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We study the problem of the topological classification of
planar polynomial foliations of degree n by giving new lower
and upper bounds for the maximum number of inseparable
leaves. Moreover, we characterize the planar polynomial fo-
liations that are structural stable under polynomial pertur-
bations and study the exact number of inseparable leaves for
this family.

1. Introduction.

In 1940 Kaplan [14, 15] published two large papers on regular families of
curves filling the plane, following previous ideas of Whitney [26]. A family
of curves is called regular if it is locally homeomorphic with parallel lines. He
proved that each curve of a regular family filling the plane is a homeomorphic
line tending to infinity in both directions.

A natural example of generating (orientated) regular families of curves
on the plane is given by the solutions of non-singular planar differential sys-
tems. Indeed, one major problem from the qualitative theory of differential
equations point of view is the topological classification of those differential
systems. We say that two planar differential systems are topologically equiv-
alent if there exists a homeomorphism on the plane which maps the solution
curves of one to the solution curves of the other.

In the second paper, Kaplan characterized the topological classes of reg-
ular families based on a certain algebraic structure of the orbits which he
called chordal system. Ten years later, Markus [16] considered the topo-
logical classification problem for general (with or without singular points)
differential systems on the plane by using different ideas and tools. He
pointed out the existence of some key orbits he called separatrices. The
connected components of the complement of the union of all separatrices
are called canonical regions where the orbit behavior is tame and all the
orbits have the same alpha and omega limit structure. Finally, he defined
the separatrix configuration of a planar differential systems as the union of
all separatrices plus one representative orbit of each canonical region. It
follows from Markus and Newmann [19] works that two planar differential
systems having isolated singular points are topologically equivalent if there
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exists a homeomorphism sending the separatrix configuration of one system
to the separatrix configuration of the other system.

Both, Kaplan and Markus-Newmann theorems, gave a good starting point
to obtain all topologically equivalent classes for a given family of planar
differential systems (see, for instance, [12] and [4]). However, it is also
clear that a reasonable topologically classification of equivalent classes for
general either planar analytic or planar n degree polynomial differential
systems with singular points cannot be done. Precisely, when polynomial
differential systems of degree n are considered the main difficulties come from
the number and distribution of their limit cycles, see the famous Hilbert’s
sixteenth problem [10].

Hence, a natural framework where can be possible to obtain a topological
classification is given by the class of polynomial differential systems of degree
n without singular points. We will refer to this class as planar polynomial
foliations of degree n. Here every orbit, which we call a leave of the foliation,
escapes to infinity in both time directions and divides the plane in two
connected unbounded components. The separatrices, in the sense introduced
by Markus are now called inseparable leaves, and the canonical regions are
filled by parallel orbits; i.e., they are topologically equivalent to R2 with the
flow defined by ẋ = 0, ẏ = 1.

A different approach for studying planar foliations is due to Haefliger and
Reeb [9]. They deal with the space of leaves more than the leaves themselves.

Two leaves L1 and L2 are said to be inseparable if for any arcs T1 and T2

transverses to L1 and L2 respectively there are leaves which intersects both
T1 and T2. Since the orbit behavior inside each canonical region is parallel it
follows from Markus-Newmann results that the number of topological classes
of polynomial foliations of degree n depends on the number of inseparable
leaves and the way they are distributed on the plane (Figure 1 show two non-
topologically equivalent polynomial foliations with three inseparable leaves).
Clearly the maximum number of inseparable leaves gives a measure of the
possible different topological classes of polynomial foliations of degree n.

We denote by s(n) the maximum number of inseparable leaves that a
planar polynomial foliation of degree n can have. Although, the problem
of getting s(n) has been studied for many authors, it still remains open if
n ≥ 4. In 1972 Markus [17] proved that s(n) ≤ 6n. Four years later, Muller
[18] proved that s(n) ≤ 2n (see also [23]). Pluvinage [20] gave a family of
planar polynomial foliation of degree n ≥ 3 with at least n − 2 inseparable
leaves and at most 2n−4 inseparable leaves, but without knowing the exact
number of inseparable leaves. Finally, if n is even, Schecter and Singer gave
in [23] an explicit example with 2n − 4 inseparable leaves. On the other
hand, it is easy to show that s(0) = s(1) = 0 and from [7] it follows that
s(2) = 3. The cubic case had been studied by Camacho and Palmeira [5],
however we have found some gaps in their proof. In [11] and [3] we proved
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Figure 1. Two non-topologically equivalent differential sys-
tems with three inseparable leaves.

that s(3) = 3. In summary, s(0) = s(1) = 0, s(2) = s(3) = 3 and s(n) ≤ 2n
if n ≥ 4, and s(n) ≥ 2n− 4 if n ≥ 4 is even.

The aim of this paper is twofold. On one hand, we give new better lower
bounds on the maximum number of inseparable leaves for planar polynomial
foliations. More precisely, for all n ≥ 4 we find an explicit planar polynomial
foliation of degree n belonging to the Pluvinage family with 2n− 4 insepa-
rable leaves. Hence, s(n) ≥ 2n − 4 for all n ≥ 4. Moreover we improve the
general lower bound for s(n) when n = 4 and n = 6, in fact we show that
s(4) ≥ 6 and s(6) ≥ 9.

On the other hand we characterize the structurally stable planar poly-
nomial foliations under polynomial perturbations, and study the number
of inseparable leaves in this family of planar polynomial foliations. Finally
we give examples which realize all possible number of inseparable leaves
of structurally stable planar polynomial foliations. Most of the techniques
we use involve the Poincaré compactification and the blow up method for
studying the local phase portrait of a degenerate singular point (at infinity).

This work is organized as follows. In Section 2 we give some notation
and preliminary definitions. We also show the relation between inseparable
leaves and hyperbolic sectors at infinity (in the Poincaré sphere as well as
in the Bendixson sphere). In Section 3 we improve the lower bounds on the
maximum number of inseparable leaves for n = 4, n = 6 and for all n ≥ 5
odd. Finally, in Section 4 we study the number of inseparable leaves of all
structurally stable planar polynomial foliations.

2. Preliminaries.

We start by introducing notation and definitions we will use later on the
paper. We denote by Pn(R2) the set of all polynomial vector fields on R2

given by

X(x, y) =
(
P (x, y), Q(x, y)

)
,(1)
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where P and Q are polynomials in the variables x and y of degree at most
n, and P 2 +Q2 has degree 2n. We denote by PFn(R2) ⊂ Pn(R2) the subset
of all planar polynomial foliations.

For X ∈ Pn(R2) we define the Bendixson compactified vector field b(X)
corresponding to X which is an analytic vector field induced on S2 as follows
(see, for instance [23]). The sphere in R3 given by x2 + y2 + z2 = 1

4 is called
the Bendixson sphere. We identify the xy-plane with the tangent plane at
this sphere on the point S = (0, 0,−1

2) given by the equation z = −1
2 . Let

pN be the stereographic projection from the north pole N = (0, 0, 1
2) to the

plane z = −1
2 , and let pS be the stereographic projection from the south

pole S = (0, 0,−1
2) to the plane z = 1

2 .
Clearly, p−1

N (respectively p−1
S ) induces an analytic vector field XN in

S2 \N (respectively S2 \S). The Bendixson compactification is the induced
vector field on S2 which has the north pole as a singular point.

To study this singular point we define the map pS ◦ p−1
N from the plane

z = −1
2 minus S to the plane z = 1

2 minus N given by

u =
x

x2 + y2
, v =

y

x2 + y2
,

where the (u, v) are the coordinates on the plane z = 1/2.
Applying the above change of variables to the vector field (1) we get a

new system on the uv-plane minus (0, 0) of the form

u′ =
1

(u2 + v2)n
P (u, v), v′ =

1
(u2 + v2)n

Q(u, v).

Finally, scaling the time we get a polynomial system of degree m = n + 2
given by

u′ = P (u, v), v′ = Q(u, v),(2)

and defined on the entire uv–plane. Moreover it has a singularity at (0, 0).
So, the flow of system (2) (in a deleted neighborhood of (0, 0)) is conjugate
to the flow of system (1) in a neighborhood of infinity.

For X ∈ Pn(R2) the Poincaré compactified vector field p(X) corresponding
to X is an analytic vector field induced on S2 as follows (see, for instance [8]).
We denote by S2 = {y = (y1, y2, y3) ∈ R3 : y2

1 + y2
2 + y2

3 = 1} the Poincaré
sphere and by TyS2 the tangent space to S2 at point y. Consider the central
projection f : R2 = T(0,0,1)S2 → S2. Denote by X ′ the vector field Df ◦X

defined on S2 except on its equator S1 = {y ∈ S2 : y3 = 0}. Clearly S1 is
identified with the infinity of R2. Then p(X) is the only analytic extension
of yn−1

3 X ′ to S2. The projection of the closed northern hemisphere of S2 on
y3 = 0 under (y1, y2, y3) 7→ (y1, y2) is called the Poincaré disc. We compute
the expression of p(X) by using the local charts Ui = {y ∈ S2 : yi > 0},
and Vi = {y ∈ S2 : yi < 0} where i = 1, 2, 3, and the diffeomorphisms
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Fi : Ui → R2 and Gi : Vi → R2 which are the inverses of convenient
central projections. We denote by z = (z1, z2) the value of Fi(y) or Gi(y)
for any i = 1, 2, 3, so z represents different things according to the local
charts under consideration. Now some easy computations give for p(X) the
following expressions

zn
2 ·∆(z)

[
Q

(
1
z2

,
z1

z2

)
− z1P

(
1
z2

,
z1

z2

)
,−z2P

(
1
z2

,
z1

z2

)]
in U1,

zn
2 ·∆(z)

[
P

(
z1

z2
,

1
z2

)
− z1Q

(
z1

z2
,

1
z2

)
,−z2Q

(
z1

z2
,

1
z2

)]
in U2,

∆(z) [P (z1, z2), Q(z1, z2)] in U3,

where ∆(z) = (z1
2 + z2

2 + 1)−
n−1

2 . Changing the reparametrization of the
solutions of the vector fields p(X) in what follows we will omit the factor
∆(z) in their local expressions. The expression for Vi is the same as that for
Ui except for a multiplicative factor (−1)n−1.

A singular point q of p(X) is called an infinite (respectively finite) singular
point if q ∈ S1 (respectively q ∈ S2 \ S1). So the infinite singular points
(z1, 0) are given by the equations:

F (z1) = Qn(1, z1)− z1Pn(1, z1) in U1,

G(z1) = Pn(z1, 1)− z1Qn(z1, 1) in U2,

where Pn and Qn are the homogeneous parts of degree n of P and Q
respectively. Eventually, we will use the equivalent notation F (x, y) =
xQn(x, y)− yPn(x, y) and G(x, y) = yPn(x, y)− xQn(x, y) respectively.

As we said before a major problem we want to study is the maximum
number of inseparable leaves for the polynomial foliations of degree n, s(n).
A key point in our approach is the study of the local phase portrait at the
infinite singular points of p(X). When those are linearly zero (i.e., linear
part identically zero) we will use the directional blow-up method which can
be described as follows (for more details see [2], [6] or [13]). Let us consider
the polynomial system

ẋ = Xn(x, y) + Xn+1(x, y) + . . . = X(x, y),

ẏ = Ym(x, y) + Ym+1(x, y) + . . . = Y (x, y),
(3)

where k = min{n, m} ≥ 2 is called the degree of the linearly zero singular
point at the origin.

We consider the blow up change of variables (or simply, the blow up)
x = x and y = xz. Then, system (3) in the new variables x and z becomes

ẋ = X(x, zx) = X(x, z),

ż =
1
x

(Y (x, zx)− zY (x, zx)) = Z(x, z).
(4)
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Since k ≥ 2, X and Z have the common factor xk−1, or perhaps some higher
power of x. If xr with r ≥ k − 1 is the maximum power of x which divides
X and Z, in order to remove the straight line of singular points x = 0, we
change the time t to a new time τ such that xrdt = dτ . Due to this change,
if necessary, we must take care with the orientation of the trajectories when
we go back through the blow up’s.

The system we obtain in the variables (x, z, τ) is a well defined polynomial
system having x = 0 as invariant straight line. The blow up brings the origin
of (3) to the straight line x = 0 of the system

x′ =
X(x, z)

xr
, and z′ =

Z(x, z)
xr

,(5)

where the prime denotes derivative with respect τ . Then in order to control
all trajectories in a neighborhood of the origin of (3) (except trajectories
tangent to the y–axis which have to be controlled by using the corresponding
blow up x = zy and y = y) we must study the flow of (5) in a neighborhood
of x = 0.

If there is a trajectory tending to the origin of (3) (in forward or backward
time) with slope m, then we will have a singular point of (5) in (0,m)
with a simpler local flow than before the blow up change of variables. The
polynomial H(x, y) = yXk(x, y)− xYk(x, y) will be called the characteristic
polynomial. It is well-known that the zeroes of this polynomial provide the
characteristic directions for which the orbits tend to the origin (in forward
or backward time) of system (3), see [1].

Perhaps we need more than one blow up in order to study completely the
local phase portrait at a linearly zero singular point. But it can be proved
that using a finite number of blow ups we can reduce the original linearly
zero singular point to singular points having their linear part non-identically
zero.

We finish this section by showing some well-known results on the upper
bound of the maximum number of inseparable leaves and its relationship
with the maximum number of hyperbolic sectors at infinity (on the Bendix-
son as well as on the Poincaré compactification). To prove these results we
may apply, first, that the local phase portrait at a singular point of a planar
analytic vector field is either a center, a focus, or it is formed by the union
of a finite number of elliptic, hyperbolic or parabolic sectors, and second,
the Poincaré–Hopf formula on the sum of the indices of the singular points
of p(X). We state them without proof (see for more details [1], [23] and
[18]).

Lemma 2.1. Let X be a planar polynomial foliation. The inseparable leaves
of X correspond to the separatrices of hyperbolic sectors at the unique sin-
gular point of b(X).



POLYNOMIAL FOLIATIONS OF R2 59

Figure 2. Relatively consecutive sectors on the Poincaré disc.

Theorem 2.2. Let X = (P,Q) ∈ PFn(R2). Then the maximum number of
hyperbolic sectors at infinity of b(X) is n. Therefore the maximum number
of inseparable leaves is 2n.

These two results refer to the relationship between inseparable leaves and
hyperbolic sectors at infinity of b(X). However, most of our arguments will
refer to hyperbolic sectors at the infinity of p(X). Therefore we need to
know which is the relation between hyperbolic sectors at infinity for both
compactifications.

A hyperbolic sector of the Poincaré disc which has one boundary sepa-
ratrix contained into S1 and one boundary separatrix outside S1 is called
adjacent to infinity. Two adjacent sectors are called relatively consecutive
if they are either consecutive on S1, or the unique sectors between them in
counterclockwise or clockwise sense in S1 are hyperbolic sectors with the
two boundaries on S1 (see Figure 2). Now, the proof of the following result
is easy.

Lemma 2.3. Let X ∈ PFn(R2). If we identify the boundary S1 of the
Poincaré disc to a point, then

(a) the hyperbolic sectors in the Poincaré disc whose two boundaries are
not contained in S1 remain in the Bendixson sphere;

(b) the hyperbolic sectors with the two boundaries on S1 disappear;
(c) two relatively consecutive hyperbolic sectors give a unique hyperbolic

sector in the Bendixson sphere.

Remark 2.4. The problem of getting s(n) is not a local problem. This
is due to the fact that the local phase portraits at infinite singular points
of X (in the Bendixson or the Poincaré sphere) are not enough to get the
number of inseparable leaves of a planar polynomial foliation X. This claim
becomes clear because of the possible connections between two separatrices
of hyperbolic sectors as we show in Figure 3.
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Figure 3. The straight line y = 0 connects two separatri-
ces of hyperbolic sectors at infinity. This topological phase
portrait is realizable for a quadratic polynomial foliation (see
[7]).

3. New lower and upper bounds for s(n).

We start this section by giving an example of a planar polynomial foliation
of degree n ≥ 4 with 2n − 4 inseparable leaves. This example extends the
result of [23] which gave an example when n is even. In fact, our example
comes from Pluvinage family [20].

Proposition 3.1. Let B(x) be a polynomial of degree n − 1 with n − 2
extremes such that the values of B(x) in its extreme are all different. If
A(x) = B′(x), then the planar polynomial foliation of degree n ≥ 4 given by
the flow of the system

ẋ = 1, ẏ = y2A(x),(6)

has 2n− 4 inseparable leaves.

Proof. From Lemmas 2.1 and 2.3 in order to study the inseparable leaves
we must study the infinite hyperbolic sectors of system (6).

If A(x) = a0 + a1x + . . . an−2x
n−2, then the infinite singular points are

given by the polynomial F (x, y) = an−2x
n−1y2. So, the singular points at

infinity are the origin of the local charts Uk and Vk for k = 1, 2.
First we analyze the origin of the local chart U2 given by system

ż1 = zn
2 − z1z

n−2
2 A

(
z1

z2

)
, ż2 = −zn−1

2 A

(
z1

z2

)
.

The origin is linearly zero with identically zero characteristic polynomial.
So, we apply Theorem 5.1 of [1]. The singular directions are given by the
real roots of the polynomial A(·) which we can assume different from zero.
So, after doing the blow up z1 = uz2, z2 = z2 and dividing by the common
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Figure 4. (a) The local phase portrait at the origin of U1

for system (6). (b) The phase portrait of system (6) when
A(y) = 4x3 − 14x + 6.

factor zn−1
2 we obtain

u̇ = 1, ż2 = −A(u).

Its solution curves are z2 = −B(u) + C where C ∈ R. There are exactly
n − 2 solution curves of this form which have a tangent point with the u–
axis. Going back to the coordinates (z1, z2) we get for each one of these
n − 2 curves two separatrices of a hyperbolic sector at the origin of U2.
Moreover we also obtain the n− 2 corresponding elliptic sectors in between.
Therefore, it has index 1 and there is no any connection between separatrices
of hyperbolic sectors, because the extremes of B(·) are different. Hence, the
origin of U2 contributes with 2n− 4 inseparable leaves.

Second we consider the origin of the local chart U1 given by

ż1 = −z1z
n
2 − z2

1z
n−2
2 A

(
z1

z2

)
, ż2 = −zn+1

2 .(7)

The origin is linearly zero with the z1–axis and z2–axis being invariant.
Moreover it is immediately to see that it has index 0 because of the Poincaré-
Hopf Theorem and the fact that the origin of U2 has index 1. Finally an
easy computation shows that its characteristic polynomial is

H(z1, z2) = z2
1z2an−2.

Hence it is a singular point of degree two (i.e., system (7) starts with terms
of second order at the origin). See [13] for a general classification of the
local phase portraits of singular points of degree two.

As above we may use the blow up method to show that the origin of U1

is given by Figure 4(a). We omit the details.
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Therefore, there are no further inseparable leaves coming from the origin
of U1 and the proof follows (see Figure 4(b) for a qualitative phase portrait
in the Poincaré disc of system (6) when n = 5). �

Remark 3.2. It could seem natural from Proposition 3.1 that, in order to
get a polynomial foliation of degree n with 2n inseparable leaves, we can
change ẏ = y2A(x) by ẏ = A(x) being A(x) of degree n and same charac-
teristics. However, it is not difficult to show that the resultant polynomial
foliation has no inseparable leaves.

We give now an example of a planar polynomial foliation of even degree
n with 2n− n

2 inseparable leaves. These examples improve the above lower
bound when n = 4 and n = 6. In the case n = 8 we get a new example with
12 inseparable leaves. We give first a technical lemma.

Lemma 3.3. Let n be an even integer and let r1, . . . , rn/2 be non-zero real
numbers such that r1 < r2 < . . . < rn/2. Then there exist polynomials A(y)
and B(y) of degrees n − 1 and n respectively such that for all j = 1, . . . , n

2
satisfy

(a) A(rj) = 0, A′(rj) > 0;
(b) B(rj) = B′(rj) = 0 and B′′(rj) < 0; and
(c) 2A′(rj)/B′′(rj) < −1.

Proof. Consider the following two polynomials

B(y) = −
n/2∏
i=1

(y − ri)2 and A(y) =

n/2∏
i=1

(y − ri)

(n/2)−1∏
j=1

(y − sj)

 ,

with 0 < r1 < s1 < r2 < . . . < s(n/2)−1 < rn/2. Clearly polynomials A

and B satisfy conditions (a) and (b) respectively. If they do not satisfy
condition (c), then we take a sufficiently small positive constant k and we
consider B = kB in such away that A and B satisfy the three statements of
the lemma. �

Proposition 3.4. Let n be an even integer number. Let A(y) = a0 + a1y +
. . . + an−1y

n−1 and B(y) = b0 + b1y + . . . + bnyn be polynomials of degree
n − 1 and n respectively satisfying the conditions of Lemma 3.3. Then the
polynomial foliation in the plane of even degree n ≥ 2 given by

ẋ = xA(y) + 1, ẏ = B(y),(8)

has 2n− n
2 inseparable leaves.

Proof. First we note that, from statements (a) and (b) of Lemma 3.3, system
(8) is a planar polynomial foliation of degree n. Therefore we study its
inseparable leaves by using the Poincaré compactification.
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Choosing bn − an−1 6= 0, the linear factors of the polynomial F (x, y) =
(bn − an−1)xyn are x and y. So, the unique singular points at infinity are
the origin of the local charts Uk and Vk for k = 1, 2.

On one hand, easy computations show that the origin of the local chart
U2 is a hyperbolic node. On the other the expression of system (8) in the
local chart U1 is given by system

ż1 = −z1z
n
2 − z1z

n−1
2 A

(
z1

z2

)
+ zn

2 B

(
z1

z2

)
,

ż2 = −zn
2 A

(
z1

z2

)
− zn+1

2 .

(9)

Hence, the origin is linearly zero with characteristic polynomial given by

H(z1, z2) = zn+1
2 B

(
z1

z2

)
.

So, the characteristic directions correspond to z2 = 0 and z1 = rjz2. The
characteristic direction z2 = 0 can be studied by doing the blow up z1 =
z1, z2 = vz1. Easy computations and Lemma 3.3 show that the singular
point (0, 0) of the system (ż1, v̇) is a saddle.

On the other hand, doing the blow up z1 = u1z2, z2 = z2 and dividing
by the common factor zn−1

2 we get

u̇1 = B(u1), ż2 = −z2A(u1)− z2
2 .

Clearly the singular points on z2 = 0 are the points rj where B(rj) = 0 for
j = 1, . . . , n

2 . To study these singular points, first, we move them at the
origin through the linear change of variables u2 = u1 − rj , z2 = z2, j =
1, . . . , n

2 , and second we consider their Taylor series expansion. We have

u̇2 = B(rj + u2) =
1
2
B′′(rj)u2

2 + O(u3
2),

ż2 = −z2A(rj + u2)− z2
2 = −A′(rj)u2z2 − z2

2 + O(z2u
2
2),

(10)

for each point (rj , 0), j = 1, . . . , n
2 . The origin of system (10) has linear part

identically zero. The characteristic directions are given by the characteristic
polynomial

H(u2, z2) = u2z2

[(
1
2
B′′(rj) + A′(rj)

)
u2 + z2

]
.

Clearly u2 = 0 as well as z2 = 0 are characteristic directions. Therefore, we
apply to the origin of system (10) the directional blow ups u2 = u3z2, z2 = z2

and u2 = u2 z2 = w1u2. After omitting the common factors z2 and u2
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Figure 5. (a) Two saddles on z2 = 0 for system (u̇3, ż2). (b)
The local phase portrait at any singular point (rj , 0) (trans-
lated to the origin) for system (u̇2, ż2).

respectively we get

u̇3 = u3 +
(

A′(rj) +
1
2
B′′(rj)

)
u2

3 + O(u3
3z2),

ż2 = −z2 −A′(rj)u3z2 + O(u2
3z

2
2),

(11)

and

u̇2 =
1
2
B′′(rj)u2 + O(u2

2),

ẇ1 = −
(

1
2
B′′(rj) + A′(rj)

)
w1 + O(u2w1).

(12)

From Lemma 3.3 the origin of system (12) is an attracting node. On
the other hand, the singular points of system (11) on z2 = 0 are (0, 0)
and (−

(
A′(rj) + 1

2B′′(rj)
)−1

, 0). The linear part at these singular points is
given by the matrices(

1 0
0 −1

)
and

(
−1 ∗
0 − B′′(rj)

B′′(rj)+2A′(rj)

)
,

respectively. Moreover, from condition (c) of Lemma 3.3 it follows easily
that

−
(

2A′(rj)
B′′(rj)

+ 1
)−1

> 0,

then both singular points are saddles. In Figure 5(b) we show the local
phase portrait at each singular point (rj , 0) of system (u̇2, ż2).

Finally, by considering all singular points (rj , 0), j = 1, . . . , n
2 and going

back through the blow up it is easy to show that the origin of system (9) is a
singular point with n hyperbolic sectors whose separatrices are not tangent
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Figure 6. (a) The origin of system (9) when n = 4. (b) The
phase portrait of system 8 in the Poincaré sphere when n = 4.

to z2 = 0. Precisely, Figure 6(a) gives the local phase portrait at the origin
of system (9) when n = 4.

Therefore the origin of U1 has n hyperbolic sectors with their separatrices
not contained in S1. Indeed, the n/2 invariant lines y = rj by the flow of
system (8) are separatrices of such hyperbolic sectors connecting the origins
of the local charts U1 and V1. Hence the number of inseparable leaves is
2n − n

2 . In Figure 6(b) we show the phase portrait of system (8) in the
Poincaré disc when n = 4 and so the number of inseparable leaves is 6. �

From the previous results it follows immediately the next corollary.

Corollary 3.5. The following statements hold.
(a) s(0) = s(1) = 0.
(b) s(2) = s(3) = 3.
(c) 6 ≤ s(4) ≤ 8.
(d) 9 ≤ s(6) ≤ 12.
(e) 2n− 4 ≤ s(n) ≤ 2n if n = 5 or n ≥ 7.

The last part of this section is devoted to study the maximum number
of inseparable leaves for a planar polynomial foliation whose Poincaré com-
pactification has the equator fulfilled of singular points. In other words, its
polynomial F (z1) is identically zero.

Proposition 3.6. Let X ∈ PFn(R2). Assume that the infinity S1 ⊂ S2 is
fulfilled of singular points of p(X). Then the maximum number of insepara-
ble leaves of X is at most 2n− 2.

Proof. Let X = (P,Q) ∈ PFn(R2). Since S1 ⊂ S2 is fulfilled of singular
points of p(X), we get that

yPn(x, y)− xQn(x, y) ≡ 0,(13)
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where Pn(x, y) and Qn(x, y) are the homogeneous parts of degree n of P (x, y)
and Q(x, y), respectively.

We consider the Bendixson compactification b(X) of X. Then the big
circle Γ = {(x, y) : x2 + y2 = a2} in the xy-plane is the small circle Σ =
{(u, v) : u2 + v2 = 1/a2} in the uv-plane (here we are using the notation of
Section 2). If a is large enough then Σ intersects each elliptic and hyperbolic
sector at (0, 0) in the uv-plane. Each of such sectors contains a point of Σ
where the vector field is tangent to Σ. These points correspond to points
(x, y) in the xy-plane where x2 + y2 = a2 and xP (x, y) + yQ(x, y) = 0.
Replacing (13) in the above equations we get

a2 Qn(x, y)
y

+ Z(x, y) = 0, x2 + y2 − a2 = 0,(14)

where Z(x, y) is a polynomial of degree at most n and Qn(x, y)/y is a poly-
nomial of degree at most n−1. Applying Bezout Theorem there are at most
2n solutions of (14). Then e + h ≤ 2n (where e and h denote the number of
elliptic and hyperbolic sectors at the unique singular point of b(X), respec-
tively). Finally, the Poincaré-Bendixson Index Formula and the Poincaré-
Hopf Theorem show that e − h = 2. So h ≤ n − 1, and consequently the
maximum number of inseparable leaves of X is at most 2n− 2. �

4. Structural stability.

In this section we shall show why the maximum number of inseparable leaves
for a polynomial foliation of degree n, has to be reached by a “degenerate”
system. That is, some (or all) infinite singular point must have non ele-
mentary linear part. We point out this claim by considering the notion of
structural stability under polynomial perturbations. Indeed our notion of
structural stability involves the Poincaré compactification of the polynomial
foliation (and its polynomial neighbors). This definition comes from Santos
[22], Pugh [21] and Sotomayor [25] where structural stability of polynomial
systems (not necessarily foliations) is considered. We notice that other no-
tions of structural stability for polynomial vector fields have been considered
in the literature, see [24].

We consider on the set of all planar polynomial foliations the well–known
coefficient topology. A vector field X ∈ PFn(R2) is said to be structurally
stable with respect to perturbations in Pn(R2) if there exists a neighborhood
N of X in Pn(R2) such that Y ∈ N implies that p(X) and p(Y ) are topo-
logically equivalent; that is, there exists a homeomorphism of S2 carrying
orbits of the flow induced by p(X) onto orbits of the flow induced by p(Y ),
preserving sense but not necessarily parametrization.

We notice that, although the necessity (or not) that all periodic orbits
must be hyperbolic for structural stability under polynomial perturbations
is still an open problem (see Problem 1.1 in [25]), we can ignore it since
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our vector field X is a foliation and hence it has no periodic orbits. The
following characterization follows then directly from [25] (see also Santos
[22] and Pugh [21]).

Corollary 4.1. A vector field X ∈ PFn(R2) is structurally stable with re-
spect to perturbations in Pn(R2) if and only if the following conditions hold:

(a) All its infinite singular points are either hyperbolic saddles or hyper-
bolic nodes; and

(b) it has no saddle connections outside infinity.

Theorem 4.2. Let X ∈ PFn(R2). If X is structurally stable with respect to
perturbations in Pn(R2), then n is even and the number s of its inseparable
leaves satisfies s ∈ {0, 4, 6, 8, . . . , n}.

Proof. Suppose X lies in PFn(R2) and it is structurally stable with respect
to perturbations in Pn(R2). By Corollary 4.1 all its infinite singular points
are either hyperbolic nodes or hyperbolic saddles of index 1 or -1 respectively.
On the other hand, since p(X) is the compactification of a planar polynomial
foliation, the sum of their indices has to be 2.

By rotating the coordinates, if necessary, we can assume that all singular
points are in the local charts U1 and V1. Hence, if p(X) has k ≥ 0 hyperbolic
saddles in U1, then it has k + 1 hyperbolic nodes in U1. Therefore, the
polynomial F (z1) = Qn(1, z1)− z1Pn(1, z1) which gives the infinite singular
points (z1, 0) of p(X) in U1, has exactly 2k + 1 ≤ n + 1 simple real roots.

We will show that n has to be even. Let denote by a1 < a2 < . . . < a2k+1

the infinite singular points in the local chart U1, and by b1 the symmetric
(with respect to the origin) singular point to a1 in the local chart V1. We
assume that the flow in a neighborhood of a1 restricted to z2 = 0 is a source.
Easily, since 2k + 1 is odd, the flow in a neighborhood of a2k+1 restricted
to z2 = 0 is also a source. Consequently, the flow in a neighborhood of b1

restricted to z2 = 0 is an attractor. Therefore, since the flow in the local
charts U1 and V1 is related by the factor (−1)n−1, n has to be even.

If k = 0 then p(X) has only two nodes in S1 and it has s = 0. Oth-
erwise (k > 0), the hyperbolic sectors at infinity come from consecutive
saddles, and the separatrices of these hyperbolic sectors will be inseparable
leaves (see Lemma 2.1). Since an infinite saddle contributes only with one
separatrix outside the infinity and there are no saddle connection, the sym-
metry between U1 and V1 force that the number of inseparable leaves lies in
{0, 4, 6, 8, . . . , 2k}. Since 2k ≤ n, the theorem follows. �

We give now an example of a structurally stable planar polynomial fo-
liation of degree n with n inseparable leaves. In fact from the definition
of structural stability any system in a suitable neighborhood of it will be
also a planar polynomial foliation of degree n with n inseparable leaves.
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Figure 7. (a) A structurally stable planar polynomial fo-
liation of degree four with four inseparable leaves. (b) A
structurally stable planar polynomial foliation of degree six
with six inseparable leaves.

As a corollary of our construction we can realize a structurally stable pla-
nar polynomial foliations of degree n with s ∈ {0, 4, 6, 8, . . . , n} inseparable
leaves.

We introduce first the definition of algebraic solution we will use later.
An invariant algebraic curve of system

dx

dt
= P (x, y),

dy

dt
= Q(x, y)

is an algebraic curve f(x, y) = 0 with f ∈ R[x, y], such that for some poly-
nomial K(x, y) we have

∂f

∂x
(x, y)P (x, y) +

∂f

∂y
(x, y)Q(x, y) = K(x, y)f(x, y).

We say that the curve f(x, y) = 0 is an algebraic solution of the system if
it is an invariant algebraic curve and f(x, y) is an irreductible polynomial
over R[x, y].

Proposition 4.3. Let n be even. Given a ∈ R sufficiently large, the system

ẋ = aF (x, y)− x
∂F (x, y)

∂y
, ẏ = x

∂F (x, y)
∂x

,(15)

where F (x, y) =
∏n

2
i=1(x

2− i2y2− i2), is a structurally stable planar polyno-
mial foliation of degree n with n inseparable leaves (see Figure 7).
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Proof. System (15) can be written in the following way

ẋ = aF (x, y) + 2xy

n
2∑

i=1

i2

n
2∏

j=1, j 6=i

(x2 − j2y2 − j2) = P (x, y),

ẏ = 2x2

n
2∑

i=1

n
2∏

j=1, j 6=i

(x2 − j2y2 − j2) = Q(x, y).

(16)

We claim that system (15) has n
2 irreductible algebraic solutions given by

x2 − k2y2 − k2 = 0, k = 1, . . . , n
2 . The claim follows from the following

equality

2x

aF (x, y) + 2xy

n
2∑

i=1

i2

n
2∏

j=1, j 6=i

(x2 − j2y2 − j2)


− 2k2y

2x2

n
2∑

i=1

n
2∏

j=1, j 6=i

(x2 − j2y2 − j2)


= (x2 − k2y2 − k2)

(
2ax

n
2∏

i=1, i 6=k

(x2 − i2y2 − i2)

+ 4xy

n
2∑

i=1, i 6=k

(i2 − k2)

n
2∏

j=1, j 6=i,k

(x2 − j2y2 − j2)
)

.

On the other hand we also claim that system (15) has no finite singular
points. Here the key is to make the change of variables u = x2 and v = 1+y2.
In these new variables the polynomial equations ẋ = 0 and ẏ = 0 become

aF (u, v) + 2
√

u(v − 1)
∂F (u, v)

∂v
= 0, 2u

∂F (u, v)
∂u

= 0,(17)

where F (u, v) =
∏n

2
i=1(u − i2v), i = 1, . . . , n

2 . Since both u ≥ 0 and v ≥ 1
system (17) is well defined. On the other hand, if we force u = 0 in the first
equation of (17) we get F (0, v) = 0 which has no solutions because v ≥ 1.
So, we may assume u > 0. Since F (u, v) is a homogeneous polynomial of
degree n

2 the zeroes of the second equation of (17) not contained in u = 0
are on n

2 −1 straight lines u = ajv, j = 1, . . . , n
2 −1. We only are interested

in the aj > 0, j = 1, . . . , n
2 − 1 because u ≥ 0 and v ≥ 1. Substituting

u = ajv, j = 1, . . . , n
2 − 1 in the first equation of (17) we get

v
n
2 + M

√
v(v − 1)v

n
2
−1 = 0,(18)
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where M ∈ R depends on the aj ’s. Since v ≥ 1 we may divide the above
equation by v

n
2
−1, and then multiply by av−M

√
v(v − 1). Clearly, a posi-

tive real root of Equation (18) must be also a root of the new equation

(a2 −M2)v2 + M2v = 0.

Easily, choosing a such that a2 −M2 > 0 (i.e., choosing a sufficiently large)
we have no positive solutions of the last equation or, equivalently our system
(16) has no (finite) singular points.

To finish the proof we show that all infinite singular points are hyperbolic
saddles and nodes. More precisely there are n

2 + 1 consecutive nodes and n
2

consecutive saddles which separatrices are given by the algebraic solutions
(hyperbolas) x2− i2y2− i2 = 0. We note first that by construction there are
no saddle connections.

The infinite singular points are given by the real roots of the polynomial
F (z1) = Qn(1, z1)−z1Pn(1, z1) where Pn(x, y) and Qn(x, y) are the homoge-
neous polynomials of degree n for system (16). Making some computations,
we get

F (z1) = (2− az1)

n
2∏

j=1

(1− j2z2
1).

The real roots of this polynomial are given by z1 = ±1
j , j = 1, . . . , n

2 and
z1 = 2

a . So, there are n+1 infinite singular points. The eigenvalues at these
singular points (z1, 0) are given (see Section 2) by F ′(z1) and −Pn(1, z1).
So, z1 = 2

a is always a node (attracting if a > 0 and repulsive if a <
0). Some computations show that if a > 0 (respectively a < 0) we have
n
2 consecutive nodes (respectively saddles) at the infinite singular points
(−1

j , 0), j = 1 . . . n
2 (respectively (1

j , 0) j = 1, . . . , n
2 ). �

The next result follows immediately from Proposition 4.3.

Corollary 4.4. Let X = (P (x, y), Q(x, y)) be the planar polynomial folia-
tion of degree n described in Proposition 4.3. Then, for any number m ∈ N,
the planar polynomial foliation

Y =
(
(x2 + y2 + 1)mP (x, y), (x2 + y2 + 1)mQ(x, y)

)
is a structurally stable planar polynomial foliation of even degree with n
inseparable leaves.

The next result follows easily from Corollary 4.4.

Corollary 4.5. Let n ∈ N even. If n ≥ 4 and s ∈ {0, 4, 6, 8, . . . , n}, then
there are structurally stable planar polynomial foliations of degree n with s
inseparable leaves.

We finish with two open problems:
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1) For X ∈ PFn(R2) and n ≥ 4, what is the exact value of s(n)?
2) If we change the notion of structural stability in such away only poly-

nomial foliation perturbations are allowed, what are the structurally
stable planar polynomial foliations of degree n?
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[8] E.A. González, Generic properties of polynomial vector fields at infinity, Trans. Amer.
Math. Soc., 143 (1969), 201-222.

[9] A. Haefliger and G. Reeb, Variétés (non séparées) a une dimension et structures
feuilletées du plan, Enseignement Math., 3 (1957), 107-126.

[10] D. Hilbert, Mathematical problems, Bull. Amer. Math. Soc., 8 (1902), 437-479.

[11] X. Jarque, Equacions diferencials al pla: Sistemes Hamiltonians, foliacions polino-
mials i estabilitat estructural, Ph. D. Universitat Autonoma de Barcelona, 1995.

[12] X. Jarque and J. Llibre, Structural stability of planar polynomial Hamiltonian vector
fields, Proc. London Math. Soc., 68 (1994), 617-640.

[13] Q. Jiang and J. Llibre, Critical points of degree two, to appear in J. Diff. Equations.

[14] W. Kaplan, Regular curve-families filling the plane I, Duke Math. Journal, 7 (1940),
154-185.

[15] , Regular curve-families filling the plane II, Duke Math. Journal, 8 (1941),
11-46.

[16] L. Markus, Global structure of ordinary differential equations in the plane, Trans.
Amer. Math. Soc., 76 (1954), 127-148.

[17] , Topological types of polynomial differential equations, Trans. Amer. Math.
Soc., 171 (1972), 157-178.



72 XAVIER JARQUE AND JAUME LLIBRE

[18] M.P. Muller, Quelques propiétés des feuilletages polynomiaux du plan, Bol. Soc. Mat.
Mex., 21 (1976), 6-14.

[19] D. Neumann, Classification of continuous flows on 2-manifolds, Proc. Amer. Math.
Soc., 48 (1975), 73-81.

[20] F. Pluvinage, Espaces des feuilles de certaines structures feuilletes planes, Coll.
Math., 18 (1967), 90-101.

[21] C. Pugh, Structural stability and Hilbert’s 16-th problem, Lecture Notes in Math.,
468 (1975), 90-101.

[22] G. Santos, Classification of generic quadratic vector fields with no limit cycles, Lecture
Notes in Math., 597 (1977), 90-101.

[23] S. Schecter and M. Singer, Planar polynomial foliations, Proc. Amer. Math. Soc., 79
(1980), 649-656.

[24] D.S. Shafer, Structural stability and generic properties of planar polynomial vector
fields, Revis. Mat. Iber., 3 (1987), 337-355.

[25] J. Sotomayor, Stable planar polynomial vector fields, Revis. Mat. Iber., 1 (1985),
15-23.

[26] H. Whitney, Regular families of curves, Annals of Math., 34 (1933), 244-270.

Received September 30, 1998.

Departament d’Economia i d’Història Econòmica
Escola d’Empreserials de Sabadell
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