Pacific

 Journal of MathematicsTVERBERG PARTITIONS AND BORSUK-ULAM THEOREMS
K.S. SARKARIA

TVERBERG PARTITIONS AND BORSUK-ULAM THEOREMS

K.S. SARKARIA

Abstract

An N-dimensional real representation E of a finite group G is said to have the "Borsuk-Ulam Property" if any continuous G-map from the $(N+1)$-fold join of G (an N-complex equipped with the diagonal G-action) to E has a zero. This happens iff the "Van Kampen characteristic class" of E is nonzero, so using standard computations one can explicitly characterize representations having the B-U property. As an application we obtain the "continuous" Tverberg theorem for all prime powers q, i.e., that some q disjoint faces of a $(q-1)(d+1)$-dimensional simplex must intersect under any continuous map from it into affine d-space. The "classical" Tverberg, which makes the same assertion for all linear maps, but for all q, is explained in our set-up by the fact that any representation E has the analogously defined "linear B-U property" iff it does not contain the trivial representation.

1. Introduction.

This paper is essentially an analysis of a method which I had used in a manuscript [19] circulated in 1988-89. Some of its results have in the meantime been independently obtained by others, and it is possible that the newer methods of [21] might lead to better results. Nevertheless, it does give a complete account of one aspect of "the method of deleted joins": it delineates clearly its power and limitations, as far as the two topics mentioned in the title are concerned, if one uses only finite groups, as against [21], where we use a continuous group action.

In 1966 Tverberg [24] showed that any cardinality $(q-1)(d+1)+1$ subset of a real affine d-dimensional space can be partitioned into q disjoint subsets whose convex hulls have a nonempty intersection; a much easier proof is given in [20]. There is a "continuous" analogue which asks more: given any continuous map f from a $(q-1)(d+1)$-simplex into d-space, can one always find q disjoint faces $\sigma_{1}, \ldots, \sigma_{q}$ of this simplex such that $f\left(\sigma_{1}\right) \cap \ldots \cap f\left(\sigma_{q}\right)$ is nonempty? For q prime this was established by Bárány-Shlosman-Szücs [4]. In [18] I gave an easy proof of this result using a deleted \mathbb{Z} / q-join of the N simplex, $N=(q-1)(d+1)$, viz. the $(N+1)$-fold join $E_{N}(\mathbb{Z} / q)=\mathbb{Z} / q \cdot \ldots \cdot \mathbb{Z} / q$.

In [19] I attempted to generalize this argument to all q by using, in addition, the "Van Kampen obstruction" class e.

The importance of this characteristic class $e(\mathbb{E}) \in H^{N}(G, \widehat{\mathbb{Z}}), n=\operatorname{dim}(\mathbb{E})$, which we define in 2.6 for any real representation \mathbb{E} of any finite group G, stems from the fact - see Theorem 1, 2.6.2 - that it is nonzero iff \mathbb{E} has the Borsuk-Ulam property, i.e., any continuous G-map $E_{N}(G) \rightarrow \mathbb{E}$ has a zero. Using the argument of [18], the "continuous" Tverberg holds if one has an order q group G for which $\mathbb{L}^{\perp}(G)$, the $(d+1)$-fold direct sum of the non-trivial part of the regular representation, has this B-U property. Our Theorem 2, 2.6.3 gives a complete characterization of complex \mathbb{Z} / q representations having the B-U property. In particular, it shows that the representations $\mathbb{L}^{\perp}(\mathbb{Z} / q)$ all have this property iff q is prime, which gives of course the B-S-S theorem, and shows also that to go beyond one needs to look at finite non-cyclic groups. Amusingly, the original Tverberg theorem also fits neatly into this B-U framework: we check that the argument of [20] or [10] is really just the same, except that one now invokes a linear analogue 2.4 of the B-U property which holds for all q. The next Theorem 3, 2.8.1 generalizes the "continuous" Tverberg to all prime powers $q=p^{k}$ and has also been proved independently by Ozaydin [16] and Volovikov [25]. It follows at once from Theorem 4, 2.8.2 which says that a representation of $(\mathbb{Z} / p)^{k}$ has the B-U property iff it does not contain the trivial representation. Finally in 2.9, we embed the \mathbb{Z} / q-action of $\mathbb{L}^{\perp}(\mathbb{Z} / q)$ in an action of the symmetric group Σ_{q}, and show - see Theorem 5, 2.9.3 - that the characteristic class of this Σ_{q} representation is zero iff q is not a prime power. To go beyond prime powers it thus seems necessary to use continuous group actions.

The exposition below is self-contained except that we refer to the literature for standard facts regarding Chern classes of finite group actions. For more background material see also Mark de Longueville's notes [13] of a seminar based on this paper.

2. Borsuk-Ulam representations.

The main character of our story is a real N-dimensional group representation \mathbb{E} which does not contain the trivial representation, mostly $\mathbb{E}=\mathbb{L}^{\perp}$ (defined in 2.2 below) which has dimension $N=(q-1)(d+1)$.
2.1. . By the q-th deleted join [17] $K * \cdots * K$ of a simplicial complex K one understands the subcomplex of its q-fold join $K \cdot \ldots \cdot K$ consisting of all simplices $\left(\sigma_{1}, \ldots, \sigma_{q}\right)$ with $\sigma_{i} \cap \sigma_{j}=\emptyset \forall i \neq j$. Mostly $K=[N]=$ all faces of the N-simplex $\left\{e_{1}, \ldots, e_{N+1}\right\}$. Let Q be a cardinality q set. Denoting the q copies of each e_{α} by $g e_{\alpha}, g \in Q,[N] \cdot \ldots \cdot[N]$ consists of all subsets of the cardinality $q(N+1)$ set $\left\{g e_{\alpha}: g \in Q, 1 \leq \alpha \leq N+1\right\}$, and $[N] * \cdots *[N]$ of all faces of all N-simplices of the type $\left\{g_{1} e_{1}, \ldots, g_{N+1} e_{N+1}\right\}$. So $[N] * \cdots *[N]$ (q times) identifies with $E_{N}(Q)=Q \cdot \ldots \cdot Q(N+1$ times $)$.

Frequently we'll equip the set Q with a group structure G, and then let G act simplicially on $[N] \cdot \ldots \cdot[N]$ by $h \bullet\left(g e_{\alpha}\right)=(h g) e_{\alpha}$. Note that this action preserves, and is free on, the subcomplex $[N] * \cdots *[N]$. We recall that such free G-complexes $E_{N}(G)=G \cdot \ldots \cdot G(N+1$ times $), E G=\cup_{N} E_{N}(G)$, go into Milnor's definition [14] of a classifying space $B G$ of $G: B G=E G / G=$ $\cup_{N}\left(B_{N} G\right)$, where $B_{N} G=E_{N}(G) / G$.
2.2. . We'll identify our affine d-space \mathbb{A}^{d} with the hyperplane $\Sigma_{k} x_{k}=1$ of \mathbb{R}^{d+1}, and the q-fold product $\mathbb{R}^{d+1} \times \cdots \times \mathbb{R}^{d+1}$ with the vector space \mathbb{L} of all real $(d+1) \times q$ matrices, with \mathbb{L}^{\perp} denoting the $(q-1)(d+1)$ dimensional subspace consisting of all matrices having row sums zero. Note that \mathbb{L}^{\perp} is the orthogonal complement of the diagonal subspace Δ of matrices having all columns equal to each other.

We'll index the columns of our matrices by the cardinality q set Q. Frequently Q will be equipped with a group structure G, and then we'll permute the columns by left translations. The resulting representations of G will be denoted $\mathbb{L}(G)$ and $\mathbb{L}^{\perp}(G)$. Note that $\mathbb{L}(G)=\mathbb{R}^{d+1}[G]$, the $(d+1)$-fold direct sum of the regular representation $\mathbb{R}[G]$ provided by each row, and that $\mathbb{L}^{\perp}(G)$ contains no trivial representation. So the action of G on the unit sphere $S\left(\mathbb{L}^{\perp}\right)$ is always without fixed points. When $d+1$ is even we'll identify $\mathbb{L}(G)$ with the representation $\mathbb{C}^{(d+1) / 2}[G]$ provided by all $\frac{d+1}{2} \times q$ complex matrices by taking real and imaginary parts of each row, and we'll equip $\mathbb{L}(G)$ with the orientation prescribed by this complex structure.

For the case $G=\mathbb{Z} / q$ note that the action is free on $S\left(\mathbb{L}^{\perp}\right)$ iff q is prime, and that the action preserves the orientation of $\mathbb{L}^{\perp}(\mathbb{Z} / q)$ iff $(q-1)(d+1)$ is even.

2.3. Proof of theorems of Tverberg and Bárány-Shlosman-Szücs.

 Let $s_{\alpha}, 1 \leq \alpha \leq N+1, N=(q-1)(d+1)$, be the points of the given set $S \subset$ \mathbb{A}^{d} and consider the linear map $K=[N] \xrightarrow{f} \mathbb{A}^{d}$ such that $e_{\alpha} \mapsto s_{\alpha} \forall \alpha$. More generally consider any continuous map $[N] \xrightarrow{f} \mathbb{A}^{d}$. We want to show that there exist q disjoint faces $\sigma_{1} \ldots, \sigma_{q}$ of K such that $f\left(\sigma_{1}\right) \cap \ldots \cap f\left(\sigma_{q}\right) \neq \emptyset$. Equivalently, if we compose the q-fold join $K * \cdots * K \rightarrow \mathbb{A}^{d} \cdot \ldots \cdot \mathbb{A}^{d} \subset$ $\mathbb{R}^{d+1} \times \cdots \times \mathbb{R}^{d+1}=\mathbb{L}$ of f with the orthogonal projection $\mathbb{L} \rightarrow \mathbb{L}^{\perp}$ to get a map$$
s:[N] * \cdots *[N] \rightarrow \mathbb{L}^{\perp}
$$

then what we have to show is that $0 \in \operatorname{Im}(s)$.
For this, note first that s commutes with the group actions, defined above. Now the linear case follows by applying the "linear Borsuk-Ulam" theorem 2.4. Likewise, for q prime, we see that the \mathbb{Z} / q-map s associated to a continuous f must have a zero, by using the generalization 2.5 of the usual continuous Borsuk-Ulam.
2.4. "Linear Borsuk-Ulam". If \mathbb{E} does not contain the trivial representation, then any linear G-map $s: E_{N}(G) \rightarrow \mathbb{E}$ has a zero.

Note that the condition on \mathbb{E} is obviously necessary.
Proof. This is a particular case of Bárány [3] the argument being as follows. If conv $\left\langle s\left(g_{\alpha} e_{\alpha}\right): g_{\alpha} \in G, 1 \leq \alpha \leq N+1\right\rangle$ is at a distance $\delta>0$ from $0 \in \mathbb{E}$, then its nearest point P is contained in the hyperplane H normal to $0 P$ and out of the points $s\left(g_{\alpha} e_{\alpha}\right)$ we can choose $\leq N$ which all lie on H and are such that P is in their convex hull. The remaining points will be either on H or in the component of $\mathbb{E} \backslash H$ not containing $\{0\}$. Let $s\left(g_{\beta} e_{\beta}\right)$ be any of these points. Since s commutes with the G actions, and \mathbb{E} does not contain the trivial representation, we have $\Sigma_{g} s\left(g e_{\beta}\right)=\Sigma_{g} g\left(s e_{\beta}\right)=0$. So some $s\left(g e_{\beta}\right)$ must be in the component of $\mathbb{E} \backslash H$ which contains $\{0\}$. Replacing g_{β} by such a g we can make δ still smaller. So the minimum δ must be zero.

Figure 1.
2.5. . Liulevicius [12], Dold [8]. If $G \neq 1$ acts freely on $S(\mathbb{E})$ then \mathbb{E} has the Borsuk-Ulam property, i.e., every continuous G-map $s: E_{N}(G) \rightarrow \mathbb{E}$ has a zero.

This generalizes Borsuk's theorem [6] which says (because $E_{N}(\mathbb{Z} / 2)=$ octahedral N-sphere equipped with the antipodal $\mathbb{Z} / 2$ action) that the representation of $\mathbb{Z} / 2$ in \mathbb{R}^{N} given by $x \mapsto-x$ has the B-U property.

Proof. It suffices to prove the result for complex representations, for if there were a G-map $E_{N}(G) \rightarrow S(\mathbb{E})$, then its 2 -fold join would provide a G-map $E_{2 N}(G) \subset E_{2 N+1}(G) \rightarrow S(\mathbb{E}) \cdot S(\mathbb{E})=S(\mathbb{E} \oplus \mathbb{E} \cong \mathbb{E} \otimes \mathbb{C})$ with G acting freely on $S(\mathbb{E} \otimes \mathbb{C})$.

Also it suffices to do just the prime cyclic case: for each G contains a subgroup $H \cong \mathbb{Z} / p$, and this case then gives us at least $|G| \div p$ zeros, one in each $E_{N}\left(H_{g}\right)=\left(H_{g}\right) \cdot \ldots \cdot\left(H_{g}\right)$. So the result follows from 2.6.3 which in fact gives for all q an explicit characterization of complex \mathbb{Z} / q representations having the Borsuk-Ulam property.
2.6. Characteristic classes of representations. Recall that the cohomology of $G \cong \pi_{1}(B G)$ is defined to be that of the classifying space $B G$. Likewise - see the appendix of Atiyah [1] - the characteristic classes of any representation \mathbb{E} of G are defined to be those of the corresponding vector bundle $\mathcal{E}=E G \times_{G} \mathbb{E} \rightarrow B G$.
2.6.1. . In dimensions $\leq N$ a characteristic class of \mathcal{E} vanishes iff its restriction to $B_{N} G$ vanishes.

Proof. "Only if" is obvious. Using naturality of characteristic classes note that the restriction is the corresponding class of the bundle $E_{N} G \times{ }_{G} \mathbb{E} \rightarrow$ $B_{N} G$. Further the ($N+1$)-fold join $E_{N} G=G \cdot \ldots \cdot G$ is ($N-1$)-connected, so its identity map extends to a continuous G-map $(E G)_{N} \rightarrow E_{N} G$ from the N skeleton $(E G)_{N}$ of $E G$ to $E_{N} G$, thus giving us a bundle map $(E G)_{N} \times_{G} \mathbb{E} \rightarrow$ $E_{N} G \times_{G} \mathbb{E}$. So, again by naturality, the corresponding class of $(E G)_{N} \times{ }_{G}$ $\mathbb{E} \rightarrow(B G)_{N}$ is also zero. This gives "if" because the inclusion induced map $H^{i}(B G) \rightarrow H^{i}\left((B G)_{N}\right)$ is injective for $i \leq N$.

We'll equip \mathbb{E} with some orientation and let $\widehat{\mathbb{Z}}$ denote the integers equipped with the G-action $g \bullet n= \pm n$, the sign depending on whether $E \xrightarrow[\cong]{g} \mathbb{E}$ preserves or reverses orientation. Now take any continuous G-map $s: E G \rightarrow$ \mathbb{E} with no zeros on the ($N-1$)-skeleton and associate to any oriented N simplex σ the degree of the map $s: \partial \sigma \rightarrow \mathbb{E} \backslash\{0\}$. This cochain $\sigma \mapsto$ $\operatorname{deg}(s \mid \partial \sigma)$, which is equivariant with respect to the G-actions of $E G$ and $\widehat{\mathbb{Z}}$, can be verified to be a cocycle, and its cohomology class $e(\mathbb{E}) \in H^{N}(G ; \widehat{\mathbb{Z}})$ verified to be independent of the map s chosen. For these standard facts of obstruction theory see Steenrod [23, §35].

For example, we can choose s linear, when of course $\operatorname{deg}(s \mid \partial \sigma) \in\{-1,0$, $+1\}$, and the "Linear Borsuk-Ulam" 2.4 tells us that this cocycle is nonzero for all \mathbb{E} not containing the trivial representation. The vanishing of its cohomology class interprets as follows.

2.6.2. .

Theorem 1. The representation \mathbb{E} has the Borsuk-Ulam property iff the characteristic class $e(\mathbb{E}) \in H^{N}(G ; \widehat{\mathbb{Z}})$ is nonzero.

Proof. By 2.6.1 this class is zero iff the corresponding class of the bundle $E_{N} G \times{ }_{G} \mathbb{E} \rightarrow B_{N} G$ is zero, but this happens (see [23, §35]) iff this vector bundle admits a continuous nonzero section, i.e., iff there is a continuous G-map $E_{N} G \rightarrow \mathbb{E}$ having no zeros.

It might be appropriate to call $e(\mathbb{E})$ the van Kampen class of \mathbb{E} because it can be traced back, for the case $G=\mathbb{Z} / 2$ to [11]. In case the action of G on \mathbb{E} is orientation preserving, i.e., $\widehat{\mathbb{Z}}=\mathbb{Z}$, the integers equipped with the trivial action of G, then $e(\mathbb{E}) \in H^{N}(G ; \mathbb{Z})$ identifies - see Milnor-Stasheff [15, p. 147] - with the Euler class of the oriented N-dimensional plane bundle $\mathcal{E} \rightarrow B G$. Thus, if N is even and \mathbb{E} is a complex $N / 2$-dimensional representation of G, then $e(\mathbb{E})$ coincides - see [15, p. 158] - with the $N / 2$-th Chern class $c_{N / 2}(\mathbb{E})$ of this complex $N / 2$-dimensional bundle \mathcal{E}. Evens [9] has shown that $c_{N / 2}(\mathbb{E})$ can always be computed purely algebraically, provided one knows the cohomology ring of G and the Brauer decomposition of \mathbb{E}. These computations can be quite hard, but the simple cases we need are easily dealt with directly.

We recall that \mathbb{Z} / q has q irreducible complex representations, all onedimensional, being in fact the q homomorphisms $\mathbb{Z} / q \rightarrow \mathbb{C}^{\times}, \omega \mapsto \omega^{\ell}, 1 \leq$ $\ell \leq q$, where ω denotes the generator $\exp (2 \pi i / q)$ of \mathbb{Z} / q.

2.6.3. .

Theorem 2. Let m_{ℓ} denote the multiplicity of ω^{ℓ} in the irreducible decomposition of the complex $N / 2$-dimensional representation \mathbb{E} of \mathbb{Z} / q. Then \mathbb{E} has the Borsuk-Ulam property iff $q \backslash \Pi_{\ell}(\ell)^{m_{\ell}}$.

Proof. We'll use 2.6.2. The multiplicativity of Chern classes shows

$$
e(\mathbb{E})=c_{N / 2}(\mathbb{E})=\Pi_{\ell}\left(c_{1}\left(\omega^{\ell}\right)\right)^{m_{\ell}},
$$

where $c_{1}\left(\omega^{\ell}\right) \in H^{2}(\mathbb{Z} / q ; \mathbb{Z})$ denotes the first Chern class of the representation $\omega \mapsto \omega^{\ell}$ and multiplication is the cup product of $H^{*}(\mathbb{Z} / q ; \mathbb{Z})$. Since c_{1} : $\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right) \rightarrow H^{2}(G ; \mathbb{Z})$ is always a group isomorphism - see Atiyah $[\mathbf{1}$, (3), p. 62] - it follows that

$$
e(\mathbb{E})=\Pi_{\ell}\left(\ell c_{1}(\omega)\right)^{m_{\ell}}=\Pi_{\ell}(\ell)^{m_{\ell}}\left(c_{1}(\omega)\right)^{N / 2}=u^{N / 2}\left(\Pi_{\ell}(\ell)^{m_{\ell}}\right),
$$

where $u: H^{i}(\mathbb{Z} / q ; \mathbb{Z}) \rightarrow H^{i+2}(\mathbb{Z} / q ; \mathbb{Z})$ is the map given by taking cup product with the generator $c_{1}(\omega)$ of $H^{2}(\mathbb{Z} / q ; \mathbb{Z})$ and $\Pi_{\ell}(\ell)^{m_{\ell}} \in \mathbb{Z}=H^{0}(\mathbb{Z} / q ; \mathbb{Z})$. This periodicity map u is an epimorphism for $i=0$ and an isomorphism for $i \geq 1$ (and the remaining odd dimensional cohomology of \mathbb{Z} / q is zero): see Cartan-Eilenberg [7, p. 260]. So it follows that $e(\mathbb{E})$ vanishes iff $u\left(\Pi_{\ell}(\ell)^{m_{\ell}}\right)=$ $\Pi_{\ell}(\ell)^{m_{\ell}} \cdot c_{1}(\omega)$ vanishes, i.e., iff q divides $\Pi_{\ell}(\ell)^{m_{\ell}}$.

It seems one can give a similar explicit characterization of the complex Borsuk-Ulam representations of any finite Abelian group G.
2.7. . The last theorem gives rise to some remarks.
2.7.1. . Obviously, for a complex \mathbb{Z} / q representation \mathbb{E}, the group action is free on $S(\mathbb{E})$ iff only those representations $\omega \mapsto \omega^{\ell}$ occur in it for which ℓ is relatively prime to q. So 2.6 .3 shows that the Borsuk-Ulam holds in many cases not covered by 2.5 .

However 2.6.3 also shows that the if q is composite and $d+1$ is an even number ≥ 4, then there exist continuous \mathbb{Z} / q maps $E_{N}(\mathbb{Z} / q) \rightarrow \mathbb{L}^{\perp}$ having no zeros. This follows because, for $\mathbb{L}^{\perp}=\mathbb{C}^{(d+1) / 2}[\mathbb{Z} / q]$ the number $\Pi_{\ell}(\ell)^{m_{\ell}}$ equals $((q-1)!)^{(d+1) / 2}$, and $q \mid(q-1)$! unless q is prime or equal to 4 . Thus to generalize the continuous version of the proof of 2.3 beyond the case q prime one needs non-cyclic groups G.
2.7.2. . Sierksma $[22]$ has conjectured that a cardinality $(q-1)(d+1)+1$ subset of d-space has at least $((q-1)!)^{d}$ Tverberg partitions, i.e., that the linear map $s: E_{N}(Q) \rightarrow \mathbb{L}^{\perp}$ of 2.3 has at least $((q-1)!)^{d+1}$ zeros. It may in fact be possible to algebraically count these generic Tverberg zeros with appropriate local degrees ± 1, so that one always get $((q-1)!)^{d+1}$. One cannot hope however for a similar index formula for Tverberg partitions, because this would imply, for $q=3$ and $d=2$, that the number of these partitions is always even, which is not so.

If one attempts such a signed counting by using finite group actions then one runs into problems. For example by taking $S \subset \mathbb{A}^{d}$ in a general position we can ensure that s has no zeros on the $(N-1)$-skeleton of $E_{N}(\mathbb{Z} / q)$ i.e., that no proper subset of S has a Tverberg partition into q parts - and then evaluate the cocycle $\sigma \mapsto \operatorname{deg}(s \mid \partial \sigma)$ of $e\left(\mathbb{L}^{\perp}\right)$ on some equivariant N cycle of $E_{N}(\mathbb{Z} / q)$. However this algebraic counting does not give an integer invariant because $e\left(\mathbb{L}^{\perp}\right)$ lives in $H^{N}(\mathbb{Z} / q ; \mathbb{Z}) \cong \mathbb{Z} / q$ and so is of finite order. Anyhow for the q prime case this method does suffice to give rough lower bounds for the number of Tverberg partitions: see Vučic-Zivaljevic [26].
2.7.3. . Sierksma's problem is stable with respect to d i.e., we can increase d by 1 . To see this add, to a general position $S \subset \mathbb{A}^{d} \subset \mathbb{A}^{d+1}, q-1$ new points of $\mathbb{A}^{d+1} \backslash \mathbb{A}^{d}$, and at the same time perturb one of the old points v out of \mathbb{A}^{d}. In a Tverberg partition of this set $\widehat{S} \subset \mathbb{A}^{d+1}$ the part containing v cannot contain any of the new $q-1$ points, for then some other part contains none and so is in \mathbb{A}^{d}, and thus restricting to \mathbb{A}^{d} we would have got a Tverberg partition of the proper subset $S \backslash\{v\}$ of the general position set $S \subset \mathbb{A}^{d}$. Thus \widehat{S} has at most $(q-1)!$ times as many Tverberg partitions as S. A similar but simpler argument shows likewise that the "continuous" Tverberg problem is also stable with respect to d. So we can assume $d+1$ even (this we'll do from here on), $d \gg q$, etc., with impunity in our proofs.
2.8. . The next result has also been proved independently by Ozaydin [16] and Volovikov [25].

2.8.1. .

Theorem 3. The "continuous" Tverberg theorem is true for all prime powers $q=p^{k}$.

Proof. We know from 2.7.1 that the argument of 2.3 can work for $k \geq 2$ only if we use the representation $\mathbb{L}^{\perp}(G)$ of some non-cyclic order q group G. By 2.8.2 below it does work for $G=(\mathbb{Z} / p)^{k}$.

2.8.2. .

Theorem 4. The B - U property holds for any representation \mathbb{E} of $(\mathbb{Z} / p)^{k}$ not containing the trivial representation.

Proof. Without loss of generality (cf. proof of 2.5) we can assume \mathbb{E} complex. So it is the direct sum of irreducible one-dimensional representations $(\mathbb{Z} / p)^{k} \rightarrow \mathbb{C}^{\times}$. These form a group, each member being of the type

$$
\left(\omega_{1}, \ldots, \omega_{k}\right) \mapsto \omega_{1}^{\ell_{1}} \cdots \omega_{k}^{\ell_{k}}
$$

where ω_{i} 's denote copies of the generator $\omega=\exp (2 \pi i / p)$, and $0 \leq \ell<p$ with not all ℓ_{i} 's zero. If, in the isomorphic group $H^{2}\left((\mathbb{Z} / p)^{k} ; \mathbb{Z}\right), x_{i}$ denotes the first Chern class of $\left(\omega_{1}, \ldots, \omega_{k}\right) \mapsto \omega_{i}$, then $\left(\omega_{1}, \ldots, \omega_{k}\right) \mapsto \omega_{k}^{\ell_{1}} \cdots \omega_{k}^{\ell_{k}}$ has first Chern class $\ell_{1} x_{1}+\cdots+\ell_{k} x_{k}$.

With mod p field coefficients the cohomology algebra of $(\mathbb{Z} / p)^{k}$ is isomorphic to the polynomial algebra $\mathbb{Z} / p\left[x_{1}, \ldots, x_{k}\right]$ - this follows by using the case $k=1, B(\mathbb{Z} / p) \times \cdots \times B(\mathbb{Z} / p) \simeq K\left((\mathbb{Z} / p)^{k}, 1\right)$, and the Kunneth formula for field coefficients - and so has no zero divisors. Therefore the cup product $e(\mathbb{E})$ of all these nonzero 2-dimensional classes $\ell_{1} x_{1}+\cdots+\ell_{k} x_{k}$ is nonzero, which by 2.6 .2 is same as saying that \mathbb{E} has the B-U property.
2.8.3. . Let \mathbb{E} be as above, and \mathbb{F} be any other representation of $(\mathbb{Z} / p)^{k}$ with $\operatorname{dim}(\mathbb{F})>\operatorname{dim}(\mathbb{E})$. Then there does not exist a continuous $(\mathbb{Z} / p)^{k}$-map from the sphere $S(\mathbb{F})$ to the sphere $S(\mathbb{E})$.

This is another (known) generalization of Borsuk's theorem [6] which is the case of $\mathbb{Z} / 2$ acting on two Euclidean spaces via $x \mapsto-x$. See e.g., AtiyahTall [2] and Bartsch [5] for more on equivariant maps between representation spheres.

Proof. Since $\operatorname{dim}(\mathbb{F})>\mathbb{N}$ the connectivity of the sphere $S(\mathbb{F})$ allows us to construct a continuous $(\mathbb{Z} / p)^{k}$-map into it from the free N-dimensional $(\mathbb{Z} / p)^{k}$-complex $E_{N}\left((\mathbb{Z} / p)^{k}\right)$. This and 2.8.2 rule out the possibility of any equivariant map $S(\mathbb{F}) \rightarrow S(\mathbb{E})$.
2.9. . Unfortunately one cannot extend the "continuous" Tverberg further by a similar use of other groups G of order $q \neq p^{k}$.
2.9.1. . For any finite group G whose order is not a prime power there exists a continuous G-map $E_{N} G \rightarrow \mathbb{L}^{\perp}(G)$ having no zeros.

One way of checking this is to note first that if $H<G$, and $\mathbb{L}^{\perp}(H)$ does not have the Borsuk-Ulam property, then $\mathbb{L}^{\perp}(G)$ also does not have the Borsuk-Ulam property. This follows because $\mathbb{L}(G)$ is induced by $\mathbb{L}(H)$, so allowing us to construct from a given H-map $E_{N^{\prime}}(H) \rightarrow \mathbb{L}(H)$ whose image misses the diagonal, a G-map $E_{N}(G) \rightarrow \mathbb{L}(G)$ whose image also misses the diagonal. Hence by 2.6 .3 we are only left to consider those G^{\prime} 's, of nonprime power order, which are such that all elements are of prime order. Some group theory shows that such a G must contain a subgroup H which is a non-Abelian extension of $(\mathbb{Z} / p)^{k}$ by a cyclic group of a different prime order. The proof can now be completed by checking that the Euler class of $\mathbb{L}^{\perp}(H)$ is zero.

We have omitted the details - cf. Bartsch [5] who proceeds as above (instead of Euler classes he uses a Burnside ring argument) to obtain a similar result about maps between representation spheres - because we'll see below that a simpler reasoning gives more.
2.9.2. . The point to note is that in 2.1 to 2.3 the natural group to use was the symmetric group Σ_{q} of all permutations of Q. It acts in the obvious way on $Q \cdot \ldots \cdot Q$, and on \mathbb{L}, and the map $s: Q \cdot \ldots \cdot Q \rightarrow \mathbb{L}^{\perp}$ of 2.3 commutes with these Σ_{q} actions. Further \mathbb{L}^{\perp} contains no trivial representation of Σ_{q}, or for that matter of any subgroup of Σ_{q} which acts transitively on Q. The only advantage in using the simply transitive subgroups G was that their action on $Q \cdot \ldots \cdot Q$ is free.

When we consider \mathbb{L}^{\perp} as a Σ_{q}-representation its Euler class lives in $H^{N}\left(\Sigma_{q} ; \mathbb{Z}\right)$. We were previously looking at its restrictions to $H^{N}(G ; \mathbb{Z})$ for some subgroups $G \subset \Sigma_{q}$, e.g., for $q=p^{k}, k \geq 2,2.6 .3$ and 2.8.2 show respectively that this restriction is zero for $G=\mathbb{Z} / p^{k}$ but nonzero for $G=\left(\mathbb{Z} / p^{k}\right)$. Could it not be that for a $q \neq p^{k}$ this class is nonzero despite the fact 2.9.1 that its restriction to all simply transitive subgroups G is zero? If so the "continuous" Tverberg would extend to such a q, because we obviously have a continuous Σ_{q}-map from the free and N-dimensional Σ_{q}-complex $E_{N} \Sigma_{q}$ to the $(N-1)$-connected Σ_{q}-complex $Q \cdot \ldots \cdot Q$. Unfortunately the answer to this new question is also "no".

2.9.3. .

Theorem 5. The Euler class of the Σ_{q}-representation \mathbb{L}^{\perp} is nonzero iff q is a prime power.

Proof. By 2.8.2 it only remains to look at the case $q \neq p^{k}$. One has $H^{N}\left(\Sigma_{q} ; \mathbb{Z}\right)=\oplus_{p} H^{N}\left(\Sigma_{q} ; \mathbb{Z}, p\right)$, where p runs over all primes, and $H^{N}\left(\Sigma_{q} ;\right.$ $\mathbb{Z}, p)$ denotes the p-primary component of $H^{N}\left(\Sigma_{q} ; \mathbb{Z}\right)$. If $P \subset \Sigma_{q}$ is a p Sylow subgroup then - see Cartan-Eilenberg [7, p. 259, Thm. 10.1] -
restriction gives us a monomorphism $H^{N}\left(\Sigma_{q} ; \mathbb{Z}, p\right) \rightarrow H^{N}(P ; \mathbb{Z})$. So it suffices to show that the restriction of our class to each $H^{N}(P ; \mathbb{Z})$ is zero. To see this note that $|P|$ is not divisible by $q \neq p^{k}$, so P does not act transitively on Q, so there are trivial P-representations outside the diagonal of \mathbb{L}, i.e., in \mathbb{L}^{\perp}.

Note that, the Σ_{q}-action on $E_{N}(Q)$ being not free, this still leaves open the question whether, for $q \neq p^{k}$, one can have a continuous Σ_{q}-map $E_{N}(Q) \rightarrow$ \mathbb{L}^{\perp} having no zeros? It seems that $U(q)$-actions are called for to settle this point, so we postpone it to a sequel which will deal with infinite group actions.

References

[1] M.F. Atiyah, Characters and cohomology of finite groups, Publ. I.H.E.S., 9 (1961), 23-64.
[2] M.F. Atiyah and D.O. Tall, Group representations, λ-rings and the J-homomorphism, Topology, 8 (1969), 253-297.
[3] I. Bárány, A generalization of Carathéodory's theorem, Disc. Math., 40 (1982), 141152.
[4] I. Bárány, S.B. Shlosman and A. Szücs, On a topological generalization of a theorem of Tverberg, Jour. Lond. Math. Soc., 23 (1981), 158-164.
[5] T. Bartsch, On the existence of Borsuk-Ulam theorems, Topology, 31 (1992), 533-543.
[6] K. Borsuk, Drei Sätze über die n-dimensionale Euklidische Sphäre, Fund. Math., 20 (1933), 177-190.
[7] H. Cartan and S. Eilenberg, Homological Algebra, Princeton, 1956.
[8] A. Dold, Simple proofs of some Borsuk-Ulam results, Contemp. Math., 19 (1983), 65-69.
[9] L. Evens, On the Chern classes of representations of finite groups, Trans. Amer. Math. Soc., 115 (1965), 180-193.
[10] G. Kalai, Combinatorics and Convexity, Proc. I.C.M. Zürich, Birkhaüser, (1995), 1363-1374.
[11] E.R. van Kampen, Komplexe in euklidischen Räumen, Abhand. Math. Sem. Hamburg, 9 (1932), 72-78, 152-153.
[12] A. Liulevicius, Borsuk-Ulam theorems for spherical space forms, Contemp. Math., 19 (1983), 189-192.
[13] M. de Longueville, The topological Tverberg theorem for prime powers, Seminar notes, Technisches Universität Berlin, 1998.
[14] J.W. Milnor, Construction of universal bundles, II, Ann. of Math., 63 (1956), 430-436.
[15] J.W. Milnor and J.D. Stasheff, Characteristic Classes, Princeton, 1974.
[16] M. Ozaydin, Equivariant maps for the symmetric group, unpublished.
[17] K.S. Sarkaria, A generalized Kneser conjecture, J. Combin. Th., B 49 (1990), 236-340.
[18] __, A generalized van Kampen-Flores Theorem, Proc. Amer. Math. Soc., 111 (1991), 559-565.
[19] \qquad , Sierksma's Dutch Cheese Problem, ms. circulated in 1988-89, unpublished.
[20] , Tverberg's theorem via number fields, Isr. Jour. of Math., 79 (1992), 317-320.
[21] _ Sierksma's Dutch Cheese Problem, revised version of M.S.R.I. Berkeley preprint, 1997-025.
[22] G. Sierksma, Convexity without linearlity; the Dutch cheese problem, Mimeographed Notes, University of Gröningen, 1979.
[23] N.E. Steenrod, The topology of fibre bundles, Princeton, 1951.
[24] H. Tverberg, A generalization of Radon's theorem, Jour. Lond. Math. Soc., 41 (1966), 123-128.
[25] A.Yu. Volovikov, On a topological generalization of the Tverberg theorem, Math. Notes, 59 (1996), 324-326; Mat. Zametki, 59 (1996), 454-456.
[26] A. Vučic and R.T. Zivaljevic, Note on a conjecture of Sierksma, Disc. Comput. Geom., 9 (1993), 339-349.

Received August 15, 1998.
Panjab University
Chandigarh 160014
InDIA

