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Let G be a split group over a locally compact field F with
non-trivial discrete valuation. Employing the structure theory
of such groups and the theory of Coxeter groups, we obtain a
general formula for the decomposition of double cosets Pyo P;
of subgroups P;, P, C G(F) containing an Iwahori subgroup
into left cosets of P,. When P; and P, are the same hyperspe-
cial subgroup, we use this result to derive a formula of Iwahori
for the degrees of elements of the spherical Hecke algebra.

1. Introduction.

Let GG be a semisimple algebraic group which is split over a locally compact
field F' with non-trivial discrete valuation and let I be an Iwahori subgroup
of G(F). In [6], Iwahori and Matsumoto show that the double cosets in
I\G(F)/I are indexed by the elements of the extended affine Weyl group W
of G, and for w in W, they exhibit an explicit set of representatives for the
left cosets of I in IwI/I. They also show that the number of single cosets
of I 'in Twl/I is ¢"®) | where ¢ is the cardinality of the residue field of F and
[ is the standard combinatorial length function on .

Let O be the ring of integers of F and let K C G(F) be a hyper-
special subgroup, that is, a subgroup isomorphic to G(OF), where G is a
smooth group scheme over Op with general fiber G. In [5], Iwahori gives
a formula for the number of left cosets of K contained in a double coset
in K\G(F)/K (i.e., the degree of the characteristic function of this double
coset as an element of the spherical Hecke algebra), implicitly making use of
the decomposition in [6] and the fact that K contains an Iwahori subgroup.
Suppose that 7 is a uniformizer of F. The double cosets in K\G(F')/K are
indexed by the dominant co-characters of a maximal torus of G via the bi-
jection A +— K\(m)K. Let Wy be the Weyl group of G' and W' the stabilizer
of X in Wp. Then there exists a unique set [Wy/Wy\] C Wy of representatives
of cosets of Wy of minimal length. Iwahori states that the index

[KAm)K : K] =4 " ),
TEWo /W3
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where o) is a certain element of W associated with the co-character A (see
Section 6).

In this paper, we give a summary of the above results and generalize them,
finding representatives for the left cosets of P, in PjoP,, where P; and P;
are subgroups of G(F) containing an Iwahori subgroup I. To accomplish
this, we make use of the structure theory of groups over fields with discrete
valuation (as summarized in Section 3). Because of the close connection
between subgroups of G(F') of the above type and subgroups of the affine
Weyl group (as given in [6]), the proof of the coset decomposition formula
necessitates the use of the theory of Coxeter groups to prove certain results
about the additivity of lengths of elements of W (Section 4). In Section 5,
we find the coset representatives mentioned above and give a formula for
their number when the groups P, and P, are compact. In addition, we give
several examples of this coset decomposition and an explanation of how our
general results imply Iwahori’s in the case P, = P, = K (Section 6).

This information on the decomposition of double cosets is useful in com-
puting the action of Hecke operators on spaces of modular forms as defined
in [3]. In fact, the results of this paper were used in [8] when G is a compact
form of G4 or PGSp4 over Q and P, = P, = K to compute the action on
certain spaces of forms of the spherical Hecke algebra of functions on G(Qy)
bi-invariant by the subgroup K for several primes p at which G is split.
The action of a function in this algebra is given by integrating it against a
form f with respect to a Haar measure on G(Qp). This integral turns out
to be a finite sum. Indeed, when the Hecke operator is the characteristic
function of a double coset KoK of K, the integral is simply the sum over
the right translations of f by a set of representatives of the left cosets of
K inside Ko K. Since the Hecke algebra is generated by such characteristic
functions, the decomposition of double cosets is therefore fundamental to
the explicit determination of the actions these algebras.

The idea for this paper arose from my collaboration with David Pollack
while at Harvard University. I am grateful to him for his many valuable
insights into the structure of p-adic groups. I would also like to thank
Benedict Gross for introducing me to the theory of algebraic modular forms.

2. Notation.

In the following, we will denote by G a connected semisimple algebraic
group that is split over a locally compact field ' with non-trivial discrete
valuation. Let Op be the ring of integers of F' and let p be the prime ideal.
We choose a uniformizing parameter 7 in p, and denote by k the residue
field Op/p. Let g be the (finite) cardinality of k£ and let R C Op be a set
of representatives for k£ containing 0. The group G is the general fiber of a
Chevalley group scheme G over O whose special fiber is semisimple. We let
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K = G(Ofp) C G(F) = G(F) be the set of integral points of G. K is then a
hyperspecial maximal compact subgroup of G(F') (cf. [9, 3.8.1, 3.8.2]).

Let T C G be a split maximal torus scheme, and let T" be its general
fiber. We define N to be the normalizer of 7' in G. Denote by X*(T') the
character module Hom(7T', Gy,) of T and by X.(7T) the co-character module
Hom(Gy,, T) of T. Let ® C X*(T) be the set of roots of T, @ C @ a
subset of positive roots, and A C ® the corresponding set of simple roots.
Also, let @V C X, (T) be the coroots of T and a — «" the standard bijection
between ® and ®V. For each a € ® let U, be the one-dimensional unipotent
subgroup scheme of G corresponding to a. Denote the general fiber of U,
by U,. We choose for each o an isomorphism

Ta Gy — U,

When considered as a map F' — U, (F), x4 restricts to an isomorphism of
Op with QQ(OF) = Ua(F) NnK.

We will denote by Wy the Weyl group Nr/T" = (Np(F) N K)/T(OF)
of G and by W the extended affine Weyl group Np(F)/T(Or). Then Wy
and W act as groups of affine transformations on the space X,(T) ®z R.
The stabilizer in W of 0 € X,(T) ® R is Wy, and there is an isomorphism
W = X, (T) x Wy, where X, (T) is embedded in W as the group of elements
acting as translations on X,(7T') ® R. We denote by e the identity element
of W and by t()\) the element of W corresponding to A in X,(T). In this
notation, if w € Wy and A € X, (T') then

wt(Nw ™! = t(w).

Denote by w, the reflection in Wy through the vanishing hyperplane in
X«(T) ® R of the root a. The Weyl group Wy is a Coxeter group with
So = {wa|a € A} as its set of involutive generators. Let ® = ®;U---U®P,, be
the decomposition of ® into irreducible root systems. (Each ®; corresponds
to the root system of an almost simple factor of G.) Also, let A; = AN ®;,
and put I; = #A4;. Then [; +---+1[,, = [, the dimension of T, i.e., the rank
of G. Let agp; be the highest root of ®; with respect to the basis of simple
roots A;. Then the Coxeter group with set of involutive generators

S=SyU {t(ag )wae, |1 <i<m}
is isomorphic to the affine Weyl group Wyt of ® ([6, Prop. 1.1]). Via this

isomorphism, we will view Wy as a subgroup of W.

Let I be the Iwahori subgroup of G(F') generated by T(OF), the sub-
groups 74(Op) = U, (OF) for all « in ®T, and the subgroups x,(p) for all
a in ®~. If we denote by G the semisimple algebraic group over k obtained
by taking the special fiber of G then (as in [9, §3.5]) we have a surjective
reduction mod p map K — G(k), and I is the inverse image in K under

this map of the Borel subgroup of G(k) corresponding to ®*. The triple
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(G(F),I,Np(F)) is a generalized Tits system in the sense of [5], a fact which
will be used in Section 3 to study the structure of G(F).
Denote the normalizer of I in G(F') by I and set

Q= (Np(F)n1)/T(OF) CW.

The group €2 is finite abelian and canonically isomorphic to X.(T")/A,, where
A, is the submodule of X, (T) generated by ®V (cf. [5, §2]). Moreover,
normalizes W, and there is an isomorphism = Wax Q. If p € Q and
w € Wy we will abbreviate the element pwp~! of Wy by w”. If ¥ is a subset
of Wy, we will write W” for the set {w” | w € U}.

For w in Wy, let I(w) denote the length of w as an element of W with
respect to S. If w € Wy and p € Q then the length I(wp) of wp is defined to
be l[(w). If w’ € W then we can write w’ = wy - - - wgp for some wy, ... ,wq
in S and p in Q, and we say (by abuse of notation) that the expression
w=wi - - wgp is reduced if [(w) = d. (Under this definition, the expression
e = e is also to be considered reduced.)

Finally, if V'.C G(F), and {V;}ier is a collection of subsets of G(F), then
the notation V' = [[;.; Vi will signify that V' = J,c; Vi and that the V; are
pairwise disjoint.

3. Structure Theory of p-adic Groups.

We now state several results concerning the structure of G(F') which stem
from the fact that the triple (G(F'),I, Np(F)) is a generalized Tits system
(as defined in [5]). We also state a result of Iwahori and Matsumoto ([6,
Cor. 2.7]) which gives a set of representatives for the left cosets of I contained
in a double coset of I.

We start with a summary of the structure theory pertaining to subgroups
of G(F) containing I. For any subgroup P of G(F') containing I, we denote
by Wp the subgroup (Ng(F) N P)/T(OF) of W. In addition, we let Sp =
WpNSand Qp =WpNQ.

Proposition 3.1. Let P, P;, P, C G(F') be subgroups containing I. Then
(i)

Moreover, Wp is generated by Sp and Sp is stabilized under conjuga-
tion by elements of Qp. The map P — (Sp,Qp) is a bijection from
subgroups lying between I and G(F) to pairs (S,Q) such that S C S
and Q' is a subgroup of Q stabilizing S.
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(i) If p,.p, € W is a set representatives for the double coset space
Wp \W /Wp, then

GF)= ][] PP

UGZPl,PQ

In particular, if 7,7 € W then WpyWp, = Wpy'Wp, if and only if
PiyPy = Py Ps.

Note that in Proposition 3.1 (i) if P = K then Wp is the Weyl group Wy,
Sp =A{wy | @ € A}, Qp = {e}, and the decomposition given is essentially
the standard Bruhat decomposition for the group G(k). When P = G(F),
Proposition 3.1 (i) yields the affine Bruhat decomposition of G(F') with
respect to I. Note that if P is a subgroup of G(F') containing I, then P is
compact if and only if Wp is finite.

We also give the following summary of the structure of the coset space
I\G(F)/I (see [6, Prop. 2.8, Theorem 3.3]).

Proposition 3.2. Let w,w’ be elements of W. Then

(i) Forall s € S

a) Islwl = Iswl if l(sw) > l(w),

b) Islwl = Iswl U Iwl ifl(sw) < l(w).
(ii) If l(ww') = l(w) + l(w') then

(1) Twlw'l = Tww'I.
In particular, if s1,... ,8q € S, p€Q andw = s1---sqp 1S a reduced
expression, then

(2) IsiI---Isqlpl = Twl.

In addition to the information resulting from the fact that the triple
(G(F),I,N7(F)) is a generalized Tits system, we will also need the following
statement (cf. [6, Cor. 2.7]) concerning representatives for the left cosets of
I inside the double cosets of I corresponding to the elements of S.

Proposition 3.3. Suppose a € A and i € {1,...,m}, where m is the
number of irreducible root systems into which ® decomposes. Then

(1) Twol =11, epTa(V)wal

(ii) It(a(\)/,i)woéo,ij - ]_[VER x—ao,i(WV)t(ag,i)wao,iI~

We now develop notation which will allow us to give a formula for the rep-
resentatives of the left cosets of I in an arbitrary double coset in I\G(F)/I.
This formula will follow easily from the above results. For each s in S, we
fix a lifting s of s to Np(F'). We define elements gs(v) € G(F) for all sin S

and v in R by setting

(v) = zo(V)S if s = wq for some a in A
9s\V) = T, (TV)5 if 5 = t(ay ;) Wa,, for some i in {1, ... m}.



102 JOSHUA M. LANSKY

In this notation, Proposition 3.3 says that for each s € S
Isl = Hgs(l/)I.
VER
For each p in €2 we also choose some lifting p of p to Np(F).
For every w in W we fix an (I(w) + 1)-tuple e(w) = (Sw,1,- - Sw,i(w)s Pw)
in S'®) x Q such that w = Sw,l " Sw,l(w)Pw- We define gy, : Rw) — G(F)
to be the function which assigns to each (v, ... ,I/l(w)) in RY™) the element

Isw,1 (Vl) © G5y 10w (Vl(w))ﬁuh
using the notation of the previous paragraph. Then we have the following
fact concerning the coset space Twl/I.

Corollary 3.4. Suppose that w € W and that w = s1---sqp s a reduced
expression (i.e., d = l(w)), where s1,... ,8q € S and p € Q. Then the index
[TwI : 1] is ¢™). In fact,

1wl = [T gu0) -+ gosvdT = I gu()].
ViER veRUw)

Proof. For U C G(F) let chary : G(F) — {0,1} be the characteristic func-
tion of U. Since chary,; — [Iw'I : I] (w' in W) defines a character of
the Iwahori Hecke algebra of G with respect to I [6, §3], it follows from
Propositions 3.2 and 3.3 that

[Twl : 1) = [Isy---sqpl : 1] = [Is11] -+ [Isql : I] = ¢"™)

(cf. [6, Prop. 3.2]). To complete the proof it suffices to show that the
union of the ¢/*) cosets given above is all of Jwl. This also follows from
Propositions 3.2 and 3.3 since

Twl =1s159---sqpl = 1Is1Isol---Isqlpl

= U gs,(v1)Isal - IsqIpl
V1ER

= U gSl(Vl)QSQ(VQ) "'ng(Vd>ﬁI'
Vl,...,V4ER

4. Coxeter Subgroups of the Extended Affine Weyl Group.

Let W be a subgroup of the affine Weyl group Wy¢ which is generated by
the set S =W NS. Then W is a Coxeter group. If W’ is a subgroup of W
generated by S N W/, then W is also a Coxeter group, and we will refer to
such a subgroup W' as a special subgroup of W. Define [W/W’] to be the
set

{w e Wll(ww'") = l(w) + I(w") for all w’ € W'}.
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The elements of [W/W'] are the representatives for W/W’ of minimal length
[4, §5.12]. We will have need of the following fact concerning [W/W'].

Lemma 4.1. Suppose that W is a Coxeter subgroup of Was with set of gen-
erators S = SNW. Let W' be a special subgroup of W. If T in [W/W'] and
s in S satisfy l(sT) < (1), then st is in [W/W'].

Proof. Since [(s7) < I(7) we know that I(s7) = I(7) — 1. For w' in W’/ we
therefore have that

l(rw) =1 =1(1) + (') — 1 =1(s7) + (') > I(sTw) > I(Tw) — 1.
Thus, I(sTw") = l(s7) + l(w') and s7 is in [W/W']. O

For the remainder of the section, we fix two special subgroups W; and
Wy of Wyr with S1 = Wi N S and Sy = Wy n S as their respective sets of
involutive generators. For o in W define wy W2 6 be the stabilizer under
left multiplication of the coset oWy in W, namely, Wi N cWao~t. Let
[Wi\W /W3] € W be a set of representatives for W;i\W /Wy of minimal
length, i.e., each o in [W;\W /W3] is to be an element of shortest length in
WioWs. Our first order of business will be to show that W W2 is a special
subgroup of W, for any ¢ in [W;\W/Wa]. Our goal will then be to show
that

l(row) =1(1) + (o) + I(w)

for all w in Wa, o in [Wi\W /W], and 7 in [Wy/W{"?]. This fact is a simple
generalization of a result of Howlett concerning finite reflection groups (cf.
[2, §2.7]). It will prove very important in our analysis of the decomposition
of double cosets in Chapter 5.

In order to show that W) "2 is a special subgroup of Wi, we will need the
following result, which is a simple generalization of the exchange condition
(cf. [1, §2.3A]), one of several equivalent properties that distinguish Coxeter
groups from among the more general class of groups generated by finitely
many involutions.

Proposition 4.2. Suppose w in W has reduced expression w = sy - - Sdp

for some s1,...,54 in S and p in Q. Then for all s in S either
(i) I(sw) =1l(w) + 1, or
(il) w =881+ 8- sqp for some i in {1,...,d}.

The following is an easy consequence of Proposition 4.2.
Lemma 4.3. Suppose that w and w' are elements ofW such that l[(ww') =
l(w)+1(w"). If s in S satisfies (sw) = l(w) + 1, then either

(i) I(sww') = l(ww') + 1, or

(i) ww' = sw’ for some W' in W with [(w') < l(w').
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In fact, in the second case, if s1,...,54€ S, p€ Q and w' = s1---s4p is a
reduced expression, then

wlzsl...g\i...sdp/

for some i in {1,...,d}. In particular, if w' is an element of a special
subgroup of Wy then W' is also an element of that subgroup.

Proof. I(sww') equals either I(ww’) 4+ 1 or I(ww’) — 1 so suppose the latter
is true. This is clearly impossible if [(w') = 0. Moreover, if I[(w) = 0
then Proposition 4.2 implies that (ii) holds. Thus we may assume that
l(w),l(w") > 0.

Let w = ty---t,p and w' = s1---54p be reduced expressions for some
reflections t1,... ¢, s1,... ,5¢ in S and some p, P in Q. Then we have the
reduced expression

ww,:tl...trpsl...Sdp,:tl...trsf...sspp,‘
Since sf € S, it follows from Proposition 4.2, that either
ww, = Stl .o /t’L\ . .t’,‘sT. . .Ssppl

for some ¢ in {1,... ,7} or

ww' = sty tpsh sl

.. Sspp/
for some ¢ in {1,...,d}. If the former holds then

sww/:tl---/ti\---trpw’

which implies that {(sw) < l[(w), a contradiction. Therefore, we must have

—

fwwlzstl...trsll)...5;,0...Sslop/:5w51...§;...5dp/.

Setting W' = s1---8;---sqp, the first and second statements follow since
l(w") < l(w') — 1. The third statement holds since if w’ is in a special

subgroup of Wy, then each of the generators sj ... sq lies in that subgroup.
O

We are now able to state and prove our first result on the additivity of
lengths for certain elements of W, which we will need to show that W7 W2

is special.

Lemma 4.4. For all o in [Wi\W /W3], w in Wy and w' in Wy, we have
l(wo) =1(w) + (o) and l(cw') = 1(w') + I(0).

Proof. We will prove the first statement; the second statement follows from
the first by taking inverses. Suppose wg € Wi. The result is trivial if
l(wg) < 1 as o € [W)\W/Ws]. So assume I(wp) > 1 and suppose by
induction that l(wo) = l(w) + (o) for all w in W with I(w) < I(wp).
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We may write wg as swj, where s € S; and wy, in Wj has length I(wg) — 1.
Then, by induction,

I(swoo) = l(wio) = l(w) + (o) = l(swp) + (o) = U(wo) + (o) — 1.

We must therefore show that I(swoo) = l[(wgo) —1. Since s € S, either this
is true or I(swoo) = l(woo) + 1. But if the latter holds then, by applying
Lemma 4.3 (with w = swy and w’ = o) we obtain that swgo = ws for
some ¢ of length less than [(c). This, however, contradicts the fact that
o € [Wi\W/Ws] is of minimal length in its double coset. O

Proposition 4.5. If o is an element of [Wl\W/Wg], then WfW2 s a spe-
cial subgroup of W1.

Proof. We must show that if s1,...,sq € S1 and s1---54 € WfW2 then
S1y...,84 € WfWQ. Fix w in WfWQ. We may write w as sw’ where s € S
and w’ € Wi has length I(w) — 1. By induction, it suffices to show that w’

and hence s are in WY W,

Since w = sw’ € Wl"WQ, w'oWsy = soWs, so that w'oc = socwg for some
wo in Wa. Therefore, in order to show that w’ is in the stabilizer Wy W2 of
oWs in W1, it suffices to prove that socwy = owg for some wgy in Wh.

Now [(sowyp) is either equal to l(owg) — 1 or l(owp) + 1. Suppose the
former is true. Then, by Lemma 4.3 (with w = o and w’ = wg in W3) we
have that cwg = sowg for some wg in Wy so that scwyg = owg. Thus it
suffices to rule out the case I(sowy) = l(owp) + 1.

If this holds then

(3) l(w'o) = l(sowy) = l(owp) + 1.

But by Lemma 4.4, [(w'o) = l(w") + (o) and l(owy) = I(c) + I(wp). Thus,
by (3), l(w’) = l(wg) + 1 and hence I[(w) = l(wg) + 2. On the other hand,
wo = sw'oc = owy so, by Lemma 4.4 again, I(w) = l(wp). This contradiction
implies that {(cwp) cannot equal [(cwg) + 1 and the proof is complete. [

We now state and prove the main result on length additivity.

Theorem 4.6. Suppose o € [W\W/Ws], 7 € [W1/W™2] and w € W.
Then
l(row) =1U(1) + (o) + l(w).

Proof. We will prove the theorem by induction on /(7). The theorem is true
for 7 = e by Lemma 4.4. So suppose I(7) > 0 and that the statement is
true for all 7/ in [W1/W?™2] with I(7') < I(7). Let s in S; be such that
I(s7) = I(1) — 1. Note that the element s7 is in [W;/W{ "] by Lemma 4.1.
By Lemma 4.3 applied to (s7)(ow), we obtain that either

(i) I(s(sT)(ow)) =1U((sT)(ow)) + 1, or

(ii) sTow = 77y for some v in W with I(y) < l(ow).
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In the first case, we obtain that
l(tow) = I(s(s7)(ow))
= U((s7)(ow)) +1 by (i)
=1
= Il(st)+ (o) +l(w)+1 by induction
= (1) + (o) +l(w)
so it remains to rule out the second case.

We can assume that [(cw) > 0 since the statement of the theorem is
trivially true if I(cw) = (o) + I(w) = 0. Since l(ocw) = l(c) + l[(w), we have
a reduced expression

ow = psl ... St
where s1,...,8 € S, p € Q, and for some r in {1,...,t}, p together with
the first r involutions in the product yield a reduced expression for ¢ while
the next ¢t — r involutions yield a reduced expression for w. According to
Lemma 4.3, the element « in case (ii) is obtained from ow by deleting one
of the involutions s; in the above reduced word. If ¢ < r then v = 6w for
some for some & with [(6) < (o) so sTow = 76w. Then WioWs = W16Ws,
a contradiction as o € [W;\W/Ws] is an element of minimal length in
WioWs. On the other hand, if ¢ > r then v = ow for some w in Wy
with [(w) < l(w) so sTow = Tow. But then oWy = stoWs so 7 = s7
(mod WY WQ), a contradiction since 7 is the shortest element in 77 W2 ag

it lies in [Wy/W7"2], O

Corollary 4.7. Ifo € [Wi\W /Ws] then o is the unique element of minimal
length in WioWs.

Proof. Let w and w’ be elements of W7 and Ws respectively such that
l(wow') = I(c). Write w = 77, where 7 € [Wy/W7"?] and v € W2
Then
wow' = Tyow’ = row”
for some w” in Wy since yo Wy = cWs. But then
(o) = l(wow') = l(row”) = I(1) + I(0) + I(w"),

which implies that 7,w” = e so that wow’ = o. O

5. Double Coset Decomposition.

Throughout this section we will use the notation developed in Sections 3
and 4. Fix two subgroups P; and P, of G(F') containing the Iwahori sub-
group I. The goal of this section is to find representatives for the left cosets
of P, in a double coset PioP,. We also give a formula for the number of left
cosets in a double coset when P; and P» are compact. Using the notation
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of Section 3, let W; = Wp,, the set of elements of W with representatives

in P; (i = 1,2). We suppose for now that both W; and Wy are contained

in Wy, We will deal with general subgroups containing I later on in the

section. Let S; = Sp, be the canonical set of involutive generators of Wj.
By Proposition 3.1,

G(F) = H PioPs.
UE[Wl\W/WQ}

Let us therefore fix o in [W,\W /Ws] and consider the coset PoP,. We first
decompose PyoP; into a disjoint union of double cosets in I\G(F)/Ps.

Lemma 5.1. The double coset Pio Py is the disjoint union of the cosets
IT0Py as T ranges over [Wy/W{"?].

Proof. By Proposition 3.1 (i), we have that
p= ] rwr
weW

It follows that
PioPy = U TwloPs.
weWy

We claim that this last expression is equal to Uw€W1 TwoPs.
By Equation (2) in Proposition 3.2, if we write w’ in W; as a reduced
expression w’ = sy - - - 4 where sq,...,54 € S1, we have that

Iw'lol =1Isy---sqlol =1s11---Isqlol.
But by Proposition 3.2 (i) applied repeatedly
Iw'ol =1sy---sq0l CIsiI---Isqlol = Iw'Iol

and
Iw'Icl =Is1I---Isylol C U Twol.
weWy
Therefore
U Twer= | Twior

weWy weWy
and the claim follows.

We must now determine which of the terms in the above union are the
same. To this end, we apply Proposition 3.1 (ii) to the subgroups I and P;
of G(F). Since Wi = (e) and Wp, = Who, it follows that for any w,w’ in
W1, Two Py = Tw'o Py if and only if wo = w'o (mod W), i.e., if and only if
w=w (mod WY WQ). Therefore, to obtain a disjoint union of cosets Iwo Py
we take the union over w in the set of representatives [W;/W?"2]. O
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We now decompose PioP» into left cosets of P» by expressing each dou-
ble coset IToP, as a union of such left cosets. Recall that R is a set of
representatives in Op for the residue field k£ which contains 0.

Theorem 5.2. Suppose that Py and P, are subgroups of G(F) containing
I. If Wp,,Wp, C Wy and 0 € Wp \W /Wp,, then the double coset PyoPs

is equal to the disjoint union

PioPy = 1T IT 9P

w (1o
[Wpl/W; PQ} veRUTo)

Proof. By Corollary 3.4, we have the decomposition

(4) ItoPy =Ir0lPy = H 9re (V) | Py
veRUTo)
= U gTJ(V)P2-
veRUTo)

Because of Lemma 5.1, the theorem will follow if we show that the cosets
in the union (4) are distinct. So suppose that

gTU(V)P2 = gTU(V/)PQ

for some 7 € [W1/W7"2] and v,/ € R{7?). We will show that v = v/. The
main idea of the argument is to transfer the problem from P»-cosets in G(F)
to Wa-cosets in W and then to bring to bear our results on Coxeter groups
from Section 4.

First we note that by Proposition 3.1 (i) and Corollary 3.4,

gTU(V>P2 = H gTO' I’LUI
weWs

= H H 9ro (V) guw (V)1

weWs p'e RU(w)

QTU(VI)PQ = H H gTO' gw )I

wEWs i1 Rl(w)

and similarly

Since these two P-cosets are equal, there must exist some w in Wy and v/”
in R(®) such that g.o(v")gw (V)1 equals gro(v)ge(0)I = gro(v)I. We will
show that this equality can only hold if w = e. Then we will have that
9ro (V)T = gro (V') I, which immediately implies that v = v/ by Corollary 3.4.

So suppose that g4 (V)] = gro (V') gw ("), where w € Wy and v/ € RW),
By the definition of g,,(v) and Proposition 3.2 (ii), we have that

(5) gro(V)I C ITol.
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Similarly, for each v/ in R{®),
Gro(V)gw (W) C ITalwl.

We are now able to use Section 4 since o € [Wi\W /Wa], T € [Wy/WZ"?]
and w € Wa. By Theorem 4.6, we conclude that I(tow) = I(10) + I(w).
This implies via Equation (1) in Proposition 3.2 that ITolwl = ITowl.
Hence,

(6) Gro (V) gw (V') C ITowl.

Since the double cosets in (5) and (6) both contain the left I-coset g, (v)I =
9ro(V')gw(v")1, we conclude that they must be equal. But ITol = ITowl
implies w = e since I\G(F)/I is represented by W (Proposition 3.1). O

Remark 5.3. If we take as a representative of Pjo P, an element o’ of o5
not equal to o then

P10P2 = H U gTo-/(I/)PQ,
rewy/wy W2y veR! (o)
but this union is no longer disjoint. For the number of cosets in the pre-
ceeding union is larger than than the number of cosets given in Theorem 5.2
as l(to’) = U(r) + U(o!) > I(1) + I(c) = l(70) for any T € [Wl/Wf/WQ] by
Theorem 4.6.

We now give a decomposition of double cosets into left cosets for arbitrary
subgroups of G(F') containing I. Adjusting our notation slightly, we let P
and P, be two such subgroups. Set W/ = Wpi/ and W; = W/ N Wy As

before let S; = W; N S. Recall that S; is stabilized by Q p; under conjugation
(Proposition 3.1). For i = 1,2, let P; C P/ be the subgroup IW;I. Then

Pl= 1] Pr= ]I rP

PEQpr PEQpr
1 K

by Proposition 3.1. 3

Let [WI\W /W3] = [Wp\W /Wp,] be a set of representatives of smallest
possible length for the double cosets in W{\W /W}. (Note that this set of
representatives is no longer unique in contrast to [Wi\W /Wa].)

Lemma 5.4. The set [W,\W /Wa] is equal to the set of all products of the
form props as p; ranges over Qpr (i =1,2) and o ranges over [WI\W /WJ].
In particular, if p; € Qpr (i =1,2) and o € [Wi\W /Wa), then piops is also
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Proof. The elements pyops clearly exhaust Wy \W /W5 since
W = H W{UWQI = H U U Wlplo'pQWQ.
oEWI\W /W}] o€[W{\W /W) P1EQpr p2€Qp;

Moreover, piops is of minimal length in Wip10p2Ws since o is of minimal
length in W{oWJ. The second statement follows trivially from the first. O

Let us now fix an element o in [W{\W /W] and consider the double coset

PjoP;. Denote by QF, the stabilizer {p € Qp/|0” = o} of o in Qp; and
1

let QE‘D{’ P = Q}Ll, nQ P} Also, let J]‘;{’ P, be a set of representatives for

g
Qp; Q% .

Lemma 5.5. If p € Qp;, then

oPWE

pWi /W7 2]p™t = (W /Wy ).
(Recall that W} denotes the set {w” | w € Wa}.) In particular, if p € Q‘IQ{ Py
then p[W1 /W7 "2]p=t = W /W72,
Proof. The first statement is true since 2 P stabilizes W; and since

P WE

pWeW2p=l — (W NoWao H)p~t = Wy No?Wh (o)~ = W,
The second statement follows from the first and the fact that if p € QF, p,
1" 2

then p stabilizes ¢ and Wh.

Following our procedure in the beginning of the section, we first decom-
pose P{oPj into a union of cosets in I\G(F)/Pj.

Lemma 5.6. The double coset P{oPy is the disjoint union

H H IyToPy.

YEIL by W /Wy ™2

Proof. Since o € [W1\W /Wa] and Wp, = W; € Wyt (i = 1,2), we have that
PioPy = [T 1rop,

relwy /Wy

by Lemma 5.1. Therefore,

(7) P1/0'P2, = U plplo'PQpQ
Pi€Qps

= U U p1IToPypo

Pl rewi/wy "2
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= U U IpiTopa Py

p¢€QPZ_, Te[Wl/WfWQ]
= U U ITP o p1paPo

PSR relwn /W)
= U U ITP P py Py
PEQpl ey /Wi 2
Using the definitions of (2 P and J",7 pr» We can eliminate some of the
repetition of cosets in the union (7). For (7) is equal to

(8) U U I mPpy

PHEpr reiw /Wy 2]

— U U U IT7P6"PypPy

7€J;{,P’ pGQP, P TE[Wl/W"W2]
o = U U U renn
V€T R by PEX by ey Wa /WY 2] (7)1

By Lemma 5.5 and the fact that Qal, Py stabilizes o and W, this last ex-
pression is equal to
(10) U U IT'67y Py,

yeJ? W2 ]
As in the proof of Lemma 5.1, we now determine whether the terms in

PPy /i e[W /Wy

J
the union (10) are distinct. Let 7,7 € Jpr Py and let 7 € [Wl/WfWWQ],
e Wi/ Wf Wy 2 ]. We will show that the terms I707y P} and I7'0"' v Py

in (10) are equal only if ¥ =+ and 7 = 7. By Proposition 3.1 applied to I
and P}, we have that the two double cosets are equal if and only if

(11) T YWy = 107~ Wi,
Since W4 = nyeﬂ . vYWa, this is equivalent to the condition that

To I ypWo =7 ‘oY ~'Ws

for some p € Q) py- But 7, 7/ € W1 so this means that
(12) WioTypWy = Wla'qu/Wg.

Now both o7yp = vop and 07~ = ~/care in [Wi\W/Wa] by Lemma 5.4
since o is an element of [W{\W /W}]. As a consequence of the uniqueness
of the coset representatives of shortest length of Wl\W /Ws (Corollary 4.7),
Equation (12) can hold only if 67yp = 67’4/, Since W = Wyt x Q, it follows
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easily from this that vp = 7/ and hence that 7 = o7, Thus YN =pen P
—1./ o — A/ o : / o

and vy~ € QP{ so that v =+ (mod QP{’PZ,). Since v,y € J /.y We must

have v =~ and p = e.

Since v = v/, it follows from (11) that TyoWiy~!

= 7'yo Wiy~ Thus
ag N . . .
7 and 7’ are elements of [W; /W] WW2] which lie in the same left coset of

24
wy "W2 . This forces 7 = 7. Therefore, we see that the union in (10) is

disjoint; i.e.,

PloP) = H H ITo"yPy = H H IyToPy.

VETpr py rer W/ Wy Ry VE€TE py Te(W /Wi

O

Proceeding as in the proof of Theorem 5.2, we now use this decomposition
of P{o P} to conclude, in analogy to (4), that

PloP) = H H U Gyro (V) Ps.

VETE py relwn/wy V2] vERITS)

(Note that I(y7o) = I(70) since v € €.) In order to prove that these Pj-
cosets are distinct, we note that the argument in Theorem 5.2 will still work
if P, is replaced by Pj and Wy by W) provided that I(yrow') = l(y7o)+1(w')
for all v in Sy pyy T 0 (W1 /W¢™2] and w' in Wi. This condition is easily
proved to hold—write w’ as w”p where w” € W and p € Qp;. Then, since
o € [Wi\W/Ws] and 7 € [W1/W?"™2], we have by Theorem 4.6 that
I(yrow') = 1
= 1
= 1
= l(yro) +1(w"p)
= l(yro) +1(w).
Thus the Pj-cosets appearing in the union are distinct and we have proved
the following theorem.

Theorem 5.7. Let P|, P} be subgroups ~of G(F) containing the Iwahori sub-
group I. Let o be an element of [Wp{\W/WPQ/]. Then

PloP) = H H H QWTU(V)PQI'

cJo oWp l(to)
YEIPLry rewpy Wy, 2] VER

The number of terms in the disjoint union in Theorem 5.7 is calculated
in the following corollary when W; and Ws are finite (i.e., P, and P, are
compact).
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Corollary 5.8. Let o be an element of [W{\W /W3]. Suppose that Wy is
finite. Then the number of left cosets of Py in P{o P} is

#( Igl’,Pé)‘ql(U). Z 4 = [py ;Q;I,VPQ,] Z C) Z e

[Wl/WGWQ} yEW10Wo weWsy

Proof. That the number of cosets is equal to the first expression is immedi-

ate from the theorem and the definition of gy,+(v). To prove that the two

expressions are equal, first note that #(J9 Py P/) = [Qp; : QF, ). Also, ob-
12

serve that {70 | 7 € [W1/W7"2]} is a set of coset representatives in W;0Ws
for WyoWso /Wy so

l('y): l(Tow)
>« > >

yEW10Wo TE[Wl/Wl‘fWQ] weWs

On the other hand, since [(tow) = I(7) + l(0) + I(w), we obtain

<ql(o> 3 zm)( 3 qu))

TE[W1/WJW2] weWs

_ Z Z 7)+1(0)+ (w)

[W /WUW2} weWs

=2 4

[W /WUW2} weWs
O

Example 5.9. Let G be the group PGSpy. The rank of G is 2, and we
choose a set of simple roots consisting of a short root a; and a long root as.
We also let ag be the highest root corresponding to this basis. The Weyl
group Wy is generated by the reflections w; = wq, and wa = we,, while Wy
is generated by these reflections and wy = (o) )wa,. The group € is cyclic
of order 2. We denote the generator of €2 by p and note that it interchanges
wgo and wo but fixes w;.

We consider the Coxeter groups Wi = (w;) and Wa = (wp, we) inside Wys.
The reflections wy and wo commute so that W5 consists of the four elements
e, wo, wp and wowy. Let W/ = W;Q and let P/ be the compact subgroup
IW/!I of G(F) (i = 1,2). We will use the results of this to decompose double
cosets in P{\G(F)/Pj and Py)\G(F)/P;.

Let 0 = wywp. It is easily shown that o € [W]\W/W}]. Consider the
double coset PjoP}. The group W2 = W) NoWao~! is trivial so that
Wy /W] = (W /WW2] = {e,w;}. The stabilizer QF, p, is trivial as well
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which means that Jg, P = {e,p}. By Lemma 5.6, P{o P, is the disjoint
1)

union of the four double cosets

IwowlP’

lewowlpé

I pwowy Py = Twaw, P

I punwowy Py = Twiwaws Py.

Thus by Theorem 5.7, P{o P} is the disjoint union of the 2¢% + 2¢3 cosets

Guwowr (V1) Py (1 € RQ)
Gwiwowy (VQ)PQI (VQ € Rg)
Gwow: (VS)Pé (V3 € R2)
Jwiwawy (V4)P2/ (V4 € RB)'

Now let o = wywow; € [W4\W /W3] and consider the double coset Pyo Py.
Here the group W;WZ’ = W NoWao™! = (wg) since we have the braid
relation wywowiwowiwow; = wp. Thus [Wg/WQUWQ] = {e,wy}. Also,
J1‘§2,7P2, = {e,p}. By Lemma 5.6, Pio Py is the disjoint union of the four
double cosets

lewowlPQ’

IwgwlwowlPé

I pwywywy Py = Twiwawy Py

I pwawiwowy Py = Twowwawi Py.

It follows from Theorem 5.7 that Pyo Py is the disjoint union of the 2¢> 4 2¢*
cosets
Guwiwow: (Vl)P2, (
Gwawy wow: (V2)Pé (
Guwrwaw: (V3)P2, (V3 € R’
Gwowiwaw: (V4)Pé (

6. Degrees of Spherical Hecke Operators.

We now consider the special case when the subgroups P, and P» containing
I are both equal to the hyperspecial subgroup K. Using the results of the
previous section, we can determine the left cosets of K occurring in a given
double coset Ko K. The number of such cosets is by definition the degree
of the function chg,x in the spherical Hecke algebra of K. With the coset
decomposition of the preceeding section, we will derive the formula for the
degree given in [5, §5].

Since Wy = Wy, the elements of Wo\W /W index the double coset space
K\G(F)/K. Therefore, as a result of the fact that W = X, (T') x Wy, we see
that K\G(F')/K can be identified with the set of orbits of Wy on X.(T).
(This is the Cartan decomposition—cf. [6, 2.5].) A set of representatives
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in X,(T) for these orbits is the set Xy of dominant co-characters, i.e., co-

characters A such that (o, \) > 0 for all a in ®*. The isomorphism W =

X.(T) x Wy can be chosen to satisfy the condition that the image in W of

the element \(7) of T'(F) is t(A). Thus we have a one-to-one correspondence
Xy — K\G(F)/K

given by the map A — Kt(A\)K = K\(7)K.

Now given A € X.(7T), there is a unique element wy in Wy such that
[(t(N)wy) = mingew, [(t(A)w) (see [6, §1.9]). It can be shown (see [7, §2.2])
that the representative of the double coset Wyt(A)Wy of shortest length is
t(M)wy. Thus [Wo\W /Wy is equal to the set {t(\)wy | A € X, }.

Since Wy acts on X,(T'), we may consider the stabilizer W3 in Wy of
an element \ of X,(T). It is easily seen that W3 = Wé()‘)w*WO so that
[Wo /W3] = [Wo/ Wy "]

Fix A in X, . Applying Theorem 5.2 with P, = P, = K and 0 = t(\)w,
we arrive at the following results.

Proposition 6.1. The double coset
K\m)K = Kt(\)K

is equal to the disjoint union

H H Grt(Nwy, (V)K

TE[Wo /W] veRHTENw))
Corollary 6.2. The number of left (or right) cosets of K in KA(m)K is
ql(t()\)w/\) Z ql(’T) _ qminwewO It w) Z ql(T)

Te[Wo /W3 TE[Wo/W3
— Z ql(’v) Z ql(w) )
’YEW()t()\)Wo weWy
Proof. This follows from Corollary 5.8 and the definition of wy. O

Example 6.3. In [8], for compact forms G of PGSpy over QQ corresponding
to various quaternion algebras, we determined the actions of spherical Hecke
algebras on G(Q,) for certain primes p at which G is split. This necessitated
computations of the above kind for the simple adjoint group G = PGSp4 of
type Co = By. Examples of such computations follow.

We carry over the notation from the example in the previous section.
Since PGSpy is of adjoint type (i.e., X.(T) is the lattice dual to the lat-
tice generated by @), the fundamental co-weights w1, w9 in A (which satisfy
(aj,wj) = d;5) are in X, (T'). Furthermore, any A in X is of the form
a1w1 + aswe for some non-negative integers a; and as.
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If A in X, is 0 then Wy is clearly all of Wy and [Wo/W3] is trivial.
On the other hand, if A = a1 + asWs for positive aq,as, then WO)‘ = (e)
and [Wo/W3] = Wy. Now suppose that \ is the long co-weight ;. We
have Wi = (ws) and [Wo/Wg™] is the set {e,wy,wawy, wiwaws }. Also,
t(w1) can be shown to have the reduced expression wowjwow;. A reduced
expression for ¢(w1)wg, can be obtained from ¢(w;) by dropping the last
three involutions in this expression (which are contained in Wy) to yield wy.

We therefore have that Kw;(m)K is the disjoint union of the double cosets

I’IU()K
TwiweK
I’lUQ’UJl’LUOK

lefwgwlng.

It follows that K@y (7)K is the union of the ¢+ ¢* +¢>+¢* = ¢- q;_—_ll cosets

Guo (1)K (11 € R)
gwle(Vg)K (V2 € RQ)
Juwawiwo (V3)K (V3 € R3)

glezwl’LUO(V4)K (V4 € R4)

For the short co-weight @, we have W52 = (w;) and [Wo/Wg?] is the
set {e, wa, wiwa, wowiwa}. A reduced expression for t(we) is wowiwep =
pwowiwe, and for t(wa)wy, is p. KweK is the union of the cosets

IpK

TwopK
TwiwapK
TwowiwepK.

Therefore, K@y K is the union of the 1 + ¢+ ¢> + ¢® = q;%ll left cosets

pK

gw2p<V1)K (V1 S R)
gwlwgp(VQ)K (VQ S R2)
ngwlwgp(l/?,)K (1/3 S R3).

Remark 6.4. If G is the group over k obtained by taking the special fiber
of G, denote by B, the standard parabolic subgroup of G corresponding to
the co-character A\ and the choice of positive roots ®*. In [8], it is shown
using the formula in Corollary 6.2 that the index [K\(7)K : K] is equal to

# (G/Bx) (k) (25

qdim(@/ﬁ/\)(k) ’
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where § = 33" o+ @ and (,) is the standard pairing between X, (7T') and

X*(T).
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