ISOPERIMETRIC INEQUALITIES FOR SECTORS ON SURFACES

HYOUNGSICK BAHN AND SUNGPYO HONG

We discuss sectors on a surface of curvature bounded above by a constant and derive an isoperimetric inequality for a proper sector on such a surface. With this isoperimetric inequality we derive an inequality involving the total length of the cut locus of a point on a closed surface.

1. Introduction.

There have been extensive studies on isoperimetric inequalities on a Riemannian manifold of dimension 2 (shortly, a surface) [Al, BdC, CF, Fi]. C. Bandle derived an isoperimetric inequality for a sector in the Euclidean plane E^2 [Ba1, Ba2]: Let D be a sector in E^2, which is a simply connected region enclosed by two line segments γ_1, γ_2 starting at a point p and a piecewise smooth simple curve segment Γ joining the end points of γ_1, γ_2. Let θ_0 denote the interior angle of D at p. C. Bandle showed that for a sector D with $\theta_0 \leq \pi$,

$$L^2(\Gamma) \geq 2 \theta_0 A(D)$$

with equality if and only if D is a circular sector, where $L(\Gamma)$ denotes the length of Γ and $A(D)$ the area of D.

In this paper, we consider an isoperimetric inequality for a sector on a surface M with curvature K bounded above by a constant C. By a sector on a surface M we mean a region of M enclosed by two geodesic segments γ_1, γ_2 and a piecewise smooth curve segment Γ, which together constitute a simple closed curve $\Gamma^* = \gamma_1 \cup \Gamma \cup \gamma_2$. On a general surface M, a sector needs not be simply connected nor bounded (e.g., the cylinder $\mathbb{R} \times S^1$), or could be the whole surface (e.g., the torus T^2). On the other hand, such a simple closed curve Γ^* may enclose two bounded sectors (e.g., the sphere S^2). For our purpose, we will restrict our attention to sectors on a surface M that are closed, simply connected and bounded ones. We will call such a sector by a proper sector, denoted by $D(\Gamma)$ or just D. We take parametrizations of two geodesic segments γ_i and a piecewise smooth curve segment Γ as $\gamma_i : [0, r_i] \to M \ (i = 1, 2)$ and $\Gamma : [a, b] \to M$ such that $\gamma_1(0) = \gamma_2(0)$ and $\Gamma(a) = \gamma_1(r_1)$, $\Gamma(b) = \gamma_2(r_2)$ so that $\Gamma^* = \gamma_1 \cup \Gamma \cup \gamma_2$ is a simple closed curve with a suitable orientation. The vertex of D is the point $\gamma_1(0) = \gamma_2(0)$ where γ_1 and γ_2 cross. Our main result is the following:
Isoperimetric Inequality for a Sector. Let M be a surface with curvature K bounded above by a constant C. Let D be a proper sector on M with interior angle $\theta_0 \leq \pi$ at the vertex. Then

$$L^2(\Gamma) \geq 2\theta_0 A(D) - C A^2(D).$$

Equality holds only when D is isometric to a geodesic sector on a surface of constant curvature C.

Generally, the cut locus $\text{Cut}(p)$ of p on a closed surface M is a local tree which may have infinitely many edges $[M1, M2, GS]$. So, the Hausdorff 1-measure is used to measure a subset of $\text{Cut}(p)$. It is known that every compact subset of $\text{Cut}(p)$ on a complete surface M has finite total length (Hausdorff 1-measure) $[He2, I]$. As an application of our isoperimetric inequality, we derive an inequality involving the total length of the cut locus of a point on a closed surface.

2. Sectors on a Surface.

Definition 2.1. Let A be a subset of M and $p, q \in A$. The distance between p and q in A is defined by

$$d_A(p, q) = \inf_{c \in \Omega^A_{p,q}} \int_c ds,$$

where $\Omega^A_{p,q}$ is the set of all piecewise smooth curve segments contained in A joining p and q. Let $B \subset M$ such that $A \cap B \neq \emptyset$. Then $d_A(p, B) = \inf_{q \in A \cap B} d_A(p, q)$ denotes the distance from p to B in A.

Note that $d_A(\cdot, \cdot) \geq d_M(\cdot, \cdot)$ for any set $A \subset M$.

Definition 2.2. Let A be a compact subset of M and G a subset of the boundary ∂A of A. For $t \geq 0$, the parallel G_t of G in the distance t in A is defined by

$$G_t = \{ q \in A : d_A(q, G) = t \}.$$

For a proper sector $D(\Gamma)$ in M, the parallel Γ_t of Γ in $D(\Gamma)$ is a piecewise smooth simple curve for small $t > 0$. As t gets larger, Γ_t can have several components.

Relative Cut Locus. Let $D(\Gamma)$ be the proper sector with two geodesics γ_1, γ_2 on M and a piecewise smooth simple curve segment $\Gamma : [a, b] \to M$ with corners $\Gamma(s_i) = x_i$ at $a = s_1 < s_2 < \cdots < s_{n+1} = b$. Let $N(s)$ be the inward unit normal vector field along Γ with the right/left limits $N(s^-)$ at the corners x_i of Γ, $i = 1, \ldots, n+1$. With notational conventions, $N(s_1^-) = -\gamma_1'(r_1)$ and $N(s_{n+1}^+) = -\gamma_2'(r_2)$, let N_i be the set of all inward
unit tangent vectors in $T_x M$ between $N(s^-_i)$ and $N(s^+_i)$. Let

$$\mathcal{N} = \bigcup_{i=0}^{n+1} \mathcal{N}_i,$$

where $\mathcal{N}_0 = \{N(s) : s \in [a, b]\}$. For each $v \in \mathcal{N} \cap T_q M$, $q \in \Gamma$, let $\gamma_v : [0, r] \to M$ be a geodesic such that $\gamma_v(0) = q$ and $\gamma_v'(0) = v$. The point $z = \gamma_v(t)$ where γ_v stops minimizing the distance $d_{D(\Gamma)}(\gamma_v(t), \Gamma)$ is called the relative cut point of $v \in \mathcal{N}$ in $D(\Gamma)$. The set of all such relative cut points of $v \in \mathcal{N}$ in $D(\Gamma)$ is called the relative cut locus of Γ in $D(\Gamma)$, denoted by $C_{\text{rel}}(\Gamma)$. If the exterior angle of Γ at a corner x_i is positive, then for all $v \in N_i$, the relative cut point of v in $D(\Gamma) = x_i$ itself. Note also that $C_{\text{rel}}(\Gamma)$ need not be a connected set.

Geodesic Sectors. For a point $p \in M$, let U be a (simply connected) normal neighborhood of p, and take polar coordinates (r, θ) on $U \setminus \{p\}$ such that the metric can be written as

$$ds^2 = dr^2 + f^2 d\theta^2,$$

where $f = f(r, \theta)$ is the positive-valued function satisfying the initial conditions

$$\lim_{r \to 0} f(r, \theta) = 0, \quad \lim_{r \to 0} \frac{\partial f}{\partial r}(r, \theta) = 1.$$

Let $\gamma_1, \gamma_2 : [0, r] \to M, i = 1, 2$, be two geodesics starting at p with the angle $0 < \theta \leq \pi$ and $\beta : [0, \theta] \to U \subset M$ a geodesic circular arc given by $\beta(s) = (r, s)$ in U. The proper sector enclosed by γ_1, γ_2 and β is called a geodesic sector denoted by $S_{r,\theta}$. We will call β the circular boundary of $S_{r,\theta}$. The area $A_{r,\theta}$ and the arc length $L_{r,\theta}$ of the circular boundary of $S_{r,\theta}$ are respectively given by

$$(2.1) \quad A_{r,\theta} = \int_0^\theta \int_0^r f(t, s) dt ds, \quad L_{r,\theta} = \int_0^\theta f(r, s) ds.$$

Remark 2.3. A geodesic sector with vertex p may cross the usual cut locus $\text{Cut}(p)$ of p. One can easily construct a geodesic sector $S_{r,\theta}$ crossing the cut locus $\text{Cut}(p)$ of p on the cylinder $\mathbb{R} \times S^1$.

Let $S^C_{r,\theta}$ denote a geodesic sector of radius r and angle θ on a surface M^C of constant curvature $K \equiv C$. Let $A^C_{r,\theta}$ and $L^C_{r,\theta}$ denote its area and the arc length of the circular boundary, respectively. The explicit expressions are:

$$(2.2) \quad A^C_{r,\theta} = 2\theta \sin^2 \frac{ar}{a^2} \quad \frac{1}{2} \theta r^2 \quad 2\theta \sinh^2 \frac{ar}{a^2},$$

$$L^C_{r,\theta} = \theta \frac{\sin ar}{a} \quad \theta r \quad \theta \frac{\sinh ar}{a}.$$
One can easily verify the following formula:

\[(L_{r,\theta}^C)^2 = 2\theta A_{r,\theta}^C - C(A_{r,\theta}^C)^2.\]

(2.3)

For the geodesic sectors on a surface with curvature \(K \leq C\), we may have the following lemmas as immediate consequences of the formulas (2.1) and Lemma 7 in [Os]:

Lemma 2.4. Let \(M\) be a surface with curvature \(K \leq C\). Let \(S_{r,\theta}\) be a geodesic sector on \(M\) of radius \(r\) and angle \(\theta\). Then

\[A_{r,\theta} \geq A_{r,\theta}^C\]

with equality if and only if \(S_{r,\theta}\) is isometric to \(S_{r,\theta}^C\) on a surface \(M_C\) of constant curvature \(C\).

Lemma 2.5. Under the same assumptions as in Lemma 2.4, we have

\[L_{r,\theta} \geq L_{r,\theta}^C.\]

If \(L_{\xi,\theta} = L_{\xi,\theta}^C\) for all \(\xi \in (0,r]\), then \(S_{r,\theta}\) is isometric to \(S_{r,\theta}^C\) on a surface \(M_C\) of constant curvature \(C\).

3. Isoperimetric Inequalities for Sectors on a Surface.

Let \(\beta : [a, b] \rightarrow M\) be a unit speed simple curve, and let \(n\) be a unit normal vector field along \(\beta\). Then one can find a variation \(X : [a, b] \times (-\delta, \delta) \rightarrow M\) of \(\beta\) given by

\[X(s, \xi) = \exp_{\beta(s)} \xi n(s)\]

for some \(\delta > 0\).

For the computation of the length of the parallel \(\Gamma_t\) of \(\Gamma\), we write \(\Gamma = \sum_{i=1}^n \beta^i\) where \(\beta^i (i = 1, \ldots , n)\) are smooth curves with inward unit normal \(N\). For \(t > 0\) small, the parallel \(\Gamma_t\) of \(\Gamma\) in \(D(\Gamma)\) consists of parts of the geodesic parallels \(\beta^i_t\) of \(\beta^i\) in \(D(\Gamma)\) together with the geodesic circular arcs of radius \(t\). Let

\[t_* = \sup_{p \in \Gamma, \, q \in C_{rel}(\Gamma)} d_D(\Gamma)(p, q),\]
and for $0 \leq t \leq t_*$, let

$$D(\Gamma_t) = \{ q \in D(\Gamma) : d_{D(\Gamma)}(q, \Gamma) \geq t \}.$$

Notice that $D(\Gamma_t)$ may not be a proper sector since it is not a connected set in general. We will denote the arc length of Γ_t by $L(t)$ and the area of $D(\Gamma_t)$ by $A(t)$ as functions of t.

Lemma 3.1. Let M be a surface with curvature $K \leq C$. Let $D(\Gamma)$ be a proper sector on M with interior angle $\theta_0 \leq \pi$ at the vertex. Then

$$L'(0) \leq CA(0) - \theta_0.$$

Proof. Let x_i ($i = 1, 2, \ldots, n + 1$) be the corners of Γ including end points and let α_i denote the exterior angle of Γ* at the corner x_i (See Figure 1). We may assume that $\alpha_i \neq \pi$. Let $S = \{2, \ldots, n\}$, and let $A = \{ i \in S : \alpha_i \leq 0 \}$ and $B = \{ j \in S : \alpha_j > 0 \}$. For sufficiently small $\xi > 0$, using the linear approximations for dotted parts of β^*_1 (say, at x_2 in Figure 1), we have, with the help of (3.2),

$$L(\xi) = L(0) - \xi \int_{\Gamma} \kappa ds - \sum_{i \in A} \xi \alpha_i - \sum_{j \in B} 2 \xi \tan(\alpha_j/2)$$

$$- \xi \tilde{\alpha}_1 - \xi \tilde{\alpha}_{n+1} + o(\xi),$$

where κ is the geodesic curvature of Γ and

$$\tilde{\alpha}_k = \begin{cases} \alpha_k - \pi/2 & \text{if } \alpha_k \leq \pi/2, \\ \tan(\alpha_k - \pi/2) & \text{if } \alpha_k > \pi/2. \end{cases}$$

Using that $\tan \alpha \geq \alpha$ for $\alpha \geq 0$ and $\tilde{\alpha}_k \geq \alpha_k - \pi/2$, we have

$$L'(0) = - \int_{\Gamma} \kappa ds - \sum_{i \in A} \alpha_i - \sum_{j \in B} 2 \tan(\alpha_j/2) - \tilde{\alpha}_1 - \tilde{\alpha}_{n+1}$$

$$\leq - \int_{\Gamma} \kappa ds - \sum_{i=1}^{n+1} \alpha_i + \pi.$$
Since γ_1, γ_2 are geodesics, by the Gauss-Bonnet formula,

$$L'(0) \leq \int_{D(\Gamma)} K \, dA - \theta_0.$$

Finally, we have

$$L'(0) \leq CA(0) - \theta_0$$

from the curvature condition that $K \leq C$. \hfill \Box

Note that, for sufficiently small $t > 0$, Γ_t has one component of a piecewise smooth non-closed simple curve segment. Computation as in Lemma 3.1 thus gives that

$$L'(t) \leq CA(t) - \theta_0$$

for sufficiently small $t > 0$.

Note also that Γ_t could be the union of at most finite number of piecewise smooth non-closed curves, piecewise smooth closed curves and points in general. For a piecewise smooth closed curve, by the same way as in Lemma 3.1 we have the following:

Lemma 3.2. Let M be a surface with curvature $K \leq C$ and D a nondegenerate compact subset of M with the boundary $\partial D = G$ which is a piecewise smooth simple curve. Let G_ξ denote the parallel of $G = \partial D$ in D and $\ell(t) = L(G_t)$. Then

$$\ell'(0) \leq CA(D) - 2\pi.$$

The following facts come from the results of [Fi, pp. 303-332] by a slight modification (also see [CF, p. 86]): $L(t)$ is continuous for all but at most a finite number of t in $[0, t_\ast]$ at which $L(t)$ has a jump discontinuity, however $A(t)$ is continuous; $A'(t) = -L(t)$ for almost all $t \in [0, t_\ast]$ (cf. [Ha, p. 706]).

Theorem 3.3. Let M be a surface with curvature $K \leq C$. Let $D(\Gamma)$ be a proper sector on M with interior angle $\theta_0 \leq \pi$ at the vertex. Then

$$L'(t) \leq CA(t) - \theta_0$$

for almost all $t \in [0, t_\ast]$.

Proof. Let n_t and m_t be the numbers of components of piecewise smooth non-closed curves Γ^i_t and piecewise smooth closed curves Ω^j_t of Γ_t, respectively. For almost all $t \in [0, t_\ast]$, we may write

$$\Gamma_t = \sum_{i=1}^{n_t} \Gamma^i_t + \sum_{j=1}^{m_t} \Omega^j_t.$$

Note that each end point of Γ^i_t is either on γ_1 or on γ_2 so that Γ^i_t and γ_1 and/or γ_2 bound a simply connected compact set, denoted by $D(\Gamma^i_t)$. Each
Ω^i_t itself also bounds simply connected compact set, denoted by $D(\Omega^i_t)$. Thus we may write

$$D(\Gamma_t) = \left(\bigcup_{i=1}^{n_t} D(\Gamma^i_t) \right) \cup \left(\bigcup_{j=1}^{m_t} D(\Omega^j_t) \right).$$

For the sake of brevity, we use the notations: $L_i(t) = L(\Gamma^i_t)$, $A_i(t) = A(D(\Gamma^i_t))$, $\ell_j(t) = L(\Omega^j_t)$ and $B_j(t) = A(D(\Omega^j_t))$. Then by the same computation as (3.3) we have

$$L'_i(t) \leq CA_i(t) - \theta_i,$$

where $\theta_0 \leq \theta_i \leq \pi$. By Lemma 3.2,

$$\ell'_j(t) \leq CB_j(t) - 2\pi.$$

Thus,

$$L'(t) = \sum_i L'_i(t) + \sum_j \ell'_j(t) \leq \sum_i (CA_i(t) - \theta_i) + \sum_j (CB_j(t) - 2\pi) \leq CA(t) - \theta_0$$

for almost all $t \in [0, t_*]$. □

Theorem 3.4. Let M be a surface with curvature $K \leq C$. Let $D(\Gamma)$ be a proper sector on M with interior angle $\theta_0 \leq \pi$ at the vertex. Then

$$L^2(s) - L^2(t) \geq 2\theta_0(A(s) - A(t)) - C(A^2(s) - A^2(t))$$

for $s < t \in [0, t_*]$.

Proof. By multiplying $A'(t) = -L(t) \leq 0$ to the inequality (3.4), we get

$$-L(t)L'(t) \geq CA(t) - \theta_0 A'(t)$$

for almost all $t \in [0, t_*]$. Note that $L(t)$ is continuous on $[0, t_*]$ except for a finite number of points $0 < t_1 < t_2 < \cdots < t_m < t_*$. Let $I_j = [t_{j-1}, t_j]$, $j = 1, 2, \ldots, m+1$, where $t_0 = 0$, $t_{m+1} = t_*$. For $s < t$ in $[0, t_*]$, we may assume that $s \in I_i$ and $t \in I_j$ for some $i \leq j$. By direct computation, we have

$$-\int_s^t L(t)L'(t) \, dt = \frac{1}{2}(L^2(s) - L^2(t)) + \frac{1}{2} \sum_{k=i}^{j-1} (L^2(t^+_k) - L^2(t^-_k)), $$
where $h(r^\pm)$, as usual, stands for the right/left limits of a function h at r. Notice that $L(t^+_k) < L(t^-_k)$ and $A(t^+_k) = A(t^-_k)$. Thus we have

\begin{equation}
- \int_s^t L(t)L'(t)dt \leq \frac{1}{2}(L^2(s) - L^2(t)).
\end{equation}

Similarly,

\begin{equation}
\int_s^t A(t)A'(t)dt = -\frac{1}{2}(A^2(s) - A^2(t)),
\end{equation}

\begin{equation}
- \int_s^t A'(t)dt = A(s) - A(t).
\end{equation}

Therefore, from (3.9)–(3.12), we have

\begin{equation}
L^2(s) - L^2(t) \geq -2\int_s^t L(t)L'(t)dt
\end{equation}

\begin{equation}
\geq 2C\int_s^t A(t)A'(t)dt - 2\theta_0 \int_s^t A'(t)dt
\end{equation}

\begin{equation}
= 2\theta_0(A(s) - A(t)) - C(A^2(s) - A^2(t)).
\end{equation}

\[\square \]

We are now ready to state and prove our main result.

Theorem 3.5. Let M be a surface with curvature $K \leq C$. Let $D(\Gamma)$ be a proper sector on M with interior angle $\theta_0 \leq \pi$ at the vertex. Then

\begin{equation}
L^2(\Gamma) \geq 2\theta_0 A(D(\Gamma)) - CA^2(D(\Gamma)),
\end{equation}

where equality holds only when $D(\Gamma)$ is isometric to a geodesic sector on a surface M_C of constant curvature $K \equiv C$.

Proof. By setting $t \to t_*$ in (3.8) of Theorem 3.4, we get

\begin{equation}
L^2(s) \geq 2\theta_0 A(s) - CA^2(s).
\end{equation}

Now at $s = 0$, we get the inequality (3.13).

For a geodesic sector on a surface M_C of constant curvature $K \equiv C$, it is quite clear that the equality holds in (3.13) by (2.3).

Suppose now that the equality $L^2(0) = 2\theta_0 A(0) - CA^2(0)$ holds. Then from (3.8) with $s = 0$ together with (3.14) we get

\begin{equation}
L^2(t) = 2\theta_0 A(t) - CA^2(t),
\end{equation}

for all $0 \leq t \leq t_*$. Since Γ_{t_*} is in the relative cut locus $C_{rel}(\Gamma)$ of Γ in $D(\Gamma)$, $D(\Gamma_{t_*})$ is contained in $C_{rel}(\Gamma)$. That is, $A(t_*) = 0$ and so by (3.15) $L(t_*) = 0$.

By differentiation,

\begin{equation}
L'(t) = -\theta_0 + CA(t)
\end{equation}
for all $0 \leq t \leq t_*$. Therefore, equalities hold for all $0 \leq t \leq t_*$ in inequalities in the proof of Theorem 3.3. This implies that, for $t < t_*$, the exterior angles at the end points of Γ_t are less than or equal to $\pi/2$ and there are no corners (which are not end points) on Γ_t at which the exterior angle of Γ_t^* is positive. In addition, for each $v \in T_q M \cap \mathcal{N}$, which is the set defined as in Section 2, the geodesic $\gamma_v : [0, t_*) \to M$ such that $\gamma_v(0) = q \in \Gamma$, $\gamma_v'(0) = v$ satisfies $d_{D(\Gamma)}(\gamma_v(t), q) = t$ and $\gamma_v(t) \in \Gamma_t$ for each $t \in [0, t_*]$. That is, $C_{rel}(\Gamma) \subseteq \Gamma_*$. Therefore, $C_{rel}(\Gamma) = \Gamma_*$ is the set of a single point, say $\{p\}$. Moreover, no geodesics starting at p intersect before the distance t_* in $D(\Gamma)$, so $D(\Gamma)$ is a geodesic sector of radius t_* and angle θ_0 centered at p. By (3.15) and (3.16), $L : [0, t_*) \to \mathbb{R}$ satisfies the following ODE

\[(3.17) \quad L''(t) = -CL(t), \quad L(t_*) = 0, \quad L'(t_*) = -\theta_0.\]

By comparing the solution of (3.17) with $L_{C, \theta}$ in (2.2) for a geodesic sector on M_C, one can see that $D(\Gamma)$ is isometric to S_{t_*, θ_0} by Lemma 2.5.

If $M = \mathbb{E}^2$ and we set $C = 0$, then Theorem 3.5 implies the result of C. Bandle [Ba1, Ba2]. Similar isoperimetric inequalities on Lorentzian surfaces were obtained by the authors [BH, B].

Remark 3.6. The condition that $\theta_0 \leq \pi$ in Theorem 3.5 is essential. One can construct a proper sector for which the isoperimetric inequality (3.13) does not hold in the following way: In \mathbb{E}^2, consider a proper sector with $\Gamma = \Gamma^1 \cup \Gamma^2$, where Γ^1 is a semi-circle of radius r centered at q and Γ^2 is a circular arc of angle $0 < \varphi < \pi$ and radius αr ($0 < \alpha < 1$) centered at p (see Figure 2). Take $C = 0$, then

$$L^2(\Gamma) = (\pi + \varphi\alpha)^2r^2 < (\pi + \varphi)(\pi + \varphi\alpha^2)r^2 = 2\theta_0 A(D(\Gamma)).$$

![Figure 2.](image-url)
Remark 3.7. The isoperimetric inequality (3.13) holds for a closed, simply connected, bounded set D having the boundary $\Gamma^* = \gamma_1 \cup \Gamma \cup \gamma_2$, where $\gamma_1(0) = \gamma_2(0)$, $\gamma_1(r_1) = \gamma_2(r_2) = \Gamma(a) = \Gamma(b)$ by approximating Γ^* by Γ^*_ε, where Γ^*_ε is a closed curve obtained from Γ^* by changing the parts of Γ^* contained in a geodesic ball of radius ε at $\gamma_1(r_1) = \gamma_2(r_2)$ so that Γ^*_ε is piecewise smooth and simple.

We now consider a special case of a proper sector: Suppose that $\gamma_i : [0, r_i] \to M$ ($i = 1, 2$) are two geodesic segments such that $\gamma_1(0) = \gamma_2(0) = p$, $\gamma_1(r_1) = \gamma_2(r_2) = q$ and $\gamma_1((0, r_1)) \cap \gamma_2((0, r_2)) = \emptyset$. Such a sector will be called an oval sector. Notice that there are no such oval sectors on a surface with curvature $K \leq 0$. Let θ_1, θ_2 be the interior angles of D at p, q, respectively. From Theorem 3.5, we have:

Corollary 3.8. Let M be a surface with curvature $K \leq C$ for a positive constant C. Let D be an oval sector enclosed by γ_1, γ_2 with $\theta_1, \theta_2 \leq \pi$ on M. Then

$$A(D) \geq \frac{2\theta_*}{C},$$

where $\theta_* = \max\{\theta_0, \theta_1\}$. Equality holds only when D is isometric to a geodesic sector of radius π/\sqrt{C} and angle $\theta_1 = \theta_2$ on a surface of constant curvature $K \equiv C$.

The equality case of Corollary 3.8 is based on the following fact: For an oval sector D with $\theta_1, \theta_2 \leq \pi$ on a surface M with curvature $K \leq C$, by the Gauss-Bonnet formula, one can obtain the inequality

$$A(D) \geq \frac{1}{C}(\theta_0 + \theta_1),$$

where equality holds only when M is a surface of constant curvature C.

The following is an immediate consequence of Corollary 3.8:

Corollary 3.9. Let M be a surface with curvature $K \leq C$ for a positive constant C. Suppose that γ_1, γ_2 are two geodesics starting at a point $p \in M$ with angle θ at p and D is a simply connected domain on M containing γ_1, γ_2 with area less than $\frac{2\theta}{C}$. Then γ_1 and γ_2 never meet again in D.

4. **Lengths of the cut locus.**

Let M be a closed surface (i.e., a compact surface without boundary) with area $A(M)$. For $v \in T_pM$, $p \in M$, denote by γ_v the unique geodesic satisfying $\gamma_v(0) = v$. Define $\rho(v) = \sup \{t \in \mathbb{R} : \gamma_v$ is minimal on $[0, t]\}$. Then $\rho(v)$ is continuous on the set $S_p = \{v \in T_pM : ||v|| = 1\}$ and the values of ρ on S_p are bounded (by the diameter of M). Note that, if $w = \lambda v \in T_pM$ ($\lambda \geq 0$), then $\rho(v) = \lambda \rho(w)$. Let

$$U_p = \{v \in T_pM : \rho(v) > 1\}.$$
Then \(U_p \) is a bounded set in \(T_pM \) and the (usual) cut locus of \(p \) is
\[
\text{Cut}(p) = \exp_p(\partial U_p).
\]
It is well known that, for \(p \in M \),
\[
M = U_p \cup \text{Cut}(p),
\]
where \(U_p = \exp_p(U_p) \). Note that \(\text{Cut}(p) \) is a deformation retract of \(M \setminus \{p\} \).

Hence, on any orientable closed surface \(M \) of genus \(g \), \(\text{Cut}(p) \) of any point \(p \in M \) contains \(2g \) closed curves, which form a set of generators for the fundamental group of \(M \). It is known that any compact subset of \(\text{Cut}(p) \) of \(p \) on a closed surface \(M \) has finite Hausdorff 1-measure (cf. [He2, I]). Thus any path in \(\text{Cut}(p) \) is rectifiable ([He1, Proposition 5.1]) and the Hausdorff 1-measure of a path in \(\text{Cut}(p) \) is its arc length ([Fa, p. 29]). Using our isoperimetric inequality (4.1) in Theorem 4.2, we will derive an inequality involving the Hausdorff 1-measure of the cut locus of a point in a closed orientable surface.

Lemma 4.1. Let \(M \) be a closed surface and \(p \in M \). Then there is a geodesic segment through \(p \) such that its end points are in \(\text{Cut}(p) \) and it bisects \(U_p \) in area.

Proof. For a unit vector \(v \in T_pM \), denote \(c_v : [-\rho(-v), \rho(v)] \to M \) the unique geodesic segment such that \(c_v(s) = \gamma_{-v}(-s) \) for \(s \in [-\rho(-v), 0] \) and \(c_v(t) = \gamma_v(t) \) for \(t \in [0, \rho(v)] \). Then \(c_v(-\rho(-v)) = \gamma_{-v}(\rho(-v)) \), \(c_v(\rho(v)) = \gamma_v(\rho(v)) \), \(c_v(0) = p \). Clearly, for each \(v \in \mathbb{S}_p \), \(c_v \) splits \(U_p \) into two pieces. We take one piece of these for each \(v \) continuously and name it \(D_v \). Let \(A(v) \) be the area of \(D_v \). Then \(A(v) \) is a continuous function on \(\mathbb{S}_p \) since \(\rho \) is continuous on \(\mathbb{S}_p \). By the mean value theorem, there is a \(v_0 \in \mathbb{S}_p \) such that \(A(v_0) = \frac{1}{2}A(M) \), and \(c_{v_0} \) is a desired one. \(\square \)

Theorem 4.2. Let \(M \) be a closed surface with curvature \(K \leq C \) and \(\ell \) the total length (the Hausdorff 1-measure) of the cut locus \(\text{Cut}(p) \) of \(p \in M \). Then
\[
\ell^2 \geq \pi A(M) - \frac{C}{4} A^2(M). \tag{4.1}
\]

Proof. Let \(\gamma : [a, b] \to M \) be a geodesic segment bisecting \(U_p \) into \(D_1, D_2 \) with \(A(D_1) = A(D_2) \) as in Lemma 4.1. Then there is a (continuous) path \(\tilde{\Gamma} \) in \(\text{Cut}(p) \) joining \(\gamma(a) \) and \(\gamma(b) \) so that \(\gamma \) and \(\tilde{\Gamma} \) constitute the common boundary of \(D_1 \) and \(D_2 \). As the path \(\tilde{\Gamma} \) may not be piecewise smooth and \(\tilde{\Gamma} \) is compact, for any \(\varepsilon > 0 \) we choose a piecewise simple curve segment \(\Gamma \) joining \(\gamma(a) \) and \(\gamma(b) \) such that \(\Gamma \) is contained in the \(\varepsilon \)-neighborhood of \(\tilde{\Gamma} \) and \(L(\Gamma) \leq L(\tilde{\Gamma}) \). Let \(D'_1, D'_2 \) be two domains with boundary \(\gamma \) and \(\Gamma \) corresponding to \(D_1, D_2 \), respectively. By Theorem 3.5 and Remark 3.7,
\[
L^2(\Gamma) \geq 2\pi A(D'_1) - CA^2(D'_1), \quad L^2(\Gamma) \geq 2\pi A(D'_2) - CA^2(D'_2).
\]
Combining these with the fact that $A(D'_i) = A(D_i) + O(\varepsilon^2)$ for $i = 1, 2$,

$$L^2(\tilde{\Gamma}) \geq 2\pi A(D_1) - CA^2(D_1), \quad L^2(\tilde{\Gamma}) \geq 2\pi A(D_2) - CA^2(D_2).$$

Since $\tilde{\Gamma} \subset \text{Cut}(p)$ and $L(\tilde{\Gamma})$ is equal to the Hausdorff 1-measure of $\tilde{\Gamma}$, which is less than or equal to the total length ℓ of $\text{Cut}(p)$, we get

$$\ell^2 \geq \pi A(M) - \frac{C}{4} A^2(M).$$

□

Example 4.3. Let T^2 be the flat torus obtained by identifying the opposite sides of quadrilateral ABCD (see Figure 3). Then the cut locus $\text{Cut}(p)$ of middle point $p \in T^2$ is the set formed by the line segments AB and BC, and so $\ell = a + b$, where a and b are the length of the line segments AB and BC, respectively. The area of T^2 is ab. Take $C = 0$ as usual, then (4.1) gives a well-known inequality

$$(a + b)^2 \geq \pi ab.$$
Corollary 4.5. Let M be a closed orientable surface of genus $g > 1$ with curvature -1. Then
\[\ell^2 \geq 4\pi^2 g(g - 1). \]

Acknowledgement. H. Bahn would like to thank Professor Paul Ehrlich for helpful conversations while he was a visitor to the University of Florida.

References

Received March 10, 1999 and revised June 23, 1999. This work was supported by POSTECH Research Fund and TGRC-KOSEF.

National Computerization Agency
Yongin 449-717
Korea
E-mail address: bahn@nca.or.kr

Department of Mathematics
Pohang University of Science and Technology
Pohang 790-784
Korea
E-mail address: sungpyo@postech.ac.kr