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If R is a ring of coefficients and G a finite group, then a flat
RG-module which is projective as an R-module is necessarily
projective as an RG-module. More generally, if H is a sub-
group of finite index in an arbitrary group Γ, then a flat RΓ-
module which is projective as an RH-module is necessarily
projective as an RΓ-module. This follows from a generaliza-
tion of the first theorem to modules over strongly G-graded
rings. These results are proved using the following theorem
about flat modules over an arbitrary ring S: If a flat S-module
M sits in a short exact sequence 0 → M → P → M → 0 with
P projective, then M is projective. Some other properties of
flat and projective modules over group rings of finite groups,
involving reduction modulo primes, are also proved.

1. Introduction.

In the representation theory of finite groups, a great deal of attention has
been given to the problem of determining whether a module over a group ring
is projective. For example, a well known theorem of Chouinard [13] states
that a module is projective if and only if its restriction to each elementary
abelian subgroup is projective. A theorem of Dade [16] states that over an
algebraically closed field of characteristic p, a finitely generated module for
an elementary abelian p-group is projective if and only if its restriction to
each cyclic shifted subgroup is projective, where a cyclic shifted subgroup
is a certain kind of cyclic subgroup of the group algebra. For an infinitely
generated module, the statement is no longer valid, but in [8] it is proved
that an infinitely generated module is projective if and only if its restriction
to each cyclic shifted subgroup defined over each extension field is projective.
These theorems have formed the basis for the development of the theory of
varieties for modules [2, 7, 8, 10].

The purpose of this paper is to develop further ways of recognizing pro-
jective and flat modules over group rings. We begin with a general theorem
about flat modules over an arbitrary ring.
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Theorem 1.1 (= Theorem 2.5). Let R be a ring and M a flat R-module.
If there exists a short exact sequence

0 →M → P →M → 0

with P a projective R-module, then M itself is projective.

We then concentrate on flat modules over a group ring. Our main theorem
on this subject is the following characterization of when a flat module over
a group ring of a finite group is projective. This answers the main question
posed in [6].

Theorem 1.2 (= Theorem 3.4). Let R be a ring of coefficients (not neces-
sarily commutative) and G a finite group. If M is a flat RG-module which
is projective as an R-module, then M is projective as an RG-module.

The proof is relatively short, using Theorem 2.5, and can be found in
Section 3. The proof, in fact, gives rather more, and generalizes naturally
to strongly group graded rings, as follows.

Theorem 1.3 (= Theorem 4.5). Let G be a finite group, S a strongly G-
graded ring, and R the identity component of S. If M is a flat S-module
which is projective as an R-module, then M is projective as an S-module.

A particular class of strongly G-graded rings consists of the crossed prod-
ucts R∗G, so the theorem applies in that case. The case of crossed products
applies in particular when G is a finite quotient of another group, which al-
lows us to deduce the following result.

Corollary 1.4 (= Corollary 4.8). Let R be a ring of coefficients (not nec-
essarily commutative) and H a subgroup of finite index in a group Γ (not
necessarily finite). If M is a flat RΓ-module which is projective as an RH-
module, then M is projective as an RΓ-module.

The proof of Theorem 1.2 also generalizes to infinite groups, to give a
theorem which is most easily stated in the terminology of [4, 5].

Theorem 1.5 (= Theorem 5.2). Let R be a ring of coefficients (not nec-
essarily commutative) and Γ a group (not necessarily finite). If M is a flat
cofibrant RΓ-module, then M is projective.

A secondary purpose of this paper is to collect various other facts about
flat and projective modules over group rings of finite groups. The following
two theorems occupy Sections 6 and 7. In fact, the proofs we give work in
the context of subgroups of finite index in arbitrary groups, but we only
state the restricted forms here.

Theorem 1.6 (See Theorems 6.1 and 7.3). Let R be a ring of coefficients
and G a finite group. An RG-module M is projective (respectively, flat) if
and only if
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(i) M is projective (respectively, flat) as an R-module, and
(ii) M/pM is projective (respectively, flat) as an (R/pR)G-module for each

prime number p dividing |G|.

On the basis of this, it is tempting to suppose that it might be true that
an RG-module M is projective if and only if it is projective as an R-module,
and K⊗RM is projective as a KG-module for every field K containing R/p
for some prime ideal p ⊆ R. In Section 8, we give an example to show that
this is false in general, even if R is a discrete valuation ring. In Section 9,
on the other hand, we show that the statement is true if R is a Dedekind
domain whose field of fractions has characteristic prime to |G|, such as a
ring of algebraic integers, or p-local integers, or p-adic integers.

We use the notation p.dimRM to denote the projective dimension of a
module M over a ring R, and w.dimRM to denote the weak dimension,
namely the smallest length of a resolution of M by flat modules.

2. Periodic flat modules.

The purpose of this section is to prove that periodic flat modules do not exist,
over any ring. Throughout this section, all modules are modules over a ring
R which has an identity element, but which is not necessarily commutative.

Lemma 2.1 (Villamayor). Let M be a submodule of a projective R-module
P . The following conditions are equivalent:

(a) P/M is flat.
(b) For each x ∈M , there exists f ∈ HomR(P,M) such that f(x) = x.
(c) For each x1, . . . , xn ∈ M , there exists f ∈ HomR(P,M) such that

f(xi) = xi for i = 1, . . . , n.

Proof. See Chase [12], Proposition 2.2 (where the result first appeared), or
Rotman [27], Theorem 3.57. �

The following proposition and lemma are, with slight modifications, spe-
cial cases of a result of Osofsky [26], Theorem 1.3; we provide direct proofs
for the reader’s convenience. In particular, the proposition implies the well
known fact that countably related flat modules have projective dimension
at most one ([19], Lemma 2).

Proposition 2.2. Let M be a countably generated submodule of a projective
R-module P . If P/M is flat, then M is projective.

Proof. Let x1, x2, . . . be a countable sequence of generators for M . By in-
duction and Lemma 2.1, there exist f1, f2, . . . in HomR(P,M) such that

(1− fn)(1− fn−1) · · · (1− f1)(xi) = 0
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for n ≥ i. It follows that the union of the kernels of the homomorphisms

gn = (1− fn)(1− fn−1) · · · (1− f1)|M
equals M . Hence, there is a homomorphism g : M → P (ω) = P ⊕ P ⊕ · · ·
given by the rule

g(x) = (x, g1(x), g2(x), . . . ).

Let f : P (ω) →M be the homomorphism given by

f(a1, a2, . . . ) = f1(a1) + f2(a2) + · · · .

For all n, we have gn = (1 − fn)gn−1 (where g0 = 1), and so fngn−1 =
gn−1 − gn. Hence, for x ∈M we see that

fg(x) = f1(x) + f2g1(x) + f3g2(x) + . . .

= x− g1(x) + g1(x)− g2(x) + g2(x)− g3(x) + · · · = x.

Thus fg = idM , and therefore M is projective. �

Lemma 2.3. Let M be a submodule of a projective R-module P , and sup-
pose that P/M is flat. Then any countably generated submodule of M is
contained in a countably generated submodule K of M such that P/K is
flat.

Proof. Since it is harmless to replace M and P by M ⊕ 0 and P ⊕ Q for
any projective module Q, there is no loss of generality in assuming that P
is free, say with basis X.

Given a countably generated submodule K0 ⊆ M , choose a countable
subset Y ⊆ X such that K0 is contained in the submodule P0 of P generated
by Y . Then P0 is a direct summand of P . Let π : P → P0 be a projection,
so that π is an idempotent endomorphism of P with countably generated
image containing K0.

We claim that M has a countably generated submodule K1 ⊇ K0 such
that for each x ∈ K0, there exists f ∈ HomR(P,K1) with f(x) = x.

Let x1, x2, . . . be a countable sequence of generators for K0. By Lemma
2.1, there exist f1, f2, . . . in HomR(P,M) such that fn(xi) = xi for n ≥ i.
Since π(xi) = xi for all i, we may replace fn by fnπ. Now each fnP is
countably generated, and so the module

K1 = K0 +
∞∑

n=1

fnP

is a countably generated submodule of M . Any x ∈ K0 lies in the submodule
generated by x1, . . . , xn for some n, whence fn(x) = x. Since fnP ⊆ K1,
this establishes the claim.

Now repeat this process ω times, obtaining countably generated sub-
modules K0 ⊆ K1 ⊆ . . . of M such that for each x ∈ Kt, there is some
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f ∈ HomR(P,Kt+1) with f(x) = x. Then K =
⋃∞

t=0Kt is a countably
generated submodule of M , and P/K is flat by Lemma 2.1. �

Lemma 2.4. Let 0 → M
⊆−→

⊕
i∈I Pi

g−→M → 0 be a short exact sequence
with M flat and the Pi countably generated projective. Given any countable
subset J0 ⊆ I and any countably generated submodule K0 ⊆M , there exists
a countable subset J ⊆ I such that J0 ⊆ J , the submodule PJ =

⊕
j∈J Pj

contains K0, the image gPJ equals M ∩ PJ , and gPJ is projective.

Proof. Set PJ =
⊕

j∈J Pj and MJ = M ∩ PJ for all subsets J ⊆ I.
We first show that given J0 and K0, there exists a countable subset J ⊆ I,

containing J0, such that K0 ⊆ gPJ and gPJ is projective.
In view of Lemma 2.3, after enlarging K0 we may assume that PI/K0

is flat. Then, after enlarging J0, we may also assume that K0 ⊆ gPJ0 .
Now apply Lemma 2.3 again to obtain a countably generated submodule
K1 ⊆M such that gPJ0 ⊆ K1 and PI/K1 is flat. Continuing in this manner,
we obtain countable subsets J0 ⊆ J1 ⊆ . . . in I and countably generated
submodules K0 ⊆ K1 ⊆ . . . in M such that Ki ⊆ gPJi ⊆ Ki+1 and PI/Ki is
flat for all i. Then J =

⋃∞
i=0 Ji is a countable subset of I, and K0 ⊆ gPJ =⋃∞

i=0Ki. Since the PI/Ki are flat, so is PI/gPJ , and thus gPJ is projective
by Proposition 2.2. This establishes the first claim.

We next observe that any countable subset J0 of I is contained in a
countable subset J such that MJ is countably generated. To see this, use
the first claim to find a countable subset J of I such that J0 ⊆ J and gPJ

is projective. Hence, the short exact sequence

0 →MJ → PJ → gPJ → 0

splits, and so MJ is countably generated.
Now return to arbitrary J0 and K0 as in the hypotheses of the lemma.

After enlarging J0, we may assume that K0 ⊆ PJ0 . By the second claim
above, there exists a countable subset J1 ⊆ I such that J0 ⊆ J1 and MJ1

is countably generated. By the first claim, there exists a countable subset
J2 ⊆ J , containing J1, such that MJ1 ⊆ gPJ2 and gPJ2 is projective. Since
gPJ2 is countably generated, it is contained in PJ3 for some countable subset
J3 ⊆ I, and thus gPJ2 ⊆MJ3 . It is harmless to enlarge J3 enough to contain
J2, and the second claim allows us, after a further enlargement, to assume
that MJ3 is countably generated.

Continuing in this manner, we obtain countable subsets J0 ⊆ J1 ⊆ . . . in
I such that

MJ2i−1 ⊆ gPJ2i ⊆MJ2i+1

and gPJ2i is projective for all i. Then J =
⋃∞

i=1 Ji is a countable subset of
I such that K0 ⊆ PJ and gPJ = MJ . Since MJ is the ascending union of
the projectives gPJ2i , it must be flat. In view of the short exact sequence

0 →MJ → PJ →MJ → 0,
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we conclude from Proposition 2.2 that MJ is projective. �

We are now ready to prove the main theorem. In case M is ℵn-generated
for some nonnegative integer n, the conclusion follows immediately from
the theorem of Osofsky quoted above ([26], Theorem 1.3), which in this
case implies that p.dim M ≤ n. D. Simson has pointed out that this case
also follows from his Theorem 1.5 in [28], and that it is possible to base a
proof of the general case on a transfinite induction argument involving [28],
Proposition 1.4.

Theorem 2.5. If 0 → M → P → M → 0 is a short exact sequence of
R-modules with M flat and P projective, then M must be projective.

Proof. We may assume that the homomorphism M → P is an inclusion
map, and we let g denote the homomorphism P →M .

By a theorem of Kaplansky [20], the projective module P is a direct sum
of countably generated submodules, say P =

⊕
i∈I Pi. Set PJ =

⊕
j∈J Pj

and MJ = M ∩ PJ for all subsets J ⊆ I.
Consider the set P of all pairs (J, L) where J is a subset of I such that

gPJ = MJ and L is a submodule of PJ such that PJ = MJ⊕L. In particular,
(∅, 0) ∈ P. Order P by componentwise inclusion:

(J1, L1) ≤ (J2, L2) ⇐⇒ J1 ⊆ J2 and L1 ⊆ L2.

If {(Jα, Lα)} is any nonempty chain in P, then (
⋃

α Jα,
⋃

α Lα) clearly be-
longs to P. Therefore Zorn’s Lemma gives us a maximal element of P, say
(J, L).

If J = I, then P = M ⊕ L and we are done. Hence, assume that J 6= I.
Since gPJ = MJ , it follows from the Nine Lemma or the Snake Lemma

that there is a short exact sequence

0 →M/MJ
f−→ P/PJ

g−→M/MJ → 0

where f is induced by the inclusion mapM → P and g is induced by g. Then
f maps M/MJ isomorphically onto the submodule M = (M + PJ)/PJ ⊆
P/PJ , and we obtain a short exact sequence

0 →M
⊆−→ P/PJ

h−→M → 0

where h = fg. Note that P/PJ
∼= PI\J ; in particular, P/PJ is projective,

and is a direct sum of countably generated submodules (Pi + PJ)/PJ for
i ∈ I \ J . Since MJ is a direct summand of PJ , it is also a direct summand
of P . Then from MJ ⊆ M ⊆ P it follows that MJ is a direct summand of
M . Hence, M/MJ , and thus M , is flat.

Now apply Lemma 2.4 to the situation above, with initial data corre-
sponding to a nonempty subset of I \ J . The lemma then gives us a subset
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K ⊆ I, properly containing J , such that h(PK/PJ) = M ∩ (PK/PJ) and
h(PK/PJ) is projective. Since

h(PK/PJ) = f(gPK/MJ) = (gPK + PJ)/PJ

M ∩ (PK/PJ) = [(M + PJ) ∩ PK ]/PJ = (MK + PJ)/PJ ,

we obtain gPK +PJ = MK +PJ . Intersecting with M and using the modular
law, we see that gPK = MK .

Since the kernel of h|PK/PJ
is the submodule M ∩ (PK/PJ) =

(MK + PJ)/PJ , we find that h(PK/PJ) ∼= PK/(MK + PJ). The latter
quotient is thus projective, and so PK = (MK + PJ)⊕ T for some T . Since
PJ = MJ ⊕ L and

MK ∩ L = MK ∩ PJ ∩ L = MJ ∩ L = 0,

we haveMK+PJ = MK⊕L and so PK = MK⊕L⊕T . But then (K,L⊕T ) ∈
P, contradicting the maximality of (J, L).

Therefore J = I and P = M ⊕ L. �

3. R-projective and RG-flat implies RG-projective.

We present the most basic version of our main theorem – for modules over
group rings of finite groups – in this section. The additional results needed
to develop versions for modules over group rings of infinite groups are worked
out in the following two sections.

Let R be a ring of coefficients and G a group. If M is a left RG-module
and N an RG-R-bimodule, we can make N ⊗RM into a left RG-module via
r(n⊗m) = (rn)⊗m and g(n⊗m) = (gn)⊗ (gm) for r ∈ R, n ∈ N , m ∈M ,
g ∈ G. This is called the diagonal RG-module structure on N ⊗RM . There
is also the basic RG-module structure, where s(n ⊗ m) = (sn) ⊗ m for
s ∈ RG, n ∈ N , m ∈ M . We shall assume that N ⊗R M is equipped with
the diagonal structure unless otherwise specified.

In our first lemma, G can be arbitrary, but later in the section we shall
assume that G is finite.

Lemma 3.1.

(a) If M is a left RG-module which is projective as an R-module, then
RG⊗R M is a projective left RG-module.

(b) Let M be a projective left RG-module and N an RG-R-bimodule. If
N is a free right R-module with a basis of elements centralized by R,
then N ⊗R M is a projective left RG-module.

(c) Let M be a flat left RG-module and N an RG-R-bimodule. If N is
a free right R-module with a basis of elements centralized by R, then
N ⊗R M is a flat left RG-module.
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Proof. (a) It is clear that with respect to the basic RG-module structure,
RG ⊗R M is a projective left RG-module. Hence, it suffices to show that
the diagonal structure is isomorphic to the basic structure.

As an R-module, RG ⊗R M =
⊕

x∈G(x ⊗M). There is an R-module
automorphism φ on RG ⊗R M such that φ(x⊗m) = x⊗ x−1m for x ∈ G,
m ∈M . Since

φ(gx⊗ gm) = gx⊗ x−1m

for g, x ∈ G and m ∈ M , we see that φ maps RG ⊗R M with the diag-
onal structure isomorphically onto the same tensor product with the basic
structure.

(b) There is a left RG-module M ′ such that M ⊕M ′ is free, and N ⊗RM
is isomorphic to a direct summand of N ⊗R (M ⊕ M ′). Hence, we may
assume that M is a free left RG-module. Now M is isomorphic to a direct
sum of copies of RG, and so N ⊗RM is isomorphic to a direct sum of copies
of N ⊗R RG. Thus, we need only consider the case when M = RG.

Let {ni | i ∈ I} be an R-centralizing basis for NR. Then there is an R-
module decomposition N ⊗R RG =

⊕
i(ni ⊗ RG). There is a nonstandard

left RG-module structure on N ⊗R RG, under which r(n⊗ s) = rn⊗ s but
g(n ⊗ s) = n ⊗ (gs) for r ∈ R, n ∈ N , s ∈ RG, g ∈ G. With respect to
this structure, each ni ⊗RG is an RG-submodule of N ⊗R RG, isomorphic
to RG. Hence, N ⊗R RG with the nonstandard structure is a free left RG-
module. Thus, it suffices to show that the diagonal structure on N ⊗R RG
is isomorphic to this nonstandard structure.

As an R-module, N ⊗R RG =
⊕

x∈G(N ⊗ x). There is an R-module
automorphism ψ on N ⊗R RG such that ψ(n ⊗ x) = x−1n ⊗ x for n ∈ N
and x ∈ G. Since

ψ(gn⊗ gx) = x−1n⊗ gx

for g, x ∈ G and n ∈ N , we see that ψ maps the diagonal structure of
N ⊗R RG isomorphically onto the nonstandard structure.

(c) Since M is flat, it can be written as a filtered colimit of finitely gen-
erated projective modules, by the Lazard–Govorov theorem [18, 22]. Since
N⊗R− commutes with filtered colimits, the statement follows from (b). �

For the rest of this section, we suppose that the group G is finite. In
Section 5, we shall show how to generalize the techniques to infinite groups.
View R as the trivial RG-RG-bimodule. There is a bimodule isomorphism
R ∼= Ru, where u =

∑
g∈G g ∈ RG, and so we get a short exact sequence

0 → R → RG → B → 0 of RG-RG-bimodules, where B = RG/Ru. Note
that this sequence splits when viewed as a short exact sequence of right or
left R-modules.
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Lemma 3.2. (a) If M is a left RG-module with finite projective dimen-
sion, and M is projective as an R-module, then M is projective as an
RG-module.

(b) If M is a left RG-module with finite weak dimension, and M is pro-
jective as an R-module, then M is flat as an RG-module.

Proof. (a) For R commutative, this can be found in Corollary 5.5 of [4] or
Lemma 2.3 of [9]. The proof we give for R not necessarily commutative
follows the same lines, but more care is needed in the details.

There is a short exact sequence

0 → R⊗R M → RG⊗R M → B ⊗R M → 0

of left RG-modules. Note that R ⊗R M ∼= M as RG-modules, and that
RG⊗R M is a projective left RG-module by Lemma 3.1(a).

Since RG is a free right R-module with a basis {u}∪(G\{1}) that central-
izes R, it follows that B is a free right R-module with an R-centralizing basis.
Hence, Lemma 3.1(b) shows that B⊗R P is a projective left RG-module for
any projective left RG-module P . On tensoring B with a projective RG-
resolution for M , we thus see that p.dimRG(B ⊗R M) ≤ p.dimRGM . If
p.dimRG(B ⊗R M) were positive, it would follow from the above short ex-
act sequence that p.dimRGM < p.dimRG(B ⊗R M), which is impossible.
Therefore B ⊗R M is a projective RG-module, and thus M is also.

(b) This follows in the same way, using Lemma 3.1(c) instead of 3.1(b).
�

Lemma 3.3. If M is a flat left RG-module which is projective as an R-
module, then there exists a short exact sequence

0 →M → P → N → 0

of left RG-modules such that P is projective, N is flat, and also N is pro-
jective as an R-module.

Proof. Consider the short exact sequence

0 → R⊗R M → RG⊗R M → B ⊗R M → 0

of left RG-modules, from the proof of Lemma 3.2. Then R ⊗R M ∼= M as
RG-modules, and RG⊗RM is a projective RG-module. Further, B is a free
right R-module with an R-centralizing basis. Hence, Lemma 3.1(c) shows
that B ⊗R M is a flat RG-module. If {bi | i ∈ I} is an R-centralizing basis
for BR, then B⊗RM =

⊕
i(bi⊗M) where each bi⊗M is an R-submodule of

B⊗RM isomorphic to M . Thus, B⊗RM is projective as an R-module. �

Theorem 3.4. Let R be a ring of coefficients (not necessarily commutative)
and G a finite group. If M is a flat RG-module which is projective as an
R-module, then M is projective as an RG-module.



54 D.J. BENSON AND K.R. GOODEARL

Proof. Let us consider the case of left modules. Set M0 = M , and for
i = 0,−1,−2, . . . choose short exact sequences

0 →Mi−1 → Pi →Mi → 0

of left RG-modules with Pi projective. Note that these Mi are all flat. In
view of Lemma 3.3, there exist short exact sequences

0 →Mi → Pi+1 →Mi+1 → 0

of left RG-modules for i = 0, 1, 2, . . . such that Pi+1 is projective, Mi+1 is
flat, and also Mi+1 is projective as an R-module.

Taking the direct sum of all these short exact sequences, we obtain a short
exact sequence

0 →
⊕
i∈Z

Mi →
⊕
i∈Z

Pi →
⊕
i∈Z

Mi → 0

of left RG-modules with projective middle term and flat end term. By
Theorem 2.5,

⊕
i∈Z

Mi is a projective RG-module, and therefore so is M . �

4. Strongly G-graded rings.

Easy examples show that Theorem 3.4 does not remain valid as stated if
G is allowed to be infinite – e.g., take R to be a field and G an infinite
cyclic group. It is, however, natural to ask for a version of the theorem
in which projectivity over R is replaced by projectivity over RH where H
is a subgroup of finite index in G. This context reduces easily to the case
that H is normal in G, and then we can express RG as a crossed product
(RH) ∗ (G/H). Thus, what is needed is a generalization of Theorem 3.4 in
which RG is replaced by a crossed product R ∗ G. In fact, we can replace
R ∗ G by any strongly G-graded ring with identity component R, and the
theorem is proved in that generality in this section.

Throughout the section, let G be a group, S a G-graded ring, and R = S1

(the identity component of S). Some of our proofs are adapted from Hopf
algebra methods, which apply in the following way. If we view ZG as a Hopf
algebra over Z, then S is a left ZG-comodule algebra, which means that it
is simultaneously a ZG-comodule and a Z-algebra, in such a way that the
comodule structure map is a Z-algebra homomorphism. The structure map
here is the map λ : S → ZG⊗Z S given by s 7→

∑
g∈G g⊗ sg. The statement

that λ is a Z-algebra homomorphism is equivalent to the statement that
SgSh ⊆ Sgh for g, h ∈ G. The subring of ZG-coinvariants, namely the
elements s ∈ S such that λ(s) = 1⊗ s, is just R.

Given any left ZG-module N and any left S-module M , one can make
N ⊗Z M into a left S-module so that s · (n ⊗m) =

∑
g∈G gn ⊗ sgm. This
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S-module action is called the semi-diagonal action (Cornick and Kropholler
[14], p. 44).

Lemma 4.1. Let S be a G-graded ring, N a left ZG-module, and M a left
S-module. Assume that N is free as a Z-module. If M is free, or projective,
or flat as an S-module, then so is N ⊗Z M .

Remark. The free and projective cases are done in Cornick and Kropholler
[14], Corollary 3.3 with a different proof.

Proof. We claim that it suffices to consider the case M = SS. First of all,
the free and projective conclusions follow directly from this case and the fact
that the functor N ⊗Z− commutes with direct sums. Secondly, if M is flat,
then by the Lazard-Govorov Theorem [18, 22], it is a filtered colimit of free
modules. Since the functor N ⊗Z − also commutes with filtered colimits, it
then follows from the previous cases that N ⊗Z M is flat.

Thus, we restrict attention to N ⊗Z S. Observe that S ⊗Z N , made into
a left S-module in the usual way, is a free left S-module. Hence, it suffices
to show that N ⊗Z S ∼= S ⊗Z N as left S-modules.

Define φ : S ⊗Z N → N ⊗Z S as the unique group homomorphism such
that s⊗ n 7→

∑
g∈G gn⊗ sg for s ∈ S, n ∈ N . Observe that

φ
(
t · (s⊗ n)

)
= φ(ts⊗ n)

=
∑
g∈G

gn⊗ (ts)g =
∑

g,h∈G

ghn⊗ tgsh

= t ·
∑
h∈G

hn⊗ sh = t · φ(s⊗ n)

for s, t ∈ S and n ∈ N . Thus, φ is an S-module homomorphism.
Similarly, define ψ : N ⊗Z S → S ⊗Z N so that n⊗ s 7→

∑
g∈G sg ⊗ g−1n

for n ∈ N , s ∈ S, and observe that

ψ
(
t · (n⊗ s)

)
=

∑
h∈G

ψ(hn⊗ ths) =
∑

g,h∈G

(ths)g ⊗ g−1hn

=
∑

g,h∈G

thsh−1g ⊗ g−1hn =
∑

g,h∈G

thsg ⊗ g−1n = t · ψ(n⊗ s)

for s, t ∈ S and n ∈ N . Thus, ψ is an S-module homomorphism.
Finally, we compute that

φψ(n⊗ s) =
∑
g∈G

φ(sg ⊗ g−1n) =
∑

g,h∈G

hg−1n⊗ (sg)h =
∑
g∈G

n⊗ sg = n⊗ s

ψφ(s⊗ n) =
∑
g∈G

ψ(gn⊗ sg) =
∑

g,h∈G

(sg)h ⊗ h−1gn =
∑
g∈G

sg ⊗ n = s⊗ n

for s ∈ S and n ∈ N . Therefore φψ and ψφ are identity maps. �
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Now assume that S is strongly G-graded. This means that for g, h ∈ G
we have SgSh = Sgh, and not just SgSh ⊆ Sgh.

Lemma 4.2. If S is a strongly G-graded ring and R = S1, then S is a
projective left (or right) R-module.

Proof. This is well known (see for example Lemma 2.1 of Yi [29] or Remark
2 on pages 1035-1036 of Nastasescu [24]), but the proof is short, so we
include it. If g ∈ G, then there exist elements xi ∈ Sg−1 and yi ∈ Sg (for
1 ≤ i ≤ n) such that

∑n
i=1 xiyi = 1. The elements xi and yi then give

left R-module homomorphisms from Sg to R and R to Sg displaying Sg as
a direct summand of a direct sum of n copies of RR. Thus each Sg is a
projective left R-module, and hence so is S. �

Lemma 4.3. Let S be a strongly G-graded ring and M a left S-module. If
M is projective as a left R-module, then ZG ⊗Z M is projective as a left
S-module.

Proof. First consider ZG ⊗Z S, made into a left S-module with the semi-
diagonal action. This is also a right S-module in the standard way, and
the two module actions commute, so it is an S-S-bimodule. We claim that
ZG ⊗Z S ∼= S ⊗R S as S-S-bimodules. (This is a special case of Cornick
and Kropholler [14], Lemma 5.1.) We can argue as in Montgomery [23],
Theorem 8.1.7, as follows.

There is a “Hopf-Galois map” β : S ⊗R S → ZG⊗Z S such that s⊗ t 7→∑
g∈G g⊗sgt for s, t ∈ S; observe that β is an S-S-bimodule map. Since S is

strongly graded, for each g ∈ G there exist finitely many elements xg,i ∈ Sg

and yg,i ∈ Sg−1 such that
∑

i xg,iyg,i = 1. We can define a right S-module
homomorphism α : ZG⊗Z S → S⊗R S such that g⊗u 7→

∑
i xg,i⊗ yg,iu for

g ∈ G, u ∈ S. It can be checked that α is a bimodule homomorphism, but
that falls out of proving that α = β−1. Now

βα(g ⊗ u) =
∑

i

β(xg,i ⊗ yg,iu) =
∑

i

∑
h∈G

h⊗ (xg,i)hyg,iu

=
∑

i

g ⊗ xg,iyg,iu = g ⊗ u

for g ∈ G, u ∈ S, and so βα is an identity map. Also,

αβ(s⊗ t) =
∑
g∈G

α(g ⊗ sgt) =
∑
g∈G

∑
i

xg,i ⊗ yg,isgt

=
∑
g∈G

∑
i

xg,iyg,isg ⊗ t = s⊗ t

for s, t ∈ S (because yg,isg ∈ R), and so αβ is an identity map. Therefore β
is a bimodule isomorphism, establishing the claim.
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We now have left S-module isomorphisms

S ⊗R M ∼= (S ⊗R S)⊗S M ∼= (ZG⊗Z S)⊗S M ∼= ZG⊗Z M.

(One must observe that the standard abelian group isomorphism in the last
step is in fact an S-module map.) Since RM is projective, so is S(S ⊗R M),
and the proof is complete. �

Continue to assume that S is strongly G-graded, where now G is assumed
to be finite. Set u =

∑
g∈G g ∈ ZG. Then Zu is an ideal of ZG, and Zu

is isomorphic to the trivial ZG-ZG-bimodule Z. We have a short exact
sequence

0 → Zu→ ZG→ ZG/Zu→ 0

of ZG-ZG-bimodules, and we note that all three of these bimodules are free
as Z-modules. In particular, the sequence splits as a Z-module sequence,
and so it remains exact after tensoring over Z with any Z-module. We write
B for the ZG-ZG-bimodule ZG/Zu.

Lemma 4.4. Let S be a strongly G-graded ring, where G is a finite group,
and let M be a left S-module.

(a) If RM is projective and p.dimSM <∞, then SM is projective.
(b) If p.dimSM <∞, then p.dimSM = p.dimRM .
(c) Suppose that M is a flat left S-module such that RM is projective.

Then there exists a short exact sequence of left S-modules

0 →M → P → N → 0

such that P is projective, N is flat, and RN is projective.

Proof. We have the short exact sequence of left S-modules

0 → Zu⊗Z M → ZG⊗Z M → B ⊗Z M → 0.

Since Zu is the trivial ZG-module, Zu⊗ZM ∼= M . If RM is projective, then
so is S(ZG⊗Z M) by Lemma 4.3.

(a) Apply B⊗Z− to a projective resolution of SM . In view of Lemma 4.1
and the exactness of B⊗Z−, we obtain a projective resolution of S(B⊗ZM).
Thus, p.dimS(B ⊗Z M) ≤ p.dimSM , and we conclude that the short exact
sequence above must split.

(b) Since RS is projective by Lemma 4.2, p.dimRM ≤ p.dimSM , and so
p.dimRM = n <∞. Choose an exact sequence of S-modules

0 → K → Pn−1 → · · · → P0 →M → 0

where the Pi are projective. Since the Pi are also projective R-modules, RK
must be projective. Further, p.dimSK <∞ because p.dimSM <∞, and so
SK is projective by part (a). Thus p.dimSM ≤ n.

(c) The S-module ZG⊗ZM is projective by Lemma 4.3, and N := B⊗ZM
is a flat left S-module by Lemma 4.1. Finally, observe that the semi-diagonal
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S-module action on N , when restricted to R, is given by r · (b⊗m) = b⊗rm
for r ∈ R, b ∈ B, m ∈ M . Since B is a free Z-module, it follows that N
as an R-module is isomorphic to a direct sum of copies of M and thus is
projective. �

Theorem 4.5. Let S be a strongly G-graded ring, where G is a finite group,
and let R = S1. If M is a flat S-module which is projective as an R-module,
then M is projective as an S-module.

Proof. In the proof of Theorem 3.4, replace Lemma 3.3 by Lemma 4.4(c). �

Corollary 4.6. Let S be a strongly G-graded ring, where G is a finite group,
and let R = S1. If M is any S-module, then

p.dimSM = max{p.dimRM, w.dimSM}.

Proof. Suppose that M is a left module. Obviously neither p.dimRM nor
w.dimSM is greater than p.dimSM . Now suppose that

max{p.dimRM, w.dimSM} = n <∞.

Choose an exact sequence of S-modules

0 → K → Pn−1 → · · · → P0 →M → 0

where the Pi are projective. Since the Pi are also projective R-modules,
RK must be projective and SK must be flat. Hence, SK is projective by
Theorem 4.5, and therefore p.dimSM ≤ n. �

Suppose now that S is a ring (strongly) graded by an arbitrary group Γ.
If H is a subgroup of Γ, we set SH =

∑
h∈H Sh, which is a subring of S,

(strongly) graded by H.

Corollary 4.7. Let S be a strongly Γ-graded ring, where Γ is an arbitrary
group, and let H be a subgroup of finite index in Γ. If M is a left S-module
which is projective as an SH-module, then it is projective as an S-module.

Proof. There is a normal subgroup N C Γ of finite index contained in H,
and we may view SH as an (H/N)-graded ring, where (SH)hN =

∑
x∈hN Sx

for hN ∈ H/N . Observe that since S is strongly Γ-graded, SH is strongly
(H/N)-graded. Hence, it follows from Lemma 4.2 that SH is projective as a
left or right SN -module, and so M is projective as an SN -module. We now
view S as a strongly (Γ/N)-graded ring and apply Theorem 4.5 to obtain
the desired conclusion. �

Since group rings are examples of strongly graded rings, Corollary 4.7
specializes to the following result.

Corollary 4.8. Let R be a coefficient ring and H a subgroup of finite index
in a group Γ. If M is a flat RΓ-module which is projective as an RH-module,
then it is projective as an RΓ-module.
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5. Group rings of infinite groups.

Another direction in which Theorem 3.4 can be extended is to allow G to be
infinite but to strengthen the assumption of projectivity over R. In order to
use the methods of Section 3, then, the main point is to find a replacement
for the short exact sequence

0 → R→ RG→ B → 0.

For this purpose, we use the module B introduced by Kropholler [21], see
also Cornick and Kropholler [15], Benson [4].

Given any set Σ, and any coefficient ring R, we denote by B(Σ, R) the set
of functions from Σ to R which take only finitely many different values in R.
We make this into a ring with pointwise operations. If R is commutative,
then so is B(Σ, R). Since R may be identified with the subring of constant
functions in B(Σ, R), the latter naturally obtains the structure of an R-R-
bimodule.

Let Γ be a group, and write B for B(Γ, R). This is an RΓ-RΓ-bimodule in
a standard way via left and right multiplication in Γ. Namely, for g, h ∈ Γ,
and f ∈ B, the function gfh is defined by the rule (gfh)(x) = f(hxg). The
image of R in B is an RΓ-RΓ-subbimodule, on which Γ acts trivially. We
write B for the quotient B/R, so that there is a short exact sequence of
RΓ-RΓ-bimodules

0 → R→ B → B → 0.

This is what we use as a replacement for the short exact sequence used in
Section 3. Note that this sequence splits as a short exact sequence of right
or left R-modules.

The following lemma is essentially due to Kropholler.

Lemma 5.1. The bimodule B is a free right R-module with an R-centraliz-
ing basis. This basis may be chosen to include the constant function 1 as
one element. Hence, B is also a free right R-module with an R-centralizing
basis.

Proof. It follows from a result of Nöbeling [25] (see Fuchs [17], Lemma 97.2
for the simplified proof due to G. Bergman) that B(Σ,Z) is a free abelian
group for any set Σ. The inclusion of Z into B(Σ,Z) (as constant functions)
is a pure monomorphism, and therefore splits. Any complementary direct
summand, being a subgroup of a free abelian group, is itself free abelian.
Hence, the constant function 1 may be chosen as part of a free basis for
B(Σ,Z). Tensoring with R, and using the fact that B(Σ,Z)⊗ZR ∼= B(Σ, R)
as R-R-bimodules, we obtain an R-centralizing right R-module basis for
B(Σ, R). Now apply this in the case Σ = Γ. �
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A left RΓ-module M is said to be cofibrant if B ⊗R M is a projective
left RΓ-module. (As in Section 3, we assume that tensor products of RΓ-
R-bimodules with RΓ-modules are equipped with the diagonal RΓ-module
structure.) The motivation for this definition may be found in [4, 5]. If Γ
happens to be finite, this is the same as saying that M is projective as an
R-module.

Theorem 5.2. Let R be a ring of coefficients (not necessarily commutative)
and Γ a group (not necessarily finite). If M is a flat cofibrant RΓ-module
then M is projective.

Proof. Set M0 = M . As in the proof of Theorem 3.4, it suffices to find short
exact sequences

0 →Mi → Pi+1 →Mi+1 → 0
of left RΓ-modules for i = 0, 1, 2, . . . such that Pi+1 is projective and Mi+1

is flat.
First, we have a short exact sequence

0 → R⊗R M → B ⊗R M → B ⊗R M → 0

of left RΓ-modules where R ⊗R M ∼= M , and where B ⊗R M is projective
because M is cofibrant. By Lemmas 5.1 and 3.1(c), B ⊗R M is flat. Thus,
we obtain a short exact sequence

0 →M0 → P1 →M1 → 0

of the desired form, where additionally M1
∼= B ⊗R M0.

Since BR is free, there is a short exact sequence

0 → B ⊗R M0 → B ⊗R P1 → B ⊗R M1 → 0

of left RΓ-modules, where B ⊗R M0
∼= M1 is given, B ⊗R P1 is projective

by Lemmas 5.1 and 3.1(b), and B ⊗R M1 is flat by Lemmas 5.1 and 3.1(c).
This provides us with a short exact sequence

0 →M1 → P2 →M2 → 0

of the desired form, where additionally M2
∼= B ⊗R M1.

An obvious induction now completes the proof. �

6. Reduction modulo p and projectivity.

In this section, we prove that projectivity for modules over a group ring is
determined by the reduction modulo each prime dividing the group order.
The proof works in the context of a group and a subgroup of finite index,
so this is the context in which we present it.

Theorem 6.1. Let R be a ring of coefficients and H a subgroup of finite
index in a group G. An RG-module M is projective if and only if

(i) M is projective as an RH-module, and
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(ii) M/pM is projective as an (R/pR)G-module for each prime number p
dividing [G : H].

Proof. It is easy to see that a projective RG-module satisfies (i) and (ii).
Conversely, we suppose that M is an RG-module satisfying (i) and (ii), and
we shall prove that M is projective. Since M is projective as an RH-module,
it suffices to prove that M is projective relative to H. By D. G. Higman’s
criterion (see for example Proposition 3.6.4 of [3]), this amounts to showing
that the identity endomorphism can be written as

1M = TrH,G(α)

for some α ∈ EndRH(M), where TrH,G(α) is the RG-endomorphism defined
by

TrH,G(α)(m) =
∑

g∈G/H

g(α(g−1(m))).

The sum runs over a set of left coset representatives of H in G.
Let [G : H] =

∏
i p

γi
i where the pi are distinct primes. Since M is projec-

tive as an RH-module, for each pi, the natural map

EndRH(M) → End(R/piR)H(M/piM)

given by reduction modulo pi is surjective, and the kernel of this map equals
piEndRH(M). Since M/piM is a projective (R/piR)G-module, its identity
endomorphism can be written as TrH,G(αi) for some

αi ∈ End(R/piR)H(M/piM).

In view of the observations above, this implies that there exist elements αi,
βi ∈ EndRH(M) such that

1M = TrH,G(αi) + piβi.

Note that piβi = 1M −TrH,G(αi) is an RG-homomorphism. Multiplying the
above expressions, we get

1M =
∏

i

(TrH,G(αi) + piβi)γi = TrH,G(α′) + [G : H]β′

for some α′, β′ ∈ EndRH(M). (Here, we have used the fact that if a ∈
EndRH(M) and b ∈ EndRG(M), then TrH,G(a)b = TrH,G(ab) and bTrH,G(a)
= TrH,G(ba).) Now the map [G : H]β′ = 1M−TrH,G(α′) is an RG-homomor-
phism, so applying TrH,G we get

[G : H]TrH,G(β′) = [G : H]2β′,

and hence δ = TrH,G(β′)− [G : H]β′ satisfies [G : H]δ = 0. Hence,

δ = δ.1M = δ(TrH,G(α′) + [G : H]β′) = TrH,G(δα′),
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and so

[G : H]β′ = TrH,G(β′)− δ = TrH,G(β′ − δα′).

Finally,

1M = TrH,G(α′) + [G : H]β′ = TrH,G(α′ + β′ − δα′).
�

7. Reduction modulo p and flatness.

In this section, we prove that flatness for modules over a group ring is
determined by the reduction modulo each prime dividing the group order.
Again, we prove the theorem in the generality of a subgroup of finite index.

Lemma 7.1. Let R be a ring of coefficients and H a subgroup of finite
index in a group G. If M is a left RG-module and N a right RG-module
with M flat as a left RH-module, then [G : H] annihilates TorRG

n (N,M) for
all n > 0.

Proof. Let g1, . . . , gl be a set of left coset representatives of H in G, and let

0 →M ′ φ−→ F →M → 0

be a short exact sequence with F a free left RG-module. Then we have the
long exact sequence

0 → TorRG
1 (N,M) → N ⊗RG M

′ φ∗−→ N ⊗RG F → N ⊗RG M → 0.

Consider an element
∑k

i=1 ni⊗m′
i in the kernel of φ∗. By Lemma 2.1, there

is an RH-homomorphism ρ : F → M ′ such that ρφ(g−1
j m′

i) = g−1
j m′

i for
1 ≤ j ≤ l and 1 ≤ i ≤ k. Let θ = TrH,G(ρ). Then θ : F → M ′ is an
RG-homomorphism such that θφ(m′

i) = [G : H]m′
i for 1 ≤ i ≤ k. So we

have

0 = θ∗φ∗

( k∑
i=1

ni ⊗m′
i

)
=

k∑
i=1

ni ⊗ θφ(m′
i) = [G : H]

k∑
i=1

ni ⊗m′
i.

This proves that [G : H] annihilates TorRG
1 (N,M). Since M ′ is also flat as

an RH-module and

TorRG
n (N,M ′) ∼= TorRG

n+1(N,M)

for n ≥ 1, an induction on n (i.e., dimension shifting) shows that

[G : H]TorRG
n (N,M) = 0

for n ≥ 1. �

Lemma 7.2. Let S be a ring, p ∈ S a central element, and M a left
S-module. Assume that M/pM is flat as a left S/pS-module, and that
TorS

n(S/pS,M) = 0 for all n > 0. If N is any right S-module, then
TorS

n(N,M) is p-torsionfree for all n > 0 and p-divisible for all n > 1.
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Proof. For any right S/pS-module L, we have

TorS
n(L,M) ∼= TorS/pS

n (L,M/pM) = 0

for all n > 0 by [11], Proposition VI.4.1.2. In particular,

TorS
n(N/pN,M) = TorS

n(N [p],M) = 0

for all n > 0, where N [p] = annN (p). Consider the short exact sequences

0 → pN
φ−→ N → N/pN → 0

0 → N [p] → N
π−→ pN → 0

where φ is the inclusion map and π is multiplication by p. From the long
exact sequences for TorS

∗ (−,M), we see that TorS
n(φ,M) is an isomorphism

for all n > 0, while TorS
n(π,M) is an isomorphism for all n > 1 and a

monomorphism for n = 1.
Therefore TorS

n(φπ,M) is an isomorphism for all n > 1 and a monomor-
phism for n = 1. Since φπ : N → N is just multiplication by p, so is
TorS

n(φπ,M) (e.g., [27], Theorem 8.13), and the lemma follows. �

Theorem 7.3. Let R be a ring of coefficients and H a subgroup of finite
index in a group G. An RG-module M is flat if and only if

(i) M is flat as an RH-module, and
(ii) M/pM is flat as an (R/pR)G-module for each prime p dividing

[G : H].

Proof. That flatness of M as an RG-module implies (i) and (ii) is well known
and easy to see. Condition (i) holds because (−)⊗RH M is naturally equiv-
alent to the composition of the exact functors (−)⊗RH RG and (−)⊗RGM .
Condition (ii) holds because (−) ⊗(R/pR)G (M/pM) is naturally equivalent
to the restriction of (−)⊗RG M to the category of right (R/pR)G-modules.

For the converse, we begin by observing that (i) implies that M is flat
as an R-module. Since RG is a flat R-module, it now follows from [11],
Proposition VI.4.1.1 that

TorRG
n (RG/pRG,M) = TorRG

n ((R/pR)⊗R RG,M) ∼= TorR
n (R/pR,M) = 0

for all n > 0 and any prime p.
Now let N be an arbitrary right RG-module. By (ii) and Lemma 7.2,

TorRG
n (N,M) is p-torsionfree for all n > 0 and any prime p dividing [G : H].

On the other hand, Lemma 7.1 shows that [G : H] annihilates TorRG
n (N,M),

and therefore TorRG
n (N,M) = 0 for all n > 0. �

8. Passage to fields of coefficients.

Let R be a commutative ring of coefficients and G a finite group. On the
basis of what we have proved, it is tempting to suppose that it might be
true that an RG-module M is projective if and only if
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(i) M is projective as an R-module, and
(ii) K ⊗R M is projective as a KG-module for every field K containing

R/p for some prime ideal p ⊆ R.
In this section, we give an example to show that this is false, and in the next
section we show that it is true if R is a Dedekind domain of characteristic
zero.

Let k be an algebraically closed field of characteristic 2 and let G = Z/2 =
〈g | g2 = 1〉. Let R = k[[t]] be the ring of formal power series over k in a
variable t. Then X = k[t−1] can be considered as an R-module in an obvious
way. In fact, X is the injective hull of k as an R-module. Since R has global
dimension one, there is an R-module projective resolution of X of the form

0 → Q1
ρ−→Q0 → X → 0.

Let M be the RG-module whose underlying R-module is Q0 ⊕ Q1, with
the group element g acting as the matrix

(
1 ρ
0 1

)
. Then M is not even flat,

let alone projective, since the image of 1 − g does not coincide with the
kernel of 1 + g (see Theorem 2.1 of [6]). Since Q0 and Q1 are projective
as R-modules, so is M , and so (i) is satisfied. To check condition (ii), we
note that any candidate for the field K is an extension of either k = R/(t)
or of k((t)), the field of fractions of R, so it suffices to examine these two
fields. Now k ⊗R X = 0 because every element of X is in the image of
multiplication by t, so k ⊗R M is a projective kG-module. (Here we use
the criterion of [6], Theorem 2.1 again.) Similarly, k((t))⊗R X = 0 because
every element is killed by a suitably high power of t, so k((t)) ⊗R M is a
projective k((t))G-module.

9. Dedekind domains of coefficients.

In this section, we examine what happens if R is a Dedekind domain of co-
efficients whose characteristic (i.e., the characteristic of the field of fractions
of R) is prime to the order of the group. In this case, if n is a nonzero inte-
ger prime to the characteristic of R, then the principal ideal nR is nonzero,
and so it can be written as a finite product of maximal ideals (cf. Atiyah
and Macdonald [1]). All that we actually need is that nR contain a finite
product of maximal ideals, and for this to hold it suffices that R be a com-
mutative noetherian domain of Krull dimension one whose characteristic is
prime to n.

Theorem 9.1. Let H be a subgroup of finite index in a group G and R
a commutative noetherian ring of coefficients such that the principal ideal
generated by [G : H] (times the identity element) contains a finite product of
maximal ideals that contain [G : H]. Then an RG-module M is projective
if and only if

(i) M is projective as an RH-module, and
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(ii) (R/m) ⊗R M is projective as an (R/m)G-module for each maximal
ideal m ⊆ R containing [G : H].

Proof. We modify the proof of Theorem 6.1 as follows.
Let M be an R-module satisfying (i) and (ii), and let m1, . . . ,mt be maxi-

mal ideals of R, containing [G : H], such that
∏

i mi is contained in the ideal
[G : H]R. Since R is noetherian, each mi is finitely generated. Thus, since
M/miM is a projective (R/mi)G-module, it follows as in the previous proof
that

1M = TrH,G(αi) + βi

for some αi ∈ EndRH(M) and some βi ∈ miEndRH(M). Multiplying these
expressions, and noting that βi is an RG-homomorphism, we get

1M = TrH,G(α′) +
∏

i

βi

for some α′ ∈ EndRH(M). Since R is commutative and
∏

i mi ⊆ [G : H]R,
we get

∏
i βi = [G : H]β′ for some β′ ∈ EndRH(M).

The remainder of the proof now proceeds as before. �

Theorem 9.2. Let R be a commutative noetherian domain of coefficients
of Krull dimension one, and G a finite group whose order is relatively prime
to the characteristic of R. Then an RG-module M is projective if and only
if

(i) M is projective as an R-module, and
(ii) M/mM is projective as an (R/m)G-module for each maximal ideal

m ⊆ R containing |G|.

Proof. The ideal I = |G|R is nonzero by hypothesis. Well-known results
then imply that I contains a finite product of maximal ideals that contain
I. For instance, R/I has Krull dimension zero and so is artinian (e.g., [1],
Theorem 8.5), whence R/I has only finitely many prime ideals, all of which
are maximal (e.g., [1], Propositions 8.1 and 8.3). Thus the prime radical
(nilradical) of R/I contains a finite product of maximal ideals. Since this
radical is nilpotent (e.g., [1], Proposition 8.4), the desired conditions on I
hold. Therefore the theorem follows from Theorem 9.1. �

Remark. This theorem seems to be well known for finitely generated ZG-
modules, but does not seem to be well known in the generality described
here.
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