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We study a variant of the inverse problem of Galois theory
and Abhyankar’s conjecture. If p is an odd rational prime and
G is a finite p-group generated by s elements, s minimal, does
there exist a normal extension L/Q such that Gal (L/Q) ∼= G
with at most s rational primes that ramify in L? Given a
nilpotent group of odd order G with s generators, we obtain
a Galois extension L/Q with precisely s prime divisors of Q
ramified. Furthermore if K is a number field satisfying K ∩
Q(ζp

ni
i

) = Q for each rational prime pi, such that pni

i | ◦ (G),

pni+1
i |/◦(G), and such that there exists a rational prime q inert

in K/Q, we obtain a Galois extension E/K with precisely s
prime divisors of K ramified. An adaptation of the Scholz-
Reichardt method for the embedding problem is our main
tool.

1. Introduction.

Let G be a finite group. Does there exist a finite Galois extension L of Q, the
field of rational numbers, such that its Galois group Gal (L/Q) is isomorphic
to G? This is the Inverse Problem of Galois Theory. When such extension
exists we say that G is realizable over Q. Scholz [18] and independently
Reichardt [12] proved that if G is a finite p-group, p an odd prime, then G
is realizable over Q. They used a criterion given by Brauer [2]. The method
of Scholz and Reichardt does not work for p = 2 because the primitive 2-root
of unity −1 belongs to Q.

Šafarevič [16] solved the case p = 2, but he had to allow many primes
to ramify in the extension. In contrast, Serre [19] shows that the method
of Scholz and Reichardt gives, for a group G of order pm, p an odd prime
number, a Galois extension L/Q where only m primes ramify.

Given an algebraic function field K/k of one variable and a finite group
G and a positive integer s, does there exist a Galois extension L/k of K/k
such that the Galois group of L/K is isomorphic to G and at most s prime
divisors of K ramify?

In 1957 S. Abhyankar [1] conjectured that if k is an algebraically closed
field of characteristic p, then there exists an extension L/K of function fields
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over k such that Gal (L/K) ∼= G with at most s prime divisors of K ramified
in L if and only if G/p(G) can be generated by 2gK + s− 1 elements where
gK denotes the genus of K and p(G) denotes the subgroup of G generated
by its p-subgroups.

Recently Geyer and Jarden [5] gave a unified treatment for global fields.
They considered a finite p-group G of order pn and K a global field of
characteristic different from p and such that the primitive p-root of 1, ζp,
is not in K. They proved that there exists an extension L/K with Ga-
lois group G and a nonnegative integer r depending only on K such that
|Ram (L/K)| ≤ n+ r where Ram (L/K) denotes the set of prime divisors in
K ramified in L. In particular, they obtain Serre’s result again. Their proof
is based in a systematic application of class field theory.

In this paper we consider a finite nilpotent group G of odd order. We
construct a Galois extension L/Q with Galois group G and such that the
number of ramified prime divisors in L/Q, |Ram (L/Q)| = s, where s is the
minimum number of generators of G (Theorem 5). This improves Serre’s
result.

Our proof is based on cyclotomic fields. We first consider a p-group G and
then the abelianzation of G, G/G′, G′ denoting the commutator subgroup of
G. Next we construct a Galois extension K0/Q with Galois group G/G′ with
exactly s prime divisors of Q ramified in K0. Then we follow the construction
of Scholz and Reichardt keeping the number of ramified primes. For this
end we have to remove new ramification, tame and wild. For the later we
use Šafarevič results on p-extensions [15].

We also prove that if G is a finite nilpotent group of odd order with
minimum number of generators s, then for any extension L/Q with Galois
group G we have |Ram (L/Q)| ≥ s (Theorem 6). We note that there are
Galois non-nilpotent extensions L/Q where |Ram (L/Q)| < s (Theorem 8).

Finally, we construct a Galois extension E/K with Galois group G and
such that |Ram (E/K)| = s where s is the minimum number of generators
of G, K is a number field such that K ∩Q(ζp

ni
i

) = Q for each prime pi such

that pni
i | ◦ (G) and pni+1

i |/ ◦ (G) and there exists a prime q ∈ Q such that q
is inert in K/Q (Theorem 10).

2. Realization of a p-group.

All fields under consideration are finite number fields, and p is an odd ra-
tional prime.

Let G be a finite p-group. Consider

1 −→ H −→ G̃ −→ G −→ 1,

an exact sequence of p-groups with H ∼= Cp, the cyclic group of p-elements
and H a central subgroup of G̃. Let L/K be a Galois extension such that
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Gal (L/K) ∼= G. The embedding problem for G̃ consists in finding a Galois
extension M/K such that Gal (M/K) ∼= G̃ and L ⊆ M .

Brauer [2] gave necessary and sufficient conditions for the resolution of the
central embedding problem in term of certain algebras. Scholz [18] based
in Brauer’s work gave a sufficient condition for the resolution of this central
embedding problem in terms of the extension. This condition is given in the
following definition.

Definition 1. Let L/K be a finite Galois extension. We say that L/K is a
Scholz extension of exponent h if:

(i) Gal (L/K) is a p-group,
(ii) The prime divisors P of K ramified in L/K are tamely ramified and

their absolute norm N(P) satisfies

N(P) ≡ 1(modph),

(iii) The ramified primes in L/K have inertia degree 1.

The following theorem gives sufficient conditions for the solution of the
embedding problem in the case of p-groups.

Theorem 1. Let L/K be a Scholz extension of exponent h and GK be the
absolute Galois group of K. Let

GK

�
�

�
��	 ?

ϕ

1 - A - E -
f

Gal (L/K) - 1

(1)

be an embedding problem such that ϕ is the natural projection, the group
homomorphism E → Gal (L/K) is central with kernel A of order p and
such that E and Gal (L/K) have equal ranks. Then (1) has a solution if h
is sufficiently large.

Proof. [7], Theorem 3.93, page 187. �

Thus, the problem of realization of a (finite) p-group given is reduced to
proving that for an embedding problem of a Scholz extension, there exists
a solution that is again a Scholz extension. This was proved by Scholz [18],
Reichardt [12], and Šafarevič [16].

Therefore, we have the following theorem.
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Theorem 2. Let G be an arbitrary finite p-group, p an odd prime, and let
K be a number field. Then there exists a Galois extension L/K such that
Gal (L/K) ∼= G.

Proof. [7], Theorem 3.95, page 188. �

Let G denote a p-group of order pn, and let s denote the minimum number
of generators of G. We will construct an extension L/Q such that precisely
s primes ramify.

When G is cyclic, the problem is well known. We present the proof for
the sake of completeness.

Proposition 1. Let G be cyclic p-group. There exists an extension L/Q
such that Gal (L/Q) ∼= G and |Ram (L/Q)| = 1.

Proof. Let q be a prime number such that pn|q − 1. Then the field L =Eq ⊆
Q(ζq) with [Eq : Q] = pn satisfies what we want. �

When G is an abelian p-group the problem has two solutions one without
any restriction and another that satisfies Scholz conditions.

Proposition 2. Let G be an abelian p-group. There exists an extension
L/Q such that Gal (L/Q) ∼= G and |Ram (L/Q)| = s, where s is the mini-
mum number of generators of G.

Proof. Let
G = Cpa1 × Cpa2 × · · · × Cpas ,

where Cpai is the cyclic group of order pai ,
s∑

i=1
ai = n, a1 ≥ a2 ≥ . . . ≥ as ≥ 1.

Let qi and Eq1 , . . . , Eqs be as in Proposition 1 with q1 < q2 < . . . < qs.
Then L =Eq1 · · ·Eqs is the required extension. �

Thus, when G is an abelian p–group, the problem has a solution without
any restriction.

Now, we will show that there exists a solution that is a Scholz extension.
First we prove two propositions.

Proposition 3. Let p be an odd prime number, n and s positive integers.
Then there exist infinitely many collections of s prime numbers {q1, . . . , qs}
such that

(i) q1 ≡ 1(modpn),
(ii) for 2 ≤ i ≤ s, qi is fully decomposed in

Q(ζpn , ζq1 , . . . , ζqi−1 ,
pn√

q1, . . . , pn√
qi−1)/Q.

Proof. By Dirichlet density theorem there exists a prime number q1 such
that q1≡1(modpn). Let K1 = Q(ζpn , ζq1 ,

pn√
q1). From Tchebotarev density

theorem we have that there exists a rational prime q2 which has a divisor
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of degree one in K1/Q. Let K2 = K1(ζq2 ,
pn√

q2). From Tchebotarev density
theorem we have that there exists a rational prime q3 which has a divisor
of degree one in K2/Q. Continuing with this process we obtain one of such
collections. From Tchebotarev density theorem it follows that there exists
infinitely many of these collections. �

Definition 2. Let P be a prime divisor of K, we say that P is fleissig in
L/K if P has inertia degree 1.

Proposition 4. Let p be an odd prime, n and s positive integers. Let

ai ∈ N, 1 ≤ i ≤ s, such that
s∑

i=1
ai = n. Then there exist infinitely many

collections of s fields {E1, . . . , Es} such that
(i) Gal (Ei/Q) ∼= Cpa

i,
(ii) |Ram (Ei/Q)| = 1,
(iii) the ramified prime divisor in Ei/Q is fleissig in Ej/Q, j = 1, . . . , s.

Proof. Let {q1, . . . , qs} be one of the collections of s primes given in Propo-
sition 3. Let

K1 = Q(ζpn , ζq1 ,
pn√

q1),

Ki = Ki−1(ζqi ,
pn√

qi), 2 ≤ i ≤ s.

Let αj = pn√
qj ∈ Ki−1, j = 1, . . . , i− 1. Then αpn

j = qj . Hence

αpn

j ≡ qj mod Pi,

where Pi is a prime ideal in Ki−1 such that Pi|qi. Since qi has a divisor of
degree one in Ki−1, we have that

OKi−1/Pi
∼= Fqi = Z/qiZ.

Therefore, there exists βj ∈ Z such that

βpn

j ≡ qj(modqi).

Since 1 ≡ βqi−1
j = (βpn

j )
qi−1

pn ≡ q
qi−1

pn

j (modqi), it follows that if fqi(qj) is the
order of qj modulo qi, then fqi(qj)| qi−1

pn .
We consider the extension Q(ζqi)/Q. For the primes qj we have

qi − 1 = e(qj |Q(ζqi)/Q)f(qj |Q(ζqi)/Q)g(qj |Q(ζqi)/Q)

where e(qj |Q(ζqi)/Q), f(qj |Q(ζqi)/Q) and g(qj |Q(ζqi)/Q) denote the ram-
ification index, the inertia degree and the number of primes above qj in
Q(ζqi)/Q respectively.

Hence,

qi − 1 = fqi(qj)g(qj |Q(ζqi)/Q),
fqi(qj)rjp

n = fqi(qj)g(qj |Q(ζqi)/Q), rj ∈ Z.
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Therefore, pn|g(qj |Q(ζqi)/Q).
Thus, we have that there exists a subfield Ei of Q(ζqi) such that

(1) Gal (Ei/Q) ∼= Cpai ,
(2) |Ram (Ei/Q)| = 1,
(3) qj , j = 1, . . . , i are fleissig in Ei/Q.

The collection of s fields {E1, . . . , Es} satisfies the conditions of the propo-
sition. The existence of infinitely many of these collections follows from
the existence of infinitely many collections of s primes given in Proposition
3. �

Corollary 1. Let G be an abelian p–group. There exists a Scholz exten-
sion L/Q such that Gal (L/Q) ∼= G and |Ram (L/Q)| = s, where s is the
minimum number of generators.

Hence for an abelian p-group G, we have a Scholz extension L/Q with
Gal (L/Q) ∼= G.

Now we consider G a non-abelian p-group.
The following theorem is the main result of the present work and it is the

basis of the following results.

Theorem 3. Let G be a finite arbitrary p-group. There exists an extension
L/Q, such that

(i) Gal (L/Q) ∼= G,
(ii) |Ram (L/Q)| = s,

where s is the minimum number of generators of G.

Proof. Let G′ be the commutator subgroup of G. Let |G| = pn, |G′| = pt,
1 ≤ t < n. We have that G/G′ is an abelian group, say G/G′ ∼= Cpa1 ×· · ·×
Cpas .

Let G0 = G/G′, G1, . . . , Gt = G be such that

Gi−1
∼= Gi/Hi i = 1, . . . , t with Hi ⊆ Z(Gi), |Hi| = p.

We will construct fields K0 ⊆ K1 ⊆ . . . ⊆ Kt, such that Gal (Ki/Q) ∼=
Gi, i = 0, . . . , t and |Ram (Ki/Q)| = s.

From Corollary 1, we obtain that there exists a Scholz extension K0/Q
such that Gal (K0/Q) ∼= G0 and |Ram (K0/Q)| = s.

From Theorem 1, it follows that there exists K1/Q such that K0 ⊆ K1

and Gal (K1/Q) ∼= G1.
In order to continue our construction, we need a Scholz extension L1/Q

such that K0 ⊂ L1, Gal (L1/Q) ∼= G1 and |Ram (L1/Q)| = s.
If the field K1 given by Theorem 1 already satisfies these conditions

we set L1 = K1. Otherwise, we proceed as follows. Let q1, . . . , qs be the
ramified primes in K0/Q which are fleissig. Therefore, K1/Q may fail to be
a Scholz extension because of any of the following:
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(I) There are new ramified primes.
(II) Some of the ramified primes in K0/Q are inert in K1/K0, that is, they

are not fleissig in K1/Q.

First step. Elimination of new ramification
We consider two cases: when the new ramification is tame and when it is

wild.
First we consider tame ramification. Let q be a new ramified prime divi-

sor, that is, q ramifies in K1/Q but not in K0/Q. Let K0(q) be the local field
of K0. In that case we have that [K0 : Q] = pn−t and [K0(q) : Qq] = pα′ ,

where we have that α′ ≤ n− t. We have that xqpα′

−x = 0 has qpα′
solutions

in F
qpα′ . Since q is ramified in K1/K0, the residue fields of K1 and K0 are

the same, namely, F
qpα′ . Now, q is totally and tamely ramified in K1/K0

with index ramification p. It follows that ζp ∈ K1(q) ([8, Prop. 12, Chap.

II]). Thus ζp ∈ F
qpα′ . Hence p|

(
qpα′ − 1

)
.

Now, we have that qpα′ − 1 = ((q − 1) + 1)pα′ − 1 = (q − 1)pα′
+ ph.

Therefore p|(q − 1)pα′
. Hence p|(q − 1).

Let ∧q be the extension of Q such that ∧q ⊂ Q(ζq) and [∧q : Q] = p.
Then q is the unique prime of Q ramified in ∧q/Q.

Since q is unramified in K0 and ramified in ∧q, ∧q ∩ K0 = Q. If ∧q

were contained in K1, then it would equal K0∧q which would imply that
G1

∼= G0×Cp. This contradicts that s is the minimum number of generators
of G.

Since q is tamely ramified, we have that the inertia group of q in K1∧q/K0

is cyclic. Therefore, q is not fully ramified in K1∧q /K0. Let K ′
1 be the fixed

field by the inertia group of q. Then Gal (K ′
1/Q) ∼= Gal (K1/Q) [13, page

4]. Then we obtain that Gal (K ′
1/Q) ∼= Gal (K1/Q) ∼= G1, q is not ramified

in K ′
1/K0 and there are no new ramified prime divisors in K ′

1/K0 different
from those ramified in K1/K0.

We denote K ′
1 again by K1. We have Gal (K1/Q) ∼= G1 and q is not

ramified in K1/Q.
Continuing in this way, we delete the new tame ramification and we obtain

an extension, which we denote again by K1, such that Gal (K1/Q) ∼= G1 and
there is no new tame ramification in K1/Q different to that in K0/Q.

Now we consider wild ramification.
In this case we have that p ramifies in K1/Q. We consider the subexten-

sion T of Q(ζp2) such that T/Q is a cyclic extension of degree p, and p is
the unique ramified prime divisor.

We have that p ramifies in K0T/K0 and in K1/K0.
We will prove that any divisor of K0 above p is not fully ramified in

K1T/K0. Assuming this, we have that there exists a field K ′
1, the field fixed
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by the inertia group of p, such that Gal (K ′
1/Q) ∼= Gal (K1/Q) ∼= G1 and p

is not ramified in K ′
1/K0.

For a p-adic field F not containing the p–th roots of unity, Šafarevič
proved the following theorem [15].

Theorem 4. The p-extensions of F are in one-to-one correspondence with
the normal subgroups of a free group S with n0 +1 generators, whose indices
are powers of p, where n0 = [F : Qp]. Moreover, the correspondence is such
that if a p-extension L corresponds to the normal subgroup N , then the Ga-
lois group of L is isomorphic to the quotient group S/N . If two p-extensions
L and L1 correspond to the normal subgroups N and N1 respectively, then
L ⊃ L1 implies N ⊂ N1, and conversely.

As consequences of the above theorem we have:

Corollary 2. A p-group G is a Galois group of some extension of the field
F if and only if the (minimum) number of generators of G does not exceed
n0 + 1.

Corollary 3. Let ◦(G) = pn, s be the minimum number of generators of G
and α be the number of automorphisms of G. If s ≤ n0 +1, then the number
of extensions of F , whose Galois groups are isomorphic to G is

S(F,G) =
1
α

p(n0+1)(n−s)(pn0+1 − 1)(pn0+1 − p) · · · (pn0+1 − ps−1).

Corollary 4. Let G and G be two p–groups with G a homomorphic image
of G by some fixed homomorphism, such that the (minimum) number of
generators of G, and hence of G, does not exceed n0 + 1. Then for every
extension K/F with Galois group G, there exists an extension K/F with
Galois group G such that K ⊂ K and the given homomorphism of G onto
G is realized by a natural homomorphism of a Galois group of a field onto
a Galois group of a subfield.

Now we apply these results to show that p is not fully ramified in the
extension K1T/K0. We consider the local fields of K1, T and K0. If T(p) ⊆
K1(p) then we have

[
K1(p)Tp : K0(p)

]
= p. It follows that p is not fully

ramified in K1T/K0 in this case. Therefore we may assume that T(p) 6⊆
K1(p). We will see that K1(p)Tp/K0(p) is not fully ramified. This will prove
that p is not fully ramified in K1T/K0.

We consider the following two cases:
(i) p is fully decomposed in K0/Q,
(ii) p is not fully decomposed in K0/Q.

Case (i). In this case we have that K0(p) = Qp. Applying Corollary 3
to F = Qp and G = Cp × Cp, we have n0 = 1, s = 2, n = 2 and α =
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|Aut (Cp × Cp)| = (p2 − 1)(p2 − p). Then

S(Qp, Cp × Cp) =
1

(p2 − 1)(p2 − p)
p(2)(0)(p2 − 1)(p2 − p) = 1.

Therefore, it follows that Qp has only one extension with group isomorphic
to Cp × Cp. This extension must be K1(p)T(p).

Now, applying Corollary 3 to F = Qp and G = Cp, we have n0 = 1, n =
1, s = 1 and α = |Aut (Cp)| = p− 1. Then

S(Qp, Cp) =
1

p− 1
p(2)(0)(p2 − 1) = p + 1.

Therefore, we have that Qp has p + 1 Galois extensions with Galois group
isomorphic to Cp, all of these are subextensions of K1(p)T(p).

On the other hand, it is well known that Qp has a unique unramified
extension of degree p. Therefore this is one of the p + 1 extensions given
above. In particular, K1(p)T(p)/K0(p) is not fully ramified.

Case (ii). Let pf , f ≥ 1, be the inertia degree of p in K0/Q. Since p
is not ramified in K0/Q, we have that K0(p)/Qp is the unique unramified
extension of degree pf . From Corollary 2 we observe that for a group G
to be realizable over Qp, s, the minimum number of generators of G, must
satisfy s ≤ 2.

We will see that K1(p)/Qp is cyclic. If K1(p)/Qp were not cyclic, then
Gal (K1(p)/Qp) would have 2 generators. On the other hand, since T(p) ∩
K1(p) = Qp it follows that

Gal (K1(p)T(p)/Qp) ∼= Gal (K1(p)/Qp)×Gal (T(p)/Qp)
∼= Gal (K1(p)/Qp)× Cp,

which has 3 generators, contrary to Corollary 2. Therefore

Gal (K1(p)/Qp) ∼= Cpf+1

and
Gal (K1(p)T(p)/Qp) ∼= Cpf+1 × Cp.

Let H = Cpf+1 × Cp = 〈a, b〉. It is easy to see that

|Aut (H)| = pf+1(p− 1)p(p− 1) = pf+2(p− 1)2.

Applying Corollary 3 with F = Qp and G = H, we have n0 = 1, s = 2,
n = f + 2 and α = |Aut (G)| = pf+2(p− 1)2. Then

S(Qp, Cpf+1 × Cp) =
1

pf+2(p− 1)2
p2(f+2−2)(p2 − 1)(p2 − p)

= pf−1(p + 1).
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We have that Gal (K0(p)/Qp) ∼= Cpf and |Aut (Cpf | = pf−1(p − 1).
Applying Corollary 3 to F = Qp and G = Cpf , we have n0 = 1, s = 2, n = f

and α = |Aut (Cpf )| = pf−1(p− 1). Thus, we obtain

S(Qp, Cpf ) =
1

pf−1(p− 1)
p2(f−1)(p2 − 1)

= pf−1(p + 1).

It follows that

S(Qp, Cpf ) = S(Qp, Cpf+1 × Cp) = pf−1(p− 1), f ≥ 1

and
S(Qp, Cp × Cp) = 1.

Let

A = {L/Qp|Gal (L/Qp) ∼= Cpf },
B = {E/Qp|Gal (E/Qp) ∼= Cpf+1 × Cp}.

We have that Cpf+1 × Cp = 〈a, b〉 has a unique subgroup isomorphic to
Cp × Cp, namely, J = 〈apf

, b〉.
Let φ : B → A be given by φ(E) = EJ . We have Gal (EJ/Qp) ∼= 〈a,b〉

〈apf
,b〉
∼=

〈a〉 ∼= Cpf .
From Corollary 4 we obtain that given L ∈ A, there exists an extension

E/Qp such that L ⊆ E and Gal (E/Qp) ∼= Cpf+1 × Cp. Therefore φ is
surjective. Since |A| = |B|, it follows that φ is bijective.

Thus, we have that K1(p)T(p)/Qp is the unique extension with Galois
group Cpf+1 × Cp containing K0(p).

Let Lp be the unique unramified extension of Qp such that Gal (Lp/Qp) ∼=
Cpf+1 . Then K0(p) ⊆ Lp and Gal (LpT(p)/Qp) ∼= Cpf+1 × Cp.

Therefore, LpT(p) = K1(p)T(p) and K1(p)T(p)/K0(p) is not fully ramified.
Once we have removed the wild ramification, if such exists, we obtain

a new extension, denoted again by K1, such that Gal (K1/Q) ∼= G1 and
Ram (K1/Q) = Ram (K0/Q). However K1/Q is not necessarily a Scholz
extension.

Second step. Recovering the fleissig property for the ramified primes.
We follow Serre [19] very closely. We include the details for the sake of

completeness.
Let q1, . . . , qh be the ramified prime divisors which are fleissig in K1/Q,

and let qh+1, . . . , qs be the ramified prime divisors that are not fleissig.
We have

Proposition 5. Let M = Q(ζp,
p√q1 . . . , p√qh),M1 = M( p√qh+1), Q(ζpn) =

Q(ζp)E, where E/Q is cyclic of degree pn−1. Then
(1) K1 and E are linearly disjoint over Q,
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(2) K1E and M1 are linearly disjoint over Q,
where K1 is as above.

Proof. [19], Lemma 2.1.9, page 14. �

Let F = K1EM and F1 = K1EM1. Then F1/F is an extension of degree
p.

Let q be a prime in Q such that q has a divisor of degree one in F/Q and
q is inert in F1/F .

Let Eq be the subextension of Q(ζq)/Q of degree p. Since xp − qh+1 is
irreducible over F and q is inert in F1/F , we have that xp−qh+1 is irreducible
modulo q. Let α ∈ Fq \ Fq be such that

αp ≡ qh+1(modq).

Let q − 1 = rpt, r = q−1
pt , t ≥ 1, (r, p) = 1. Then we have

qq−1
h+1 ≡ 1(modq).

If we had that q
q−1

p

h+1 ≡ 1(modq), then αq−1 ≡ q
q−1

p

h+1 ≡ 1(modq). Hence
α ∈ Fq, which contradicts the choice of α. Thus, qr

h+1 6≡ 1(modq) and
the inertia degree of qh+1 in Q(ζq)/Q is divisible by pt. Hence qh+1 is inert
in Eq/Q.

Thus, in Eq/Q we have that q1, . . . , qh are fully decomposed, qh+1 is inert
and q is fully ramified.

We have that qh+1 is inert in K0Eq/K0 and in K1/K0. Since K1Eq/K0

is not cyclic, qh+1 is not fully inert in K1Eq/K0. Let K ′
1 be the field fixed

by the decomposition group of qh+1. Then
(i) Gal (K ′

1/Q) ∼= Gal (K1/Q) ∼= G1,
(ii) qh+1 is decomposed in K ′

1/K0, in particular qh+1 is fleissig in K ′
1/Q,

(iii) q1, . . . , qh are fleissig in K ′
1/Q,

(iv) q is ramified and fleissig in K ′
1/Q.

Now we will remove the ramification of q keeping the fleissig property for
{q1, . . . , qh+1}.

Let Ei/Q, i = 1, . . . , h + 1 and Eq/Q be the extensions of Q such that
(i) Gal (Ei/Q) ∼= Cp, i = 1, . . . , h + 1 and Gal (Eq/Q) ∼= Cp,
(ii) qi is fully ramified in Ei/Q and it is the unique ramified prime divisor;

q is fully ramified in Eq/Q and it is the unique ramified prime divisor.
Using the technique of Madan [9], let E ⊆ Eqh+1

Eq be an extension such
that [E : Q] = p and qh+1 and q are ramified in E/Q. We have that qi,
1 ≤ i ≤ h, are decomposed in Eqh+1

(Proposition 4) and in Eq. It follows
that they are decomposed in E.

Furthermore E is not contained in K0 because q is ramified in E but not
in K0. It follows that E is not contained in K ′

1 since otherwise EK0 ⊆ K ′
1
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would imply EK0 = K ′
1, but this can not be, since Gal(EK0/Q) is a split

group extension of G0, whereas Gal(K ′
1/Q) is not. Therefore, E ∩K ′

1 = Q.
Similarly to when we removed the new tame ramification, we obtain an

extension K ′′
1 /Q such that Gal (K ′′

1 /Q) ∼= Gal (K ′
1/Q) ∼= G1, the prime divi-

sors above qi, 1 ≤ i ≤ h, are decomposed in EK0/K0. Therefore q1, . . . , qh+1

are fleissig in K ′′
1 /Q and q is not ramified in K ′′

1 /Q.
Continuing with this process, we obtain an extension, denoted again by

K1, such that Gal (K1/Q)∼=G1, Ram (K1/Q) = Ram (K0/Q) = {q1, . . . , qs}
and the ramified primes are fleissig. That is, K1/Q is a Scholz extension.

By induction, we assume that we have constructed an extension Kν−1/Q
such that

(i) Kν−2 ⊂ Kν−1,
(ii) Gal (Kν−1/Q) ∼= Gν−1,
(iii) Ram (Kν−1/Q) = Ram (K0/Q),
(iv) the ramified primes are fleissig.

That is, Kν−1/Q is a Scholz extension. From Theorem 1, we have that there
exists an extension Kν/Q such that Kν−1 ⊂ Kν and Gal (Kν/Q) ∼= Gν .

We proceed as in the case K0. In this case we do not need that the
extension K0/Q be abelian and the proofs can be applied to Kν−1. We first
remove new ramification and then we modify the extension in order to have
that the ramified prime divisors are fleissig. We obtain an extension, denoted
again by Kν , such that Gal (Kν/Q) ∼= Gν and Ram (Kν/Q) = Ram (K0/Q).

The field Kν satisfies the required conditions. �

3. Case G a nilpotent group of odd order.

In this section G will denote a nilpotent group of odd order and s will denote
the minimum number of generators of G.

Since G is nilpotent, we have

G = Gp1 × · · · ×Gpr ,

where Gpi is a pi–group, |Gpi | = pni
i , p1, . . . , pr are distinct odd primes.

Let si = dimFpi
Gpi/Φ(Gpi), where Φ(Gpi) is the Frattini subgroup of

Gpi . Reordering p1, . . . , pr , we may assume s1 ≥ s2 ≥ . . . ≥ sr. Then si is
the minimum number of generators of Gpi , i = 1, . . . , r, and s = s1.

By Theorem 3, we obtain that there exist extensions Li/Q, i = 1, . . . , r,
such that Gal (Li/Q) ∼= Gpi and |Ram (Li/Q)| = si.

The extension L/Q, where L = L1 · · ·Lr satisfies Gal (L/Q) ∼= G and
|Ram (L/Q)| ≥ s.

We will prove that there exists a collection of extensions Li/Q satis-
fying the conditions given in Theorem 3, and such that Ram (Li/Q) ⊂
Ram (L1/Q), i = 2, . . . , r.

The following proposition is a direct generalization of Proposition 3.
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Proposition 6. Let p1, . . . , pr, be distinct odd primes, n1, . . . , nr and s are
positive integers. Then there exist infinitely many collections of s primes
{q1, . . . , qs} such that

(i) q1 ≡ 1
(

mod
r∏

i=1
pni

i

)
.

(ii) For 2 ≤ j ≤ s, qj is fully decomposed in

Q
(
ζp

ni
i

, ζq1 , . . . , ζqj−1 ,
p

ni
i
√

q1, . . . , p
ni
i
√

qj−1, ; i = 1, . . . , r
)

/Q.

The following proposition is a direct generalization of Proposition 4. For
each i, i ≤ i ≤ r, we set G0i := Gpi/G′

pi
.

Proposition 7. Let p1, . . . , pr, be distinct odd primes, n1, . . . , nr and s
be positive integers. Then there exist infinitely many collections of r fields
{F01 , . . . , F0r} such that

(i) Gal (F0i/Q) ∼= G0i,
(ii) |Ram (F0i/Q)| ≤ s,
(iii) Ram (F0i/Q) ⊆ Ram (F01/Q) i = 2, . . . , r,
(iv) the primes ramified in F0i/Q, i = 1, . . . , r are fleissig.

Therefore there exists L0i/Q a Scholz extension such that Gal (L0i/Q) ∼=
G0i , Ram (L0i/Q) ⊂ Ram (L01/Q), i = 2, . . . , r, and |Ram (L01/Q)| = s.

Theorem 5. Let G be a nilpotent group of odd order. Then there exists an
extension L/Q such that Gal (L/Q) ∼= G and |Ram (L/Q)| = s.

Proof. Let {F01 , . . . , F0r} be a collection given in Proposition 7. It fol-
lows from Theorem 3 that there exist fields F1, . . . , Fr such that F0i ⊂ Fi,
Gal (Fi/Q) ∼= Gpi , |Ram (Fi/Q)| = si and Ram (Fi/Q) = Ram (F0i/Q). The
field L = F1 · · ·Fr satisfies the required conditions. �

4. Minimal ramification.

We will prove that the number of ramified primes in a finite nilpotent ex-
tension K/Q is greater than or equal to the minimum number of generators
of Gal (K/Q).

Theorem 6. Let G be a nilpotent group of odd order. Let K/Q be a finite
Galois extension with Galois group G. If r is the number of ramified rational
primes in K/Q, we have that r ≥ s, where s is the minimum number of
generators of G.

Proof. We have that the minimum number of generators of G equals the
minimum number of generators of a p–Sylow subgroup of G for some p|o(G).
Therefore it suffices to prove the theorem for a p-group.

Thus, we consider G a p-group. Let G′ be the commutator subgroup of
G. Let E = KG′

. Then E/Q is abelian.
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Let t be the number of ramified rational primes in E/Q. Therefore, t ≤ r.
Thus, it suffices to prove that s ≤ t.

We have that Gal(Q(ζn)/Q) ∼= (Z/nZ)∗ = G. By a Dirichlet character
χ mod n we understand a multiplicative homomorphism χ : G → C∗. If Ωn

is the group of characters mod n we have that Ωn = Ĝ ∼= G under the pairing

Ωn × G → C∗

(χ, a) → χ(a) .

For any subgroup Z of G, let Z⊥ =
{

χ ∈ Ĝ | χ(y) = 1 ∀ y ∈ Z
}

. Then

Z⊥ ∼= (̂G/Z) and Z⊥⊥ ∼= Z when we identify ̂̂G ∼= G. We also have that
Z =

⋂
χ∈Z⊥

ker χ.

Let E ⊆ Q(ζn) for some n. Let H = Gal(E/Q), Z = Gal(Q(ζn)/E).
Then H ∼= G/Z ∼= (̂G/Z) ∼= Z⊥.

We set X = Z⊥ which is called the group of Dirichlet characters associated
to the field E.

Let n =
∏

pa. Corresponding to the canonical decomposition (Z/nZ)∗ ∼=∏
(Z/paZ)∗ we may write any character mod n as χ =

∏
χp where χp is a

character mod pa. We let Xp = {χp | χ ∈ X}.
Let q1, . . . , qt be the rational primes ramified in E/Q. Then, we have that

|Xqi | > 1, i = 1, . . . , t and |Xq| = 1 for every rational prime q 6∈ {q1, . . . , qt}
([20, Theorem 3.5]). Since G is a p-group, Xqi is a p-group and Xqi ⊆ Ĝi

where Gi = Gal(Q(ζq
mi
i

)+/Q) for some mi ≥ 1. Therefore Xqi is a cyclic
p–group, say Xqi

∼= Cpai .
Let Y = Xq1 × · · · ×Xqt

∼= Cpa1 × · · · × Cpat , and let F be its associated
field. Then X ⊆ Y . Therefore we have that E ⊆ F .

We have Gal (F/Q) ∼= Y ∼= Cpa1×· · ·×Cpat . Since E ⊆ F , G = Gal(E/Q)
is a quotient of Gal(F/Q) and the minimum number of generators of Y is t.
Hence s ≤ t. Therefore s ≤ r. �

Remark 1. If p = 2, the result of Theorem 6 is not longer true for rational
prime divisors. For instance, Gal(Q(ζ8)/Q) ∼= C2 × C2 has two generators
and 2 is the only ramified rational prime divisor. In this case Theorem 6
holds if we include also the infinite prime.

Theorem 6 shows that the extension K/Q constructed in Section 2 is
optimal in the sense that we have obtained the minimum number of possible
ramified primes.

Now we prove the existence of a finite Galois extension L/Q such that the
number of ramified rational primes in L/Q is less than the minimum number
of generators of Gal (L/Q). From Theorem 6, we have that Gal(L/Q) is not
a nilpotent group.
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Theorem 7. Let p be an odd prime. Then p is irregular if and only if there
is an extension K/Q(ζp)+, with K 6= Q(ζp2)+ such that Gal (K/Q(ζp)+) ∼=
Cp, and such that it is unramified outside p.

Proof. [20], Proposition 10.13, page 193. �

Theorem 8. If p is an irregular prime, then there is a Galois extension
F/Q such that

(i) the minimum number of generators of Gal (F/Q) is greater than or
equal to 2,

(ii) the number of ramified primes in F/Q is 1.
Furthermore, the only ramified prime in F/Q is p.

Proof. Let K/Q(ζp)+ be the extension given in Theorem 7. Let F/Q(ζp)+

be the maximal abelian p-extension which is unramified outside p. Then we
have that K ⊆ F and F/Q is Galois.

Let us see that F/Q is not cyclic. Since F/Q is a Galois extension,
F (ζp)/Q is also a Galois extension. If F (ζp)/Q were abelian, from the
Kronecker-Weber theorem, we would obtain that F (ζp) ⊆ Q(ζpn), for some
n, since F (ζp)/Q is unramified outside p and the infinite prime. Therefore
F ⊆ Q(ζpn)+. This contradicts the choice of K. Therefore, F (ζp)/Q is not
abelian and F/Q is not a cyclic extension.

In short, we have that F/Q is a Galois extension which is not cyclic and
it is unramified outside p. That is, F/Q satisfies the required conditions.
Since there are infinitely many irregular primes, we obtain that there exist
infinitely many such extensions. �

5. Nilpotent extensions of number fields.

In this section K will denote a number field such that K ∩Q(ζp
ni
i

) = Q for

each prime pi such that pni
i |◦(G) and pni+1

i |/◦(G) and there is a prime q ∈ Q
such that q is inert in K/Q.

Proposition 8. Let K be a number field such that exists a rational prime
q inert in K/Q. Then there exist infinitely many rational primes inert in
K/Q.

Proof. Let K̃ be the Galois closure of K/Q and let Ω = Gal (K̃/Q). Since q

is unramified in K/Q, we have that q is unramified in K̃/Q. Let Q be a prime

divisor of K̃ over q, and let σ =

[
K̃/Q

Q

]
be its Frobenius automorphism.

Set H = 〈σ〉.
Let M = K̃H . From Tchebotarev density theorem, we have that there

exist infinitely many rational primes that have a divisor of degree one in
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M/Q and are inert in K̃/M . The prime divisor q satisfies this property.
Since the decomposition group of Q is H and H Gal(K̃/K) = Gal(K̃/Q),
it follows that M ∩K = Q.

Let H1 = Gal(K̃/K). Since q is inert in K/Q we have that qOK is a prime
divisor in K. It follows [11, Theorem 33] that Ω = H1∪H1σ∪· · ·∪H1σ

m−1

with m such that σm ∈ H1.
Let t eK be a prime divisor in K̃, which is inert in K̃/M and t eK ∩Q has a

divisor of degree one in M/Q. We will see that its restriction to K is inert
in K/Q.

Let tK = t eK ∩ K and t = t eK ∩ Q = tK ∩ Q be the restrictions to the

respective fields. Then

[
K̃/Q
t eK

]
= σ. Since Ω = H1 ∪H1σ ∪ · · · ∪H1σ

m−1

from [11] folows that tK = tOK and t is inert in K/Q.
Thus, we have shown that the restrictions of prime ideals of K̃ to K

inert in K̃/M , are inert in K/Q. Therefore, there are infinitely many prime
divisors inert in K/Q. �

Proposition 9. Let K be a number field that satisfies the conditions above
and let K̃ be the Galois closure of K/Q. We consider l a rational prime
inert in K. Let H be the subgroup of Gal (K̃/Q) generated by the Frobenius
automorphism of a prime divisor of K̃ above l and let M = K̃H . Let q be
any rational prime that has a divisor of degree one in M(ζpn)/Q and is inert
in K̃(ζpn)/M(ζpn). Then q is inert in K/Q.

Proof. Consider the following lattice of fields

M(ζpn) K̃(ζpn)










Q(ζpn)
M K̃





















Q K

We have that the rational prime q has a divisor of degree one in M/Q and
is inert in K̃(ζpn)/M(ζpn). Thus, from the proof of Proposition 8, it follows
that q is inert in K̃/M and that q is inert in K/Q . �
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From Tchebotarev density theorem, we have that there exist infinitely
many rational primes satisfying the conditions in Proposition 9. Further-
more, we have that q has a divisor of degree one in Q(ζpn)/Q .

Proposition 10. Let p be an odd prime number, n and s positive integers.
Then there are infinitely many collections of s primes {q1, . . . , qs} that sat-
isfy

(i) q1 ≡ 1(modpn),
(ii) for 2 ≤ i ≤ s, qi has a divisor of degree one in

Q(ζpn , ζq1 , . . . , ζqi−1 ,
pn√

q1, . . . , pn√
qi−1)/Q.

(iii) qi is inert in K/Q, i = 1, . . . , s.

Proof. By Tchebotarev density theorem, we have that there exists a rational
prime q1 satisfying the conditions of Proposition 9. Therefore q1 is inert in
K/Q . Since q1 has a divisor of degree one in Q(ζpn)/Q , it follows that
q1 ≡ 1(modpn).

Let F1 = Q(ζpn , ζq1 ,
pn√

q1), L1 = F1M , L̃1 = L1K̃ and M as in Proposi-
tion 9.

Since L̃1/L1 is cyclic, it follows by Tchebotarev density theorem that
there exists a rational prime q2 that has a divisor of degree one in L1/Q and
is inert in L̃1/L1. Therefore q2 has a divisor of degree one in F1/Q and q2

satisfies the conditions of Proposition 9. Therefore q2 is inert in K/Q. Let
F2 = F1(ζq2 ,

pn√
q2), L2 = F2M and L̃2 = L2K̃.

Since L̃2/L2 is cyclic, it follows by Tchebotarev density theorem that there
exists a rational prime q3 that has a divisor of degree one in L2/Q and is inert
in L̃2/L2. Therefore, q3 has a divisor of degree one in F2/Q and it satisfies
the conditions of Proposition 9. Hence, q3 is inert in K/Q. Continuing with
this process we obtain such a collection. By Tchebotarev density theorem,
we have that there exist infinitely many of these collections. �

Let Iner (K/Q) = {q ∈ Q | q is inert in K/Q}.

Theorem 9. Let G be a finite p-group of order pn and let K be a number
field such that K ∩ Q(ζpn) = Q and such that there exists a prime divisor
q inert in K/Q. Then there exists an extension E/K such that E/K is a
Galois extension with Gal (E/K) ∼= G and |Ram (E/K)| = s, where s is the
minimum number of generators of G.

Proof. Let G′ be the commutator subgroup of G. Let |G′| = pt, 1 ≤ t ≤
n, |G| = pn. We have that G/G′ is an abelian group, say G/G′ = Cpa1 ×
· · · × Cpas .

Let G0 = G/G′, G1, . . . , Gt = G be such that Gi−1
∼= Gi/Hi i = 1, . . . , t

with Hi ⊆ Z(Gi) and |Hi| = p.



314 A. CUETO-HERNÁNDEZ AND G.D. VILLA-SALVADOR

Let {q1, . . . , qs} be a collection given by Proposition 10. By Proposition
4 and Corollary 1 we have that there exists a Scholz extension L/Q, such
that Gal (L/Q) ∼= G0 and Ram (L/Q) = {q1, . . . , qs}. Hence, from Theorem
3 we have that there exists F/Q such that L ⊂ F , Gal (F/Q) ∼= G and
Ram (F/Q) = {q1, . . . , qs}.

Let E = FK. Since {q1, . . . , qs} ⊂ Iner (K/Q) , we have that above
each qi, i = 1, . . . , s, there is only one prime divisor Qi in K. Therefore E
satisfies the required conditions. �

Now we consider G a nilpotent group of odd order.
Let G be a nilpotent group of odd order and s the minimum number of

generators of G.
Since G is nilpotent, we have

G = Gp1 × · · · ×Gpr ,

where Gpi is a pi-group, |Gpi | = pni
i , p1, . . . , pr distinct odd primes.

Let si = dimFpi
Gpi/Φ(Gpi), where Φ(Gpi) is the Frattini subgroup of Gpi .

Reordering p1, . . . , pr, we may assume s1 ≥ s2 ≥ · · · ≥ sr. We have that si

is the minimum number of generators of Gpi , i = 1, . . . , r and that s = s1.
By Theorem 9, we have that there exist extensions Ei/K, i = 1, . . . , r,

such that Gal (Ei/K) ∼= Gpi and |Ram (Ei/K)| = si. Let us consider
the extension E/K where E = E1 · · ·Er. We have Gal (E/K) ∼= G and
|Ram (E/K)| ≥ s. Therefore we will have a solution if we prove that there
exists a collection of extensions Ei/K, i = 1, . . . , r, with the conditions given
in Theorem 9 and that satisfies the condition

Ram (Ei/K) ⊂ Ram (E1/K), i = 2, . . . , r.

For this end it suffices to prove that there exist extensions Li/Q, i =
1, . . . , r such that Gal (Li/Q) ∼= Gpi , |Ram (Li/Q)| = si and Ram (Li/Q) ⊂
Ram (L1/Q) ⊂ Iner (K/Q), i = 2, . . . , r. The following proposition is a
direct generalization of Proposition 10.

Proposition 11. Let p1, . . . , pr be distinct odd primes, n1, . . . , nr and s
positive integers. Then there are infinitely many collections of s primes
{q1, . . . , qs} that satisfy

(i) q1 ≡ 1
(

mod
r∏

i=1
pni

i

)
.

(ii) For 2 ≤ j ≤ s, qj is fully decomposed in

Q
(
ζp

ni
i

, ζq1 , . . . , ζqj−1 ,
p

ni
i
√

q1, . . . , p
ni
i
√

qj−1, ; i = 1, . . . , r
)

/Q,

(iii) qi is inert in K/Q, i = 1, . . . , s.

Let {q1, . . . , qs} be a collection of s primes satisfying the conditions of
Proposition 11. By Proposition 7 and Theorem 3 we obtain that there exist
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fields Li, i = 1, . . . , r such that Gal (Li/Q) ∼= Gpi , |Ram (Li/Q)| = si and
Ram (Li/Q) ⊂ Ram (L1/Q) ⊂ Iner (K/Q), i = 2, . . . , r.

Let Ei = LiK, i = 1, . . . , r. Then the collection {E1, . . . , Er} satisfies:
Gal (Ei/K) ∼= Gpi , Ram (Ei/K) ⊂ Ram (E1/K), i = 1, . . . , r.

Finally, we have:

Theorem 10. Let G be a nilpotent group of odd order and let K be a number
field such that K ∩ Q(ζp

ni
i

) = Q for each prime pi such that pni
i | ◦ (G) and

pni+1
i |/ ◦ (G) and there is a prime q ∈ Q such that q is inert in K/Q. Then

there exists E/K such that Gal (E/K) ∼= G and |Ram (E/K)| = s.

Proof. Let Ei, i = 1, . . . , r be the collection given above. Let E = E1 · · ·Er.
Then E satisfies the required conditions. �
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