = o' (L)
— ¢ (o) \(Ls)
— LS

—

and therefore, by Theorem 36 the action spectrum Spec(H (t) & 0,S; : N) is
fixed. By Theorem 33 the function

g:t—o(a, Ht)®0,S:N)—o(a, H(t) ®0,5; : xo0)
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is continuous and takes the values in the set Spec(H (t)®0,S : N), which is
nowhere dense in R by Lemma 1. Hence ¢ = constant. In particular,

(60) 0(a,0,5 : N)
=0(a,H(0)® 0,5 :N)—0(a, H0) 0,50 : )
=o0(a,H(1)® 0,5 : N)—0(a, H(1) 0,57 : )
=o(a, H®0,Q;N).

According to Lemma 39 and Definition 40

(61) 0(a,0,S: N) = c(a,Lg : N)

and

(62) o(a, H®0,Q: N)=p(a,Ls: N).

Now, (59) follows from (60), (61) and (62). 0

7. A note on Hofer’s geometry.

In [16] Hofer introduced a biinvariant metric on a group D¢ (P) of compactly
supported Hamiltonian diffeomorphisms of a symplectic manifold P. For
H € CX(P x [0,1]) define the oscillation of H; by

osc(Hy) := sup Hy(x) — inf Hy(x).
zeP zeP
That leads to the definition of the length of the curve ¢/ in D¢ (P) as

1
[({of Yoze<r) = / osc(Hy)dt.
0
Definition 42 (Hofer’s energy). The energy of 1 € DS (P) is defined by
E(y) = inf{l(¢]") | 1" = v}
The non-degeneracy of the energy functional, i.e.,
E@)=0iff v =1id

has been proved by Hofer [16] (see also [17]) in the case P = C" and by
Lalonde and McDuff [20] in general.
In the case P = C" Bialy and Polterovich [2] proved that

(63) c(p, Ty) = ¢(1,Ty) < E()

where ¢(p,I'y) — ¢(1,Ty) is Viterbo’s norm (see [38]). Moreover, they
proved that Viterbo’s and Hofer’s metrics coincide locally in the sense of
C'-Whitney topology.
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More generally, for a symplectic manifold P, let £3/(P) be the space of
Lagrangian submanifolds . C P Hamiltonian isotopic to the Lagrangian
submanifold M. In other words,

L (P) = {o1 (M) | ¢1' € D(P)}.

The group D¢ (P) acts transitively on Ly (P) by (¢, L) — ¢(L). The mani-
fold £/(P) has a natural D¢ (P)-invariant metric defined in the following:

Definition 43. For L1, Ly € L)(P) we define
(64) d(Ly, Lz) := nf{E(¢) | ¢ € DL(P), ¢(L1) = La}.

The non-degeneracy of d has been proved by Oh [30] for P = T*M and
by Chekanov [4, 5] in general case. Moreover, for P = T*M

(65) p(p, L) — p(1, L) < d(om, L)

(see [30] or apply Lemma 39 to the inequalities at the end of the proof of
Theorem 33 with S* = §% = Q, H* = 0, setting first & = 1 and then
a = p and subtracting; then take the infimum over all H”’s such that

5
o1 (onr) = L).
Theorem 41 together with (65) implies

e(, L) - e(1, L) < d(oar, L)

which is the generalization of (63) to Hofer’s and Viterbo’s geometries of
Lagrangian submanifolds in a cotangent bundle. As ¢(u,L) = ¢(1,L) if
and only if L = oy, it gives another proof of the nondegeneracy of Hofer’s
metric.
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EXPLICIT REALIZATIONS OF CERTAIN
REPRESENTATIONS OF Sp(n,R) VIA THE DOUBLE
FIBRATION TRANSFORM

JODIE D. NOvAK

We consider a family of singular infinite dimensional uni-
tary representations of G = Sp(n,R) which are realized as
sheaf cohomology spaces on an open G-orbit D in a general-
ized flag variety for the complexification of G. By parametriz-
ing an appropriate space, Mp, of maximal compact subvari-
eties in D, we identify a holomorphic double fibration between
D and Mp which we use to define a map P, often referred to
as a double fibration or Penrose transform, from the represen-
tation into sections of a corresponding sheaf on Mp. Analysis
of the construction of P shows that P is injective, the image
of P is the kernel of a differential operator on Mp and P is
an intertwining map.

1. Introduction.

In this paper, we consider a family of singular infinite dimensional unitary
representations of G = Sp(n, R) which are realized on certain sheaf cohomol-
ogy spaces of D, an open G-orbit in a generalized flag variety for the com-
plexification of G. By parametrizing an appropriate space, Mp, of maximal
compact subvarieties in D, we can identify a holomorphic double fibration
between D and Mp, a well understood bounded symmetric domain. Using
standard constructions from sheaf theory and the fact that Mp is Stein, we
define a map P, often referred to as a double fibration or Penrose transform,
from the representation into the space of sections of a corresponding sheaf
on Mp. By analyzing the spectral sequences involved in the construction of
P and applying the Bott-Borel-Weil theorem, we show that P is injective.
Further analysis leads to the fact that the image of P is the kernel of a
differential operator on Mp and that P is an intertwining map.

More generally, let G be a real semisimple Lie group and let X be a
generalized flag manifold for G¢, the complexification of G. If D is an open
G-orbit in X, then D can be realized as G/H for some subgroup H of
G. Associated to each D is a family of representations of G given by the
Dolbeault cohomology spaces HP(D, L) where L is the sheaf of holomorphic
sections of a homogeneous line bundle on D. Under certain conditions, these
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representations are non-zero, singular, irreducible, unitarizable and infinite
dimensional. They provide a construction of an important and mysterious
part of the unitary dual of G.

These representations can be studied using a double fibration transform
whose purpose is to embed the cohomology space in a space of holomorphic
sections of a vector bundle on Mp as the kernel of a differential operator.
Although the technique was developed for open orbits G/H where H is
compact, some results of Wolf [Wo2, Wo3| allow the possibility of extending
this technique to any open G—orbit in a generalized flag manifold for Gc.
This technique is related to Schmid’s [S] construction of discrete series for
G associated to an orbit G/H when H is a compact Cartan contained in a
maximal compact subgroup K of G.

Wells and Wolf [WW] studied G-orbits D = G/H where H is compact.
For these orbits, they showed the existence of a holomorphic double fibration
where

Yp
v N
(1.1) D Mp.

Mp is the space of Ge-translates in D of the maximal compact subvariety
K/H N K and Yp is the incidence manifold Yp = {(2,Q) € D x Mp :
z € @Q}. They show that Mp is Stein in this case and use the double
fibration to show that H*(D,&) embeds in H°(Mp, RSu*(E)) where & is
the sheaf of holomorphic sections of a homogeneous bundle on D. This
work proves modified versions of conjectures made by Griffiths [Gr| while
studying automorphic cohomology.

Even if H is not compact, these ideas can be used for any open orbits D
if we know that Mp is a Stein manifold. Fortunately, Wolf [Wo2, Wo3|
has shown that Mp is Stein for all open G-orbits D. Eastwood, Penrose,
and Wells [EPW] used a holomorphic double fibration of this type for an
open orbit of U(2,2) with isotropy U(1) x U(1,2) to study the massless
field equations. In this case, Mp is U(2,2)/(U(2) x U(2)). Patton and
Rossi [PR1, PR2], generalizing the work of Eastwood, Penrose and Wells,
studied special SU (p, q)-orbits.

The key to using the double fibration transform is understanding the
structure of Mp. There are two basic cases and, as is expected, the struc-
ture of Mp depends on the structure of D. An open orbit D is of holo-
morphic type if there exists a holomorphic double fibration between D and
G/K. In this case Mp is G/K. An open orbit D is of nonholomorphic
type if no such holomorphic double fibration exists. In this case Mp is
an open submanifold of G¢/K¢ ([WW]). The U(2,2) example studied by
Eastwood, Penrose and Wells is of holomorphic type and further examples
and generalizations of the holomorphic type are given in [BE]. In fact, open
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orbits of holomorphic type are well understood. Orbits of holomorphic type
correspond to highest weight representations and those of nonholomorphic
type correspond to representations which do not have a highest weight. The
representations are discrete series if and only if H is compact.

Not as much is known in the nonholomorphic case. This case splits use-
fully into two subcases: When G/K is Hermitian symmetric and when it is
not. When G/K is Hermitian symmetric, the structure of Mp has been com-
puted for two families of examples: For arbitrary U(p, q)-orbits [DZ, PR2]
and for the open Sp(n,R)-orbits in the flag variety of Lagrangian planes in
C?" [N]. In both families Mp is G/K x G/K where G/K denotes G/K with
the opposite complex structure. More recently, Wolf and Zierau [WZ] have
shown that Mp is always G/K x G/K in the nonholomorphic Hermitian
symmetric case.

When G/K is not Hermitian symmetric, Wells [We] and Dunne and
Zierau [DZ] determined Mp for special SO(2m,r)-orbits. Akheizer and
Gindikin [AG] have also worked out a related example for this case and
have suggested that Mp could be described as a particular Stein tubular
neighborhood of G/K in G¢ /K. For these examples, it is not clear whether
Mp can be realized as a homogeneous space or whether these results can
be generalized. No work has been done as yet on defining the transform for
these cases.

1.1. Results of Paper. In this paper we will define a double fibration
transform for the Sp(n,R)-representations H*(D;, L). Here, D; is one of
r — 1 open orbits in the generalized flag variety X of isotropic i-planes in
C?" where 7 < n (see Section 3.2). The dimension of a maximal compact
subvariety in D; is s and L is the sheaf of holomorphic sections of a suffi-
ciently negative line bundle on D;. These orbits are in the nonholomorphic
Hermitian symmetric case with noncompact H so we are studying represen-
tations which are not discrete series and which do not have a highest weight.
In this paper, we will construct a double fibration transform for H*(D;, £)
and show that it is injective (Theorem 4.6 and 4.11). Finally, we will use
the transform to realize H*(D;, L) as the kernel of a differential operator
on HY(Mp,, Ré*L) (Theorem 4.11 and 5.26). Thus these representations
are Frechet spaces and are continuous, facts that also follow from work by
Wong [Wg].

Now we describe the results in more detail. Let C?" be endowed with a
symplectic form and a Hermitian form of signature (n,n). Let X be the set
of r-planes in C?" which are isotropic with respect to the symplectic form
where r <n. For 1 < i <r—1, let D; be planes in X of signature (i,r — 7).
Then X is a generalized flag variety for the Lie group Sp(n,C) and D; is the
open Sp(n,R)-orbit G/H; in X where H; is U(i,r —i) x Sp(n —r,R). Let x
be a unitary character on H; which determines a homogeneous vector bundle
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L, on D;. Let L, be the sheaf of holomorphic sections of L.,. When the
bundle satisfies a suitable negativity condition and s is the dimension of a
maximal compact subvariety of D;, then H*(D;, L) is a non-zero irreducible
infinite-dimensional singular unitarizable representation of Sp(n,R). In this
paper we give another realization of this representation via a double fibration
transform.

In Section 2, we outline the construction of the double fibration transform
for complex manifolds D, Y and M which are related by the holomorphic
double fibration (1.1). When L is a line bundle on D, the transform is a map
from HP(D,O(L)) to H°(M,RVO(p* L)) which is defined using standard
constructions from sheaf theory. We establish the conditions necessary for
this map to be injective and for the image of HP(D, O(L)) to be the kernel
of a map from H(M, REO(p*L)) to H° (M, RﬁQ}l(u*L)) where Q}l is the
sheaf of relative holomorphic 1-forms on Y.

In Section 3, we analyze the geometry of the holomorphic double fibration
used in the construction of the transform.

In Section 4, we construct the transform for H*(D;, £,). This involves
analyzing the sheaves and vector bundles which are in the construction. In
particular, we show that each of R;O(u*Ly) and Rf,Q}l(u*]LX) is the sheaf
of holomorphic sections of a homogeneous vector bundle. These facts, which
are crucial in determining when the transform is injective, are not immediate
because u is a G-equivariant map from a (G x G)-homogeneous manifold to
a G-homogeneous manifold.

Next, we show that the transform is injective by analyzing the Leray spec-
tral sequences involved in the construction of the map and by reducing the
problem to an application of the Borel-Bott-Weil theorem. An abbreviated
version of the main result of Section 4 is the following theorem.

Theorem 4.11. The double fibration transform
P: H*(D;, £y) — H(Mp,, R,O(i"Ly))

is an injection and the image of P is the kernel of a map D from

HY(Mp,, R{O(u*Ly)) to H°(Mp,, RS, (1*Ly)).

Since R;O(p*Ly) and Rf,Q}L(,u*LX) are each the sheaf of sections of a ho-
mogeneous bundle, the transform realizes H S(D,-, EX) as a space of functions
on Mp, with values in a homogeneous vector bundle.

In Section 5, we analyze the map D in Theorem 4.11. By construction,
D is determined by the map from H%(Yp,, O(p*Ly)) to H(Yp,, QL(M*LX))
and the kernel of D is the image of P. The main result of Section 5 is the
following theorem.

Theorem 5.26. D is a G-equivariant differential operator.
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In Appendix A we consider the situation where the line bundle L, is
replaced with a finite dimensional vector bundle although it is the line bundle
case that corresponds to unitarizable representations.

This paper incorporates the results of my thesis which was done at Ok-
lahoma State University. More specifically, my thesis contains these results
when r = n along with the contents of [N]. The case when r < n is not a
part of my thesis. I wish to thank my advisor, Roger Zierau, and Joe Wolf
and Anthony Kable for many useful conversations while I was working on
these results. Thanks also to the referee for suggesting the extension to the
vector bundle case.

2. The general double fibration transform.

Let D, Y, and M be complex manifolds. Then we refer to (2.1) as a holo-
morphic double fibration for D when p and v are holomorphic fibrations.

Y
v N\

D M.

Let L. — D be a holomorphic line bundle on D and L the sheaf of holo-
morphic sections of L. In this setting, it is sometimes possible to define a
double fibration transform from the Dolbeault cohomology space H S(D, E)
to HY(M, R;O(p*L)) where R5O(u*L) is the s higher direct image of
O(w*LL) by v. In this paper, we will define a double fibration transform for a
family of open Sp(n,R)-orbits D in the generalized flag of isotropic r-planes
in C?" when r < n.

Although the construction of the transform is described in a variety of
places [see [BE, EPW, PR2, WW]|, for example|, we include a brief dis-
cussion here, adapted to our situation, for the convenience of the reader.

The first step in the construction is to determine when H*(D, L) is iso-
morphic to H*(Y,u'L). In the setting of this paper, the fiber of u is
contractible (Proposition 3.13) and this is sufficient to guarantee, by a theo-
rem of Buchdahl [Bu], that the isomorphism exists. We note, however, that
the contractibility of the fiber of u is a stronger condition than that required
by Buchdahl.

The second step is to construct a resolution of 'L to which we can
apply the following lemma.

(2.1)

Lemma 2.2. Let
0-85—-85—-85—-—8Sv—0

be an exact sequence of sheaves on a manifold Y and suppose HP(Y,S;) =0
forp < qand 1 <t < N. Then there is an injection from H4(Y,S) —
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HYY,Sy). Furthermore, H1(Y,S) is the kernel of the induced map from
HY(Y,Sp) to HI(Y, Sy).

To find an appropriate resolution of ;~'L, we begin by constructing a
resolution of #~1Op. We denote by ), the sheaf of holomorphic p-forms
on a complex manifold Z.

Definition 2.3.

(1) The sheaf of relative 1-forms on Y, denoted by Q}“ is defined by the
exact sequence

H*QID—>Q%/—>QL—>O
where p*Q}, = Oy ® =10}, and we tensor over u='Op.
(2) The relative p-forms €, are defined by APQ..

We can think of Qf, as p-forms on Y in the direction of the fiber of u
with coefficients in Oy and d,, : /\I’QL — /\p“Q}L as differentiation along
the fiber.

We have the following lemma about relative p-forms.

Lemma 2.4. Let m =dimY — dim D.

(1) Then

d
(2.5) OHM_IODHOYLQ}L—).”—)QZ’L—}O
is an exact sequence of sheaves on'Y .
(2) The sequence (2.6) is a resolution of u~ L.
(2.6) 0—p L —p'L— QL(ILL*L) — = QP (L) — 0.

The proof of (1) is the usual Poincaré lemma. To prove (2) we tensor
(2.5) by u~'L and observe that u*£ = O(u*LL) and

P ®,-10, 1 L= @0, O(u*L).

To simplify notation we denote QF, Ru-10p L by let QF (u*L).
Applying Lemma 2.2 to (2.6) yields the following lemma.

Lemma 2.7. If HP(Y, QZ(/L*L)) = 0 for all p < q and all t, then
HI(Y,pu~'L) embeds in HI(Y,O(u*L)) as the kernel of the induced map
from HIY,O(p*L)) to H1(Y, QL(M*]L))

For the third and final step in the construction of the transform, we must
assume that M is Stein, that v is proper, and that S is a coherent sheaf on

Y. With these assumptions, the following theorem is the key to this final
step.

Theorem 2.8. HP(Y,S) is isomorphic to H'(M, R}S).
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Proof. There exists a Leray spectral sequence which abuts to H *(Y, S) and
whose Fa-term is given by Eb? = Hp(M, qu,S). The direct image theorem
[GR] implies that RZS is coherent so EB'? = 0 for all nonzero p. That is,
the spectral sequence collapses and the result follows. O

If O(p*L) and Q}L(M*L) are coherent, then Theorem 2.8 implies that
HYY,O(p*L)) is isomorphic to HYM,RIO(p*L)) and also that
H1Y (Y, QL(M*L)) is isomorphic to H° (M, RgQi(u*L)). These isomorphisms,
along with the isomorphism in Lemma 2.7, determine a map D from
H (M, REO(u*L)) to HY(M, RIS, (1*1L)).

In the following theorem, we combine these constructions to define the
Penrose transform.

Theorem 2.9. The Penrose tranform is the map
P:HYD,L) — HY(M, RIO(u*L)).

The map P is an injection and the image of P is the kernel of D which is
defined below.

More explicitly, H1(D, L) is isomorphic to Hq(Y, ,uflﬁ) by Buchdahl’s
theorem. Then d,, : Oy — Q, determines a map d,* : O(p*Ly) — Qb(u*L)
whose kernel is p~'L. By Lemma 2.7, d,* determines an injection D,, from
HI(Y,0(p*L)) to H(Y, Q}L(M*}L)) whose kernel is H1(Y,u~'L). Then,
Theorem 2.8 gives an isomorphism  between Hq(Y, (’)(,u*IL)) and
HO(M, REO(p*1L)) and one between — HI(Y, €, (1*L)) and
HO (M, RgQ}L(,u*]L)). As a result, D, determines a differential operator D
such that the following diagram commutes.

HYY,O(wL)) —— HY(M,RiO(u*L))

N I
HYY,, (n*L)) —— H(M, R, (1*L))
In this way, the map P and D are defined and P embeds H1(D, L) is
HO(M, RLO(p*L)) as the kernel of D.

3. The geometry underlying the double fibration transform.

The purpose of this section is to understand the geometry of the holomorphic
double fibrations (3.1) and (3.2) which we will use to define a double fibration
transform for a family of Sp(n,R)-representations. Let D; be the open
Sp(n,R)-orbit of isotropic r-planes of signature (i,r — i) in the generalized
flag manifold X of isotropic r-planes in C?*. Then D; is G/H; where H; ~
U(i,r — i) x Sp(n —r,R) and K/H; N K is a maximal compact subvariety
in D;. Here, K is a maximal compact subgroup of G isomorphic to U(n).
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Let My, be the Sp(n,C)-translates of K/H; N K in X. Let Mp, be the

translates contained in D; and let Mp, be the connected component of Mp,
containing K/H; N K. Let Yp, and Yx, be the incidence spaces

Yp, ={(2,Q) € Di x Mp, : z € Q}
and Yy, ={(2,Q) € X x My, : z € Q}.
Then we have the following holomorphic double fibrations
Yp,
N
(3.1) D; Mp

and

i

Y,

v N
(3.2) X My,

k3

with the natural projection maps.

3.1. Preliminaries. In this section, we define the bilinear forms and the
Lie groups we will use to describe the manifolds in the double fibrations.
In addition, we describe various Lie algebras and root systems that will be
used later.

Let (-,-),, denote the Hermitian form on C?" corresponding to the ma-
trix I, = (Ig _(} > and let w(-,-) denote the symplectic form on C?"

n
0 -I,
I, O
w(u,v) = 0 for all u,v € y and Lagrangian if y = y*~. We denote the sig-
nature of a subspace y by sgn(y) = (a, b, ¢) if y has a Hermitian orthogonal
basis of a positive vectors, b negative vectors and ¢ null vectors. If ¢ = 0,
we write sgn(y) = (a,b).

We will use these forms to describe certain subgroups of GL(2n,C). The
complex symplectic group Sp(n,C) is the set of matrices that preserve the
symplectic form, and U(n,n) is the subgroup that preserves the Hermitian
form. Then Sp(n,C) N U(n,n) is a real form of Sp(n,C) which preserves
both the symplectic and Hermitian forms. We denote Sp(n,C) by G¢ and
the real form by G. We note that G ~ Sp(n,R).

Let gc denote the Lie algebra of G¢ and g the Lie algebra of G. Fix the
Cartan subalgebra

tc = {diag(tl,tg, ceytn, —t1,—t2,..., —tn) : tj S C}

of gc where an element of t¢ is a diagonal matrix with the indicated en-
tries. Elements of tf. will be identified with points in C" as follows. For

corresponding to J = ( ) We call a subspace y of C?" isotropic if
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Y= (717 s 7711) in (CTL} define
v(diag(ts, ..., tn, —t1,...,—tn)) = ij.

Let e; be the element of t7 which corresponds to the 4t standard basis
vector in C27,

The element A\; = (—1,...,—-1]0,...,0[1,...,1) in t&, with i-entries be-
fore the first vertical bar, (n — r)-entries between the vertical bars, and
(r — i)-entries after the last vertical bar, will be used to determine a posi-
tive system for gc. Although these objects depend on ¢ and 7, we will only
indicate the dependence on i. If A(gc) denotes the roots of gc, then

Alge) = Albic) U Ai+) U Aldi-)

where A(h; c) is the set of roots of gc whose inner product with A; is 0 and

A(q4,4) (respectively, A(q; —)) is the roots of gc whose inner product with

A; is positive (respectively, negative).

We fix a positive system
At(hic)={(ej—er):1<k<j<iori+n—r+1<k<j<n}

U{(ej+er):1<j<iitn—r+1<k<n}
U{(ej—er):i+1<j<k<i4+n-—r}
U{(ej+er):i+1<j<k<i+n-—r}

for h;c and note that the first two subsets are all the positive roots for

U(i,r — 1) and the last two for Sp(n —r,R). If r = n, the Sp(n — r, R) piece
does not appear. The corresponding simple system is

I; = {ez —e1,e3 —e2,...,¢; —€i_1,€1 + €iyn_ri1}
U {6i+nfr+2 — €itn—r+1, Citn—r+3 — Citn—r4+2,---,€n — enfl}
U{€it1 — €i42,€i42 — €13y -+ Citn—r—1 — Citn—r, 2Citn—r}-

Again we note that the first two subsets are the simple roots for U(i,r — i)
and the last for Sp(n—7,R). Now A™(h; c)UA(q;+) forms a positive system
for A(gc) and this is the system that we shall use throughout.

Let hijc =tc+ Y. @q and let H; ¢ be the analytic subgroup associ-

a€A(hic)

ated to h; c. Let b; = bh; cNg; then b; is isomorphic to u(i, n—i) sp(n—r, R)
and H; ~ U(i,n—1i) x Sp(n—r,R) is the analytic subgroup for ;. For r = n,
H; is the fixed points of the involution Ad({; on G where

-, 0 0 0

o Lo o

“=lo o 1 o
0 0 0 —Ipy
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Let qi+ = Y, 8q and let @Q; + denote the analytic subgroup of q; +
ace(

9i,+)

in Gc. Let q;,— = >, go and let Q; — denote the analytic subgroup of
a€A(qi,—)

9i,— in G(c.

Let © be the Cartan involution on g¢ given by ©(X) = —*X. Denote by
K¢ the analytic subgroup of G¢ corresponding to the (+1)-eigenspace of ©.
The (—1)-eigenspace pc of © decomposes into the Kc-invariant subspaces
p+ and p_. Let Py = exp(py) and P— = exp(p_). In this case K, the real
form of K¢, is isomorphic to U(n).

3.2. The Double Fibration for Sp(n,R). The geometry of C?" induced
by the Hermitian and symplectic forms provides a useful tool for describing
the spaces D;, Yp,, and Mp, in the double fibration (3.1), for realizing them
as homogeneous manifolds, and for examining the relationship between the
double fibrations (3.1) and (3.2).

We begin by observing that G¢ acts transitively on X, the set of isotropic
r-planes in C?", by Witt’s theorem (see, for example, [A]). If we choose
x; =span{el,...,e;,eam—_rtitl,--- ,Eon} as a basepoint in X, then G¢ acts
with isotropy subgroup H; cQ; —. Then X, as a generalized flag manifold for
G, can be realized in several ways; if it is important to specify a realization
we will use the convention X; = G¢/H; cQi,—. We also note that if r = n
and ¢ = 0 or n, then the isotropy subgroup is K¢ Py or K¢ P—, respectively.

The relationship between X and D;, the set of isotropic (i, — i)-planes,
is given in the following proposition.

Proposition 3.3. D; is an open G-orbit in X.

This can be seen in two ways. First, for a fixed r, the open G-orbits in X
are parametrized by the signatures (i, —¢) [Wol]. Second, a generalization
of Witt’s theorem (see [A], for example) implies that G acts transitively on
D;. For the basepoint x;, the stabilizer of this action is H; and a dimension
count shows that D; is open.

Thus D; is a complex manifold. If » = n and ¢ = 0 or n, then D; is the
Hermitian symmetric space G/K and is of holomorphic type. If r = n and
i # 0 or n, then D; is the indefinite K&hler symmetric space G/H; and is of
non-holomorphic type. If r < n, then D; is G/H; which is not a symmetric
space. In this case, if i = 0 or r, then D; is of holomorphic type and if i # 0
or r then D; is of nonholomorphic type as described in Section 1.

We now define two other members of the double fibrations: Mp, and My, .

Definition 3.4. The space My, is the set of Ge-translates of Kz;. Let Mpi
be the Gc-translates of Kx; contained in D; and let Mp, be the connected

component of Z\?Di containing Kux;.
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To analyze the structure of Mp, and Mx,, we need to understand the
structure of the K-orbit of z; in D;. First, work of Schmid and Wolf [SW]
implies that Kx; is a maximal compact subvariety of D;.

If r=mnand i =0 orn, then Kz; = z; and Mp, is D;. If r = n with
1 # 0 or n and if r < n with ¢ = 0 or r, then Kx; is biholomorphic to the
Grassmanian of i-planes in C" in the first case and to the Grassmanian of r-
planes in C" in the second. In all cases, Kx; is realized as the homogeneous
space K/H; N K. The parametrization of Mp, is given in the following
theorem for r = n with ¢ # 0 or n and for all » < n with ¢ # 0 or r.

Theorem 3.5. The manifold Mp, is biholomorphic to G/K x G/K, where
G/K denotes G/K with the opposite complex structure.

For r = n and i # 0 or n, the proof of this theorem is the main result of
[N]. More recently, Wolf and Zierau [WZ] have proven this theorem for all
open orbits of nonholomorphic type when G/K is a Hermitian symmetric
space and G is a classical group. We will outline the idea of the proof in [N]
so that we can use the explicit description of Mp given there in the proof
of the contractibility of the fiber.

First, we describe how to associate a pair of transverse Lagrangian planes
in C?" to a Gg-translate of Kx;. The difficulty here is showing that the
association is unique. Once this is complete, we have the parametrization
of Mx, given below.

Lemma 3.6. M, is the manifold Gc/Kc when 2i # r and G¢/L when
2t=r.

This is another result of [N] where L is the subgroup of G¢ generated by
K¢ and the matrix J which defines the symplectic form.

To describe the association, we observe that Kx; is the set of isotropic
r-planes of signature (i, — i) which meet yo = span{e;,...,e,} in an i-
plane and wy = span{ey,y1,...,€e2,} in an (r — i)-plane. More specifically,
each i-plane u in yo together with any (r — i)-plane ' in u~ Nwg forms an
isotropic (i, —)-plane in Kx; and each element of Kx; can be described in
this fashion. We make two observations. First, when r = n, the dimension
of ut Nwyg is n — i so for each i-plane in gy there exists exactly one (n —i)-
plane u/ in u' N wy such that w @ v is an element of Kz;. Second, the
above description of Kx; does not depend on the signature of the planes yq
and wo, only that the planes are transverse and Lagrangian. In light of this,
translating Kx; by g € G¢ element by element is equivalent to translating
yo and wg by g and creating gKx; from the translated planes.

To reflect the relationship between Kx; and the two transverse Lagrangian
planes yo and wg, we denote Kx; by V¥(yo,wp). Then gKz; will be denoted
by V*(gyo,gwo) and My, is the set of maximal compact subvarieties V(y,w)
for any pair of transverse Lagrangian planes y and w. The main difficulty
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in parametrizing My, is determining the stabilizer of the action of G'¢ on
Mx,. That is, showing the level of uniqueness of the representation of a
maximal compact subvariety by V¥ (y,w). When 2i # r, Vi(y,w) = Vi(y',w')
if and only if y = ¢/ and w = w’. When 2i = r , it is also the case that
Vi(yw) = Vi(y'w') when y = w' and w = gy'. This happens because
switching the position of y and w in V?(y,w) does not change the maximal
compact subvariety.

To parametrize Mp,, we must identify which pairs of transverse La-
grangian planes are asociated to elements of Mp,. Clearly, if y is positive
and w is negative, then V*(y,w) is in D; and hence in MDi. The difficulty
lies in showing that such V*(y,w) are in Mp, and that only V(y,w) of this
type are in Mp,. See [N] for details.

The descriptions of Mp, and My, are useful for determining the structure
of

(3.7) Yp, = {(z, Vi(yw)) € Dy x Mp, : z € Vi(y,w)}
and Yy, = {(z,V'(yw)) € X x My, : z € V'(yw)}.

It is not too difficult to show that Gc acts transitively on Yx, by
g - (z,V'(y,w)) = (9z,V'(g9y,gw)). Making use of the parametrization of
My, and X;, we have the following theorem.

Theorem 3.8. When 2i # r the manifold Y, is GC/Hichf N Ke and
when 2i = r the manifold Yx, is G(C/Hi cQi_NL

We now turn our attention to analyzing the structure of Yp,. Although
G acts on Yp, as G¢ acts on Yy,, this action is not transitive. Fortunately,
G x G acts transitively on Yp,. First, we define the action of G xG on the
basepoint (x;, V*(yo,wo)) by

(91,92) - (%4, V' (yo,wo))
= ((g1 exp(X4)2s, V(g1 exp(X1)yo, g1 exp(X4 )wp))) -

where exp(X; )k exp(X_) is the Harish-Chandra decomposition (see [K], for
example) of g Lgo. We note that the action in the second factor simplifies
to V¥(g190, gowo). This action of G'x G maps (x;, V¥(yo,wo)) onto Yp, as
follows. Since G x G acts transitively on Mp,, there exists g1,g92 € G such
that (g1, 92)V*(yo,wo) = Vi (y,w) for any V*(y,w) in Mp,. Since K x K fixes
V(yo,wo), as k1 and ko run through K, (g1k1, g2k2) acting on x; run through
every element of V%(g1y0,90wo). Thus each (z,V'(y,w)) is a translate of
(24, V¥(yo,wp)). Then GxG acts on (2, Vi(y,w)) by first writing (z, V*(y,w))
a5 (g3, 91) (i, Vi (owo)) and letting (9193, gaga) act on (zs, V' (yo,u0)).
We have the following theorem.
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Theorem 3.9. Yp, is biholomorphic to G/H,- N K X G/K.

Proof. As shown above, GXG acts transitively on Yp,. Then the stabilizer of
(w4, Vi(yo,wo)) is (H; N K)x K so there is an isomorphism between Yp, and
G/H; N K x G/K which endows Yp, with a differentiable structure. The
complex structure comes from using the Harish-Chandra decomposition to
embed G/H; N K into G(C/(HLCQL— N Kc)Py and G/K in Go/KcP-. The
opposite complex structure is needed in the second factor since P; is replaced
with P_. O

We have the following two observations about the action of GxG on Yp,.
First, if we had decomposed g, 191 as exp(X_)kexp(X ) instead of decom-
posing gi g2, then (g1, g2)(ws, Vi(yo,wo)) = (g2 exp(X_)zi, V¥ (g130.92w0))
determines another action of G x G on Yp,. In this case, the space Yp,
would have been realized as G/K x G/H; N K. If this action were chosen,
the factors would be switched throughout the construction.

Second, when » = n we can describe the action of G x G on the first
component of (x;, V¢(yo,wo)) geometrically. This is possible because, as de-
scribed after Lemma 3.6, each element of Kx; is of the form u @ v/ with u
an i-plane in yo and v/ an (n — i)-plane in u'* Nwg. When 7 = n, we have
v = u' Nwy. That is, each element of Kx; is completely determined by
its intersection with y9. So, if we move x; N yy by g1 to gi(x; Nyo), then
g1(z; Nyo) meets g1yp in an i-plane and the image of z; under (g1, g2) is
2 = gi(xzi N yo) @ [{g1(w N yo)}* N (gow,)] which is an element of
V¥(g190,92wo). Using the Harish-Chandra decompostition of g; 149, we have
Z' = g1 exp(X4)x;. Thus, the action of GxG on Yp, can be interpreted in
terms of planes.

3.3. Relating the two double fibrations. A good understanding of the
relationship between the double fibrations (3.1) and (3.2) is crucial for giving
an explicit realization of the differential operator in Theorem 2.9. We have
already discussed the relationship between D; and X; in Proposition 3.3. In
this section, we consider the relationship between the other pairs.

From the descriptions of Yp, and Yy, in (3.7) as certain pairs of isotropic
r-planes and maximal compact subvarieties, it is clear that Yp, is contained
in Yy,. When these spaces are realized as homogeneous manifolds, the em-
bedding of Yp, in Yy, is given by the following theorem.

Theorem 3.10. The map

o Y0k k= Y, 00 0 ke

defined by ¢(g1,92) = grexp(Xy) is a holomorphic injection where the
Harish-Chandra decomposition of gy gs is exp(X)kexp(X_) with X, €
pr, ke Kcand X_ ep_.
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Proof. In the following diagram

G G G
/0K % /K —— H,. Qs N Ke
- e
G G i G G
Y HcQi N K Py %~ EeP. —— "V HcQi 0 Ke)Py ¥~ KeP.
the embeddings o and 3 are given by a(g1,92) = (91,92) and 5(9) = (9,9)

and ¢ is the identity map. The following calculation shows that the image
of « is contained in the image of G:

(91, 92) = (91, 92)
=01 (@97 0)
= g1 - (€ exp(X)kexp(X_))
= g1 - (exp(X4), exp(X))
= B(g1 exp(X4)).

Thus this a commutative diagram and the result follows. U

For 2i # r, the map ¢ embeds Yp, in Yy,. For 2i = r, the realization
of Yx, accounts for the fact that, in this case, V*(y,w) and V'(w, y) are the
same maximal compact subvariety. The natural projection map

G G
T C/HZ-@QZ',_ NKc C/Hi,CQi,— NnL

reflects this identification. Since only one of these realizations occurs in the
parametrization of Yp,, the map moy is an injection and gives the embedding
of Yp, in Yy, in this case.

The situation for Mp, and My, is similar and we use the following theorem
to embed Mp, in Mx,.

Theorem 3.11. The map

e x Gy — Ge/.

defined by Y(g1,92) = giexp(X4) is a holomorphic injection where
exp(X 4 )kexp(X_) is the Harish-Chandra decomposition of g7 ' ga.

Proof. We embed G/K x G/K and G¢/Kc in Go/KcPy x Ge/KcP- and
proceed as in Theorem 3.10. ([l

For 2i # r, the map ¢ embeds Mp, in Mx,. For 2i =r, let 7 : G¢/Kc —
Gc/L be the natural projection map. Then, as before, 7o embeds Mp, in
My. .

7
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3.4. The fiber of y. The geometry of the fiber of p plays an important role
in the first step of the construction of the Penrose transform. In particular,
we need the fiber of y to be contractible to apply Buchdahl’s condition [Bul]
to conclude that HS(Di,EX) is isomorphic to H?® (YDi,,uflﬁx). Since p is
a G-equivariant map, it suffices to consider the geometry of u~!(x;) where,
as before, we have z; = span{ei,... ,€;,€a—ryit1,... ,€2,}. We will show
that p~'(z;) is contractible by showing that it fibers over a contractible
space with contractible fiber. Let G(j) = Sp(j,C) N U(j4, 7).

Theorem 3.12. Let
Tp () =
/U )X G(n—7r)xU(r—1) X /U ) x G(n—1r) xU(r —1)

be the map defined by w(x;, Vi(y,w)) = (h1,ha) where hi(z; Nyo) = x; Ny
and ha(z; Nwo) = x; Nw. Then p~1(x;) fibers over

Hi/U(i)xG(n—r)er—z /U )X G(n—7r)xU(r —1)
with fiber

G(n Gii+n—r

—1

Yirn — i) % Yo iin—r)

This theorem together with the observation that both the base space and
the fiber of 7 are contractible give us the following proposition.

Proposition 3.13. u~!(x;) is contractible.

Proof of Theorem 3.12. To understand the geometry of p~!(z;), we must
identify all maximal compact subvarieties V*(y,w) in Mp, containing ;.
Given the parametrization of Mp,, this is equivalent to finding all positive
Lagrangain planes y and all negative Lagrangian planes w such that y meets
x; is an i-plane and w meets z; is an (r — i)-plane.

We begin by looking at a special case: The positive i-plane u; =
span{ey,...,e;} in ;. We can extend u; to a positive Lagrangian plane by
any positive (n—i)-plane in u;‘“’ ﬂuffH = span{€;11,...,€n, Entitls---,€2n}-
One such plane is v; = span{e;;+1,...,ey}. To find the others we observe
that, in G, the plane u; ﬂufH is fixed by G(i) x G(n —1) and the stabilizer
of v; in G(i) x G(n — i) is G(i) x U(n — i). Thus, all positive Lagrangian
planes containing u; are of the form w; @ gv; where g € G(n —1)/U(n — ).

More generally, any positive i-plane u in x; is an H;-translate of u; and
the stabilizer of u; in H; is U(i) x G(n —r) x U(r — i). Thus the positive
i-planes in z; are parametrized by H;/(U(i) x G(n —r) x U(r —i)) and for
each positive i-plane in x; the set of positive Lagrangian planes containing
it is parametrized by G(n —1i)/U(n — ).

In a similar fashion, one can show that the negative (r — i)-planes in x;
are parametrized by H;/U (i) x G(n —r) x U(r — i) and for each negative
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(r —i)-plane in x;, the set of negative Lagrangain planes containing it is
parametrized by G(i +n —1r)/U(i+n —7r). O

4. Constructing the double fibration transform for H*(D;, L,).

In this section we will define a double fibration transform for the Sp(n,R)-
representations H*(D;, L) where s is the dimension of the maximal compact
subvariety K/H; N K in D; and y is the character on H; whose differential

7

is given by x = (—a,...,—a ] 0,...,0 |a,...,a). That is, x = > —ae; +
j=1
n

> aepin b . In this case H*(D;, L, ) is an irreducible, unitarizable
p=i+n—r+1 ’
nonzero infinite dimensional representation of Sp(n,R) if a < —2n+r [Wg].
In the process of defining the transform, it will be necessary to impose

additional restrictions on x so that the transform will be injective.

4.1. Pulling up H*(D;,Ly) by p to Yp,. The first step in defining the
transform is transferring H*(D;, L) to Yp,. Since the fiber of p is con-
tractible (Proposition 3.13), a theorem of Buchdahl [Bu] implies the follow-
ing theorem.

Theorem 4.1. HS(Di,L'X) s isomorphic to H* (YDi,uflﬁx).
Now Lemma 2.4 implies that
(4.2) 0— M_I,CX — O(p*Ly) — Q}L(/‘L*LX) — e — QT(M*LX) — 0

is a resolution of u~1L, where Qf(u*L,) is the sheaf of relative p-forms on
Yp, with values in the bundle p*IL, and m = dim Yp, — dim D;.

Upon first inspection, the sheaves in the resolution of ,u_lﬁx do not appear
to be sheaves of holomorphic sections of homogeneous vector bundles due
to the fact that p is a G—equivariant map, not G x G—equivariant, from the
G x G-homogeneous space Yp, to the G-homogeneous space D;. We will
show, using the natural projection map i : Yx, — X;, that these sheaves are
holomorphic sections of a homogeneous vector bundle. We begin with the
sheaf O(u*Ly).

Theorem 4.3. The bundle p*IL,, on Yp, is a homogeneous bundle with fiber
Cy where (H;NK) x K acts by x ® 1.

Proof. Let x be the extension of x to H; cQ; — with x trivial on @; —. Then
ft*Lg is the homogeneous line bundle on Yy, with fiber C; and its restriction
to ¢(Yp,) is isomorphic to p*L, on Yp, where ¢ is the embedding of Yp,
in Yx, in Theorem 3.10. This isomorphism allows us to show that p*L, is
a G x G-homogeneous bundle once we have an explicit expression for the
action of GxG on ¢(Yp,).
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Let g € ¢(Yp,) and g1, g2 € G. Assume, for the moment, that the Harish-
Chandra decomposition of (g19) 'g2g as exp(X, )k exp(X_) exists. The key
to seeing that (g1,92) g = g1gexp(X4) defines an action of GXG on ¢(Yp,)
is the following computation. Using the identification of G¢/H; cQi— N K¢
with Yy,, we have

(91,92) - G = (91,92) - (921, V' (gy0,9w0))
= (919, 929) (i, V' (yo,wo))
= (19 exp(X4)zs, V(919 exp(X4)yo, 919 exp(X 4 )wo))
= g1gexp Xy (2, V' (yo,wo))
= g1gexp X .

Now we address the Harish-Chandra decomposition of (g1g)~gag. Since
g € o(Yp,), there exist g3, g4 € G such that ¢(g3,94) = g. That is, there
exist Xjr € py and h € H; cQ;— N K¢ such that g = ggexp(X/,)h. Using
this expression for g in (g19) 'geg and the Harish-Chandra decomposition
of (9193) " 'gog4 yields the decomposition of (g19)~'gag.
Let W denote the restriction of i*Ly to ¢(Yp,) and let [g, w] be in Wy,
For ¢1,92 € G,
(91,92) - [9:w] = [g1g exp(X.), w]
defines an action of GxG on W. Then W is the G x G-homogeneous line
bundle on Yp, with fiber C, ® 1. O

We note that the action of G on W as a subgroup of G¢ is equivalent to
the action of G as the diagonal subgroup of GxG.

In the remainder of this section, we will show that the sheaves Qf, (u*L, )
in (4.2) are sheaves of sections of homogeneous bundles on Yp,. Since
QL (p*Ly) = QF ® O(p*Ly), it suffices to show that Qf, is homogeneous.

First we describe the sheaf of relative differential 1-forms for a general
fibration between differentiable manifolds. Let f : Y — X be a C* fibra-
tion. Then ker df, the relative tangent bundle, is a subbundle of the tangent
bundle of Y whose stalk at y is the kernel of df;, and (ker df)* is the relative
cotangent bundle. Let SJ}/[ denote the sheaf of smooth differential 1-forms
on a manifold M and let £y, be the sheaf of C*° functions on M. Then
f*é’)l( =f _15)1( ®s-1g, Ey and the sheaf of relative differential 1-forms is
8} = &L/ fEX.

Theorem 4.4. 8} and E((ker df)*) are isomorphic as sheaves.

Sketch of Proof. Since it suffices to check this on sufficiently small open
sets, we may assume that U, an open subset of Y, is isomorphic to R™ x R,
The map 7y : 8}(U) — E((kerdf)*)(U) defined by vy ([w]) = v where

YY) = W(Y)|kerqr and y € Y gives the isomorphism. O
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We will use this theorem to describe the relative holomorphic (1,0)-forms
for the holomorphic fibration from Gc/H; cQi— N K¢ to Ge/H; cQi — given
by the natural projection map fi. As is customary, we identify the holomor-
phic tangent space T'9(G¢/H; cQi— N K¢) with T(Ge/HicQi— N Kc); we
do likewise for G¢/H; cQi,—. Under these identifications, Theorem 4.4 im-
plies that the sheaf of relative holomorphic 1-forms Q;lz is isomorphic to the
sheaf O((ker dji)*). Now ker dji is the G¢-homogeneous bundle with fiber
(hic @ qi,—)/(hic ® a;,—) NEc.

Theorem 4.4 again implies that Qi is the sheaf O((ker du)*) where here
d,, is the map from TH0(Yp,) to T10(D;). Since the map p from G/H; N K x
G/iK to G/H; is given in terms of isotropic planes and maximal compact
subvarieties and not as a map of homogeneous spaces, we are unable to use
the definition of i to determine ker du. However, we can give an explicit
description of QL by understanding the relationship between QL and Q/l1

Theorem 4.5.

(1) The sheaf Q}L is isomorphic to O((ker du)*).

(2) The wvector bundle ker du is (G x G)-homogeneous with fiber
(hic @ qi,—) Np where (H;NK) x K acts by Ad ® 1.

(3) The wector bundle (ker du)* is (G x G)-homogeneous with fiber
(hic®qi+) N p where (H;NK) x K acts by Ad ® 1.

Proof of (1). This follows from the discussion before the statement of The-
orem 4.5. U

Proof of (2). Recall the map

e Y0k < Sk = Y, 00 0 ke

from Section 3.3. Since the image of ¢ is open in G¢/H; cQi,— N K¢, the
fiber of 11 is open in the fiber of fi. Thus, we have ker du = (ker dji)|m(y)-
Then, as in Theorem 4.3, we can define an action of G x G on ker du and
the action of (H; N K) x K on (ker du)z is determined by its action on
(ker dfi)| (). Thus (H; NK) x K acts on ((hic @ ds,—)/(bic ® qi,—) Ntc)
via Ad®1. Since (h;c @ q;,—)Np is an [(H;NK) x K |-invariant complement
to (hic @ qs,—) NEc in h; c @ q;,—, the bundle ker du is (GxG)-homogeneous
with fiber (h;c @ q;,—) Np. O

Proof of (3). The Killing form can be used to identify (h; c & q;+)Np as the
dual of (h;c @ q;—) Np in gc. O

We are now ready to apply Lemma 2.2.
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4.2. The Vanishing Condition. We will show in this section that
HP(Yp,, Q) (u*Ly)) vanishes for all p < sand 1 < ¢ < mif a < % — %n
when r = n and if a < —3n + 7 when r < n. That is, we obtain the hypoth-
esis of Lemma 2.2 for the resolution of ;~!£, given in (4.2). Once this is

accomplished, we have:

Theorem 4.6. If a < % — %n when r =n and if a < —3n +r when r <
n, then there is an injection from H? (YDi,u_lﬁx) into HS(YDZ., (’)(u*]LX))
whose image is the kernel of the induced map from HS(YDZ.,(’)(M*]LX)) to

H*(Yp,, 0, (1*Ly)) .

To obtain the vanishing condition, we make the following observations.
First, the manifold Mp, is Stein [Wo2, Wo3|. Second, since the map v is
a fibration, it is proper because the inverse image of a point in Mp, under
v is isomorphic to the compact submanifold K/H; N K. Third, the sheaves
QL (u*L,) are coherent since each is the sheaf of sections of a homogeneous
vector bundle. (See Theorem 4.3 and 4.5.)

Now we can apply Theorem 2.8 to HP(Yp,, 2} (1*L,)) to obtain the fol-
lowing theorem.

Theorem 4.7. HP(Yp,, QL (p*Ly)) is isomorphic to H*(Mp,, RUQE(1*Ly))
for all p and q.

Now we will show that H°(Mp,, RVQL(u*Ly)) vanishes for all p < s
and 1 < g < mifa< %—%nwhenr:nandifa< —3n + r when
r < n. Recall that Qf(u*L,) is the sheaf of holomorphic sections of the
(G x G)-homogeneous bundle V§ = A?(ker du)* ® p*LL, on Yp, whose fiber
is A(hic ® qi4) Np] ® Cy.

Before we look at the structure of RUQY(u*L,) we identify the fiber of
v with K/H; N K. Under this identification, the restriction of p*L, to the

fiber of v is the bundle K X (HinK) C, and the restriction of (ker du)* is the

K-homogeneous bundle with fiber A?[(h;c ® g;4) Np] (see Theorem 4.5).

With these identifications, the restriction of Vi to the fiber of v is the
bundle

K X(mg,nr) IN(hic © gi1) Np] @ Cy

which we also denote by V{. With this in mind, a theorem of Bott [B]
implies that RDQY (u*Ly ) is the sheaf of holomorphic sections of the (GXG)-
homogeneous vector bundle HP (K/H; N K,O(V})) on Mp, whose fiber is
HP(K/H; N K,O(V1)).

We summarize this discussion with the following lemma.

Lemma 4.8. The sheaf RV, (u*Ly) is the sheaf of holomorphic sections of

the (GXG)-homogeneous vector bundle on Mp, whose fiber is HP(K/H; N K,

O(VY)) and the action of KX K on the fiber is given by (k1,ks) -w = b w
1
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where { is the map from K/H; N K to itself given by left translation. We
denote RO, (1*Ly) by O[HP (K/H; N K,O(VY))].

We now state the vanishing condition.

Theorem 4.9. HP <K/HZ NK O(V;ﬂ)) vanishes forp < s and1 < qg<m

ifa<%f%n when r=n and if a < —3n +1r when r < n.

The proof of this theorem is an application of Bott-Borel-Weil along
with the following observations. Since the fiber V! of VY is reducible, we
decompose V4! into irreducible subrepresentations Vi,...,V;. Then Bott-
Borel-Weil determines a condition on x such that HP(K/H; N K,O(V;))
vanishes for all p # s. Thus HP(K/H; N K,O(V%)) also vanishes. Since
we do not know the V;’s or their highest weights, we choose x such that
(X+7+px,a) <O0forall @ € A(q; + NEc) and for all weights v of Vi which
guarantees the vanishing of HP(K/H; N K, O(V;)) for all i and for all p # s.
If x is chosen such that a < % — %n when r = n and if a < —3n + r when
r < n, then the vanishing is guaranteed. The calculations for this theorem
were done with A™(Ec) ={ej—ep:1<k<iandk<j<ni+1<j<
E<i+n—ryi+l <k<itn—r<j<n, orit+n—r+1<k<j<n}. Thus
we have obtained the hypothesis for Lemma 2.2 and have proved Theorem
4.6.

4.3. Pushing Down to Mp, by v. Now we will push H*(Yp,, O(n*Ly))
down to Mp, and construct the double fibration transform.

Theorem 4.10. H%(Yp,, O(u*Ly)) is isomorphic to H(Mp,, R5O(p*Ly))
which is isomorphic to HY(Mp,, O[H*(K/H; N K, Ly)]).

Proof. This is Theorem 4.3 and Lemma 4.8 applied to the sheaf O(p*L,).
O

Now we can define the double fibration transform.
Theorem 4.11. Define the map
P: H%D;, Ly) — H%Mp,, REO(1*Ly))

by the composition of the maps in Theorem 4.1, Theorem 4.6, and Theorem

4.10. Then P is the double fibration transform and it is an injection if
1_3

a < 5 —5n whenr =mn and a < —3n +r when r < n. Also, the image

of P is isomorphic to the kernel of a map D from HO(MDZ,, Rf/(’)(u*]Lx)) to
H° (MDi,Rﬁﬁb(u*Lx)) where D s defined in Theorem 2.9.
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4.4. Bott-Borel-Weil applied to H*(K/H; N K,O(L,)). Before we in-
vestigate the map D in the next section, we will further our understanding
of H(Mp,, REO(u*Ly)) As before, a theorem of Bott [B] implies that the
fiber of R (n*Ly) is H¥(K/H; N K, Ly).

We have the following lemma.

Lemma 4.12. For r = n, if a < %(1 — n), the cohomology space

HP(K/H; N K, L,) vanishes whenever p < s and whenever p = s it is the
nonzero irreducible K -representation of highest weight (a+i,...,a+1i; —a—
n+1i,...,—a—mn+ 1) where there are (n — i) entries before the semicolon.

Forr <nifa < —n+1 then HP(K/H; N K, L,) vanishes whenever p < s
and whenever p = s it is a nonzero irreducible K -representation. If r—i < 1,
the highest weight of the representation is

(a+i4+n—r,...;,a+i+n—r;
2i—r,...2i—r|—a—n+i,---—a—n+7i
2i—r,...,2i—r|—a—n+1i,...,—a—n+1i)
where there are (r — i)-entries before the first semicolon, a total of i-entries
before the first vertical bar, (2i — r)-entries between the first vertical bar and
the second semicolon, a total of (n—r)-entries between the vertical bars, and

(r —1i)-entries after the second vertical bar.
If r — 1 > i, the highest weight of the representation is

(a+i+n—r,...;a+i+n—r2i—r...20—r;
at+it+n—r...a+i+n—r2i—r...,20—r
—a—n+i,...,—a—n+1)
where there are i-entries before the first vertical bar, (n + 2i — 2r)-entries
between the first vertical bar and the first semicolon, a total of (n—r)-entries
between the two vertical bars, (r — 2i)-entries between the second vertical bar

and the second semicolon, a total of (r —i)-entries after the second vertical
bar.

The proof is an application of Bott-Borel-Weil.

5. The differential operator.

The double fibration transform realizes the representation H S(Dz-, EX) as the
kernel of the map

(5.1) D : H(Mp,, R;O(u*Ly)) — H°(Mp,, Ri, (1*Ly))

defined in Theorem 4.11 and Theorem 2.9. In this section, we will describe
D more explicitly and show that it is a G-invariant differential operator.
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Recall that HS(Di, EX) is isomorphic to HS(YD“ ,uflﬁx) and that
H¥Yp,,n~'Ly) is the kernel of the map &% : H%(Yp,, O(u*Ly)) —
H*(Yp,, Q}L(u*LX)) where ), is induced from the map 9, : Oy, — QL
Now a Leray spectral sequence argument shows that H S(YDZ., O(M*]LX)) is
isomorphic to H(Mp,, R{O(u*Ly)) and that H*(Yp,, 2}, (1*Ly)) is isomor-
phic to H°(Mp,, RiQi(#*Lx))- The map J,, determines a map between the
spectral sequences and induces the map D in (5.1).

To understand D, we need a better understanding of the map 9, : OYDZ- —
Q}L By definition J, = o 0 where 9 : Oy, — Q%/D is the standard

holomorphic deRahm operator on Yp, and 7 is the quotierllt map from Q%,Di
to Q}L = Q%,Dq_ /M*lei- We note that, in this case, d = 9 since 9 = 0 on the
sheaves of interest. Although we can realize both Q%/D' and Qb as sheaves of
holomorphic sections of a (G x G)-homogeneous bunélles, the map 7 is not
determined by a (G x G)-equivariant bundle map. To understand 7 we will
decompose it into m; oy where o : Q%,Di — V*Q}V[Di and 7y : V*Q}V[Di — Qi
Once we show that 7 is a (GxG)-equivariant map and 7 is equivariant for
the diagonal embedding of G in GxX G, then 7 will be a G—equivariant map.

Let 0o = m3 0 0 and let J; be the induced map from the cohomology
space H¥(Yp,, O(1*Ly)) to H(Yp,, I/*QJIWD (1*Ly)). We will see in Section
5.1 that the corresponding map '

D, : HY(Mp,, R5O(w*Ly)) — HYMp,, R [V*Q}\/[Di (1*Ly)])

is the standard holomorphic d operator on Mp, and that Dy is a (G xG)-
invariant first-order differential operator.
Now 1 induces a map

m  H? (YD“ V*Q}Wpi (,LL*LX)> — H*(Yp,, Q}L(,u*]LX)).
In Section 5.2, we will show that the corresponding map
Dy + HO(Mp,, Byv*Qhy, (L)) — HO(Mp,, RO} (1L )

is a G-invariant zeroth-order differential operator. As D; is G-invariant and
Dy is (G x G)-invariant, the map D = D; o Dy is a G-invariant first-order
differential operator for the diagonal embedding of G in G xG.

5.1. The operator D,. In this section we will define 73 : Q%/D, — V*Q}MD.
and give an explicit realization of the map d, : OYDi — I/*Q}MD. which

induces the map

95« H(Yp,, O(u*Ly)) — H*(Yp,, I/*le\/[Di (L*Ly)).
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We will then see how 95 determines the (GXG)-invariant differential operator
Dy : HYMp,, REO(w*Ly)) — HMp,, RZS,[I/*Q}\/[DZ_ (1*Ly)])

by examining the maps between the Leray spectral sequences for
H%(Yp,, O(p*L,)) and H¥Yp,, V*Q}WD (*Ly)).

The Leray spectral sequence which defines the isomorphism between the
cohomology spaces H¥(Yp,, O(u*Ly)) and HYMp,, R5O(u*Ly)) is realized
from a filtration of the resolution

0 = O(u*Ly) — EX (' Ly) = EXN (W Ly) — -+ = E%(u*Ly) — 0

with respect to the fiber of v. (See, for example, [G].) Using the homoge-
neous structure of £%¢ and p*L,, the Ep-term is given by

(5.2) BP9 = C®(G X G, Cy @ Ne; @ APo) K

where C, is an (H; N K)-representation and where ¢; and 0 represent the
fiber of the antiholomorphic cotangent space of K/H; N K and G/K x G/K
respectively. Since APD is a (K x K)-representation, the following lemma
gives another realization of Ef™Y.

Lemma 5.3.

H,nNK

® NP

(54) BRI =C®(GxG,C®(K,Cy® Alg,) )oK

Proof. The isomorphism is given by sending ¢ to ¢ where ¢(g1,92)(k) =
o(g1k, g2). A straightforward computation shows that ¢ has the correct
invariance property. (]

Then EP! = C> (G x G, HI(K/H; N K,0(Cy)) @ AP0)

and
EPY = [P (G/K x G/K,O[HY(K/H;NK, O(Cx))])
= HP (G/K x G/K, Rﬁo(u*]hx)) :

Now we turn our attention to the Leray spectral sequence for
the cohomology space H* (YD,-, V*Q}WDi (,u*]LX)). The Ep-term of the Leray
spectral sequence which defines the isomorphism between the spaces
He (YDi,y*Q}\/fDi (H*LX)> and H° (MDi,Rf,[V*QJIV[Di (,u*ILX)]) is given by

(5.5) EPY = C®(GxG,Cy @ Ao @ AP0 @ (py @ po)) THOE

where here we are identifying (gc/(bc ® px))* with px.
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Lemma 5.6.

H,NK

(5.7) Eph =C> <G xG, [C®(K,Cy ® Ne; @ py) ® AP

K KxK
& [C®(K,Cy @ Ng;) ®(p®APa)]> :

Proof. As in Lemma 5.3, we see that (5.5) is isomorphic to
(5.8) C®(GxG,C®(KxK,Cy @ Ae; @ (py @ p_))HOH
Since p_ and p; are K-representations, the inside of (5.8) is isomorphic to
C®(ExK, (Cy o n'e) © )T e (py 0 Do (1op-)
which is isomorphic to
C™(K,Cy ® N¢;) ®((r+@)@®(1@p)).
The lemma follows from splitting up the direct sum and identifying

C®(K,C, ® A%) "™ @ (py ®1)

© AP) N

H,NK

with
C®(K,Cy @ Ale; @ py ) 0F.

O

Now that we have explicit descriptions of the Leray spectral sequences, we
look at the map 7o and 79 00 in more detail so we can define a map between
the spectral sequences. To define the map o, we observe that V*Ql is

the sheaf of holomorphic sections of the (GxG)-homogeneous bundle on YD
with fiber

(5.9) <g(c/(ﬂc ®py) @ gC/(E(C D p—)>*

and Ql _ is the sheaf of holomorphic sections of the (G x G)-homogeneous
bundle Wlth fiber

(5.10) (g(c/[(hz‘,tc ®©q;,-)Nec]dpy P g(c/(?@ S p_))* '

The natural map from (5.9) to (5.10) induces the (G x G)—equivariant map
Ql o V*Ql Mp, . Then 0y = w3 0 0 is a map from OYD to V*Ql
In the following lemma, we give an explicit formula for Oy : OYD —
*Q}WDi which will lead to a formula for 9 : Ef? — Egj%

Lemma 5.11. The map 05 : OYD,L- — V*Q}VID‘ s given by

(5.12) D)= X))y ®X o+ Y r2(Xpp®X_g

aep— BEP+
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where 1 represents the corresponding element of O(GXG)(HZ'”K)XK. Here

(r1 (X)) (91, 92) =

= (g1 exptXa, g2)

t=0

and

(ra(X5)0) (g1, 92) = &

pr Y(g1, g2 exptXp).

t=0
Proof. The manifolds G/H; N K and G/K are open orbits in the general-
ized flags G¢/(H;cQi,— N Kc)Py and Gc/KcP- respectively. Griffiths and
Schmid’s [GS] formula for the standard 9 operator implies that the standard
0 operator from OYDi to Q%,Di is given by

a("l}) = Z Tl(Xa)w ®X_ o+ Z TQ(Xﬁ)"vb ® X—ﬁ'
a€c(qs,+NEc)Bp— BEP+
The lemma follows from the fact that 0y = 75 0 0. O

The map 95 : (’)yDi — V*Q}\/[Di determines a map between the resolutions
E% Oy, (1*Ly) and E% ® V*Q}V[D_(,u*ﬁx) which respects the filtration
along the fibers of v. This map of resolutions induces a map between the
associated Leray spectral sequences (see, for example, [G]). Let 02 be the
induced map from EJ? to E, (i.e., from (5.2) to (5.5)). Thus the formula
for 0p is the same as the formula for 0s.

Lemma 5.13. The map o from (5.4) to (5.7) is given by (5.12).

Proof. The isomorphism between (5.2) and (5.4) and the one between (5.5)
and (5.7) as defined in Lemma 5.3 and 5.6 respectively imply that

(D2,00) (g1, 92) (k) = Z (r1(Xa)®) (g1, 92) (k) ® Ad(k™1) X _q

aEp_
+ Z (r2( X)) (91, 92) (k) ® X_p.
Bep+
Since O (K, C, ® Al¢;@p)7i"K is isomorphic to C* (K, (CX®/\‘1cZ-)H’ﬂK®
p, the lemma follows. 0

Thus the maps s and g1 : EP? — E{’:X/f where
EPT = C®(GxG,[(HUK/HiNK,O(Ly)) @py) @ ANPD| @
[HY(K/H; N K,0(Ly)) ® (p— @ AP2)]) "

are each the standard holomorphic d operator on Mp,. Since both spec-
tral sequences collapse at the Eo—term, the map dso : E5Y — EPY is the
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zero map except when p = 0 and ¢ = s. In that case, it is the standard
holomorphic d operator on Mp,

Dy - HYMp,, RSO(u"Ly)) — H(Mp,, Ry[v*Qy, (17Ly)])

and it is a (G x G)-equivariant map.

5.2. The operator D;. In this section, we define 7y : V*Q}\JD, — QL and
then see how this determines the operator

Dy« H(Mp,, Rl Ry, (17 Ly)]) — HO(Mp,, RSQh (4 Ly)).

To define the map m; we observe that the restriction of D*Q}WX_ and Q}l to

Yp, is isomorphic to V*QJI\/[D‘ and Q}L respectively. Because the embedding

of Yp, in Yx, is G-equivariant, these two isomorphisms are G-equivariant.
Now D*Q}WX_ is the sheaf of holomorphic sections of the G'c-homogeneous

bundle with fiber

(5.14) (g%c> *

and Q%L is the sheaf of holomorphic sections of the G¢-homogeneous bundle
with fiber

(5.15) <(hi’c @ qi’+)/(f)i,<c © qi+) N EC) '

Then 71 is the Ge—equivariant map induced by the natural restriction map
from (5.14) to (5.15) and 7 = ﬁl’”*Q}VIDi is the G-equivariant map from
V*Q}WDi to Q}L

Asin Section 5.1, the Leray spectral sequences for HS(YDZ., V*Q}pri (M*Lx))
and HS(YD“ QL(M*LX)) together with the map m : V*Q}WD,L- — Q}L determine
a map

Dy : HMp,, RIS,[I/*Q}V[DZ_ (WLy)]) — H(Mp,, B3, (1 Ly))-

In this case, this process does not yield an explicit description of D;
because we do not have an explicit description of 71 in terms of the homoge-
neous vector bundles for I/*Q}V[D‘ and QL To resolve this difficulty we use the

fact that 7y is the restriction of the map 71 to I/*Q}V[D‘. Since 71 can be de-
scribed  explicitly we use the Leray spectral sequences for
HS(YXI.,IJ*Q}V[X(,&*LX)) and HS(YXi,Q%L(,L]*LX)) to determine the map D;
from HO(My,, Ry[7*Q, (L)) to HY(Mx,, REQ(i*Lg)). Then we will
show that 51 restricts to Dy.
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Using the homogeneous structure of 7*Q}, we see that the Ep-term of
X
the Leray spectral sequence for H* (YX“ D*Q}Wxi (,&*]L;()) is given by

EpY, = 0%(Ge, Cy ® Ne; @ APd @ Fp)Tiedu-nie

where Fy = (gc/tc)*. Now EP4 is isomorphic to
C®(Ge, C=(Ke, Cy @ Ne; @ Fy)HicQi-NKe g arg) e

by sending ¢ to ¢ where ¢(g)(k) = p(gk). Likewise the Ep—term of the
Leray spectral sequence for H® (YXN Q%L(M*LX)) is given by

Ep? = C®(Ge, Cx ® Ale; @ APO @ Fy) Tic@i-He
where 3 = ((hic ® q;—)/(hic ®q;—) NEc)” and E’g:g is isomorphic to
c>® (Gc, COO(Kc, C)z & /\in & 173)Hi’CQ"L”mK(C ® /\pD)KC.
Since the homogeneous structures of ﬂ*Q]le, and Q,lz are compatible, we

can give an explicit realization of the map 71 : Eg 1 — E&Z induced by 1.
Let r be the map from F; to F3 given by restriction. Then (71,0(¢)) (9)(k) =

m(¢(g)(k))-

For the Fi-terms we have that
(5.16)  EPY, = C®(Ge, HY(Kc/H;cQi— N Kc, O(Faz)) ® AP0)
and
(5.17)  EP? = 0%(Ge, H(Kc/HicQi— N Kc, O(Fs5)) @ AP0) "
where F; ¢ is the homogeneous bundle on K¢ /H; cQ;— N K¢ with fiber F; ®
CXSince K/H;NK = Kc/(H; cQi,— N Kc) we can identify the cohomology
space in (5.16) with

(5.18) HYK/H; N K,O(Fsy))
and the cohomology space in (5.17) with
(5.19) HYK/H;NK,O(Fs,))

where FF; , is the homogeneous bundle on K/H; N K with fiber F; ® C,.

The map 710 induces a map from Ef:g/[ to Ef:g which is determined by
the map from (5.18) to (5.19). To determine this map for ¢ = s, we let
Fi = (gc/(hic + 9i— + tc))".

Lemma 5.20.
(5.21) 0= L F -5 F—0

s a short exact sequence where j is the natural inclusion map.
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Proof. For vector spaces W C V the dual space (V/W)* can be identified
with the set of A\ € V* such that Al = 0. Since Fj can also be written as
((hic + gi,— + Ec)/bc)” the lemma follows. O

Now (5.21) induces a short exact sequence in cohomology.
Lemma 5.22.
0— H*(K/H; N K,O(Fyy)) “— H*(K/H; N K, O(Fa.))

2 H(K/H; N K,O(Fs,)) — 0

is an exact sequence for r =n if a < % — %n and forr <mnifa < —-3n+r.

Proof. The short exact sequence (5.21) induces the following short exact
sequence of sheaves

(5.23) 0= O(F1,) —1 O(Fay) —— O(Fs,y) — 0

since j and r are equivariant for H; N K and ¢; - N &c. The sequence
(5.23) induces a long exact sequence in cohomology. Since the dimension of
K/H; N K is s, cohomology vanishes in degree greater than s. The space
HYK/H; N K,O(F3,)) = 0 by Theorem 4.9 and the lemma follows. [

We will now determine r* explicitly.
Lemma 5.24. r* is a linear projection map.

Proof. Since K is compact, representations of K are semisimple so the short
exact sequence splits. Thus, H*(K/H; N K,O(F;,)) has a complement in
H*(K/H;NK,O(F2,)) which must map isomorphically onto
H*(K/H; N K,O(Fs,)). Thus, r* is a linear projection map. O

In  Appendix , we  decompose the  K-representations
H*(K/H;NK,OF2,)) and H*(K/H; N K,O(F3,)) and determine r* ex-
plicitly for the case when r = n.

The map from E, — EY’, is given by sending ¢ to r* o ¢ where
(r* o ©)(g)(k) = r*(¢(g)(k)). Thus the map Dy from Eg’, — Ey” is the
restriction of the map from ngw — E?Z to holomorphic sections of the
bundle H*(K/H; N K,O(F,)) and D, is a Ge-invariant zeroth-order dif-
ferential operator. Since Mp, is open in My,, the map D; restricts to a
differential operator on Mp,. Now

(5.25) R[5y, (L] ~ Rylv Qy, (17Ly)]

so Dy restricted to Mp, is the map from H° (MDi’RlS/[V*Q}WD,(IU‘*LX)]>
to HY (MDmRig,lL(M*LX)) which is given by sending ¢ to r* o . Since
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71| vy, = T this map is D;. The G-equivariance of the map 7 implies
D;
that Dy is also G-invariant. Thus we have proven the following theorem.

Theorem 5.26.
(1) The map

Dy : HY (MDZ., R[04, (M*LX)]) — H(Mp,, R,QL(1"Ly))

is a G-equivariant zeroth—order differential operator.
(2) The map

D: HO(MDz’a RIS/O(IU*LX)) — H° (MDmRiQ/IL('U’*LX))

is given by D = D10Ds and D is a G-equivariant first-order differential
operator.

Appendix A.

The main body of the paper considers the double fibration transform for a
family of representations of Sp(n, R) which are realized in cohomology with
values in a line bundle. The outline for constructing the double fibration
transform, as given in Section 2, is valid if we replace the line bundle L
with a finite dimensional vector bundle V. In this appendix, we consider the
details of the construction when the line bundle is replaced with a vector
bundle.

Let F) be a finite-dimensional, irreducible representation of H; with high-
est weight A and ) the corresponding homogeneous vector bundle on D;.

When r =n and A = (a1, ,a; | aj41,--+ ,ay), then X is a highest weight
if

(A1) a; > - 201 2 —Qip] = 0 > —0p.

Whenr <nand A = (a1, -+ ,a; | @it1,"* , QGitn—r | Gitn—rt1, - ,an), then
A is a highest weight if

(A2) A 2 -+ 201 2 —Qjgp—rtl = 2 —0p

and

(A.3) Ajt1 > -+ 2> Qjpp—r > 0.

The representation H*(D;, O(F))) is infinite-dimensional, non-zero, and
irreducible [Wg] under the following circumstances: When r = n, in addi-
tion to A.1, we require that —a,, > n and when r < n, in addition to A.2
and A.3, we require that —a,, > n and a;4+1 + a, < —2n + r. Unlike the line
bundle case, these representations are not unitarizable.

Now we consider the construction of the double fibration transform. The
first step, using Buchdahl’s theorem [Bu] to identify H*(D;, O(F))) with
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H? (YDZ., /flC’)(IF,\)), remains valid because Buchdahl’s theorem, which ap-
plies to vector bundles, requires only that the fiber of y be contractible,
which we already have.

The second step, embedding H*(Yp,, u 'O(Fy)) in H*(Yp,, O(1*Fy)),
is more complicated. As in Theorem 4.9, this requires a condition on A
which guarantees that HP(K/H; N K,O(V? ® Fy)) vanish for all p < s and
all 1 < ¢ < m. Recall that V¢ is the bundle A%(kerd,)* whose fiber is
V4 = N(bic ® qi+) Np]. When we consider V¢ ® Fy as an K/H; N K
representation, we see the main difference from the line bundle case. In
the line bundle case, when the representation C, is restricted to H; N K,
it remains irreducible. This allows us to know explicitly the form of the
highest weights of the irreducible components of V¢ ® C,, (see the discussion
after Theorem 4.9) and to compute a specific condition on x to guarantee
vanishing.

Such is not the case for vector bundles. The representation F), when

k
restricted to H; N K, may be reducible. If we decompose F) as F) = @ F),
=1

with F); an irreducible representation of H; N K with highest weight Aj;,
we can say something about the \;’s. Since H; N K = U(i) x U(r — i) x
Sp(n — r,R) is reductive, the highest weight A; splits into two pieces: A
highest weight )\9 for the semisimple piece and a character x; on the center.
Similarly, A itself is of the form A = x + X when A is a highest weight of
H; = U(i,r —1i) x Sp(n — r,R). Since the one-dimensional representation
remains irreducible under restriction, we have that x; = x for all j where
xX=(-a,---,—a|0,---,0]|a,---,a). So, each A; is of the form X—l—)\;.
Now we replace x with x + )\;- in the proof of Theorem 4.9. Then let

C= mjax{</\;,en — el>}
D= mpx{ (e}

with a1 = ej41 — €1, 0 = e, — €;,3 = €y — €;4n—r. Then the vanishing
condition holds for r = n when a < —3n + 1 — C and for » < n when
a<—=3n+r—D.

The third step, pushing H*(Yp,, O(u*Fy)) down to H(Mp,, REO(u*Fy)),
is unaffected by changing from a line bundle to a vector bundle.

Likewise, the differential operator is not affected by changing from a line
bundle to a vector bundle. Although, as in the line bundle case, when
r < n, it is difficult to decompose the representations in Lemma 5.22 to give
an explicit description of the projection operator r* as was done when r» = n
in Appendix B.

and
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Appendix B.

For the case when r = n, we will decompose the spaces
H*(K/H;NK,O(Fs,)) and H*(K/H; N K,O(F3,)) and determine the
map r* : HY(K/H;NK,O(Fy,)) — H*(K/H;NK,O(Fs3,)) in Lemma
5.22 explicitly. Since K is compact, each of H*(K/H; N K,O(Fs,)) and
H*(K/H; N K,O(F3,)) can be decomposed into a direct sum of irreducible
K-representations.

First, we decompose H*(K/H; N K,O(F3,)) . We cannot apply Bott-Borel-
Weil directly to H*(K/H; N K,O(F3,)) since ((hc®aqi—)/(hc B qi—)Nec)”
= F3 is not an irreducible (g;— N fc)-representation. Although we can
decompose F3 into a direct sum of irreducible (H; N K)-representations, in
order to decompose O(F3 ) accordingly the decomposition of V' must also
be as (g;,— N €c)-modules (see [TW]). If we use the killing form to identify
F3 with (h;c @ ¢4,+) NP, then on h; c Np the action of q; — N¥c is trivial and
on ¢; + N p,the action is by ad. Since we cannot find a decomposition of F3
which respects the action of q; — N€c, we will use a composition series for F3
to determine H*(K/H; N K,O(Fs3,)) as indicated in the following theorem.

Theorem B.1. Let V' be a representation of q; - N¥tc and let 0 = Vp C
Vi Vo C--- CVy =V bea composition series for V. Let W; denote
Vi/Vi—1 and let V and W; be the associated homogeneous vector bundles on
K/H;,NK. Then there exists a spectral sequence with EP? =
HPT(K/H; N K,O(Wy_p)) which abuts to H*(K/H; N K,O(V)).

Proof. Since the representations are stable under the action of the antiholo-
morphic tangent space q; — N€c, the filtration of V' induces a filtration in the
Dolbeault complex. By the proposition on page 440 of [GH] it follows that
there exists a spectral sequence with EY"? = HPT(K/H, N K,O(Wy_p))

which abuts to H*(K/H; N K, O(V)). O
Corollary B.2. If HP(K/HZ-HK,O(W]-)) = 0 for all p # py and all j,
N
then HP(K/H; N K,O(V)) = % HP(K/H; N K,O(W;)).
j=1

Proof. The spectral sequence collapses in Theorem B.1 giving the conclusion.
O

Once we find an appropriate decomposition series of F3 we can use Bott-
Borel-Weil to determine when HP(K/H; N K,O(W; ® L,)) vanishes for all
j and for all p # s. Choose the following elements for the composition series:

Fs=Vy=(hic®ai+)Np Vo= (hic @ di+) NP+
Vs =[(hic ®di+) Np+]® (hicNp-) Vi=hicNps.
Then each V; is a representation for H; N K and q; — N €c where the action
of q; — N on Vj is the restriction of its action on V. Let W; = V;/V;_;.
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Then the successive quotients are

Wyqi Np- Wa >~ qi+ Npt

Wi ~bhicNp- Wi~ bicNpy.
Each Wj is an irreducible (H; N K)-representation (since each is the realiza-
tion of the holomorphic or anti-holomorphic tangent space of some symmet-

ric space) and each W; is a (q;— N €c)-representation. The induced action
of g; — N€c on W; is trivial. Let A\; denote the highest weight of ;. Then

)\4 — —261 )\2 = 2671
A3 = —e1 — €11 Al =¢€; +ep.

Lemma B.3. If a < —%(n + 1) then HP(K/H;NK,O(W;®L,)) = 0

for all j whenever p < s and whenever p = s it is an irreducible K-
representation with highest weight & + )\;. Here £ = (a+1i,...,a+1; —a—
n+i,...,—a—mn+1i) with (n —1i) entries before the semicolon and

)‘il = _2€n—i+1 )\/2 = 26n_7;

)\g = —€] — en—i+1 )\/1 = €np—i + €n.

The proof is an application of Bott-Borel-Weil.
Thus we have proven the following theorem.

Theorem B.4. Ifa < —3(n+1), then
4
HY(K/H;,NK,O(F3,)) = & E,,

where Er; is the irreducible K -representation with highest weight 7; = £+ )\;
where £ and )\9 are given in Lemma B.3.

Now we will decompose H*(K/H; N K,O(F3 )).

Theorem B.5. Ifa < —3(n+1), then
6
H*(K/H;NK,O(F2y)) = @ Er

where Er; is the irreducible K -representation of highest weight 7; = & + )\9.
Here { and X; are given in Lemma B.3 for j = 1,...,4. Let X\j = 2e;, and
= —2¢;.
6 1
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Proof. First we identify F» = (gc/tc)* with p. The decomposition p @p_ of
p respects the action of H; N K and q; - Néc. Thus H*(K/H; N K,O(Fa,y))
decomposes into the direct sum of the K-representations

HYK/H,NK,O[K xp,nx (Cy®p4)])  and

HYK/H;NK,O[K Xy (Cy@p_)]).
Since p4 and p_ are indecomposable as (q; — N £c)-representations, the co-
homology spaces will be computed using a composition series.

Now Us =py,Us = py N (hic © qi,—) and Up = p; Ng,,— is a composition
series for py and Z3 =p_,Zy =p_N(hic P qi—) and Z; =p_Ngq;_ is a
composition series for p_. Lemma B.3 implies that
(B.6) HP(K/H; N K,O(K xg,nx (Cy @ W))) =0
for p < s where W = Us /Uy, Uy /Uy, Z3/Zs, and Z3/Zy. We will determine
the condition necessary for (B.6) to hold when W is U; or Z;.

Let A5 = 2¢; and A\g = —2¢;4+1. Then A5 (respectively Ag) is the highest
weight of the irreducible K-representation U; (respectively Z7). As in the
proof of Lemma B.3, to show (B.6) it suffices to show that (x+pi+A;, en—e1)
< 0 for j =5,6. Since (x + pr + Aj,en —e1) = 2a+n — 1 we see that (B.6)
is true when a < —1(n+1). Thus Theorem B.1 and Corollary B.2 together
imply that H¥(K/H; N K,O[K xpg,nk (Cy @ p4)]) = Er, ® Er, ® Er, and
that H(K/H; N K,O[K xp,nk (Cy ®p_)]) = Er, ® Er, ® B O

We will now determine r* explicitly.
Lemma B.7. r* is a linear projection map.
Proof. The map r* is onto by Lemma 5.22. Since H*(K/H; N K,O(F3,)) =
j%lETj and H*(K/H; N K,0(F2y)) = ]GEET]. and each Er, is an irreducible

6 4
K-representation, r* is the natural projection map from & E;, to & Er,.
=1 j=1

j:
(]
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REAL COBOUNDARIES FOR MINIMAL CANTOR
SYSTEMS

NICHOLAS S. ORMES

In this paper we investigate the role of real-valued cobound-
aries for classifying of minimal homeomorphisms of the Can-
tor set. This work follows the work of Giordano, Putnam, and
Skau who showed that one can use integer-valued cobound-
aries to characterize minimal homeomorphisms up to strong
orbit equivalence. First, we prove a rigidity result. We show
that there is an orbit equivalence between minimal Cantor
systems which preserves real-valued coboundaries if and only
if the systems are flip conjugate. Second, we investigate a real
analogue of the dynamical unital ordered cohomology group
studied by Giordano, Putnam and Skau. We show that, in
general, isomorphism of our unital ordered vector space de-
termines a weaker relation than strong orbit equivalence and
we characterize this relation in a certain finite dimensional
case. Finally, we consider isomorphisms of this vector space
which preserve the cohomology subgroup. We show that such
an isomorphism gives rise to a strictly stronger relation than
strong orbit equivalence. In particular, it determines topo-
logical discrete spectrum, but does not determine systems up
to flip conjugacy.

1. Introduction.

In [GPS95], Giordano, Putnam and Skau used C*-algebraic invariants to
characterize minimal homeomorphisms of the Cantor set up to various no-
tions of orbit equivalence. For a minimal homeomorphism T : X — X of
the Cantor set X, their key invariant reduces to the group of continuous
integer-valued functions f : X — 7Z modulo the coboundaries (functions of
the form f— foT), along with a positive cone and order unit. In this paper,
we examine real-valued coboundaries and look at analogues of their results
from three perspectives.

Let S and T be minimal homeomorphisms of the Cantor set. In the
main result of Section 2 (Theorem 2.10) we prove that if S and T" are orbit
equivalent by a homeomorphism which maps the set of real S-coboundaries
bijectively onto the set of real T-coboundaries then S is conjugate to T" or
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T-! (S and T are flip conjugate). In fact, we show that any homeomor-
phism from the Cantor set to itself which identifies real coboundaries of S
and 7" must be an orbit equivalence with a bounded jump function (The-
orem 2.11). In contrast, Giordano, Putnam and Skau’s work shows that
an orbit equivalence induces a bijection between the sets of integer-valued
coboundaries if and only if S and T are strongly orbit equivalent. Results
in [BH94, Orm97, Sug, Sug98| underscore the vast difference between
strong orbit equivalence and flip conjugacy for this class of systems. More-
over, an example of Boyle shows that a homeomorphism identifying integer
coboundaries need not be a strong orbit equivalence. In appendix A, we
present this unpublished example of Boyle in which S and T have the same
integer coboundaries, and have the property that 7'(x) and 7'(S™x) are not
in the same S-orbit for all z and all n # 0.

In Section 3, we define and investigate the natural analogue of Giordano,
Putnam and Skau’s unital ordered group: The vector space of continuous
real-valued functions modulo the real coboundaries along with a positive
cone and order unit. We show (Theorem 3.10) if the cardinality of the
set of ergodic invariant Borel probabilities is finite then this cardinal com-
pletely determines our unital ordered vector space Ggr(T"). Using a result of
Dougherty, Jackson, and Kechris, we see that when the set of ergodic 7-
invariant Borel probabilities is finite, our unital ordered vector space char-
acterizes Borel orbit equivalence.

In Section 4, we study the dynamical properties which are determined if
we consider only isomorphisms of the real unital ordered vector space Gr(T')
which preserve the subgroups of integer-valued functions Gz(T'). We present
results which show that there is some more dynamical information in the
pair (Gr(T'),Gz(T)) than in Gz(T') alone but not enough to determine 7" up
to flip conjugacy. For example, we show that the isomorphism of the pair
(Gr(T),Gz(T)) determines the topological discrete spectrum of 7' (Theo-
rem 4.4). The unital ordered group Gz (7T') already determines the rational
discrete spectrum, but does not, in general, determine the irrational spec-
trum (see [Orm97]). We show (Theorem 4.6) that for a minimal Cantor
system (X,T") with Gz(T) C Q the pair (Gr(T'),Gz(T)) carries no more dy-
namical information than the unital ordered group Gz(T') alone. This shows
that one cannot determine flip conjugacy using (Gr(T),Gz(T)). Taking the
previous two results together, we obtain a new result (Corollary 4.7) about
minimal Cantor systems and the unital ordered group Gz(T). Namely, if
Gz(T) C Q then T cannot have irrational spectrum.

I thank Mike Boyle for his helpful comments and for allowing me to include
his example Appendix A. I thank Bernard Host for allowing me to include
his proof of Theorem 2.6.
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2. The Same Set of Real Coboundaries.

Throughout this paper we will consider topological dynamical systems
(X,T) where T : X — X is a homeomorphism of X a compact metric
space. In particular, we will consider minimal Cantor systems. A homeo-
morphism T : X — X is called minimal if for all x € X the T-orbit of z,
{T™z : n € Z}, is dense. We will call the pair (X,T) a minimal Cantor
system if X is a Cantor set and 7" : X — X is minimal. The main prop-
erties of minimality that we will make use of are the following: There are
no periodic points in a minimal system and for any open set U C X, there
is an integer r such that for all z € X, one of {x,T(z),...,T"(x)} is in U.
Minimal Cantor systems include the odometer systems below.

Example (Odometer systems). Let {d;} be an infinite sequence of positive
integers. Let X be the space of infinite sequences x = x1x2x3 ... such that
0 < z; < d; for all i. We put the discrete topology on the sets {0,1,... ,d; —
1} and the infinite product of this discrete topology on X. In this way, X
becomes a Cantor set. The topology on X is equivalent to the one generated
by the metric d where d(z,y) = 27" if ; = y; for all 0 < ¢ < n and
Tn+1 7 Yntl-

Define T : X — X by adding one with right carry. In other words, for
x € X, let n be the smallest positive integer such that =, < (d, —1). If
such an n exists, define T'(x) to be the sequence [T'(z)]; = 0 for i < n,
[T(x)]n = zn+1 and [T(2)]; = z; for i > n. If x,, = (d,, — 1) for all n, define
T'(x) to be the sequence [T'(z)],, = 0 for all n. The dynamical system (X, T)
is minimal since the T-orbit of every point sees all the words of length n in
the first n coordinates. The odometer system where d; = 2 for all 7 is called
the dyadic adding machine.

Let (X, S) and (Y, T) be minimal Cantor systems. The following are some
of the different equivalences we will consider. Of course, the notions make
sense for more general topological dynamical systems.

Definition 2.1 (conjugacy). Wesay (X, S) and (Y,T') are conjugate if there
is a homeomorphism h : X — Y such that Va € X, hS(z) = Th(z).
Definition 2.2 (flip conjugacy). We say (X,S) and (Y,T) are flip conju-
gate if S is conjugate to T or S is conjugate to T~!.
Definition 2.3 (orbit equivalence). We say (X,S) and (Y,T) are orbit
equivalent if there is a homeomorphism h : X — Y and functions m : X — Z
and n : X — Z such that

Vo € X, hS(z) = T™® h(z) and hS™®) (z) = Th(z).

In other words, (X, S) and (Y, T') are conjugate to systems (Z, S") and (Z,T")
where

vz e Z, {($)"(z) : neZ}={(T) () : neZ}
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The theory of orbit equivalence has a long history in the study of measure-
theoretic dynamical systems [KR95, KW91, Kri69, Kri76, Rud85]. It
was this work which motivated the study of orbit equivalence in topological
systems.

As it turns out, for a given topological orbit equivalence, the continuity
properties of the “jump functions” m : X — Z and n : X — 7Z can give
information about the extent to which one system is determined by the other.
In particular, for minimal Cantor systems Boyle [Boy83| proved that the
jump functions are bounded if and only if they are continuous, and gave the
following characterization (generalized in [BT98]) of orbit equivalence with
a bounded jump functions.

Theorem 2.4 (Boyle). Suppose (X, S) and (X,T') are minimal Cantor sys-
tems with the same orbits. If there is a bounded function m : X — 7Z such
that S(x) = T™®)(z) for all x then S and T are flip conjugate.

In [GPS95], Giordano, Putnam and Skau used C*-algebraic invariants
to characterize orbit equivalence for minimal Cantor systems, and to give
information about the continuity /boundedness properties of the associated
jump functions one can achieve. One important notion from their work is
the notion of strong orbit equivalence.

Definition 2.5 (strong orbit equivalence). Two minimal Cantor systems
(X,S) and (Y,T) are strongly orbit equivalent if they are orbit equivalent
by a map h : X — Y with jump functions m : X — Z and n : X — Z such
that m and n have at most one point of discontinuity each.

We will say more about strong orbit equivalence in Section 3. For now,
we simply point out that strong orbit equivalence is a much weaker relation
than flip conjugacy. For example, strongly orbit equivalent systems can
have arbitrarily large topological entropy differences and when attached with
an ergodic invariant measure, can give rise to vastly different measurable
structures (see [BH94, Orm97, Sug, Sug98]).

For a minimal Cantor systems (X,7T'), Giordano, Putnam and Skau’s
characterization up to orbit equivalence relies upon looking at integer-valued
continuous functions of the form f — f7T" (from here on we use f7T to denote
foT). We will call a continuous function f : X — R a real T-coboundary if
there exists a continuous function g : X — R such that f(z) = g(z) — g(Tx)
for all z € X. Similarly, we will call a function f : X — Z an integer T'-
coboundary if there is a continuous g : X — Z such that f(z) = g(z) —g(Tx)
for all z € X. The following characterization of coboundaries is well known.
With kind permission, we present Bernard Host’s proof of this result [Hos].

Theorem 2.6. Let (X, T) be a Cantor minimal system. A continuous func-
tion f: X — Ris a real T-coboundary if and only if sums of the form
Yoo f(T'x) are uniformly bounded over n > 1 and xz € X.
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Proof. If f = g — gT for some g then Y1, f(T'z) = g(z) — g(T"x) thus
sums of this form are uniformly bounded.
For the other direction, let (X,T") be a minimal system, and f a contin-
uous real-valued function on X. Define
S f(T) if n >0
™)y =<0 ifn=0
- f(Ti) ifn <.

Assume that C is a constant such that
Ve e X,VneN, |fW(z) <C.
As for all z € X we have fO(z) = 0and fC(z) = —fT(z) for n > 0
we get:
Ve e X,VneZ, f™(z)<C.
We write:

F(z) = sup f™(2); Osc(z) = limsup F(y) — liminf F(y).

neL y—x y—=T
For every x € X we have f(z) = F(x) — F(Tx) and for all n, we have
f™(z) = F(z) — F(Tz). We have only to prove that the function F(z) is
continuous, i.e., that the function Osc(z) is identically 0.
We choose some € > 0 and define:

K={zreX : F(x) <e}.
By construction, for z € X there is an n € Z with
Tz € K <= f™(2) > F(z) —e.
Thus, by definition of F(x), for every x € X there exists n € Z with T"z €
K, and
U1K =X
neL
But K is closed. Thus, by Baire’s Theorem, the interior U of K is not empty
and, by minimality,
Jrv=x
nez
For x € T"U we have (" (z) < F(z) < f™(z) + € thus, by continuity
of £, Osc(z) < e.
Therefore, Osc(z) < e for all z € X. O

We will look more closely at Giordano, Putnam and Skau’s results in
Sections 3 and 4. For the remainder of this section, however, we concentrate
on one aspect of their results.
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Theorem 2.7 (Giordano, Putnam, Skau). Suppose (X,S) and (Y,T) are
minimal Cantor systems. There is an orbit equivalence h : X — Y which
induces a bijection from the set of integer S-coboundaries to the set of integer
T-coboundaries if and only if S and T are strongly orbit equivalent.

In Theorem 2.10, we prove an analogous result, there is an orbit equiva-
lence which respects real coboundaries if and only if S and T are flip con-
jugate. To prove the difficult direction of Theorem 2.10, we first note the
following.

Lemma 2.8. Let (X,S) and (X,T) be minimal Cantor systems with the
same orbits. For all n, let E, = {x : S(x) = T™(x)}. Then one of the
following holds.

1. X = U\n\<N E,, for some N,
2. there is an infinite sequence of sets Ey, with |ng| < |ng41| such that
E,, contains a clopen set for all k.

Proof. By the continuity of S and T, the set E, is closed for all n. Let Fiv
denote the closed set Fy = UInISN E,.

Fix N and assume that X — Fy is nonempty. Then the sets F,, where
In| > N form a countable closed cover of this open set. By the the Baire
Category Theorem, one element of this cover must contain an open set,
and therefore a clopen set. If condition 1 does not hold then we obtain a
sequence of sets as in condition 2. O

From Boyle’s result (Theorem 2.4) case 1 implies that S and T are flip
conjugate. So to prove Theorem 2.10, it will suffice to show that in case 2,
S and T do not have the same real coboundaries. For the remainder of the
section, let (X,S) and (X,T) be minimal Cantor systems with the same
orbits, and let E,, = {z : S(z) =T"(x)} for all n # 0.

Suppose there is an infinite sequence of sets E,, with |ng| < |ng41] such
that E,, contains a clopen set for all k. Then by passing to a monotone
increasing or decreasing subsequence of n;’s and possibly exchanging T for
T~ we have the hypothesis of the following.

Lemma 2.9. Suppose there exists an infinite increasing sequence of posi-
tive integers n; < ng < ng < --- and nonempty clopen sets Cy such that
S(x) = T (x) for all x € Cy. Then there exists a continuous real-valued
S-coboundary which is not a continuous real-valued T-coboundary.

Proof. After passing to a subsequence of the Cf, we will define f as

o0
flx) = (1/k)1y (=)
k=1
where for all k, Uy, is a clopen subset of C}, and 1y, is the indicator function
of Ug. The function f(z) will be continuous as long as there is a point
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2o & Upen Uk such that if zj is a sequence of points with z; € Uj then
hmkzaoo T = XQ-

To get that f — fS~! is not a T-coboundary, we will choose the Uy such
that for z € U, the T-orbit of = enters each of the sets U,,U,,_1,...,U; at
least once before it enters any set of the form SUj for k € N. In this case,
for all x € U,, we will be able to find an integer m such that

m m
(f(Ti2) - f571(T2) = S S(/k) (10(T') — 1su, (T'2))

1=0 =0 keN

= > > (1/k)1y,(T')
i=0 keN

> >/
k=1

> log(n).

If the function f — fS~! were a T-coboundary then by Theorem 2.6 there
would be a uniform bound on the functions > 1" (f — fS~1)T"

To construct the function f(x) it suffices to construct a sequence of leap-
frogging sets {Uy}. Let By(z) denote the T-orbit block B, (z) = {z,T(x),
..., T™(z)}. We will call a sequence of pairwise disjoint sets {Uy }ren leap-
frogging for the pair (S,T) if

1) there exists an increasing sequence of integers {ny} such that S(z) =

T (x) for all z € Uy,

2) for all z € Uj and y € Uy with 1 < j < k, the set By, (z) N By, (y) is

either empty or equal to By, (),

3) for all x € Uy, the set By, () N Ug_1 is nonempty.

We call the sets leap-frogging because we imagine the T-orbit of a point
laid out along a number line. If a point is in Uy, the S-image of that point
leaps forward in the T-orbit.

ns

n2

A~

]

Us U, U SU U, SUL SU,
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Condition 3 ensures that for j < k, the S-image of a point z € Uy
leap-frogs at least one orbit block By, (y) where y € U;. For x € U, let
m be the smallest integer such that x € U;. This condition will give us
S o Sen(L/R) o (T is at least S (1/k).

We can think of condition 2 as ensuring that the S-jumps are nested. In
other words, for j < k if » € Uy and y € Uj then S(z) ¢ By, (y) unless
x = y. Conditions 2 and 3 imply: If x € U,, and m is the smallest integer
such that Tz € Uy then Y7" o > on(1/k) sy, (T'z) = 0.

We will construct the leap-frogging sets Uy, C C, recursively. Before we do
so, we will pick a special point zg with the property that for large k the set
Uy lies within a small clopen subset of xg. Since X is compact, after passing
to a subsequence of the Cy we may assume that there is a sequence of points
{z}} with z; € Ck such that the limit limy_, o, 2} exists. Let z¢ be the limit
of this subsequence. We can replace the C} with clopen neighborhoods of
the x;’s of decreasing diameter. In this way, we may assume that our sets
C}, have the property that if y; € C, then limg_,o yr = 9. Moreover, we
may assume that zo ¢ (J,cn Ck-

To construct Uy, pick y; € C7 such that neither xg nor Szy are in the
T-orbit block By, (y1). Let U; be a clopen neighborhood of y; such that
xo, Szo ¢ U2 T'U; and Uy, TUy,...,T™U; are pairwise disjoint. Since
the T7U; are pairwise disjoint, if z and y are distinct points in U; then the
intersection of the T-orbit blocks By, () N By, (y) is empty.

Now assume that we have sets U, Us, ... , Uy satisfying the leap-frogging
conditions such that neither xzg nor Sz are in U?:ko T'U;,. We can find a
clopen neighborhood V' of xg such that V UM%, T'Uy, SV N, T'U, and
V' NSV are all empty.

By the minimality of T there is an integer r; such that for any z € X
the set By, () N Uy is nonempty. By passing to a subsequence of the C}, we
may assume ngiq1 > rg and Cgyrq C V. Choose yg11 € Cry1. Pick a clopen
neighborhood Uy1 of yi41 of diameter less than 1/k such that Uyy1 € Ciyq
and Ugy1,TUgy1, ..., T+ U, are pairwise disjoint.

Since Ugy1 C Ciy1, we have that for all x € Uy, S(x) = T™(z) (condi-
tion 1). Since nyy1 > 7, for all z € U1 the set By, (v) NUy is nonempty
for all x € Ujy1 (condition 3). Since Ugy; € V and SUgi1 € SV we have
Uk+1NU, T'U, SUk+1NUME T'Uy, are both empty. This gives the nested
property of the blocks (condition 2). Since neither z¢ nor Szg are in Uy
we can continue with the recursion. O

The previous two lemmas give us the following theorem.

Theorem 2.10. Let (X,S) and (Y,T) be minimal Cantor systems. There
is an orbit equivalence h : X — Y which induces a bijection from the set of
real S-coboundaries to the set of real T-coboundaries if and only if S and T
are flip conjugate.
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Proof. If S and T are not flip conjugate then by Theorem 2.4 and Lem-
mas 2.8 and 2.9 we can construct an S coboundary which is not a T-
coboundary. For the other direction we simply need to see that a home-
omorphism R : X — X and its inverse R~ : X — X always have the same
set of coboundaries. This follows as

f—fR'=(fR-HR—(fR7Y). 0

Remark. The above is reminiscent of rigidity results of Boyle and Tomiy-
ama [BT98, Theorem 3.6] and Giordano, Putnam and Skau [GPS]. In
the case where S and T are minimal Cantor systems Boyle and Tomiyama
show that if the C*-algebras associated to S and T are related by an iso-
morphism which identifies the subalgebra of continuous functions, then the
systems are flip conjugate. Giordano, Putnam and Skau showed that an
algebraic isomorphism of the topological full group must be induced by a
flip conjugacy.

Theorem 2.10 can be strengthened. We show below (Theorem 2.11) that
we need not require that the homeomorphism which identifies real cobound-
aries be an orbit equivalence, it is automatic. The analogous statement for
integer coboundaries is not true. An example of Boyle (see Appendix A)
shows that it is possible for two minimal homeomorphisms S and T of the
Cantor set to have the same set of integer coboundaries and have the prop-
erty that if z and y are in the same S-orbit then Tz and Ty are not in the
same S-orbit.

Let C(X,R) denote the set of real-valued continuous functions on a Can-
tor set X.

Theorem 2.11. Let (X,S) and (X,T) be minimal Cantor systems. Then
(X,S) and (X,T) have the property that for all f € C(X,R) there exist
91,92 € C(X,R) such that

f=T=90—-9S

f=F5=g92—gT
if and only if S and T have the same orbits and there is a bounded (contin-
wous) function m : X — Z such that S(x) = T™®)(z) for all z € X.

Proof. Let E, ={x : S(z)=T"(z)} and F = X — UpezEy.

Suppose such a function m : X — Z exits. Then F is empty and
there exists an integer M such that E, is empty for |n| > M. For f €
C(X,R) we may write f — fT = M g, f — (pg, f)T. Ifz € B,
then (1rg, f)Tx = (1rg, f)S"x and the above function is therefore an S-
coboundary.

Suppose that no such function m exists. In other words, assume X —
Ujnj<amr En is nonempty for all M. If infinitely many of the sets Ej, have
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nonempty interior then by Lemma 2.9 there is a real-valued S-coboundary
which is not a real-valued T-coboundary.

If X —Ujpj<ar En is nonempty for all M and only finitely many of the sets
E,, have nonempty interior then by the Baire Category Theorem, F contains
an open set. It remains to show that S and T cannot have the same set of
real coboundaries when F' contains an open set.

We will construct an S-coboundary which is not a T-coboundary by se-
lecting a nested sequence of clopen sets U 2 Uy 2 Uz D ---, a sequence of
points z, € Uy, and an increasing sequence of integers ny with the following
properties.

1) Yk 1y, (T () > 2%,
2) Y% Lsu, (T (zg)) =0,
3) 2oty (1o, (T"(xx)) — Lsu, (T* (1)) = 0 for all 1 < j < k.

Assume such a collection of sets exists, and let f =Y 22 ,(3/4)*1y,. If in
addition to the above, the diameters of the Uy’s are going to zero then the
function f(x) will be continuous. Since the sets SU are nested, condition 2
implies that

co Mk
> sy, (Tax)) = 0.

j=k i=0

Putting this fact together with conditions 1 and 3, we get

D f(Tw) = (SN (T )
=0

= iZ(?’/‘l)j [Lv, (T*zx) = 1su, (T )]

i=0 j=1
ng k—1
=> > (3/4Y [1y,(Twx) — 150, (T x1)]
=0 j=1
Nk o ) ) N oo
+ 3D (3/4Y 1, (T > (3/4Y 1su, (T xy,)
i=0 j=k i=0 j=k
> 27 (3/4)F

= (3/2)".

Therefore, by Theorem 2.6, f — fS~! cannot be a T-coboundary. It remains
then to construct the sets.

We first note that for any point « € F' since S(z) is not in the T-orbit of
x, for any positive integers m, n there is a clopen neighborhood U of x such
that T*U N SU = 0 for all —m < k < n. This implies that for any clopen
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set V C F and positive integers m,n, there exists a clopen U C V such that
TEU N SU = () for —m < k < n.

To construct U;, we take any clopen set V C F. Let  be in V and let
ny be the smallest positive integer n such that T"(x) € V. We can choose
a clopen neighborhood Vj of x such that 7%V N SVy = 0 for 0 < k < ny.
Let V4 be a clopen subset of 7"V, C V such that TV, N SV, = 0 for
—n1 <k <0. Nowlet Uy =T ™V, UV; and let 1 be any point in T~ ™1 V].
We get > 1y, (Tz1) = 2, and Y2 1gp, (TP21) = 0.

Now suppose that we have constructed sets U D Uy D Uy O --- D Uy,
points x1,x2,...,xk, and integers ny,ng,... ,n; with the desired proper-
ties. Consider the function fi = Zf:1(3/4)klyi. If fr — frS~!is not a
T-coboundary, then we are done. Assume that f; — frS~! = g — ¢gT for
some g. Since f, — fxS™! is a locally constant rational valued function, we
may assume that g is as well.

Let yg € Up N F. By the minimality of T', we can choose an integer N
such that SN 1y, (T'yo) > 2541 and g(yo) = g(TN*1yg). Choose a clopen
neighborhood V' around gg such that fi(T%) — fu(S™1T%) = fu(Tyo) —
fr(S7ITy) for all y € V and all 0 <43 < N. Then for all y € V,

N
> (s(T'y) = fu(ST'Ty)) = g(y) — g(TNy) =0,
=0

which will give condition 3.

Let M denote Zi]iolyk(Tiyo) andlet 0 =rp <11 < - <ry <N
be the integers such that 777V C U,. We know that since yp € F' we can
choose Vy C V such that T°Vy N SV, is empty for all 0 < 4 < N. Since
T Vy C Uy, there is a clopen set V; C T"1V; such that T°V; NSV} is empty
for all —ry <4 < (N —rp). Continuing, for all 0 < j < M, we can obtain sets
V; CT7i7"i-1V;_q such that TiVj NSV; is empty for all —r; <i < (N —rj).
Let Ugy1 be the union over 0 < j < M of the sets T~ "™ i V,,, and let
ZTk11 be any point in T7"™™ Vj;. Then Zf\io 14 (T'zpy1) = M > 281 and
SN o Lst., (Tiy41) = 0, giving conditions 1 and 2. O

3. Real Ordered Group.

The notion of strong orbit equivalence emerged from the study of C*-
algebraic invariants for topological dynamical systems. For minimal home-
omorphisms of the Cantor set, Herman, Putnam and Skau showed that
these C*-crossed products are classified by their K-theory [HPS92]. The
K-theory for these C*-algebras amounts to the group of continuous integer-
valued functions on the Cantor set modulo the coboundaries along with a
positive cone and order unit. Giordano, Putnam and Skau showed that
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this unital ordered group characterizes strong orbit equivalence for minimal
Cantor systems (Theorem 3.3) [GPS95, Theorem 2.1].

In this section, we define and investigate the group of continuous real-
valued functions modulo the real coboundaries. As in [GPS95], our group
will be considered along with a natural positive cone and order unit. Unlike
the integer case, our space has the structure of a vector space over the reals.
With this, the classification problem essentially comes down to counting
the dimension of subspaces. When the number of ergodic invariant Borel
probabilities is finite, the span of these measures acts as the dual to this space
modulo the infinitesimal subgroup (Lemma 3.9). In this finite dimensional
case, we are able to show (Theorem 3.10) that the cardinality of the set
of ergodic Borel probabilities completely classifies our unital ordered vector
space. Interestingly, this leads us back to orbit equivalence. A result of
Dougherty, Jackson, and Kechris (Theorem 3.13) [DJK94, Theorem 9.1]
states that the cardinality of the set of ergodic invariant Borel probabilities
characterizes a weaker form of orbit equivalence, Borel orbit equivalence.
3.1. The Unital Ordered Group Gz(T'). We present the relevant defini-
tions for unital ordered groups. For a more detailed introduction,
see (GPS95].

Definition 3.1 (unital ordered group). A unital ordered group G is a triple
(G, G4+, u) where:
e (G is an abelian group,
e (G, is subset of G such that
GiN(-G4)={0}, G++G4CGy, and Gy -Gy =G,
e 1 is an element of G4 such that
for all g € G there exists an n € Z; such that (nu —g) € G4.
Definition 3.2 (isomorphism). Two unital ordered groups (G,G4,u) and
(H, Hy,v) are isomorphic if and only if there is group isomorphism f : G —
H such that f(G4) = Hy and f(u) = v.

Suppose (X, T) is a minimal Cantor system. We will use Gz (T') to denote
the unital ordered group (Gz(T'), Gz(T')+, 17) defined as follows. Let Gz(T)
be the group of continuous functions from the Cantor set X into the integers
modulo the integer coboundaries

Go(T) = C(X,Z)/{f - T : [ € C(X,2)}.
Let Gz(T')+ be the semigroup of equivalence classes of nonnegative functions
Gz(T)+ =A{[f] : f(x) >0forallxz € X}
and let 17 be the equivalence class of the constant function one
1r =[1].
The ordered group above is, in fact, a simple dimension group as defined by
Elliot [EII76].
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Theorem 3.3 (Giordano, Putnam, Skau). Let (X,S) and (X,T) be mini-
mal Cantor systems. Then Gz(S) is isomorphic to Gz(T) if and only if S
and T are strongly orbit equivalent.

The above gives strong orbit equivalence a more natural meaning, the
equivalence relation which is induced by isomorphism of unital ordered
groups. To get a similar statement for orbit equivalence, we must first
introduce infinitesimal subgroups and traces of simple dimension groups.

Definition 3.4 (infinitesimals). Let § = (G,G4,u) be a unital ordered
group. The set

Inf (G)={9g€G : u—nge Gy forallnelZ}
is the infinitesimal subgroup of G.

Definition 3.5 (trace). A trace o on a unital ordered group G = (G, G4, u)
is a homomorphism o : G — R such that ¢(G4) C Ry and o(u) = 1.

The order structure of any simple dimension group is determined by the
action of the trace space [Eff81]. In other words,

G+ ={9€G : o(g) >0 for all traces o} U {0}

and
Inf (G) ={g€ G : o(g) =0 for all traces o}.

If (X,T) a minimal Cantor system then the trace space of Gz(T') with the
natural topology is a compact, convex metric space which is affinely home-
omorphic to the space of T-invariant Borel probabilities 9. Moreover,

Gz(T)4+ = {[f] : /fd,u > 0 for all u € DJTT} u {0}
and
Inf (T") = Inf (Gz(T)) = {[f] : /fd,u =0 for all p € i)ﬁT} .

Theorem 3.6 (Giordano, Putnam, Skau). Let (X,S) and (X,T) be min-
imal Cantor systems. Then the unital ordered groups Gz(S)/Inf (S) and
Gz(T)/Inf (T') are isomorphic if and only if S and T are orbit equivalent.

3.2. A Real Analogue to Gz(T). The results of Section 2 and of Gior-
dano, Putnam and Skau motivate our investigation of the triple Gr(T') =
(Gr(T),Gr(T) 4+, 17) where

Gr(T)=C(X,R)/{f - fT : feCX,R)}
Gr(T)+ ={[f] : f(z)>0foralze X}
1p = [1].
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Remark. Typically, there is an additional assumption that unital ordered
groups be countable. However, none of the notions of unital ordered group,
isomorphism, infinitesimals and traces depend upon the group being count-
able.

Suppose that (X,S) and (X,T) are minimal Cantor systems. We first
notice that the groups Gr(S), Gr(T") can adopt the structure of a real vector
space (with the definition r[f] := [rf]). It is this identification which makes
the inclusion map of Gz(T) — Gr(T') worth studying. For example, there
can exist locally constant coboundaries f — f1 where f cannot be chosen
to be locally constant. Thus we are not simply considering the old group
Gz(T) with real coefficients, there are also new identifications.

Henceforth, we will refer to the triple (Gr(T'), Gr(T)+,17) as a real or-
dered vector space. The isomorphisms we will consider are R-vector space
isomorphisms which preserve classes of nonnegative and constant functions.

For the remainder of this section, we will concentrate on the case where
the space of invariant measures 9y is finite dimensional. In this case we
will characterize Inf (Ggr(T")) (Theorem 3.10).

Proposition 3.7. Let (X,T) be a minimal Cantor system. If My is finite
dimensional then

Gr(T)4 = {[f] : /fd,u >0 for all p € SDTT} u {0}
and
Inf g(T) = Inf (Gr(T)) = {[f] : /fdu =0 for all p € E)DTT} :

Proof. Suppose f: X — R is a continuous function.

If there exists h € C(X,R) such that f(z)+ h(z) — hT(z) > 0 for all x,
then either f +h —hT =0or [ fdu >0 for all € My.

Now suppose [ fdu > 0 for all g € Mp. Then since My is finite dimen-
sional, there is a § > 0 such that [ fdu > 6 for all . Select a continuous
function g : X — Q that takes on finitely many values and f(z) — /2 <
g(x) < f(x) for all z. Then there is an integer m such that mg € C(X,Z)
and [ mgdp > 0 for all 1 € Mp. By the properties of Gz(T), there is an
integer coboundary h — hT such that mg(z) + h(z) — hT(x) > 0. Therefore,
f+ L (h — hT) is a nonnegative function and [f] € Gr(T)+.

The second claim now follows easily as [1]—n[f] € Gr(T)+ iff n [ fdu <1
for all p € My iff [ fdu =0 for all u € My

O

Proposition 3.8. Let (X,T) be a minimal Cantor system. If My is finite
dimensional then the dimension of Inf g(T') is |R|.
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Proof. A continuous function from X to R is determined by its values on a
countable dense subset. Therefore

dim(Inf (7)) < dim(C(X,R)) < [R|'% = |R|.

To finish the proof, it suffices to construct a family of linearly independent
infinitesimals {f, : « € (0,1)}. In other words, we want a collection of
functions { f, } which integrate to zero with any T-invariant Borel probability
such that no linear combination with nonzero coefficients is a coboundary.

We can use the same techniques as those used in Lemma 2.9 to create
infinitesimals which are not T-coboundaries. Recall that in the proof of
Lemma 2.9 we had sets Uy, and integers nj such that the function f(z) =
> es1(1/Ek) (1y, () — 1pmey, () was not a T-coboundary (in that proof
there was a transformation S such that SUj, = T™ Ui). The reason f failed
to be a T-coboundary was that for all n there was a point x and an integer
m such that 1% f(T'z) > >°p_,(1/k) and therefore has no uniform upper
bound when summed over partial T-orbits. Notice that this function must
be an infinitesimal since the integration of f with any 7T-invariant Borel
probability yields zero.

Suppose that we have such an f. (If you like, pick minimal S with the
same orbits as 1" but with an unbounded jump function to create the Uy
and ng.) Now for a € (0,1), let

fal@) = SR (1o (@) — T (@)
k>1
For any finite collection 0 < a3 < as < -+ < «ap < 1 and nonzero
real coefficients {ry,ra,...,rm,} the function 71 fa, + rofa, + -+ + rufan
is an infinitesimal. It cannot be a T-coboundary since the partial sums
Snly S0y mi(1/k)% behave like Y 31, r1(1/k)* which is unbounded. O

Since the infinitesimal subgroups have the same dimension and contain
no order structure, it remains to characterize Gr(T")/Inf r(T).
Let £(T") denote the set of ergodic T-invariant Borel probability measures.

Lemma 3.9. Suppose that (X,T) is a minimal Cantor system and that
|E(T)| is finite. Then dim(Ggr(T)/Inf (1)) = |E(T)|.

Proof. Let V' denote the vector space Gr(T')/Inf g(T") and V* the dual of
V. The dimension of V is finite if and only if the dimension of V* is finite.
Moreover, if the dimensions are finite, then they are the same.

Let F be an element of V*, then it is a linear functional on C'(X,R). By
the Riesz Representation Theorem, there is a finite signed Borel measure p
such that F(f) = [ fdu. Since F is a linear functional on C(X,R)/{f—fT},
the measure p must be T-invariant. Since |£(T)| is finite, the measure p is a
linear combination of ergodic T-invariant Borel probability measures. Two
linear combinations of these ergodic measures are the same as elements of
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V* if and only if they are the same as signed Borel measures. Therefore,
dim(V) = dim(V*) = |E(T)|. O

Theorem 3.10. Let (X,T) be a minimal Cantor systems such that |E(T')| =
d is finite. The unital ordered vector space Gz(T)/Inf (T') is isomorphic to
RY where (R4, are the elements with strictly positive entries along with the
zero vector and (1,1,---,1) is the order unit.

Proof. Since the dimension of Gg(T)/Inf g(T) and R? are the same, we
know that they are isomorphic as vector spaces. It remains to show that we
can choose an isomorphism which preserves the order structure and unit.

Let {[f1],[fa],- .- ,[fa]} be a basis for Gr(T)/Inf g(T"), and let E(T) de-
note the ergodic measures E(T') = {1, po, ... , pa}. We define a map from
R to Gg(T)/Inf g(T) where a vector ¥ € R? gets sent to the equivalence
class of a linear combination of the basis functions ¢ = ) ¢; f; which has
J gdu; =vj for j =1,2,... ,d.

Such a map preserves positive cones and order units. O

Corollary 3.11. Let (X,S) and (X,T) be minimal Cantor systems, such
that |E(S)| and |E(T)| are finite. The unital ordered vector spaces Gr(.S)
and Gr(T') are isomorphic if and only if |E(S)| = |E(T)|.

Proof. We may write the vector space Gr(T') as Gr(T")/Inf g(T") ® Inf (7).
By Theorem 3.10, Gr(S)/Inf g(S) and Gr(T")/Inf g(T") are isomorphic as
unital ordered vector spaces. By Proposition 3.8 the dimension of the infini-
tesimal subspaces are the same and therefore there is a vector space isomor-
phism between them. Since there is no order structure on the infinitesimal
subspace, the result follows. O

The work of Dougherty, Jackson, and Kechris gives us a dynamical inter-
pretation for equal cardinality of ergodic invariant Borel probabilities.

Definition 3.12 (Borel orbit equivalence). Let S: X — X andT:Y — Y
be Borel transformations of compact metric spaces X and Y. A Borel orbit
equivalence is a Borel bijection h : X — Y and functions m : X — Z and
n : X — Z such that

Vo € X, hS(z) = T™ @ h(z) and hS™®) (z) = Th(x).

Theorem 3.13 (Dougherty, Jackson, Kechris). Let S : X — X and T :
Y — Y be Borel transformations of compact metric spaces X and Y. Then
S and T are Borel orbit equivalent if and only if |E(S)| = |E(T)|.

Therefore, we get the following dynamical interpretation of isomorphism
of the unital ordered vector space in the case where the spaces of invariant
measures are finite dimensional.
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Theorem 3.14. Let (X,S) and (X,T) be minimal Cantor systems such
that |E(S)|,|E(T)| are finite. Then the following are equivalent:

1) Gr(S) = Gr(T') as unital ordered vector spaces,
2) S and T are Borel orbit equivalent.

The result of Dougherty, Jackson and Kechris is true in the case where the
cardinality of the ergodic invariant Borel measures is infinite. However, at
present the author does not see how to extend the above theorem to include
that case.

4. Gr(T) as an extension of Gz (7).

Let (X,S) and (X,T) be a minimal Cantor systems. As we saw in the
last section, isomorphism of Gr(S) and Ggr(T') induces a weaker relation
than strong orbit equivalence. We now consider isomorphisms of the unital
ordered vector space Gr(S) to Gr(T') which when restricted to Gz(S) gives
an isomorphism of the integer unital ordered groups. We first notice that
Gz(T) embeds in Gr(T).

Proposition 4.1. The natural inclusion map i : Gz(T) — Gr(T) is one-
to-one and order-preserving.

Proof. To show that the map is injective, it suffices to show that if an integer-
valued function is a real coboundary, then it is an integer coboundary. As-
sume we have functions f € C(X,Z) and g € C(X,R) with f =g — ¢T.

Let zp be any point in X and let « = g(z¢). Then for all n € Z, g(T"x)
is an integer plus a. For example if n > 0 then

n—1 n—1
glwo) — g(T"wo) = > g(T'zo) — g(T™ ' 2) = Y f(T'xo) € Z.
i=0 i=0

Since all T-orbits are dense in X, all values of the function g are an integer
plus a. Letting k = g — a, we obtain an integer-valued function k € C(X,Z)
where f =k — kT.

Clearly, if [f] € Gz(T')+ then i([f]) € Gr(T)+. Now suppose that f €
C(X,Z) and i([f]) € Gr(T)4+. That is, suppose there exists a function
h € C(X,R) such that f(z)+ h(x) — RT(z) > 0 for all x. Then either
f =0 or for all invariant probability measures p, [ fdp > 0. In either case,
[f] € Gz(T)+. O

Definition 4.2 (pair isomorphism). Suppose that S and 7 are minimal
homeomorphisms of the Cantor set. We will call H a pair isomorphism of
(Gr(S),Gz(S)) and (Gr(T),Gz(T)) if H : Gr(S) — Gr(T) is a real ordered
vector space isomorphism such that H(Gz(S)) = Gz(T).

In particular, we are interested in the following questions. Does a pair iso-
morphism H : (Gr(S5),Gz(S)) — (Gr(T),Gz(T)) induce a stronger relation
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than strong orbit equivalence? Does a pair isomorphism imply that S and T'
are flip conjugate? We will show that the answer to the first question is yes,
and the answer to the second is no. To answer these questions, we begin by
showing that the isomorphism class of the pair (Gr(T),Gz(T)) classifies the
(topological) discrete spectrum of the system (X, T).

Definition 4.3 (discrete spectrum). Let (X,7T) be a minimal Cantor sys-
tem. The discrete spectrum of 7' is the set of A such that F'T' = AF for some
continuous function F' from X to {z € C, |z| = 1}.

We will call a function F' as above an eigenfunction for 7" and A an eigen-
value for 7.

The strong orbit equivalence class already determines the rational part of
the discrete spectrum (eigenvalues exp(2mia) where a € Q), but strongly or-
bit equivalent systems may have different irrational spectrum (see [Orm97]).
The following shows that the pair (Gr(T"),Gz(T)) does indeed carry some
additional information beyond strong orbit equivalence.

Theorem 4.4. Let (X, S) and (X,T') be minimal Cantor systems. Suppose
that there is a pair isomorphism between (Gr(S), Gz(S)) and (Gr(T), Gz(T)).
Then S and T have the same discrete spectrum.

Proof. We first show that a complex number exp(2mic) is an eigenvalue
for T if and only if there exist f € C(X,Z) and k € C(X,R) such that
f=a+k—-kT.

Suppose functions k, f exist as above. Multiplying both sides of f =
a+ k — kT by 27 and exponentiating one obtains

exp(2mikT (z)) exp(2mif(x)) = exp(2micr) exp(2mik(z)).

Since f(z) € Z for all x, we see that exp(27mif(z)) = 1 and therefore F(z) =
exp(2mik(z)) is an eigenfunction for 7" with eigenvalue exp(2micy).

Now suppose that F : X — S! is an eigenfunction for the eigenvalue
exp(2mia). Let Uy, Us, ... ,U, be clopen sets such that a logarithm function
L; can be continuously defined on each F(Uj). For x € U; we define k(x) =
Lj(F(x)). With this definition, ¥ : X — R is a continuous function and
k(x) —k(Tz)+ o is an integer for all x € X. Therefore, thereisa f : X — Z,
k:X — Rsuch that f=a+ k—kT.

This completes the proof since if f = o+ k — kS as above and there is
a pair isomorphism H : (Gr(S5),Gz(S)) — (Gr(T),Gz(T)) then H([f]) =
aH([1g]) = «a[lp]. Taking a representative function g from H([f]), we see
that there must be a function ¥’ € C(X,R) such that ¢ = o+ k' — k'T.
Therefore if exp(2mia) is an eigenvalue for .S then exp(27mia) is an eigenvalue
for T' as well. O

The above theorem extends to determine the possible discrete spectrum
of an induced system (A, T4) of (X, T). An induced system (A,T4) of (X, T)
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is a minimal Cantor system obtained by taking a clopen subset A C X and
the map T4 : A — A. The map T4 is defined to be T4(x) = T"(x) where n
is the smallest positive integer such that 7" (z) € A.

Theorem 4.5. Let (X, S) and (X,T) be minimal Cantor systems. Suppose
that there is a pair isomorphism between (Ggr(S), Gz(S)) and (Gr(T), Gz(T)).
Then there is an induced system (A, S4) of (X, S) which has A in the discrete
spectrum if and only if there is an induced system of (B,Tg) of (X, T) which
has X\ in the discrete spectrum.

Proof. Suppose that A = exp(27mi«) is in the topological discrete spectrum of
an induced system (A, S4). This occurs if and only if for some f € C(A,Z)
and h € C(A,R) we have f —a = h — hS4 on the set A. Extend f to
f : X — Z by defining f = 0 on the complement of A. Then the function
(f — aly) is an S-coboundary by Theorem 2.6. (Notice that for 2 € A,

S o(f — ala)(S'a) = Y7 (f — ala)((Sa)'a) for some m < n.)

~

Now since f — aly is an S-coboundary and we have a pair isomorphism

H : (Ga(S), G(S)) — (Ga(T), G2(T)), we know that H([]) — aH([14]) = 0
in QR(T)
Claim. There is an indicator function 1p € H([14]) for some clopen set
B CX.
Proof of Claim. Since [14] € Gz(S)+ there is a g1 € H([14]) such that
g1(z) > 0 for all z. Since [1]s — [14] € Gz(5)+ there is a g2 € H([14]) such
that go(z) < 1 for all z. We know that the function g; — go is an integer
T-coboundary, g1 — g2 = k — kT for some k € C(X,Z). Let C be a clopen
set on which k is constant. Let Cy,C5,... ,C, be the clopen subsets of C'
such that x € C, if and only if n is the smallest positive integer such that
T"(z) € C. By minimality, C' = J,,_; C,, for some r.

For x € C},, we know

n—1 n—1
> T (@) — T () = Y kT () — KT ()
1=0 1=0

= k(x) — kT"(x)
=0.

Therefore, for all n and x € C,,, we have
n—1 ' n—1 A
0< ZngZ(az) = EggTz(m) < n.
i=0 i=0

Fix n and = € C),. Let B, be the union of exactly Z?:_ol g1T% () of the sets
Cp, TCh, ..., T"1C,. Let B=J!_, By.

The difference between g1 and 1 must be a T-coboundary by Theo-
rem 2.6. This follows since for z € Cy, S0 1T (x) = N0y 15T ().
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Thus the difference g1 — 15 is bounded along T-orbits. This proves the
claim.

Let g be a representative of H([f]) and let B be a clopen set such that
1p € H([14]). Then there exists a function k € C(X,R) such that g—alp =
k—KkT.

Let K(x) = exp(2mik(x)). The function g is integer-valued so

K(T(x)) = exp(—2mig(z))exp(2mialp(z))K(x)
= exp(2mialp(z))K(x).
If

If x € B, we have K(T(z)) = \K(x). x(;éB we have K (T(z)) = K(x).
Therefore, for z € B, we have K (Tg(x)) = AK(z). Thus, T has an induced
system with X\ in the spectrum. ([

Remark. If A = exp(2mia) where o € Q then the conclusion of the previous
theorem is trivially true. For any minimal Cantor system 7T and any p € Z
there is an induced system T4 such that a periodic orbit of cardinality p is
a factor of T4. To see this, let B C X be a clopen set with small enough
diameter so that if z € B and T"(z) € B then n > p. Let A = J'—, T'B.
Then the induced system (A,T4) has as a factor of a finite orbit of length
.

In the case where A = exp(2miar), a ¢ Q, the statement is nontrivial as
we will see in Corollary 4.8.

The following theorem shows some of the limitations on dynamical in-
formation that one can get from the pair (Gr(7T),Gz(T)). In particular,
it shows that one cannot deduce flip conjugacy from a pair isomorphism
between (Gr(S),Gz(S)) and (Gr(T"),Gz(T")). For a unital ordered group G,
when we say G C Q we mean that G is isomorphic to a subgroup of (Q, Q4,1)
with the induced order.

Theorem 4.6. Let S and T be minimal homeomorphisms of the Cantor set.
Suppose Gz(T) is a subgroup of Q. Then there is a pair isomorphism between
(Gr(S),Gz(S)) and (Gr(T'),Gz(T)) if and only if S and T are strongly orbit
equivalent.

Proof. Since Gz(T) C Q every integer-valued function can be written as a
constant plus a integer coboundary. The embeddings for (Gr(S),Gz(5)) and
(Gr(T),Gz(T)) are given by [f] — ¢[1] where ¢ is the rational number cor-
responding to [f]. Since the integer unital ordered groups are subsets of Q,
the maps S and T are uniquely ergodic. Therefore, the real ordered groups
Gr(S) and Ggr(T') are isomorphic by Theorem 3.10. Since the isomorphism
maps the constant function one to the constant function one, it must map
the subgroup of integer-valued functions onto one another. ([
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In particular, this shows that systems (X,T) with Gz(T) C Q cannot be
strongly orbit equivalent to systems with any irrational discrete spectrum.
Systems with Gz(T') C Q include all odometer systems (see example from
Section 2). For an odometer system with d; digits in the ith place the
group Gz(T) is isomorphic to the subgroup of the rationals formed by all
rationals whose denominators are products of the d;’s [HPS92]. For the
dyadic adding machine Gz(T) is the dyadic rationals Z[].

Corollary 4.7. Suppose (X,T) is a minimal Cantor system where Gy (T')
s a subgroup of Q. Then T cannot have irrational discrete spectrum.

Proof. To prove this, one simply needs an S with Gz(S) = Gz(T) such that
S has no irrational spectrum. Then by Theorem 4.6, and Theorem 3.3, there
is a pair isomorphism between (Ggr(S),Gz(95)) and (Gr(T),Gz(T)). But by
Theorem 4.4, S and T must have the same discrete spectrum.

To create such an S, make a list of the denominators {d; < dy < ---}
which appear in elements of Gz(7T'), then construct an odometer system with
dy digits in the first place, do digits in the second place, and so on.

The odometer systems have no irrational spectrum. This follows from the
fact that for every clopen set A in an odometer system (X,T') there is an
integer n such that T"A = A. If there were a map F : X — S' and a \
such that FT = AF, then there would be a clopen set A C X whose image
under F' lies within {exp(27if) : 0 < 6 < 7} such that FT"(A) = F(A) for
some n. If X = exp(2mia) with « irrational, then \"F'(A) can never equal
F(A). O

Corollary 4.8. Suppose (X,T) is a minimal Cantor system where Gz (T)
is a subgroup of Q. Then T cannot have an induced system with irrational
discrete spectrum.

Proof. Suppose that Gz(T) is a subgroup of Q. Then any induced system
T4 must also have Gz(T4) € Q. This follows from results of [GPS95],
or by the following argument. Since Gz(T) C Q, T is uniquely ergodic.
Moreover, the integral of any integer-valued continuous function with this
measure must be rational. The same holds for an induced system (A,T4),
so Gz(Ta) C Q. O

Appendix A. A homeomorphism good on measures and bad on
orbits.

Author: Mike Boyle

Suppose S and T are minimal homeomorphisms of the Cantor set X.
Giordano, Putnam and Skau proved that if h : X — X is a homeomor-
phism which identifies integer coboundaries for S and 7' then S and T are
orbit equivalent (Theorem 2.7 of this paper). This result is a spinoff of
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their beautiful algebraic characterization (“Ky modulo the infinitesimals”)
of orbit equivalence of homeomorphisms of the Cantor set. This work de-
veloped constructions involving Bratteli diagrams, C*-algebras and some
homological algebra. It is natural to ask whether the theorem above could
be proved directly, i.e., without reference to this associated machinery. This
seems problematic even at first glance—given h as in the theorem, how could
one recover orbit information? Here is an example (circulated informally
in 1992) which reinforces this impression. I thank Chris Skau for helpful
comments.

Example. Let X be the domain of the dyadic adding machine S. There is
a homeomorphism 7" from X to X such that

e if x and y are any two points in the same S-orbit, then the points 7'(x)
and T'(y) are in different S-orbits, and

e for all clopen sets U, there are continuous functions f, g : X — Z such
that Iy — lpp=f — fSand 1y —1lsy =g — ¢7T.

The dyadic adding machine is defined as an example of an odometer
system in Section 2. We recapitulate the definition here. The space X is
{0, 1}N. A point z in X is a one-sided sequence xqxor3... with each x; in
{0,1}. The map S sends the sequence z = 1*° (z; = 1, for all i) to the
sequence 0%°. Otherwise,  has for some nonnegative k an initial word 1*0
and Sz is obtained by replacing this word with 0*1.

Two sequences in X are cofinal if they disagree in only finitely many
coordinates. Two sequences x,y are in the same S-orbit if and only if either
(1) they are cofinal or (2) one is cofinal to 0 and the other is cofinal to 1°°.

Choose a collection of infinite pairwise disjoint sets A,, 1 < n < oo, such
that N is the union of the A,. Enumerate the finite words on {0,1} as
W(1),W(2),... such that n > m implies the length |W(n)| of W(n) is at
least |W(m)|. Define B,, = {m € A,, : m > |W(n)|}, an infinite subset of N.
For each n > 0, we define a homeomorphism ¢, : X — X by

T; otherwise.

z;+1 (mod 2 if i € By, and 1.2 = W(n
{1 2 o =W

Now define ¥, = ¢, o ¢,_1 0 ... o ¢1. In other words, 11 = ¢ and
UYn(x) = ¢p(p—1(x)). Finally, let p = lim),. Apart from a technical
detail, 1) will be the homeomorphism 7" of the example.

For each n and =z,

(bnx)i = (Y2)i, 1 <i < |[W(n)].
Therefore the maps v, are converging uniformly and v is a homeomorphism.
Also, for every k and z, the word (¢z)1...(¢x)y is determined by the word
x1...xE. S0, for every k, ¢ induces a permutation of the initial cylinders of
length k. This means that for any cylinder set U, there is a unique integer [
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such that U = S'U and ly—1yv = ly—1gy. In particular, we may deduce
that any integer i-coboundary is an integer S-coboundary and vice-versa.

If  and y are distinct points in X, then let N = N(x,y) denote the
largest integer such that x; = y; if ¢ < N. Notice, if ¢; corresponds to
a word W (i) such that [W(i)| < N(z,y) (equivalently, i < 2¥~1) then
N(z,y) = N(¢iz,p;y). On the other hand, if ¢; corresponds to a word
W (i) of length N, then ¢; fixes the initial word of length N in every point,
and ¢; changes a point x (by flipping symbols in the coordinates indexed by
B;) if and only if z1..zy = W(i).

Now given distinct points x and y, set v = ¥yn-1, where N = N(z,y).
Let ¢, be the map corresponding to the initial word W (n) of yx of length
N. Our discussion above gives the following implications:

(¢.Z')Z 7& Z; ifi e Bn,
(Yy)i = i if i € By,.

It follows immediately that if x and y are distinct cofinal points, the ¢x and
1y are not cofinal.
Next note that if x and y are distinct points, then for some B,

v = (x);  and oy = (YY), for i€ B,.

(In fact we can use n such that B,, corresponds to a word W (n) of length 2
which begins neither 1oz nor 1,y.) Consequently, if z is cofinal to 0°° and
y is cofinal to 1°°, then vx, ¥y are not cofinal.

This finishes the proof for the example, except for a technical detail: It
might be the case that there are points x, y in the same S-orbit such that iz
is cofinal to 0°° and %y is cofinal to 1°°. To take care of this, choose points u
and v such that the preimage under ¢ of the S-orbit of u does not intersect
any S-orbit containing a point in the preimage under ¥ of the S-orbit of
v. Let 3 be a cofinal homeomorphism of X (z,y are cofinal iff Sz, By are
cofinal) which exchanges 0% with u and which exchanges 1°° with v. Let T
be the composition, ¢ followed by 8. Now we have for all distinct points x
and y: If x,y are cofinal then Tz, Ty are not cofinal; if x is cofinal to 0>
and y is cofinal to 1°°, then Tz, Ty are not cofinal; if Tz is cofinal to 0>
and Ty is cofinal to 1°°, then x,y are not in the same S-orbit.

This finishes the proof.
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APPLICATION TO GLOBAL BERTINI THEOREMS

Dr. LaiLA E.M. RASHID

Let k be an infinite field of arbitrary characteristic, (A, M,
K) a k-algebra of essentially finite type, with K/k separable
and P a local property. We say that LB (P) holds if: For the
generic a = (a1,... ,ay) € k™ = P(Az,A) CP(A)NV(za)N
Up (zo = > ajxi, {(x1,... y&n, —= M, Up non-empty open
subset of Spec A and P(A) = {P € Spec A|A, is P}). We show
that: LBk (P) holds = LBk (GP) holds for the corresponding
geometric property (in particular, for P = regular, normal,
reduced, Rs, LBx(GP) holds). As an appliance we obtain a
Bertini Theorem for hypersurgace setions of a variety X C P
concerning the geometric properties.

1. Introduction.

Bertini showed that, given a smooth projective variety = contained in P}’
with k& = C, the generic hypersurface section of z is also smooth (see [B,
Chap. 10, n. 25]; for a modern approach, see [H, Th. 8.18] or [J, Th. 6.3]).

There have been many generalizations of this Theorem: We recall the
recent algebraic studies on trasversality made by Kleiman in [K] and Speiser
in [S] where they introduced a fully modern point of view of schemes over
an algebraically closed field of arbitrary characteristic.

Another approach to this problem has been proposed by Flenner in [F|
(following Grothendieck, see [G]).

He shows that, given a field k& of arbitrary characteristic and given a
local k-algebra (A < M < K) with K/k separable, then, for the generic
a=(ag,...,q,) €K" =

(1) P(A/zaA) C P(A)NUp

where z, = > a;xi, {x1,...,2,} is a generator system of M and Up is
a non-empty open subset of Spec A depending on P, being P one of the
following local properties: Regular, normal, reduced, Rs; and S;.

These results applied to the local ring of the vertex of the affine cone
corresponding to a projective variety X, imply, by standard techniques, the
corresponding global Bertini Theorem for the variety X.

In this work we want to show that every time we have a result like (1)
for a property P we have the same result for the corresponding geometric
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property GP and that the coresponding global results hold (these are known
only for geometrically regular, see [J, Chap. 1, §6]).

In Section 3 we introduce some topological remarks that we use in next
section: We show that if k is a subfield of K, (k infinite), every non-empty
open set of K™ can be constructed to a non-empty open set of K™.

In Section 4, that is main section, we give a local Bertini Theorem for the
properties GP in an axiomatic form and we show that there are properties
GP (for example GP = S,., geom. R;, geom. regular, geom. normal, geom.
reduced) to which we can apply the Theorem. In these cases we show that
the GP-locus is open.

In Section 5 we deduce a global Bertini’s Theorem for the hypersurface
sections of a variety X in a projective space over a field of arbitrary char-
acteristic and for the above cited GP (we extend for many geometrically
properties Th. 6.3 in [J] concerning the only geometrical regular property).

2. Preliminaries and notation.

In this section we fix the standard notation to be used in the following.
The rings considered are always commutative with an identity element.
If Ais aring, Q(A) is the set of maximal ideals of A.
We recall here the definition of essentially finite type algebra and some
properties of this algebra that we shall have to use in Section 4.

Definition 2.1 ([EGA, Chap. IV, 1.3.8]). Let T be a ring. A T-algebra S
is of essentially finite type (e.f.t. for short) if S is T-isomorphic to S~!C
where C is a T-algebra of finite type and S is a multiplicatively closed subset
of C.

Properties 2.2 ([EGA, Chap. IV, 1.3.9 (ii)]; [M, 34.A)).

(i) If S is a T-algebra of e.f.t. and 7" is a T-algebra then S’ = Sg, T" is
a T’-algebra of e.f.t..

(ii) If S is a T-algebra of e.f.t. and T is an excellent ring then S is an
excellent ring.

In the following, all topological spaces are considered with their Zariski
topology. If A is a ring we put V(z1,...,x,) to closed subset of Spec A
corresponding to the ideal generated to the elements x1,... ,x, of A.

Let F[T] = F[T1,...,T,] be the polynomial ring with coefficients in the
field F. We identify F"{(a1,ap)lan € F} with the topological subspace
S ={T —o,..., T, — apn)lan € F} MaxSpec F[T]. (We observe that
F" = MaxSpec F[T] where F denotes the algebraic closure of the field F.)

The expression “x generic in X7, where X is a topological space, means
that z is in a dense open subset of X.

We recall here the definition of geometric property.
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Definition 2.3. Let P be a local property and A a local ring containing a
field k. We say that A is geometrically P if Ag, k is P.

(See also [EGA, Chap. IV, 6.7.7] for equivalent definitions.)
Finally we put P(A) = {P € Spec A|Ap verifies the local property P}.

3. Some topological remarks.

For our aim we have to prove that, given an infinite field k, if K/k is a field
extension and & is an open dense subset K™ then &N k™ is an open dense
subset of k" (Prop. 3.3). We prove this fact in two steps (the first one for
the ‘open’ property, the second one for the ‘dense’ property).
We consider the following commutative diagram:
K" —— Spec K[T1,... T3]

)

d /|

k™ —— Speck[T1,... ,Ty]
h

where i, h are the inclusions of canonical maps and, as well known, K™ (resp.
k™) is a topological subspace of Spec K[T'] (resp. Spec[T]).

Lemma 3.1. Let K/k be a field extension, then k™ is a subspace of K™.

Proof.
Case 1. K/k algebraic extension.

One can suppose that J = V(g) is a fundamental closed set.

Consider a representation g = > x;¢; with x; € K linearly independent
over k and g; € k[X1,...,X,]. Then INk™ =V (¢g1,...,9r). The inclusion
JN k™ C (C)NEk™is trivial. The other one is easy if we remark that
F (k) = k.

Case 2. K/k purely transcendental extension.

Let & = {(z1,...,zn) € K"|g(z1,... ,2,) = 0 with ¢ € K[T]} be a
fundamental closed set of K™. Among the coefficients of g there are only a
finite number t of elements of K transcendental over k and so we can reduce
to the transcendental extension of finite type. Using induction on ¢ we can

consider that there is only one transcendental element Z (i.e., t =1).
So g(T,...,Ty) = iy, (2)T" - - - T with ay,...;, (2) € k(2).

ki, ... kn) €' NS < glkt,. .. kn) =08 by, (2)ET - ki =0

with b;,..5,(Z) € k[Z] (obtained by clearing denominators and simplify-
ing) < gr(k1,...,k)Z" + -+ + go(k1,... ,kn) = 0 (obtaining ordering
biy..i, (2)k - - k' like a polynomial in z) where g,.(T1,...,Ty,) € k[T].

But Z is transcendental over k and so (ki,... ,k,) = k"N < g(ki,...,
kn) =0V 0<i<r. Then we have SNEK"™ =V (g1,...,9r).
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General case.

It is well known that every field extension can be written as k C K’ C K
with K'/k purely transcendental and K/K' algebraic. So we can apply
subsequently Case 2 and Case 1.

Lemma 3.2. Let k be an infinite field, then k™ is irreducible.

Proof. We want to show that the intersection of two non-empty open sets is
still non-empty.

For this it is clearly sufficient to show that if f,g € k[Ty,...,T,] and
V(f) # k™, V(g) # k™ then V(fg) # k™. We use induction on n. If n =1
we consider the polynomial: fg = (fo+---+ fiT)(go+---+gnT"). Fg=0
has at most i+ h solutions in k (and so in k) and this proves that V(fg) = k
because k is infinite.

Suppose now that the conclusion is true for any number of variables
smaller than n.

We have fg = (fo+ fiTn+ -+ fiTL) (g0 + 01T + - - + 9aT}) = fogo +
<o+ frgn TR

With fjg € k[T1,... ,Th—1] for 0 < j <iand 0 <[ < h observe that fign
is a polynomial in n—1 variables = by the induction hypothesis, there exists
an element w = (ki,... ,ky,) € k" such that fi(ky,... ,ky)gn(k1,...  kn)#
0. For this w we can find an element a € k such that f(k1,... , ks, a)g(ki, ...,
kn,a) # 0 because the polynomial in a single variable f(ki,... , kn,T,)g(k1,
..., kn,Ty,) has at most ¢ + h solutions in k and k is infinite.

Then there exists k,, such that y = (k1,... ,kn—1,kn) € V(f9).

From the above lemmas we get:

Proposition 3.3. Let K be an extension of infinite field k. If J is an open
dense subset of K™ then JNE™ is an open dense subset of K™.

Proof. By Lemma 3.1 we know that J N k™ is open in k™. By Lemma 3.2 it
is enough to show that JNE™ is non-empty. It is sufficient to prove this fact
for 3 =k" — V(f) with f € K[T1,...,T,], by induction on n.

Ifn=1, f(T) = Ko+ ---+ K,T" has at most r solutions in K and so in
k.

Suppose that it is true for any integer m < n. Put f(Th,...,T,) =
fo+ ATy + -+ fiT. where f; € K[T},... ,Tp—1] for 0 < j < 4. By induc-
tion hypothesis there exists (k1,... ,kn,_1) € k"~ ! such that fi(ki,... ,kn_1)
# 0. Considering f;(k1,... ,kn—1,T™) we observe that f has at most j so-
lutions in k. Let a € k be a non-solution for f;(ki,...,kn—1,7™), then
(k1,... , kp_1,a) € TNK".

4. Main result.

The main purpose of this paragraph is to give a local Bertini thorem for the
geometric properties. We need some definitions.



APPLICATION TO GLOBAL BERTINI THEOREMS 481

Definition 4.1. A local ring (A, M, K) is a Flenner k-algebra if A is a
northerian k-algebra, k is an infinite field and K is separable over k.

Definition 4.2. Let P be a local property of commutative rings. We say
that P is a local Bertini property if, for every local Flenner k-algebra
(A, M, K) e.f.t. and every set of generators (x1, ... ,x,) of M, the following
condition holds:

LBy(P) for generic a = (o, ... ,ap) € K" =

P(Az,A) C (A) NV (zy) NUp
where x, = Y1, and Up is either Spec A or Spec A — {M },
depending on P.

We say briefly that LBy(P) holds.

Remark 4.3. We observe that LB;(P) holds for P = regular, normal,
reduced. Serre’s properties Rs and S, (in fact more general statements
holds: See [F] Theorem 4.1 and Corollaries 4.2 and 4.3).

We want to prove that if A is a Flenner K-algebra of e.f.t. and LBy(P)
holds for some property P then LBy (GP) holds too for the corresponding
geometric property.

We need some lemmas.

Lemma 4.4. Let (A, M, K) be a Flenner k-algebra of e.f.t. and B = ARk,
Then, for every M € Q(B), (B, NBy, Kar) is a Flenner k-algebra of e.f.t.

Proof. Recall that ¢ : A — B is a flat homomorphism.

Case 1. Bis asemilocal k-algebra and MBy; = M By YM € Q(B). Clearly
B is a k-algebra of e.f.t. and, being integral over A, we have MB C Rad (B).

B/MB=K ®, (A®,Lk) =K @ k and dim K @ k = 0. In fact K @ k
is noetherian (because B is a K-algebra of e.f.t. by Prop. 2.2 (i) and so it is
noetherian) and integral over K and we can apply Theorem 20 in [M]. So
K ®}, k is an artinian ring (Theorem 8.5 in [A-M]) and this proves that B
is semilocal.

K ®},k is also reduced (because K /k is separable and we can apply (27.1)
Lemma 1 in [M]) and dim(K ® k)y = dim(B/MB)y = 0. This proves
that (B/MB)M = BM/MBM is a field, that is MBj; = M B)y.

Case 2. Ky is separable over k for every M € Q(B) because every extension
of an algebraically closed field is separable.
Lemma 4.5. Let (A, M, K) be a Flenner k-algebra of e.f.t., {z1,... 2}
a generator system of M and B = A®y k. If LB(P) holds then:
a) for the generic o = (ax,... ,o) € k' : P(B/zoB) C P(B)NV (24B)N
UP7
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b) for the generic o = (aq,... ,an) € k" : P(B/xoB) C P(B)NV(z,B)N
UP7
where X = Ya; X; and Up = Spec B — Q(B).

Proof. a) In fact the condition LBy(P) holds for (Bas, M By, Kpr)V M €
Q(B) by Lemma 4.4. So we can find an open dense subset Jy; of k" such
that Va € Jy,. P(BM/XQBM) - P(BM) N V(XQBM) N Up. But B is
semilocal by 4.4 so it has a finite number of maximal ideals: M, ... , M.
Putting J = Jp, N...N Ty, This is an open dense subset of k" (by Lemma
3.2), independent from M; and so Vo € J we have P(B/X,B) C P(B) N
V(XoB)NUp.
b) Use a) and Proposition 3.3.

Theorem 4.6. If LB(P) holds for some local property P then LBy(GP)
holds for the corresponding geometric property GP.

Proof. 1f (A, M, K) is a Flenner k-algebra of e.f.t. and P € GP(A)NV(X,)N
Ugp we have to prove that P € GP(A/X,A).

Clearly we have: P € GP(A/X,A) & (Ap/XoAp)Qrkis P & (A/X,A)
@a(Ap @4 k) is P.

Considering ¢ : A — B=A®,kand S=A—-P = Ap @, k= S~ 'B
by Prop. 3.5 in [A-M]. If Q € Spec (Ap ®y k), let Q be its image in S~!B.
Then, V Q € Spec (Ap ® k), (Ap @ k)g = Bg is P, ie.,, Q € P(B) It is
also Q C (X,)¢ and @ € Up (because p # M = Q ¢ Q(B)). Applying
Lemma 4.5 to B we have: (Bg)/(Xa)Bg = (Ap @k k) o/ (Xa)(Ap @y k) g is
PV Q € Spec (Ap @y k) = (A/2,,Ap) @k k is P = p € GP(A4/x,A).
Corollary 4.7. LBy(GP) holds for Flenner K algebra of e.f.t. (A, M, K)
if:

i) GP = geom. Regular and Ugp(A) = Spec A;

ii) GP = S, geom. Serre’s property Rs, geom. normal, geom. reduced

and Ugp(A) = Spec A — {M };

(with the notation given in Def. 4.2)

Proof. By Remark 4.3 and Theorem 4.6.

In connection with Theorem 4.6 it is important know that the GP-locus
of an e.f.t. K-algebra is open, at least for the properties P cited above. This
will be shown in Theorem 4.8 below.

Theorem 4.8. Let A be a K-algebra of finite type, then GP(A) is an open
subset of Spec A for GP = S,., geom. Serre’s property Rs, geom. Regular,
geom. Normal, geom. Reduced.

Proof. We may assume that A is a K-algebra of finite type. Indeed if A is a
K-algebra of e.f.t. then (Def. 2.1) A = S~1C where C is a K-algebra of finite
type and S is a multiplicatively closed subset of C. If U is an open subset
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of Spec C' and if we call ¢ the continuous map defined from Spec (S~1, C)
to Spec C induced by the canonical homomorphism ¢* : ¢ — S~1C, then
¢~ 1(U) is an open subset of Spec (S~1C) = Spec A. Moreover the properties
GP are preserved by localization.

(a) Case GP = geom. Normal, geom. R,,.

We use a proof that looks like Zariski’s Theorem in [EGA, Chap. IV,
6.12.5).

We consider A ®;, K' where K’ = K™, The morphism Spec (K’) —
Spec (k) is a universal homomorphism and so the morphism Spec (A ®j
K') — Spec A is a homomorphism.

Then the projection of P(A @, K') in Spec A is just the set GP(A) (by
[EGA, Theorem 6.7.7 Chap. IV].

We have only to show that P(A ®; K’) is open in Spec (A ®; K'). But
this is true:

i) for P = regular by [EGA, Chap. IV 6.12.5];
ii) for P = R, by i) and [EGA, Chap. IV 6.12.9];
iii) for P = normal by i) and [EGA, Chap. IV 6.13.5].

(b) Case GP = S,, and geom. Reduced.

A is a K-algebra of finite type and so it is excellent by Prop. 2.2 (ii). So
we can apply consideration [EGA, 7.9.7 Chap. IV] for P = S,, and Prop.
4.6.13 Chap. IV [EGA] for P = reduced.

Using Theorem 4.8 we have:

Corollary 4.9. If (A, M, K) is a Flenner K-algebra of e.f.t. then GP(A)
is an open subset of Spec A for GP = S,., geom. Serre’s property Rs, geom.
regular, geom. normal, geom. reduced.

5. Application to Global Bertini Theorems.

We want now to deduce from Theorem 4.6 a global Bertini Theorem for
geometric properties of hypersurface sections of a projective variety over an
arbitrary field.

For this we use a standard technique involving the vertex of the affine
cone (see also [F, §5]).

We give some notation: Let £ be a field, X C P} a projective variety over
the field k and Y C X a closed subset of X. Let YT ¢ X+ C AZ“ be the
corresponding affine cones; put A = 0,+ , (where v is the vertex) and let I

be the ideal of Y+ in A. Let X(k), Y (k) be the varieties obtained from X
and Y by making the base extension field — k.

Proposition 5.1. Let P be a local property which is preserved by polynomi-
als and fractions and which descends by faithful flatness. With the notation
given above, the following are equivalent:
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(i) X =Y is GP over k;
(i) XT =Y is GP over k;
(iii) Spec A — V(1) is GP over k.
Proof. X —y is GP over k & X(k) — Y (k) is P ﬁ X*(k) - Y*(k) is

P(& XT-YT is GP over k) g:; Spec A(k) =V (I(k)) is P < Spec A—V (1)

is GP over k, where the equivalencies (1) and (2) are due to Proposition 2.1
in [CGM].

In the following let S = ®S5; be graded k-algebra of finite type so that
So “kand S = k[Sl]

Theorem 5.2. S = k[S1] a graded k-algebra, k a field with infinitely many
elements and { fo,... , fn(q)} @ generator system of Sy as a k-vector space.
Let P be as in 5.1.

If LBi(GP) holds for some geometrical property GP then, for the generic
= (... ,0n()) € EMD+L we have that,

GP(Proj (S/ faS)) € GP(Proj (S)) NV (fa)
where fo = Xy fi.

Proof. For ¢ =1 we can apply Prop. 5.1 and Th. 4.6. (Observe that K, the
residue field of A, coincides with k and so it is separable over k.) For ¢ > 1
we can reduce to the hyperplane case using the Veronese map of degree ¢.

Corollary 5.3. With the hypothesis and notation as in Theorem 5.2 we
have GP(Proj (S/z,S)) € GP(Proj(S)) N VT(X,) for GP = S,, geom.
Serre’s property Rg, geom. regular, geom. normal, geom. reduced, regular,
etc.

Proof. Apply Theorem 5.2 and Corollary 4.7.

References
[A-M] M.F. Atiyah and I.G. MacDonald, Introduction to commutative Algebra, Addison-
Wesley Publishing Company, 1969.

[B] E. Bertini, Geometria proiettiva degli iperspazi, Casa ed. Giuseppe Principato-
Messina, 1923.

[CGM] C. Cumino, S. Greco and M. Manaresi, Bertini theorems for weak normality,
Comp. Math., 48 (1983), 351-362.

[F] H. Flenner, Die Satze von Bertini fir lokale Ringe, Math. Annalen, 229 (1977),
97-111.
[G] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorémes des Lef-

schetz locauz et globauz, (SGA 2), Amsterdam, North-Holland Publishing Com-
pany, 1968.



[EGA]

APPLICATION TO GLOBAL BERTINI THEOREMS 485

A. Grothendieck and J. Dieudonné, Elémants de Géométrie Algébrique, Chap.
IV, Inst. Haut Etud. Sci., Public Math., 20 (1964) and 24 (1965).

R. Hartshorne, Algebraic Geometry, GTM 52, Berlin-Heidelberg-New York,
Springer, 1977.

J.P. Jouanolou, Théoréms de Bertini et Applications, P.M. 42, Birkhauser,
Boston, 1983.

S.L. Kleiman, Transversality of the general translate, Compos. Math., 28 (1973),
287-297.

H. Matsumura, Commutative Algebra, Benjamin-Cummings Publishing Comp.
In., 1980.

R. Speiser, Transversality theorems for families of maps, Springer LNM 1311, in
‘Algebraic Geometry Sundance’, (1986), 252-287.

Received October 19, 1998 and revised December 22, 1998.

KAFR EL-SHEIKH, TANTA UNIVERSITY
KAFR EL-SHEIKH

EcypT

FE-mail address: dr_laila_m@yahoo.com






PACIFIC JOURNAL OF MATHEMATICS
Vol. 195, No. 2, 2000

ON FINITE PRESENTABILITY OF MONOIDS AND THEIR
SCHUTZENBERGER GROUPS

Nik Ruskuc

The main result of this paper asserts that a monoid with
finitely many left and right ideals is finitely presented if and
only if all its Schiitzenberger groups are finitely presented.
The most important part of the proof is a rewriting theo-
rem, giving a presentation for a Schiitzenberger group, which
is similar to the Reidemeister-Schreier rewriting theorem for
groups.

1. Introduction.

In [24, Theorem 4.1] it was proved that a regular monoid S with finitely
many left and right ideals is finitely presented if and only if all its maximal
subgroups are finitely presented. Recall that the maximal subgroups of S
are precisely the H-classes of S containing idempotents. Schiitzenberger
[25, 26] showed how one can assign to an arbitrary H-class H a group
I'(H), called the Schiitzenberger group of H. Schiitzenberger groups have
many features in common with maximal subgroups; in particular, if the H-
class H contains an idempotent (and hence is a maximal subgroup) then H
and I'(H) are isomorphic. Since their discovery, they have been used in the
structure theory of semigroups (see, for example, [9, 10, 15, 16, 20]), but
perhaps, as argued in [13], not as much as they deserve.

In this paper we consider connections between presentations for a monoid
and for its Schiitzenberger groups, and we prove the following:

Theorem 1.1. A monoid with finitely many left and right ideals is finitely
presented if and only if all its Schiitzenberger groups are finitely presented.

The theorem follows from Corollaries 3.3 and 4.4.

In proving the above theorem we show how one can combine presentations
of Schiitzenberger groups to obtain a presentation for the monoid; see The-
orem 3.2. More importantly, we prove a rewriting theorem (Theorem 4.2),
in many ways similar to the Reidemeister-Schreier theorem for subgroups
of groups, which gives a presentation for a Schiitzenberger group from a
presentation for the monoid. In fact, this presentation is effectively com-
putable, provided that the monoid has finitely many left and right ideals.
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This opens the way for our rewriting theorem to be used as a tool in com-
puting with finitely presented monoids, along the similar lines to the use of
the Reidemeister-Schreier theorem in computational group theory.

The best known consequence of the Reidemeister-Schreier theorem is that
a subgroup of finite index in a finitely presented group is itself finitely pre-
sented. Paralleling this are Corollary 2.11 and Proposition 2.16 of [24],
which combined give that a maximal subgroup H (i.e., an H-class con-
taining an idempotent) of a finitely presented monoid is finitely presented,
provided the R-class of H contains only finitely many H-classes. Given
the similarity between maximal subgroups and Schiitzenberger groups, one
could reasonably hope that this last condition would be sufficient to guar-
antee finite presentability of the Schiitzenberger group I'(H) of an arbitrary
H-class (not necessarily containing an idempotent). However, in Section 6
we use our rewriting theorem to construct a finitely presented monoid which
contains an H-class H such that H is the only H-class in its R-class, but
the Schiitzenberger group I'(H) is not finitely presented.

2. Preliminaries.

Green’s equivalences. Green’s equivalences were introduced in [8]. They
describe the ideal structure of a monoid (or a semigroup). Since their dis-
covery they have become the principal tool in describing the structure and
properties of monoids and semigroups; see [11]. We give definitions of the
relations R, £ and H, and some of their basic properties that we need in the
sequel. For a more complete treatment we refer the reader to [11] or [12].

Let S be a monoid. Two elements s,t € S are said to be R-equivalent
(respectively, L-equivalent) if they generate the same right (respectively,
left) ideal, i.e., if sS = S (respectively, Ss = St); we write sRt (respectively,
sLt). Two elements are H-equivalent if they are both R-equivalent and L-
equivalent.

In the following proposition we list some properties of these relations that
we will require later.

Proposition 2.1. Let S be a monoid.

(i) Let s,t € S be such that sRt, and let p,q € S be such that sp =t and
tq = s. Then the mapping x — xp is a bijection from the H-class of s
onto the H-class of t; its inverse is the mapping x — xq. In particular,
any two H-classes within the same R-class have the same size.

(ii) If s,p1,p2 € S are such that sp1paRs then sp1Rs.

(iii) The relation R is a left congruence, i.e., for all s,t1,ta € S, if t;Rto
then st1Rsts.
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(iv) Let s, t,p € S. If sRt and psHs then ptHt.
(v) For every s € S the set sS is a union of R-classes.
The left-right dual statements hold for L-classes.

Proof. Part (i) is [11, Lemma 2.2.1, Lemma 2.2.3]. Parts (ii), (iii) and (v)
follow immediately from the definitions. For (iv), if ¢ € S is such that
sq = t, then the mapping x — xq is a bijection from the H-class of s onto
the H-class of ¢ by (i), and hence pt = psqHt. O

We remark that, unlike R and L, the relation H is not, in general, a one
sided congruence.

Theorem 1.1 concerns monoids S with finitely many left and right ideals.
Since the R-classes of S are in a one-one correspondence with the principal
right ideals of S, and since every right ideal of S is a union of principal right
ideals of S, we have:

Proposition 2.2. A monoid has finitely many right ideals if and only if it
has finitely many R-classes. Dually, a monoid has finitely many left ideals
if and only if it has finitely many L-classes. A monoid has finitely many left
and right ideals if and only if it has finitely many H-classes.

Schiitzenberger groups. The H-classes in a monoid .S exhibit many prop-
erties of subgroups of groups. For example, Proposition 2.1 (i) shows that
the H-classes within a single R-class behave very much like cosets of a sub-
group in a group — a parallel that will be explored in more depth in Sections
4-6. Also it is known that an H-class which contains an idempotent is a
maximal subgroup of S, and that all maximal subgroups of S arise in this
way; see [12, Corollary 2.6].

Schiitzenberger [25, 26] showed how to assign a group to an arbitrary
‘H-class, so as to reflect the group-like properties of that class. Here we give
his construction and some of its basic properties. For more details we refer
the reader to [12].

Let S be a monoid, and let H be an H-class of S. Denote by Stab(H)
the (right) stabiliser of H in S, i.e., Stab(H) = {s € S : Hs= H}. On
this set define a relation o(H) = {(s,t) € Stab(H) x Stab(H) : (Vh €
H)(hs = ht)}. It is easy to see that o(H) is a congruence; we call it the
Schiitzenberger congruence of H. It is also relatively easy to see that the
quotient I'(H) = Stab(H)/o(H) is a group; it is called the Schiitzenberger
group of H. It turns out that I'(H) has the following properties:

e I'(H) acts regularly on H; in particular |H| = |I'(H)|;

e if Hy is an H-class of S belonging to the same R-class, or the same
L-class, as H then I'(Hy) = T'(H);

e if H contains an idempotent then I'(H) = H.
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For proofs see [12, Section 2.3]. Of course, by left-right duality, one may
define the left Schiitzenberger group. It turns out, however, that the two
are isomorphic.

In the following proposition we list some properties that we will use later.
For proofs the reader is again referred to [12, Section 2.3].

Proposition 2.3. Let S be a monoid, let H be an H-class of S, and let
ho € H be an arbitrary element. Then:

(i) Stab(H) = {s € S : hosHho};

(ii) o(H) = {(s,t) € Stab(H) x Stab(H) : hos = hot};

(iii) H = hoStab(H).
Presentations. Along with transformations, presentations are the most
general means of constructing monoids. Throughout the development of
the theory of monoid presentations, one of the leitmotivs has been the con-
nection with group presentations; see, for example, [1, 4, 18, 19, 21, 24].
The results of this paper continue and deepen this theme.

A (monoid) presentation is a pair P = (A | R), where A is an alphabet,
and R C A* x A* is a set of pairs of words over A. A typical pair (u,v) € R
is usually written as u = v and is called a defining relation. A monoid S is
said to be defined by B if S = A*/p, where p is the smallest congruence on
the free monoid A* containing PR. Thus every word w € A* represents an
element of S. As is customary, we identify a word and the element of S it
represents. To lessen the likelihood of confusion in doing so, for two words
wi,we € A* we write w; = wo if they are identical, and wy = wy if they
represent the same element of S, i.e., if wi/p = wa/p.

For two words wy,ws € A* we say that ws is obtained from wy by one
application of a relation from R if wy = auf and we = avF, where o, § € A*
and (u=v) € R or (v =u) € R. We shall often use the following standard
fact without explicit mention:

Proposition 2.4. Let (A | R) be a presentation, let S be the monoid defined
by it, and let wy,we € A* be two arbitrary words. Then the relation w; =
wo holds in S if and only if w1 = we or there exists a sequence w; =
a1, Q9, ... , 0y = wy of words in which each a;y1 (1 < i < m—1) is obtained
from «; by one application of a relation from R.

3. From the Schiitzenberger groups to the monoid.

In this section we show how one can combine presentations of the Schiitzen-
berger groups of a monoid to obtain a presentation for the whole monoid.
An immediate corollary of this result is the converse part of Theorem 1.1.

Let S be an arbitrary monoid, and let S/H = {H; : i € I} be the
collection of all H-classes of S. For each i € I fix an element
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Without loss of generality assume that I contains a distinguished element 1
and that

(2) 15 = h1 € Hy.

(In other words, H; is the group of units of S.) For i € I let I'; =
I'(H;) be the Schiitzenberger group of H;. Recall that I'; = T;/0;, where
T; = Stab(H;) is the stabiliser of H;, and o; = o(H;) is the corresponding
Schiitzenberger congruence.

Proposition 3.1. With the above notation, if each H; is generated by a
set Ajjo; (i € I, A; C S) then S is generated by the set B = {h; : i €
13U (Uier Ai)-

Proof. Let s € S be arbitrary. Then there is a unique ¢ € I such that
s € Hj, ie., s = h;t for some t € T; by Proposition 2.3 (iii). Hence we
have t/o; € T'; = (Ai/oi) = (Ai)/0i, so that there exists w € (A4;) such that
(t,w) € ;. Now we have s = h;t = h;w € (B), completing the proof. O

Our aim now is to find a presentation for S in terms of the generating set
B given above. The idea is to note from the above proof that every element
of S can be written in the form hyw (i € I, w € A}), and to find defining
relations which allow one to transform any word from B* into this form. To
do this we consider the results of multiplying representatives h; (i € I) of
‘H-classes by arbitrary generators from B both from left and right.

First for each ¢ € I and each © € B we let ((i,x) € I be the unique
element such that

(3&) hix € HC(Z-@).

By Proposition 2.3 (iii) it follows that h;z = h¢(; ;s for some s € Tp(; ).
From s/o¢(iz) € Tegia) = (Acim))/0¢(ie) it follows that there exists w €
AZ(i,r) such that s/o¢(; ») = w/0¢(; ). For each choice of i and z we choose
(arbitrarily) and fix one such word w = p(i,z). Thus we have

(3b) (i, z) € Al 4
and the relation
(3) hix = hegmyp(i,x) (i € 1, v € B)

holds in S. In a similar way, for any ¢ € I, x € B we let
(4a) n(i,x) € I, v(i,x) € Ay

be such that the relation

(4) whi = hyyv(i,z) (i €1, x € B)
holds in S, and we also let

(5a) 0(i,x) € I, w(i,z) € B*
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be such that

(5b) hix € Hy(; 2

and the relation

(5) hix = m(i,7)hg ) (i €1, v € B)
holds in S.

Theorem 3.2. If, with the above notation, each Schiitzenberger group I';
(i € I) is defined by a presentation (A; | Ri) in terms of generators A;/o;,

then S is defined by the presentation with generators B = {h; : i €
IY U (U;er Ai) and relations (3), (4), (5) and

(6) hiu=hv (i€, (u=v)€R),

(7) hy = 1.

Proof. First we note that all the relations obviously hold in S. So to prove
the theorem it is sufficient to show that every relation holding in S is a
consequence of the relations (3)-(7).

To this end we let w € B* be arbitrary. Via a series of claims we show
that w can be transformed to a particular form using (3)-(7).

Claim 1. There exist 47 € I and w; € B* such that the following two
conditions are satisfied:
(i) the relation w = wyh;, is a consequence of the relations (3)-(7); and
(ii) for every suffix w)] of w we have w|h;, Lh;, in S.

Proof. Write w = z1x2... %y (z; € B). From (7) we have
W= h12122 ... Tm-
By successively applying relations (5) we obtain

hiz1wa .. 2 = T(j1, 21)7 (G2, 22) - - T (s T ) g 15
where
=1, jrr1 =00k, zx) (k=1,....m).
So if we let wy = 7(j1,21) ... T(Jm, Tm) and i3 = jy,41, the condition (i) is
satisfied. From (5b) we have

T = hjll'lﬁth, thxgﬁhja,, . ,h' xmﬁh = hil-

Im Im+1

Since L is a right congruence (the dual of Proposition 2.1 (iii)) it follows
that

wlhil =W =T1x2... {L‘mﬁhhl‘z . l‘mﬁ e Ehjmxmﬁhjm+1 = hil-

Therefore, by the dual of Proposition 2.1 (ii), it follows that the condition
(ii) is satisfied as well. O
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Claim 2. There exist i € I and we € B* such that the following two
conditions are satisfied:

(i) the relation wih;, = hi, w2 is a consequence of the relations (3)-(7); and

(ii) for every letter x of we we have h;,x € H;,.
Proof. Write wy = 1 ...xy, and apply (4) successively to obtain
wihi, = hjov(Ji,z1) - . V(Jms Tm),
where
Jm =1, k-1 =00k zr) (K =m,... 1).

So, if we let i = jp and wy = v(j1,21) ... v(Jm, Tm), the condition (i) is
satisfied.
We next claim that for every k (1 < k < m) we have

(8) TpThtd - $mhi1 S ijil.

For k = m this follows from (4a) and (4). Assume inductively that (8) holds
for some k. Since, by Claim 1 (ii), we have

Th12k - - - TmPiy Lhi, La . By

it follows by (the dual of) Proposition 2.1 (i) that the mapping ¢t — xp_1t
is a bijection from the H-class of z ... xnh;, onto that of xp_jxk ... xm0hi,.
In particular, we have

Hh;

Tp-1Tk - - - wmhilek_lh T2

Jk—1

by (4a) and (4), thus completing the inductive proof of (8).
By Claim 1 (ii) we now conclude that

(9) hiy = hjoLh; L ... Lhy, = h,.

By (4a) we have v(jy,zx) € A5, | (k=1,...,m). By the choice of 4, ,
every letter from it stabilises Hj, . Therefore by the dual of Proposition
2.1 (iv), Proposition 2.3 (i) and (9) it follows that every letter x of v(ji, zx)

stabilises Hj,; in particular, h;,z € H;,, as required. O

Claim 3. There exist i3 € I and w3 € Afg such that the relation h;,ws =
hi;ws is a consequence of the relations (3)-(7).

Proof. Write we = x1 ... 2, and note that

C(iQ,.%'j) = Q(iz,iﬂj) = i2 (] = 1,... ,m)
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by (3a), (5b) and Claim 2 (ii). Therefore we have

hing = h12$1 Tm
= 7T(22,l‘1) o (2, Tn—1) Riy T (by (5))
= w(iz,21) ... iz, Tm—1)hiy iz, Tm) (by (3))
= m(iz,z1) ... w(i2, Tm—2)hiyTm—141(i2, Tp) (by (5))
= w(iz,21) ... iz, Tm—2)hiy iz, Tm—1)p(i2, 2m)  (by (3))

= hiQM(iQ, $1)M(i2, .%‘2) e /L(ig, CCm).
Therefore it is sufficient to let ig = io and ws = p(io, z1) ... p(iz, Tm)- O

Now let w’ € B* be any word, and assume that the relation w = w’ holds
in S. Write w’ as w' = hywj as above. Then, since hiyHw = w'Hhy,, we
must have i3 = ¢4 = i and also w3/o; = wsy/o; in T'; by Proposition 2.3 (ii).
Since (A; | ;) is a presentation for I';, it follows that wf§ can be obtained
from ws by a sequence of applications of relations from 9;. We are now
going to show that this implies that h;w} can be obtained from h;ws by a
sequence of applications of relations (3)-(7), which will complete the proof
that we indeed have a presentation for S.

Without loss of generality we may assume that w} is obtained from ws
by one application of a relation from fR;:

wy = auf, wy = avfB (a,B € Af, (u=v) € R;).
Writing o = x1 ...y, we have

hiws = hyxy...¢zoul
= 7(i,z1)...7(i,xm)hiuf  (by (5))
= w(i,x1)...7(¢,zm)hivB (by (6))
= hiz1...xmvB = hawh,  (by (5))

as required. O

If the set I is finite (which, by Proposition 2.2 is the case precisely when S
has finitely many left and right ideals), and if all the presentations (4; | R;)
(i € I) are finite, then so is the above presentation for S. Therefore we have
the converse part of Theorem 1.1:

Corollary 3.3. Let S be a monoid with finitely many left and right ideals.
If all the Schiitzenberger groups of S are finitely presented then S is finitely
presented as well.

4. A rewriting theorem for the Schiitzenberger group.

The aim of this section is to state a theorem (Theorem 4.2) giving a pre-
sentation for the Schiitzenberger group of an H-class in a monoid defined
by a presentation, and to deduce some immediate corollaries, including the
direct part of Theorem 1.1. The theorem is proved in the next section.
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Let S be a monoid, and let (A | R) be a presentation for S. Let H be an
arbitrary H-class of S, and fix a word h € A* representing an element of H.
Denote by I' = I'(H) the Schiitzenberger group of H; so I' = T'/o, where
T = Stab(H) and 0 = o(H) is the Schiitzenberger congruence on T'.

Let R be the R-class of h, and let {H) : A € A} be the collection of all
H-classes of S contained in R. For each A\ € A choose words py,p) € A*
such that

(10) Hpy = Hy, hapap\ = h1, hap\pr = ha (A€ A, hq € H, hy € H));

such words exist by Proposition 2.1 (i). Without loss of generality assume
that A contains a distinguished element 1, and that

(11) H1:H7 plEp/1£67

where € denotes the empty word.

By Proposition 2.1 (i), (ii), for any s € S and any A € A, either Hys = H,,
for some p € A, or Hyss;y N R = () for all s; € S. Therefore we can define
an action (A, s) — A-s of S on the set AU {0} (assuming 0 ¢ A) by

)\-5:{ poif A, € Aand Hys = H,

(12) 0 otherwise.

In the following theorem we give a generating set for I', resembling the
Schreier generating set for a subgroup of a group (see [17, Theorem 2.7]).
This result is not new — it is an immediate consequence of Schiitzenberger’s
original results [25, 26], and can also be found, in a slightly different notation
from ours, in [14, Corollary 2.3]. Nevertheless, we will give a proof of this
result, because it motivates the definition of a rewriting mapping to follow.

Proposition 4.1. With the above notation the Schiitzenberger group T' of
H is generated by the set

X ={(prap\y)/0c : XEAN, a€ A, X-a+#0}.
Proof. First we claim that
I ={(pasp\s)/o0 : NEA, s€S, X\-s+#0}.
Denote the right hand side by I'. By using (10) and (12) we have
Hp/\8p,/\~s = H/\Sp,/\~s = H/\'Sp,)\-s =H.

Hence pysp)., € T, so that I' is well defined and I'" C I'. Conversely, if
s/o € T, then from Hs = H it follows that 1-s = 1, and hence s/o =
(p1sp))/o eI

To complete the proof of the proposition we show that an arbitrary ele-
ment (pyspy.,)/o of T can be written as a product of elements of X. We
write s = a1 ...am (a; € A) and proceed by induction on m. For m = 0
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there is nothing to prove, and for m = 1 we have an element of X. For
m > 1 write a = ay, t = as...am; we have

(Pasph.5)/o
= (pAatp’)\.at)/a
= (PAAP) oPXalD{p0).0) [0 (by (10))
(9x@Ph.0)/7) (PatPl .)/7)  (Si01CC PAGD 02 PAatPl 1 € T)
e (X), (by induction)
completing the proof. O

We are going to find a presentation for I' in terms of the above generating
set X. To this end we introduce a new alphabet

(13) B={b(Aa) : Ne A, a€e A, X\-a#0}.

The letter b(\, a) is thought of as representing the generator (prap ,)/o.
To make this more formal we introduce a homomorphism

(14) Y BY — A", b(\a) — p)\ap’)\.a;

we refer to ¢ as the representation mapping.
Motivated by the proof of Proposition 4.1 we also define a mapping

¢ {(Aw)eAx A" : N-w#0} — BT,
called the rewriting mapping, inductively by
(15) oA €) =€, p(A,aw) = b(A,a)p(A-a,w).

The idea behind this definition is that ¢ simulates the process of rewriting
an element pysp) ; into a product of generators from X as in the proof of
Proposition 4.1.

Since for each X € A, a € A satisfying X - a # 0 we have hpyap) , € H, it
follows that there is a word 7(b(\,a)) € A* such that

(16) hpaapy.q = 7(b(A, a))h.
We extend the mapping b(A,a) — w(b()\,a)) to a homomorphism
B* — A*,

Recall that the relation R is a left congruence on S. Therefore there is a
natural left action (s, R') — s* R’ of S on the set S/R of all R-classes given
by
(17) s¥xR =R'<sR CR' (se8, R ,R" € S/R).

Let {R; : i € I} be the inverse orbit of R under this action, i.e., let it be
the set {R' € S/R : (Is € S)(s* R' = R)}. Then the action of S on S/R
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induces a partial action on {R; : i € I}, which, in turn, translates into an
action (s,7) +— s*4 of S on the set I U {0} (assuming 0 ¢ I) given by

.| g ife,je€land s*xR; = Rj,
(18) sHL= { 0 otherwise.

For each ¢ € I choose a word r; € A* representing an element of R;.
Without loss of generality assume that I contains two distinguished elements
1 and w, and that

(19) ls€ Ry, m=¢ R=R,, 1, =h.

For each a € A and each ¢ € I such that a xi # 0 we have ar; € a x R; =
Rg.i by (17) and (18). Therefore we can choose words 7(a,i) € A* such that
the relations

(20) ar; = reut(a,i) (a€ A, iel)
hold in S. We extend the mapping (a,i) — 7(a,i) to a mapping
T {(w,i) € A" XTI : wxi#0} — A”
inductively by
(21) 7(e,1) =€, T(wa,i) = T(w,a*i)7(a,i).
We can now formulate the result giving a presentation for I

Theorem 4.2. With the above notation the Schiitzenberger group I' of H
is defined by the presentation with generators B and relations

(22) (N, u) = (N v) (AEA, (u=v) €R, A -u#0),

(23) oA\, T(u, 1)) = oA\, 7(v,3)) (AN€A, i€, (u=v) €R, Hy C Srysi),
(24) o(1,7(w(b(N,a)),w)) =b(A,a) AEA, a€ A, X-a#0),

(25) ¢(1,7(h,1)) = 1.

The above presentation is finite, provided that A, R, A and I are all finite.
Therefore we have:

Corollary 4.3. Let S be a finitely presented monoid, and let H be an H-
class of S such that the following two conditions are satisfied:

(i) the R-class R of H has only finitely many H-classes; and

(ii) the inverse orbit of R under the left action of S on its R-classes has
only finitely many elements.

Then the Schiitzenberger group of H is finitely presented.

Bearing in mind Proposition 2.2, we obtain the direct part of Theorem
1.1 as a special case of Corollary 4.3:

Corollary 4.4. If S is a finitely presented monoid with finitely many left
and right ideals, then all Schiitzenberger groups of S are finitely presented.
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In conclusion to this section, we emphasise again the significant role of
the rewriting mapping ¢ in the above results. This notion is standard in
combinatorial group theory, in the context of Reidemeister-Schreier theory;
see [17]. It has proved equally important in the theory of monoid and
semigroup presentations, in which it occurs in a variety of contexts and
takes on a number of different forms; see [2, 5, 6, 7, 22, 23].

5. Proof of the rewriting theorem.

We prove Theorem 4.2 by showing that all the relations (22)-(25) hold in
the Schiitzenberger group I' (Lemmas 5.5-5.8) and that any other relation
which holds in T" is a consequence of these relations (Lemma 5.11). Since the
argument contains a considerable amount of technical detail, we break it up
into a number of lemmas. We use the notation introduced in the previous
section.

We begin by giving some properties of the rewriting mapping ¢.

Lemma 5.1. (i) For every wi,wy € A* and every A € A such that X\ -
wiwe # 0 we have

P(A, wiw2) = (A, w1)P(A - w1, wa).
(ii) For every w € A* and every A € A such that \ - w # 0 the relation

hpp(A, w) = hpAwP/)vw
holds in S.
(iii) If wi,we € A* are such that the relation wy = wy holds in S, and if
A € A is such that A - wy # 0, then the relation ¢(N\,w1) = d(A\, wa) is
a consequence of the relations (22)-(25).

Proof. (i) The assertion is proved by a straightforward induction on the
length of w;, using (15).

(ii) This is proved by induction on the length of w, essentially repeating
the proof of Proposition 4.1.

(iii) If w; = we in S then there is a sequence w; = aj, a9, ... ,q, = Wy
of words from A* in which each «;4; is obtained from «a; by one application
of a relation from R. If

o; = Biuii, aip1 = Bivivi (1€ L Bi,vi € AT, (uy = v;) €R)
then
o\, i) = A\ B\ - Bi,ui)p(N - Biui,vi)  (part (1))
()‘762) ( ﬁlavl) ( : B@'Uia’)/i) ( ( ))
(A, Bi)p(A (
(A

- Bisv)p(\ - Bivi, ;) (since u; = v; in S)
i+1), (part (i))

a consequence of (22). Therefore ¢(A, wz) can be obtained from ¢(A, w;) by
using relations (22). O

“Q
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Next we prove two similar properties of the mapping 7.

Lemma 5.2. (i) For every wi,ws € A* and i € I such that wiwy *i # 0
we have

T(wywa, i) = 7(wy, we * )7 (wa, 7).
(ii) For every w € A* and i € I such that w xi # 0 the relation

Wi = Tosi T(W, 1)
holds in S.

Proof. (i) The assertion can be proved by a straightforward induction on
the length of ws, using (21).

(ii) We prove the statement by induction on the length of w. For |w| =0
there is nothing to prove, and for |w| = 1 the statement is (20). Let |w| > 1
and write w = wiwy with |wi], Jwz| > 0. By using (i) and induction we have

Wy = WIWaT; = W1 Ty T(W2, 1) = Tayywgsi T(W1, W % 1) T (W2, 1) = Ty T (W, 1),
as required. O

The following lemma describes the connection between the mappings 1
and .

Lemma 5.3. For every w € B* the relation
hip(w) = w(w)h
holds in S.

Proof. The assertion follows from (14), (16) and the fact that both ¢ and =
are homomorphisms. O

Next we give two facts relating the mappings 7 and 7 and the actions of
S on the sets I U {0} and AU {0}.

Lemma 5.4. For every w € B* we have
(i) 7(w) * w = w; and

(i) 1 - 7(m(w),w) = 1.
Proof. By Proposition 4.1, Lemma 5.3, (14) and (19) we have
m(w)ry, = m(w)h = p(w) € H C R= R,,
proving (i). Now, by Lemma 5.2 (ii) and (19), we have
hr(m(w),w) = rr(wyswT(T(w),w) = 7(w)ry, = 7(w)h = hp(w) € H = Hj,
and (ii) follows. O
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We can now proceed to prove that the relations (22)-(25) hold in I'. Re-
call that a generator b(\,a) from B represents the element (pyap) ,)/o =
P(b(A,a))/o of T'. Therefore in order to verify that a relation a = f
(o, 6 € B*) holds in I' one needs to verify that ¢(«a)/c = (8)/o, or,
equivalently, that hi(a) = hi)(8) holds in S.

Lemma 5.5. For every relation (v = v) € R and every A € A such that
A-u # 0 the relation

p(A u) = p(A,v)
holds in T.

Proof. Using Lemma 5.1 (ii) and the fact that u = v in S we have
hpd (A, u) = hpaupl., = hpavp)., = hibd(A,v),
as required. O

Lemma 5.6. For every relation (u = v) € R and every A € A and i € I
such that Hy C Sty the relation

¢(>‘7 T(ua Z)) = ¢(>‘7 T(”? Z))
holds in T'.

Proof. Since u = v holds in S it follows that ur; = vr; also holds in S and
that u *i = v % i. Therefore, by Lemma 5.2 (ii), the relation

(26) Tusi T(Uy 1) = ToaqT(V, 7)

holds in S. Let ¢ € A* be such that hpy = qry.«;. Premultiplying (26) by ¢
yields

(27) hpat(u,1) = hpyt(v,1);

in particular A - 7(u,i) = A - 7(v,4). Now, using Lemma 5.1 and (27), we
have

h¢¢()\> T(u> Z)) = hp)\T(ua ’L)pi\T(w) = hp)\T(’U¢ Z‘)p/A-T(Uy’L') = h¢¢()\, T(U? 2)))
as required. [l

Lemma 5.7. For every a € A and every A € A such that A - a # 0 the
relation

¢(1a T(W(b(Aa a))a w)) = b()‘7 CL)
holds in T'.

Proof. This time we have

hpd(1, 7(m(b(A; a)), w))

= hr(mw(b(\a)),w) (Lemmas 5.4 and 5.1 (ii) and (11))
= 7(b(\ a))ry (Lemma 5.2 (ii) and (19))
= hy(b(N a)), (Lemma 5.3 and (19))

as required. O
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Lemma 5.8. The relation

o(1,7(h, 1)) =
holds in T'.

Proof. From Lemma 5.2 (ii) and (19) we have
h=hry = rpat(h, 1) =r,7(h,1) = hr(h, 1),
and hence 1-7(h,1) =1. By Lemma 5.1 (ii) and (11) we now have

hpp(1,7(h,1)) = hr(h,1) = h = hip(e),
completing the proof of the lemma. O

We now turn to the second part of the proof of Theorem 4.2, that is to
show that every relation which holds in I' is a consequence of the relations
(22)-(25). The technical part of the argument is contained in the following
two lemmas.

Lemma 5.9. For any word w € B* the relation

¢<17 T(ﬂ(w)}% 1)) =w

is a consequence of the relations (22)-(25).

Proof. We prove the lemma by induction on the length of w. If |w| = 0
then this is the relation (25), and if |w| = 1 this is one of the relations (24).
Assume that |w| > 1 and write w = wyws with |wi], |wa| > 0. Recall that 7
is a homomorphism, so that m(w) = 7 (w1)7(w2). Now we have
¢(L, 7(m(w)h, 1))
o1, 7(m(w1),w)7(m(wa),w)r(h,1)) (Lemmas 5.2 (i) and 5.4)
¢(L, 7(m(w1), w))p(1, T(m(w2), w)) (1, 7(h, 1))

(Lemmas 5.1 (i) and 5.4)
¢(L, 7(m(w1), w))p(1, 7(h, 1))d(1, 7(m(w2), w)) (1, 7(h, 1))

(by (25))
= o(1,7(m(wy)h,1))p(1, 7(m(we)h,1)) (Lemmas 5.1 (i), 5.2 (i), 5.4)
= wiwy = w, (induction)
as required. O

Lemma 5.10. Let o, 5 € A* and (u = v) € R be such that auf represents
an element of R. Then the relation

¢(1’ T(auﬁv 1)) = ¢(17 T(Oﬂ)ﬁ, 1))
is a consequence of the relations (22)-(25).

Proof. Since v = v in S it follows that u8* 1 = v( * 1, and hence
(28) o1, 7(e, uf x 1)) = ¢(1, 7(a, vf x 1)).
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Next we claim that
(29) (1 -1(a,ufx1),7(u,B%1)) = (1 - 1(a,v8% 1), 7(v, B % 1))

is one of the relations (23). Indeed, from aufB € R, uf3 € R, and Propo-
sition 2.1 (iii), it follows that aryg« € R. Next, by Lemma 5.2 (ii) and (19),
in S we have

aryge = aupaT(a, uf * 1) = ry7(a,uf * 1) = hr(a, uf * 1).

We conclude that 1 7(a,ul * 1) # 0 and aryga € Hir(auge) N STugs-
By the dual of Proposition 2.1 (v) we conclude that Hj.r(qug«1) © STugs1,
which is precisely the condition for (29) to be one of the relations (23).

Finally, by Lemma 5.2 (ii) and (19) in S we have

ht(ou, B 1) = rougat(au, B % 1) = aurga = avrgyg = hr(av, §* 1).
Therefore 1 7(au,B%1) =1-7(av,B* 1), and hence
(30) ¢(1 ’ T(Oéu7 B * 1)7 7(167 1)) = (;5(1 ’ ’T(O[U, B * 1)7 T(ﬂv 1))

Using Lemmas 5.1 (i) and 5.2 (i) and (28), (29), (30) we obtain

o(1, 7(aup, 1))

o1, 7(a,uf * 1)71(u, B 1)7(5,1))

= o1, 7(a,ufB*x1))p(1-1(a,uf * 1), 7(u, 5% 1))
(1 - T(a,uf * 1)1 (u, Bx1),7(5,1))

= o1, 7(a,ufB*x1))p(1-1(a,uf * 1), 7(u, 5% 1))
d(1-7(au,B*1),7(6,1))

= (1, 7(a,vB%1))p(1-7(,vB%1),7(v, 3% 1))
(1 1(aw,Bx1),7(5,1))

= o1, 7(awp, 1)),

as a consequence of (22)-(25). O

Lemma 5.11. If wi,ws € B* are any two words such that wi = wa holds
in I' then the relation w1 = way is a consequence of the relations (22)-(25).

Proof. The assumption that w; = ws holds in I' is equivalent to the relation
hi(wy) = hip(we) holding in S, which is, in turn, equivalent to the relation
m(w1)h = m(wz)h by Lemma 5.3. Therefore there is a sequence of words
m(wi)h = y1,7%2, .-, Yn = T(w2)h from A* such that each ;4 is obtained
from v; by one application of a relation from R. By Lemma 5.10 we have
that each relation ¢(1,7(y,1)) = ¢(1,7(vi+1,1)) is a consequence of the
relations (22)-(25). Therefore the relation

(31) ¢(L, 7(m(w1)h, 1)) = ¢(1, 7(m(w2)h, 1))
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is a consequence of the relations (22)-(25). By Lemma 5.9 the relations

(32) wj = o1, 7(m(wj)h, 1)) (7 =1,2)
are also consequences of the relations (22)-(25). Combining (31) and (32)
we conclude that w; = ws is a consequence of the relations (22)-(25). O

The proof of Theorem 4.2 is now complete.

6. Example: A non-finitely presented Schiitzenberger group.

Recall that if an H-class of a monoid S contains an idempotent then H is
a maximal subgroup of S and H = I'(H). Therefore, in this case, a presen-
tation for I'(H) can be obtained from [24, Theorem 2.9]. In particular, by
[24, Corollary 2.11], we have that I'(H) is finitely presented provided that
S is finitely presented and the R-class of H contains only finitely many H-
classes. Comparing this to Corollary 4.3, we see that, in this case, condition
(ii) is not needed. So one may ask whether the same is true in general. In
this section we present an example which answers this question in negative.
More precisely, we are going to construct a finitely presented monoid which
contains an H-class H which is the only H-class in its R-class, but I'(H) is
not finitely presented. This difference in behaviour between the group and
non-group H-classes is relatively surprising, because Schiitzenberger groups
usually have the same properties as maximal subgroups. For instance, the
generation theorems for the two are essentially identical (compare Propo-
sition 4.1 and [24, Theorem 2.7]), leading to the same rewriting mapping
(compare (15) with [24, Equality (2)]), and also they satisfy the same global
results with respect to finite presentability (compare Theorem 1.1 and [24,
Theorem 4.1]). It is also worth pointing out that the presentation for I'(H)
we have obtained here essentially contains the presentation for H from [24,
Theorem 2.9] — the relations (22), (24) and (25) correspond to [24, (3), (4),
(5)] respectively.
Let A be the alphabet
A= {aly az,as, a4, alla a,2a aga aila ba ¢, d}a
and consider the presentation
B=(A4] aja;- = a;aj =€, ajag = azaq, ajb = ba?, cb? = cb, ajd = daj,
cbdaj = ajcbd (j =1,2,3,4)).
Let S be the monoid defined by B, and let H be the H-class of h = cbd.
First we are going to show that H is the only H-class in its R-class, and
then we use our rewriting theorem (Theorem 4.2) to find a presentation for
I'(H) and show that it is not finitely presented.

We begin by finding some properties of equal words in the semigroup S.
We denote by Ag the alphabet {aj,a; : 7 =1,2,3,4}.
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Lemma 6.1. Let wi,ws € A* be arbitrary two words such that the relation
wy = wy holds in S. Then the following statements are true.

(1) If wy contains a letter x € {b,c,d} then wy contains x as well.

(ii) The number of occurrences of each of the letters ¢ and d is the same
for w1 and ws.

(i) If w1 = axf and we = yyd with o,y € (Ag U {b})*, z,y € {c,d} and
6,0 € A* then the number of occurrences of b in « is equal to the
number of occurrences of b in 7.

(iv) If wy has an occurrence of b preceding an occurrence of ¢ (i.e., if wy
has the form wy = abfey, a, B,y € A*) then so does ws.

(v) If wy has an occurrence of d preceding an occurrence of ¢ then so does
wa.

(vi) If w1 has an occurrence of d preceding an occurrence of b then so does
w9.

Proof. Each part can be proved by noting that the property in question is
invariant under the defining relations of S. U

Lemma 6.2. If w € A" is such that cbdwRcbd in S, then w € Aj.

Proof. Let w; € A* be such that cbdww; = cbd in S. By Lemma 6.1 (ii)
and (vi) it follows that the word ww; contains no occurrence of either b, ¢
or d. Therefore w € Afj, as required. O

Lemma 6.3. H is the only H-class in its R-class.

Proof. Let s € S be an arbitrary element which is R-equivalent to cbd. Then
s can be written as s = chdw. By Lemma 6.2, it follows that w € Aj. By
using relations a;cbd = cbda;, we see that s = wcbd, and, since all a; are
invertible, we conclude that sHcbd. O

In the notation of Sections 4 and 5 we have A = {1} and R = H. The
action of S on AU {0} is given by

-‘aja;-bcd
111 1 0 0 O

00 0 0 0O

which follows immediately from Lemmas 6.2 and 6.3. The formal generators
(13) for I'(H) are b(1, a;), b(1,a}) (j = 1,2,3,4). If we identify these symbols
with a; and aj respectively, we obtain B = Ag. The definitions (15) and
(16) of the mappings ¢ and 7 now simplify to
(33) p(w) =m(w) =w (w € Ap).

Next we find the set I and the action of S on it.

Lemma 6.4. The words €, b'd (i > 0), cbd, form a system of representatives
of R-classes in the inverse orbit of H.
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Proof. Recall that an R-class R’ is in the inverse orbit of H if and only if
there exists s € S such that sR’ C H. Therefore, from cbde = cb(b'd) =
e(cbd) = cbd, it follows that the R-class of each of the given words is indeed
in the inverse orbit of H. It remains to be proved that these are all the
R-classes in the inverse orbit, and that they are all distinct.

First of all, by Lemma 6.1 (i) there does not exist a word w € A* such
that b’dw = € or cbdw = € in S. Therefore € is not R-equivalent to either
b'd or cbd. Similarly, b'd is not R-equivalent to cbd. Finally, if k # 4, then
bid is not R-equivalent to b*d by Lemma 6.1 (iii).

Let w € A* be any word whose R-class is in the inverse orbit of H. By
the dual of Proposition 2.1 (v) this means that there exists a word w; € A*
such that wjw = c¢bd in S. By Lemma 6.1 (ii), w contains at most one
occurrence of the letter ¢, as well as at most one occurrence of the letter d.
Thus we can distinguish the following four cases:

Case 1: w contains no occurrences of ¢ or d. By Lemma 6.1 (i), w; must
contain occurrences of both ¢ and d. Hence, by Lemma 6.1 (vi), w does not
contain any occurrences of b. In other words, w € Afj, and hence wRe.

Case 2: w contains one occurrence of ¢ and no occurrences of d. By
Lemma 6.1 (i) w; must contain an occurrence of d, but then we obtain a
contradiction with Lemma 6.1 (v). Therefore, this case never occurs.

Case 3: w contains one occurrence of d and no occurrences of c. By
Lemma 6.1 (vi), w cannot contain any occurrences of b after the only occur-
rence of d. Hence w can be written as

w = a1bagd. .. ambag,1dag, 12,

where m > 0 and a3, € Ag, k = 1,... ,m + 2. By using relations a;b = ba?
and ajd = da; we see that w is equal in S to a word of the form 0™ do with
a € Af, and hence wRb™d.

Case 4: w contains one occurrence of ¢ and one occurrence of d. By
Lemma 6.1 (i), (iv), (v) and (vi) we have that w must have occurrences of b,
that all these occurrences must supercede the occurrence of ¢ and also must
precede the occurrence of d. In other words, w has the form

w = ajcasbasd . .. apmbay r1dam o,
with m > 2 and o, € A, k= 1,... ,m+2. By applying relations a;b = ba?,
a;d = daj, cb? = ¢b and a;jcbd = cbdaj;, we see that w is equal in S to a word

of the form cbdo, o € Afj, and hence wRcbd.
This completes the proof of the lemma. O

Following the notation from Sections 4 and 5, we let I = {1,2,... }U{w},
and then we denote by Ry the R-class of r1 = ¢, by R; (i = 2,3,...) the
R-class of 7; = b'~2d, and by R,, the R-class of r, = cbd (i.e., H).

Lemma 6.5. The left action of S on I U{0} is as given in Table 1.
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a; a; b c dl x
1 1 0 0 2|1
2 2 3 0 0|2
3 3 4 w 03
4 4 5 w 0]4

w w 0 0 0|w

Table 1. The left action of S on I U{0}.

Proof. Since a; is a unit it follows that ajeRe, and hence a; x 1 = 1. A
multiple application of the relation ajb = ba? yields ajbi = bia?. Since we
also have ajd = da; it follows that a;(b"2d) = bifzdaiz_2 € R;, and so
a; *t = ¢. Finally, from the relation a;cbd = cbda; it follows that a; *w = w.
This completes the proof for the a; column of the table. The proof for the
a; column is analogous.

Assume that b € R; for some ¢ € I. Since {R; : i € I} is the inverse orbit
of H, it follows that there exists a word w € A* such that wb = cbd. Now w
must contain an occurrence of the letter d by Lemma 6.1 (i), and this yields
a contradiction with Lemma 6.1 (vi). Therefore b+ 1 = 0. Similarly from
Lemma 6.1 (iv) it follows that b(cbd) ¢ R; for all i € I, and hence b*w = 0.
Finally, we have b(b~2d) = b""'d € R;y1, so that b*i = i + 1, and this
completes the proof for the b column of the table.

For the ¢ column we have cx1 = ¢%2 = c¢xw = 0 by Lemma 6.1 (iii) and
(ii). We also have ¢ *i = w (i > 3) because cb~2d = cbd € R,,. Finally, for
the d column we have d x 1 = 2, since de € Ry, and dx¢ = 0 for ¢ > 2 and
i = w, by Lemma 6.1 (i). O

The mapping 7 is defined by (21), once the values 7(z,i) (z € A, i € I,
x x1 # 0) are chosen in accord with (20). One possible choice is given
in Table 2. All the entries are easily verified by direct computation. For
example, the entry a?lf2 in the position (a;,1i) follows from

2i—2
J

- - - i—2 i—2
ajri = a;b' 20 =022 "d=1V 2ala? = rm?
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a; ag b ¢ d|T
aj a;- — — €1
a; a’ e — —1|2
2 A2
a? (a})4 e e — |4
1—2 71—2

a? (a})? e € — i

!

aj a - — —lw

Table 2. Values for 7(z,i) (v € A, i € I, z%i #0).

With (33) in mind, the presentation for I'(H) given in Theorem 4.2 has
generators Ay and the relations

(34) u=v ((u=v)€eR, 1-u#0),

(35) T(u,i) = 7(v,i) (u=v)€R, 1 €1, uxi#0),
(36) T(z,w) =z (x € Ap),

(37) 7(h,1) =1,

where, as usual, R denotes the defining relations of S. The group (34)
clearly consists of the relations

(38) aja; = a;aj =1(j=1,2,3,4), ajay = agay.

Consider now the relations (35). Let u = v be the relation ajas = asayq, and
let i > 2 be arbitrary. By using (21) and Table 2 we have

. . . . . i—2 i—2
T(aras,i) = (a1, a2 * i)7(az,i) = 7(a1,i)7(az, i) = af a3

. . . 1—2 1—2 . .
and, similarly, 7(azaq,i) = a3 a% . Therefore we obtain the relations
i—2 i—2 i—2 i—2 .

(39) a? a3 T =a3 4l (i>2).

In a similar way we may check that all the remaining defining relations are
identical. Therefore, as a group, I'(H) is defined by (39). In particular,
I'(H) is an amalgamated product of two free groups of rank two with a free
group of infinite rank amalgamated (see [17, Section 4.2]) and is not finitely
presented by [3]. To summarise:

Proposition 6.6. Let S be the semigroup defined by the presentation
P = (A]aja; = dja; = €, araz = azas, ajb = ba?, a;d = daj, cb® = cb,
cbdaj = ajcbd (j =1,2,3,4)),
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and let H be the H-class of the element cbd. Then H is the only H-class in
its R-class. However, the Schiitzenberger group T'(H) of H is defined by the
presentation

<a1,a2,a3,a4 | a%la%l = a%’ail (7“ = 07 17 27 s )))

and is not finitely presented.
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