Vol. 196, No. 1, 2000

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Level and Witt groups of real Enriques surfaces

R. Sujatha and J. van Hamel

Vol. 196 (2000), No. 1, 243–255
Abstract

The Witt group of a real Enriques surface having real points is computed purely in terms of the topology of the real part. For a real Enriques surface without real points the level of the function field is shown to be 2, and the Witt group is computed in this case as well.

Milestones
Received: 7 December 1998
Revised: 9 August 1999
Published: 1 November 2000
Authors
R. Sujatha
Tata Institute of Fundamental Research
Homi Bhabha Road
Bombay 400005
India
J. van Hamel
Mathematisch Instituut Universiteit Utrecht
Budapestlaan 6
3584 CD Utrecht
The Netherlands