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Let G be either GL2(R) or GL2(C) with maximal compact
subgroup K. Let g be its complexified Lie algebra. In this pa-
per, we will construct (g, K)-invariant forms on ⊗3

i=1πi where
πi is an infinitesimal principal series representation.

1. Introduction

1.1. In this paper we study the invariant linear forms on the tensor prod-
ucts of three principal series representations of GL2(F ) where F is an
archimedean field.

When F is a p-adic field, the existence of invariant trilinear forms is known
through the work of Prasad [Pa1]. He shows that the space of invariant
forms is at most one dimensional and that it exists if and only if a certain
epsilon factor is 1. His work was partly motivated by [Re]. He also considers
the case when F = R and we will describe his result in more detail below.

Let F = R or C and let G = GL2(F ) with maximal compact subgroup
K. Let g be its Lie algebra. Let πi (i = 1, 2, 3) be an irreducible infinite
dimensional Harish-Chandra module of G. Assume that the product of three
central characters of πi is trivial.

If F = R then πi is either a principal series or discrete series represen-
tation. Let H be the quaternion division algebra over R and we identify
its subset of non-zero elements H∗ with U2. If πi is a discrete series, we
denote π′i to be the irreducible finite dimensional representation of H∗ with
the same infinitesimal character and central character as πi. When F = C,
πi is always in the principal series.

We recall that πi corresponds to a representation σi of the Weil group
WF of F . For a non-trivial character ψ of F and a representation σ of WF ,
we associate an epsilon factor [JL]

ε(σ) := ε

(
σ, ψ, s =

1
2

)
.

We note some facts about the epsilon factor (See Prop. 8.4, Thm. 9.5 of
[Pa1]):

(i) ε(σ1 ⊗ σ2 ⊗ σ3) = ±1.
(ii) ε(σ1⊗σ2⊗σ3) = 1 if at least one of the representations πi is a principal

series representation.
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(iii) ε(σ1 ⊗ σ2 ⊗ σ3) = −1 if and only if π1, π2 and π3 are discrete series
representations and π′1 ⊗ π′2 ⊗ π′3 has a non-zero H∗-invariant form.

The following result is due to Prasad [Pa1].

Theorem 1.1. Suppose F = R and π1 is a discrete series representation
or a limit of discrete series representation. Then π1 ⊗ π2 ⊗ π3 exhibits a
(g,K)-invariant form if and only if ε(σ1 ⊗ σ2 ⊗ σ3) = 1. In this case the
invariant form is unique up to scalars.

This paper completes the project by studying the remaining cases when
all the representations πi are principal representations.

Recall that an infinitesimal reducible principal series representation of
GL2(R) either has a unique finite dimensional submodule, or a unique finite
dimensional quotient. We say that the principal series is reducible of type I
or II respectively. The main result of this paper is the following theorem:

Theorem 1.2. Suppose F = R or C and π1, π2 and π3 are (g,K)-modules
belonging to the principal series representations. We make the following
assumptions:

(1) If F = R, then πi is either irreducible or reducible of type I.
(2) If F = C, then πi is irreducible.
(3) The product of central characters of the three representations is trivial.

Under a further mild assumption if F = C (see §4.6), π1 ⊗ π2 ⊗ π3 exhibits
a (g,K)-invariant form and it is unique up to scalars.

The proofs are given in §2.7 for F = R and §4.7 for F = C.
Note that our result is consistent with those in the non-archimedean case

(cf. Thm. 1.2 and Thm. 1.4 of [Pa1]).

1.2. In a related paper [Pa2], Prasad considers the invariant linear forms of
GL2(F1)×GL2(F2) where F1 is a quadratic extension of a non-archimedean
local field F2. In §2 of this paper, we investigate the case when F1 = C and
F2 = R and we obtain the following theorem (cf. Thm. A, Thm. B [Pa2]):

Theorem 1.3. Let π1 be an irreducible infinite dimensional Harish-Chan-
dra module of GL2(C). Let π2 be an infinite dimensional Harish-Chandra
module of GL2(R). Suppose the product of the central characters is trivial
on GL2(R). We assume that π2 satisfies one of the following conditions.

(1) π2 is irreducible.
(2) π2 is a reducible principal series representation with a finite dimen-

sional submodule.
(3) π2 is a reducible principal series representation with a finite dimen-

sional quotient of dimension n and π1 contains an irreducible K-type
of dimension n.
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Then the dimension of (gl2(C), O2)-invariant forms on π1 ⊗ π2 is at most
one. The dimension is zero if and only if π2 is in the discrete series and the
restriction of the dual representation of π′2 to SU2 is a K-type of π1.

The proofs of the above theorems are given in §3.4 and §3.9. Let GL+
2 (R)

denote the subgroup of GL2(R) with positive determinant. Using a similar
argument we will prove the following proposition in §3.13: (Cf. Thm. 8.4.4
[Pa2], [F].)

Proposition 1.4. Let π1 = B(µ1, µ2) denote the infinitesimal principal se-
ries representation of GL2(C) where µ1, µ2 are characters of C∗ (see §6
[JL]). Suppose π1 is irreducible with trivial infinitesimal character, then it
will exhibit a GL+

2 (R)-invariant form φ if and only if one of the following
statement is true.

(i) There exists s ∈ C such that 2s is not an integer and µ1(z) = |z|s,
µ2(z) = |z|−s for all z ∈ C∗. π1 is spherical and φ is non-zero on the
spherical vector.

(ii) There exists l ∈ Z such that µ1(z) = |z|lz−l and µ2(z) = |z|lz−l. φ is
non-zero on the minimal K-types.

In other words, π1 is a base change from a representation of GL2(R). The
invariant form is unique up to scalars. In case (i) or (ii) such that l is even,
the invariant form extends to a GL2(R)-invariant form. Otherwise when l
is odd in (ii), the invariant form extends to the sign character of GL2(R).

Theorem 1.3 will enable us to prove the following corollary in §3.12.

Corollary 1.5. Let π1 be an irreducible infinitesimal principal series rep-
resentation of GL2(C). Let πf be an irreducible finite dimensional represen-
tation of GL2(R) of dimension n. Assume that the product of the central
characters is trivial on GL2(R). Then:

(i) The dimension of (gl2(C), O2)-invariant forms on π1 ⊗ πf is at most
one.

(ii) The dimension is one if π1 contains an n dimensional irreducible K-
type.

The converse statement of Corollary 1.5(ii) is false (see Proposition
1.4(ii)). However we will show in Theorem 3.7(iii) that it is true for ‘generic’
π1.

1.3. We will give vectors where the invariant forms in Theorem 1.2 and 1.3
take non-zero values. These are recorded in Corollary 2.2, Propositions 3.3
and 3.5, and Corollary 4.6.
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1.4. The organization of this paper is as follows: §2 and §4 are mainly
devoted to the proofs of Theorem 1.2 for GL2(R) and GL2(C) respectively.
In §3 we investigate invariant forms of representations of GL2(R)×GL2(C)
and we give the proofs of Theorem 1.3, Proposition 1.4 and Corollary 1.5.

The proofs in all the three sections are conceptually straightforward but
rather tedious to achieve. First we ignore the central characters and we
work with representations of SL±

2 (R) or SL2(C). Next we write down a
basis for the representations. An invariant form φ on a tensor product
of representations will give rise to a system of equations derived from the
actions of the Lie algebras and the maximal compact subgroups. Using
these equations, we will show that the value of φ on a certain distinguish
vector uniquely determines the invariant form. The main difficulty is to show
existence and this is done by finding a non-trivial solution to the system of
equations. The equations in §4 are especially long and we have omitted the
details of the calculations. We have also recruited the help of the computer
and the software Mathematica c©.

1.5. Towards the end of §2, we show that if at most two of the three
principal series representations of GL2(R) are of type II, then the tensor
product the three representations will exhibit an invariant form for ‘most’
of the time. See Theorem 2.3.

In §3.11 we give a counter example to show that the third assumption in
Theorem 1.3 is necessary in order for the theorem to hold. However if π2 is
a reducible principal series of type II which fails to satisfy the assumption,
we will prove Theorem 3.7 in §3.14 which states that Theorem 1.3 remains
true for ‘almost’ all π1.

1.6. Tensor products of unitary representations of SL2(R) and SL2(C)
have been studied in [Re] and [W] respectively.

After the completion of this paper, the author was notified of an un-
published result in Tohru Uzawa’s thesis where he proved Theorem 1.2 for
F = R and πi irreducible principal series representation using hyperfunction
sections. See §3.5 of [Uz]. The proof given in this paper is comparatively
more elementary.

Finally we recall that Gross and Prasad have a general multiplicity one
statement in the category of smooth, Fréchet representations of moderate
growth [GP], [W]. Our results suggest that perhaps it is enough to work in
the algebraic category of (g,K)-modules.

Acknowledgments. The author would like to thank D. Prasad for suggest-
ing this problem and his many helpful comments. The proof of Proposition
4.2 is due to him.
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2. GL2(R).

2.1. Throughout this paper all representations of GL2(C) or GL2(R) are
infinitesimal representations unless otherwise stated.

In this section we will study (gl2(C), O2)-invariant forms on tensor prod-
ucts of three principal series representations π1, π2 and π3. It is assumed
that the product of the central character is trivial so we will only work with
(sl2(C), O2)-modules.

2.2. Let

A =
1√
2i

(
1 i
1 −i

)
, ω =

(
0 1
1 0

)
∈ GL2(C).

We embed ι : GL2(R) ↪→ GL2(C) by g 7→ AgA−1. The image has maximal

compact subgroup K = K0 o ω where K0 =
{(

eiθ 0
0 e−iθ

)
: θ ∈ R

}
.

For the rest of this paper GL′
2(R) and SL′

2(R) will refer to the images
of GL2(R) and SL2(R) under ι. Let gl′2(R) and sl′2(R) denote their Lie
algebras and h := sl′2(R) ⊗ C ' sl2(C). Let H,X, Y be the standard basis
of sl2(R) ⊂ gl2(C). Note that iH ∈ Lie(K).

2.3. We recall some facts about principal series representations (see
pp. 164-166 [JL]). A (h,K)-module π = π(s, ε,m) belonging to the prin-
cipal series is parametized by s ∈ C and ε,m ∈ {0, 1}. π is spanned by
{wn : n ∈ Z, n ≡ ε (mod 2)} such that

π(H)wn = nwn, π(X)wn =
1
2
(s+ n+ 1)wn+2,

π(Y )wn =
1
2
(s− n+ 1)wn−2, π(ω)wn = (−1)mw−n.

−1 ∈ K0 acts on π by (−1)ε. π is irreducible if and only if s − ε is not an
odd integer.

If s ≥ 1 and s− ε is an odd integer, then π contains a unique irreducible
submodule ds spanned by {wn : |n| ≥ s+1}. It is a self dual representation.
When s ≥ 1 it is called a discrete series representation. The quotient π/ds

is an irreducible finite dimensional representation.
If s ≤ −1 and s − ε is an odd integer, then {wn : |n| ≥ −s − 1} is the

unique submodule and the quotient is d−s+1.
In the two reducible cases above (s > 0 and s < 0) we say that π is

reducible of type I and II respectively.
If s = 0 and ε = 1, π = d0 is called a limit of discrete series.
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2.4. For i = 1, 2, 3, let πi = π(si, εi,mi) be a principal series with basis
{wi

n : n ≡ εi (mod 2)}. We assume that the product of the three central
characters is trivial. Since −1 ∈ K acts trivially,

ε1 + ε2 + ε3 ≡ 0 (mod 2).(1)

Suppose φ is a (h,K)-invariant form on π := π1 ⊗ π2 ⊗ π3. The action of
H gives

(n1 + n2 + n3)φ(w1
n1
⊗ w2

n2
⊗ w3

n3
) = 0.

Hence φ(w1
n1
⊗w2

n2
⊗w3

n3
) = 0 unless n1 + n2 + n3 = 0 so it suffices to find

the values of

f(n1, n2) := φ(w1
n1
⊗ w2

n2
⊗ w3

−n1−n2
).

Then the actions of 2X, 2Y and ω on φ(w1
n1
⊗ w2

n2
⊗ w3

−n1−n2±2) give

(s3 − n1 − n2 − 1)f(n1, n2) = −(s1 + n1 + 1)f(n1 + 2, n2) +(2)
− (s2 + n2 + 1)f(n1, n2 + 2)

(s3 + n1 + n2 − 1)f(n1, n2) = −(s1 − n1 + 1)f(n1 − 2, n2) +(3)
− (s2 − n2 + 1)f(n1, n2 − 2)

f(n1, n2) = (−1)m1+m2+m3f(−n1,−n2).(4)

Suppose (4) is satisfied for all (n1, n2), then (2) is true at a point (n1, n2) if
and only if (3) is true at (−n1,−n2).

We will abuse notations and denote the various points in Z2 as well as
their values of f by a, b, . . . , h in the following figure where d denotes the
point (n1, n2) and the sides of the squares have length 2.

a

c g

d h

eb

Figure 1.

By (2) and (3),

(s3 − n1 − n2 + 1)a = −(s1 + n1 − 1)c− (s2 + n2 + 1)d(5)
(s3 − n1 − n2 + 1)b = −(s1 + n1 + 1)d− (s2 + n2 − 1)e(6)

(s3 + n1 + n2 − 1)d = −(s1 − n1 + 1)a− (s2 − n2 + 1)b.(7)

Putting (5) and (6) into (7) we get

(s23 − s21 − s22 + 1− 2n1n2)f(n1, n2)(8)
= (s1 − n1 + 1)(s2 + n2 + 1)f(n1 − 2, n2 + 2)

+ (s2 − n2 + 1)(s1 + n1 + 1)f(n1 + 2, n2 − 2).
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We find the same relation about c, d, e if we use g, h instead of a, b. Suppose
(4) is satisfied for all (n1, n2), then (8) holds at d = (n1, n2) if and only if it
holds at d = (−n1,−n2).

2.5. Let N ∈ Z such that N ≡ ε1 + ε2 (mod 2). Suppose we are given
f(n1, n2) where n1 + n2 = N and they satisfy (8). In addition suppose
s3 +N + 1 + 2k 6= 0 for all non-negative integer k. We define f(n1, n2) for
n1 + n2 = N + 2k (k ≥ 1) inductively using (3). We state a useful lemma.

Lemma 2.1. f(n1, n2) satisfies (2) for n1 + n2 ≥ N .

Proof. We will prove the lemma by induction on n1 +n2. We refer to Figure
2 where d is the point (n1, n2).

d

c’

e

c
d’

e’

Figure 2.

By induction we assume that (2) is satisfied for all f(l1, l2) such that l1+l2 ≤
n1 + n2 − 2. Hence f(n1, n2) satisfies (8).

By (3) we have

tc′ = −(s1 − n1 + 1)c− (s2 − n2 − 1)d(9)
td′ = −(s1 − n1 + 1)d− (s2 − n2 − 1)e(10)

where t = (s3 + n1 + n2 + 1) 6= 0 by assumption. We put (9) and (10) into
the following expression.

−(s1 + n1 + 1)d′ − (s2 + n2 + 1)c
= t−1((s1 + n1 + 1)(s1 − n1 − 1)d+ (s1 + n1 + 1)(s2 − n2 + 1)e+

+ (s2 + n2 + 1)(s1 − n1 + 1)c+ (s2 + n2 + 1)(s2 − n2 − 1)d)
(Substitute (8))

= t−1d(s21 − (n1 + 1)2 + s22 − (n2 + 1)2 + (s23 − s21 − s22 + 1− 2n1n2))
= t−1d(s23 − (n1 + n2 + 1)2)
= (s3 − n1 − n2 − 1)d.

This proves the lemma. �
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2.6. Non-Type II representations. We make the following assumptions
about πi.

(1) πi is either irreducible or reducible of type I.
(2) ε1 = ε2 and ε3 = 0 (cf. (1)).
Suppose φ is an invariant form on π1⊗π2⊗π3 and it gives rise to f(n1, n2)

as above.
If ε1 = 0, then f(−2, 2) = (−1)m1+m2+m3f(2,−2) and by (8) we have

(11) (s23 − s21 − s22 + 1)f(0, 0)

= (s1 + 1)(s2 + 1)(1 + (−1)m1+m2+m3)f(2,−2).

Since f(0, 0) = (−1)m1+m2+m3f(0, 0), f(0, 0) = 0 if m1 + m2 + m3 is odd.
If m1 +m2 +m3 is even, then (11) shows that f(0, 0) determines f(2,−2).

2.7. Proof of Theorem 1.2 for F = R. We will construct f(n1, n2) which
satisfies (2), (3) and (4). Hence the function f(·, ·) will give rise to an
invariant form φ.

First we assign arbitrary values to:
(i) f(−1, 1) if ε1 = 1. We define f(1,−1) = (−1)m1+m2+m3f(−1, 1).
(ii) f(0, 0) if ε1 = 0 and m1 +m2 +m3 is even. We define f(2,−2) by (11).
(iii) f(−2, 2) if ε1 = 0 and m1 +m2 +m3 is odd. We set f(0, 0) = 0.

Using (8) repeatedly, we determine f(n,−n) for all positive n. Note that
this is possible because the coefficient of f(n1 + 2, n2 − 2) in (8) does not
vanish for positive n = n1 = −n2. By (4), we determine f(n,−n) for all
n ≤ 0. Note that we could use (8) instead of (4) to get the same values for
f(n,−n).

Applying (3) inductively gives f(n1, n2) for all n1 + n2 > 0. This is
possible because s3 ≥ 0. Finally (4) gives f(n1, n2) for n1 + n2 < 0. Again
we may use (8) instead of (4) and base on the remark after (4) we will get
the same values for f(n1, n2).

We will show that f satisfies (2), (3) and (4). From the construction, f
trivially satisfies (4), (3) if n1 + n2 > 0 and (2) if n1 + n2 < 0. Lemma 2.1
takes care of (2) when n1 + n2 ≥ 0. By the remark after (4), f satisfies (3)
for n1 + n2 ≤ 0.

Finally we note that conversely an invariant form φ will give rise to a
function f . The above construction shows that f is completely determined
by its value at f(0, 0), f(−1, 1) or f(−2, 2). This proves that φ is unique up
to scalars. �

Corollary 2.2. (i) The invariant form is non-trivial on the vector w1
1 ⊗

w2
−1 ⊗ w3

0 if ε1 = 1.
(ii) If ε1 = 0 then the invariant form is non-zero on the vector w1

0⊗w2
0⊗w3

0

if and only if m1 +m2 +m3 is even. If m1 +m2 +m3 is odd, then the
invariant form is non-zero on w1

−2 ⊗ w2
2 ⊗ w3

0.



TRILINEAR FORMS OF gl2 127

2.8. The proof can be modified to find gl2(R)-invariants for πi irreducible.
In this case (1) is not necessary and we can show that the space of such
invariants has dimension two.

2.9. Type II representations. Let πi = πi(si, εi,mi) (i = 1, 2, 3) be a
principle series representation. We would like to investigate the situation
when one or two out of the three representations are reducible of type II.
For ε = 0, 1 define

S(ε) := {s ∈ Z : s ≡ ε− 1 (mod 2), s < 0}.

Without loss of generality we assume that s1 ∈ S(ε1) and s3 6∈ S(ε3). In
other words, π1 is reducible of type II and π3 is not. Note that if πi (i = 1, 2)
is of type II, then it has a unique irreducible quotient dsi .

Define

S :=
{

max(−s1,−s2) if π1 and π2 are of type II
−s1 if only π1 is of type II.

Theorem 2.3. Given πi (i = 1, 2) and ε3,m3 as above. Then for all but
finitely many s3 ∈ C− S(ε3)

π1 ⊗ π2 ⊗ π(s3, ε3,m3)(12)

exhibits an invariant form unique up to scalars. The invariant form will
filter through the quotient

ds1 ⊗ π2 ⊗ π(s3, ε3,m3).(13)

Proof. First we assume that ε1 = ε2. We would like to apply the same
method as in the proof of Theorem 1.2 where the three πi’s are not of type
II. If π1 or π2 is of type II, the proof breaks down because the coefficient of
f(n1 + 2, n2− 2) (n1 = −n2 = S − 1) in (8) is zero. Fortunately Lemma 2.4
below shows that f(n,−n) = 0 if 0 ≤ n ≤ S − 1. By applying (8) we show
that f(n,−n) (n ≥ S + 1) are determined by f(−s+ 1, s− 1) and (4) gives
f(−n, n). Moreover f(n,−n) satisfies (8). Hence the conditions of Lemma
2.1 are satisfied and we may proceed to construct an invariant form as in
§2.7.

The case ε1 6= ε2 is similar and we leave the details to the reader.
By Theorem 1.1 there is an invariant form on (13) and it will pull back

to a non-zero invariant form on (12) which is unique. This proves the last
assertion. �

Lemma 2.4. Suppose ε1 = ε2 and f(n,−n) satisfies (4) and (8). Then for
all but finitely many s3 ∈ C, f(n,−n) = 0 for |n| ≤ S − 1.

Proof. We will only consider the case ε1 = ε2 = 0. The case ε1 = ε2 = 1 is
similar and we leave the proof to the reader.
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We will solve v = (f(0, 0), f(2,−2), . . . , f(S − 1,−S + 1)). Define a
(S + 1)/2 by (S + 1)/2 matrix A = (aij) where i, j = 0, . . . , (S − 1)/2 and

ajj = s21 + s22 − s23 − 1− 8j2

aj,j−1 = (s1 − 2j + 1)(s2 − 2j + 1)
aj,j+1 = (s1 + 2j + 1)(s2 + 2j + 1) if j 6= 0

a01 = (s1 + 1)(s2 + 1)(1 + (−1)m1+m2+m3)
aij = 0 if otherwise.

By (8) and (11), Av = 0. Hence v = 0 if and only if A = (aij) is invertible,
that is, detA 6= 0. Note that detA is a polynomial in s3 of degree S + 1. If
s3 is not a root of the polynomial, then v = 0. �

3. GL2(R) in GL2(C).

3.1. We retain the notations of §2.2 as well as the embedding SL′
2(R) ⊂

GL′
2(R) ⊂ GL2(C). Let π1 and π2 be irreducible Harish-Chandra modules

of GL2(C) and GL′
2(R) respectively. Suppose the product of the central

characters is trivial on GL′
2(R). Our goal of this section is to find (gl′2(R)⊗

C, O2)-invariant forms on π1 ⊗ π2. Similar to §2.1 the central characters
of π1 and π2 are not essential so we may replace GL2(C) and GL′

2(R) by
SL2(C) o ω and SL′

2(R) o ω respectively.

3.2. We define some elements in sl2(C).

A1 = 1
2

(
0 i
i 0

)
A2 = 1

2

(
0 −1
1 0

)
A3 = 1

2

(
i 0
0 −i

)
B1 = 1

2

(
0 1
1 0

)
B2 = 1

2

(
0 i
−i 0

)
B3 = 1

2

(
1 0
0 −1

)
.

Next we define the following elements in sl2(C)⊗R C.

H3 = A3 ⊗ i H+ = A1 ⊗ i−A2 ⊗ 1 H− = A1 ⊗ i+A2 ⊗ 1
F3 = B3 ⊗ i F+ = B1 ⊗ i−B2 ⊗ 1 F− = B1 ⊗ i+B2 ⊗ 1

so that A2 = 1
2(H− − H+). {A1, A2, A3} spans the Lie algebra of the

maximal compact subgroup SU2 and {H3,H+,H−} spans its split form.
{2H3,−iF+,−iF−} forms the standard basis of h := sl′2(R)⊗R C.

3.3. It is well-known that all irreducible infinitesimal representations of
SL2(C) are either finite dimensional representations or principal series rep-
resentations. We will follow the notation of §8.3 of [Na] and denote an
irreducible representation by π(k0, c) where 2k0 is a non-negative integer
and c ∈ C. We recall Theorem 1 of §8.3 [Na].
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Theorem 3.1. A basis of π(k0, c) is

{fk
v |k = k0, k0 + 1, . . . , k00, v = −k,−k + 1, . . . k}.

If c2 = (k0 + n)2 for some positive integer n, then k00 = |c| − 1 and π(k0, c)
is a finite dimensional representation. Otherwise k00 = ∞ and π(k0, c) is a
principal series representation.

The actions of the Lie algebra are as follows:

H+f
k
v =

√
(k + v + 1)(k − v)fk

v+1

H−f
k
v =

√
(k + v)(k − v + 1)fk

v−1

H3f
k
v = vfk

v

F+f
k
v = Rk−v−1Ckf

k−1
v+1(14)

−
√

(k − v)(k + v + 1)Akf
k
v+1 +Rk+v+1Ck+1f

k+1
v+1

F−f
k
v = −Rk+v−1Ckf

k−1
v−1

−
√

(k + v)(k − v + 1)Akf
k
v−1 −Rk−v+1Ck+1f

k+1
v−1

F3f
k
v =

√
k2 − v2Ckf

k−1
v(15)

− vAkf
k
v −

√
(k + 1)2 − v2Ck+1f

k+1
v

where

Rk =
√

(k + 1)k, Ak =
ik0c

k(k + 1)
, Ck =

i

k

√
(k2 − k2

0)(k2 − c2)
4k2 − 1

.

We refer to the definition of the infinitesimal irreducible principal series
representation B(µ1, µ2) of GL2(C) in §6 [JL] where µ1 and µ2 are characters
of C∗. We write

µ1(z) = |z|2s1−a1−b1za1zb1

µ1(z) = |z|2s2−a2−b2za2zb2

µ1µ
−1
2 (z) = |z|2s−a−bzazb

where ai, bi, a, b are non-negative integers such that aibi = ab = 0. Then
π(k0, c) is the restriction of B(µ1, µ2) to (sl2(C) ⊗ C, SU2) such that s =

(sign(b− a))c and 2k0 = |b− a|. The action of ω =
(

0 1
1 0

)
is given by

ωfk
v =

(
0 1
1 0

)
fk

v = ib1+b2−a1−a2−2kfk
−v = (−1)m0+(k−k0)fk

−v

where m0 = min(b1−a1, b2−a2). We will denote the restriction of B(µ1, µ2)
to (sl2(C)⊗ C, SU2 o ω) by π(k0, c,m0).
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3.4. We recall the definitions of the discrete series representation and its
limit ds in §2.3. We will give an alternative description. Let b be the
Borel subalgebra of h := sl′2(R)⊗ C spanned by H3 and F−. Let χ0 be the
fundamental character of K0 given by

χ0 :
(
eiθ 0
0 e−iθ

)
7→ eiθ.

Let n ≥ 1, then

dn−1 = Ind(h,K)
(h,K0)(U(h)⊗b χ

n
0 ).

We refer to Theorem 3.1 and suppose π1 = π(k0, c) is a principal series
representation and π2 = dn−1. Since π1 ⊗ π2 has trivial central character,
the action of −1 ∈ K gives 2k0 ≡ n (mod 2).

Hom(h,K)(π1 ⊗ π2,C)

= Hom(h,K)(π1, π2) (π2 is self-dual)

= Hom(h,K0)(π1,U(h)⊗b χ
n
0 ) (Frobenius reciprocity)

= HomK0((π1)F+ , χ
n
0 )

where (π1)F+ = π1/{π1(F+)v : v ∈ π1} is the space of F+ coinvariants. The
next lemma proves Theorem 1.3 when π2 is a discrete series representation.

Lemma 3.2.

dimC HomK0((π(k0, c))F+ , χ
n
0 )

=

 1 if −2k0 + 2 ≤ n ≤ 2k0 and n ≡ 2k0 (mod 2)
2 if n ≤ −2k0 and n ≡ 2k0 (mod 2)
0 if otherwise.

Proof. Define

Vl = Span of {fk
v : k0 ≤ k ≤ l}(16)

Wl = Span of {fk
v : k0 < k ≤ l, v = −k,−k + 1}.

The lemma follows from (14) and the fact

Wl ⊕ π(F+)Vl−1 = Vl.

�

3.5. Let π1 = π(k0, c,m0) and π2 = π(s, ε,m) be infinitesimal principal
series representations of SL2(C) o ω and SL′

2(R) o ω respectively (cf. §3.3
and §2.3). We will construct a (h,K)-invariant linear form on π1⊗π2. Since
−1 ∈ K is assumed to act trivially, we have 2k0 ≡ ε(mod 2).

Note that the three assumptions in Theorem 1.3 is equivalent to the fol-
lowing statements.



TRILINEAR FORMS OF gl2 131

1) If ε = 1, then s+ 1 6∈ {−1,−3,−5,−7, . . . ,−2k0 + 2}.
2) If ε = 0, then s+ 1 6∈ {0,−2,−4,−6, . . . ,−2k0 + 2}.

3.6. Let φ be an invariant form, then via the action of H = 2H3 we get

π(H)φ(fk
v ⊗ ωn) = (2v + n)φ(fk

v ⊗ ωn) = 0

so φ = 0 unless 2v + n = 0. Now set φk
v = φ(fk

v ⊗ ω−2v) and the actions of
F+, −F− and ω give

E+
kv : Rk−v−1Ckφ

k−1
v+1 −

√
(k − v)(k + v + 1)Akφ

k
v+1 +

+Rk+v+1Ck+1φ
k+1
v+1 +

i

2
(s− 2v − 1)φk

v = 0

E−
kv : Rk+v−1Ckφ

k−1
v−1 +

√
(k + v)(k − v + 1)Akφ

k
v−1 +

+Rk−v+1Ck+1φ
k+1
v−1 +

i

2
(s+ 2v − 1)φk

v = 0

E0
kv : φk

v = (−1)m0+(k−k0)+mφk
−v.

Note that the action of ω sends E−
kv to im1+m2+2kE+

k,−v. Therefore if E0
kv

holds for all k, v then E−
kv determines E+

k,−v and vice versa.
As in Figure 1, let h, a, b . . . denote the points (k, v), (k, v+1), (k−1, v) . . .

respectively as in the following diagram

b d
h

a

e

Figure 3.

We will abuse notations and use a, b, . . . to denote the corresponding values
of φ at those points. Let sv = i

2(s − 2v + 1) and rv = i
2(s + 2v + 1). E±

kv
shows that the values of a, b, h determine that of d and the values of b, h, e
determine that of d. We have the following equalities:

Se = Sbhde = E+
k,v−1 (k ≥ v − 1)(17)

: Rk−vCkb−
√

(k − v + 1)(k + v)Akh

+Rk+vCk+1d+ sve = 0

Na = Nbhda = E−
k,v+1 (−k ≤ v + 1)(18)

: Rk+vCkb+
√

(k + v + 1)(k − v)Akh

+Rk−vCk+1d− rva = 0
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Wb = Waheb = Rk−vSbhde −Rk+vNbhda (k + 1 ≥ |v|)(19)

: −2v(2k + 1)Ckb− 2(k + 1)
√
k2 − v2Akh

+Rk−vsve+Rk+vrva = 0

Ed = Eahed = Rk+vSbhde −Rk−vNbhda (k + 1 ≥ |v|)(20)

: −2k
√

(k + 1)2 − v2Akh+ 2v(2k + 1)Ck+1

+Rk+vsve+Rk−vrva = 0

S,N,W,E denote South, North, West and East respectively.

3.7. We will deal with 2k0 being odd and even separately.

Proposition 3.3. Suppose 2k0 is odd, then φ is uniquely determined by its
value at fk0

1/2 ⊗ w−1.

Proof. E0
k0,1 gives

φk0

1/2 = (−1)m0+mφk0

−1/2.(21)

Applying Wb repeatedly, we determine φk0
v for 0 ≤ v ≤ k0 since the coef-

ficient of e is non-zero by Assumptions 1 in §3.5. Using E0
k0,v we get φk0

v

for v < 0. We will deduce the rest of φk
v inductively in the following way.

Suppose we have determined φk
v for k ≤ k1. We define φk1+1

v for v ≥ 0 by
E+

k1,v−1. Note that this is possible because the coefficient of d in (17) is
non-zero. By E0

k1+1,v we determine φk1+1
−v (v < 0). �

3.8. Suppose 2k0 is even, then E0
k0,0 gives φk0

0 = (−1)m0+mφk0
0 .

Lemma 3.4. φ is zero on fk0
0 ⊗ w0 if m0 +m is odd.

We relax Assumption 2 in §3.5 slightly by allowing s = −1. If k0 ≥ 1, Wb

for (k, v) = (k0, 0) gives

−2(k0 + 1)k0Ak0φ
k0
0 +Rk0(s0φ

k0
−1 + r0φ

k0
1 ) = 0.(22)

By E0
k0,1, φ

k0
−1 = (−1)m0+mφk0

1 , and (22) becomes

Rk0(s+ 1)(1 + (−1)m0+m)φk0
1 = 4k0cφ

k0
0 .(23)

We further subdivide into two subcases depending on whether m0 +m is
even or odd.

Case 1: k0 ≥ 1 and m0 +m is even. If s 6= −1 then φk0
1 is determined by

φk0
0 . If s = −1, c = 0, then (23) is trivial. If s = −1, c 6= 0, then φk0

0 = 0.
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Case 2: m0 + m is odd. Then Lemma 3.4 says that φk0
0 = 0 and (23) is

trivially satisfied. If k0 = 0, then E±
0,0 implies that φ1

1 = φ1
−1 = 0. Wb for

(k, v) = (1, 0) always holds for all values of φ1
0.

Proposition 3.5. Suppose 2k0 is even, then φ is uniquely determined by
its value at the following vectors.

(i) f0
0 ⊗ w0 if k0 = 0, m0 +m is even.

(ii) f1
0 ⊗ w0 if k0 = 0, m0 +m is odd.

(iii) fk0
0 ⊗ w0 if k0 ≥ 1, m0 +m is even, s 6= −1.

(iv) fk0
0 ⊗ w0 and fk0

1 ⊗ w−2 if k0 ≥ 1, m0 +m is even, s = −1, c = 0.
(v) fk0

1 ⊗ w−2 if k0 ≥ 1, m0 +m is even, s = −1, c 6= 0.
(vi) fk0

1 ⊗ w−2 if k0 ≥ 1, m0 +m is odd.

Proof. By the discussions above, the values of φ on these vectors determine
φk0

0 and φk0
1 which satisfy Lemma 3.4 and (23). Applying Wb repeatedly,

we determine φk0
v for 0 ≤ v ≤ k0 since the coefficient of e is non-zero by

Assumptions 2 in §3.5. We proceed as in the proof of Proposition 3.3 to
determine the rest of the values of φk

v . �

3.9. Proof of Theorem 1.3. Suppose we are given the value of φ at fk0

1/2 ⊗
w−1 or any of the vectors in Proposition 3.5, then the proofs of Propositions
3.3 and 3.5 give a construction of φk

v . We will show that φk
v satisfies E±

kv and
E0

kv and hence it gives rise to a (h,K)-invariant form. Note that (iv) and
(v) of Proposition 3.5 do not satisfy Assumption 2 of §3.5 and they will not
be considered.

By induction, suppose φl
v (l ≤ k) satisfies (17) to (20) and E0

lv. By
definition E+

kv holds for v ≥ 0. Since ω sends E+
kv to E−

k,−v, E
−
kv is satisfied

for v < 0. By induction and Wb at b = (k − 1, v) imply that E+
k,v−1 holds

if and only if E−
k,v+1 holds. We have thus shown that E±

kv holds for all
|v| ≤ k. By definition E0

k+1,v is true for all except possibly at v = 0. For
v = 0, E0

k+1,v follows from the fact that E+
kv and E−

kv are compatible with
the action of ω. Ed at d = (k+ 1, v) holds because it is consequence of E+

k,v

and E−
k,v. It remains to show that Wh holds at h = (k, v) and this is proven

in Lemma 3.6 below. The induction process is therefore completed and this
proves the theorem. �
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3.10. Consider the following diagram where h represents the point (k, v)
as before.

b d

e

a

h

a’’ a’

e’e’’

Figure 4.

Lemma 3.6. Wh = 0.

Proof. Note that ω sends Wh at h = (k + 1, v) to Wh at h = (k + 1,−v).
Therefore it is enough to check for v ≤ 0. Put Nh and Sh into Wh to get rid
of e′ and a′ respectively and we get

Wh = −2v(2k + 3)Ck+1h− 2(k + 2)
√

(k + 1)2 − v2Ak+1d

+ svC
−1
k+1(rv−1h−Rk+v−1Cke

′′ −
√

(k + v)(k − v + 1)Ake)

+ rvC
−1
k+1(−sv+1h−Rk−v−1Cka

′′ +
√

(k − v)(k + v + 1)Aka).

Similarly Na will get rid of d

Wh = −2v(2k + 3)Ck+1h

−
2(k + 2)

√
(k + 1)2 − v2Ak+1

Rk−vCk+1
(rva−Rk+vCkb

−
√

(k + v + 1)(k − v)Akh)

+ svC
−1
k+1(rv−1h−Rk+v−1Cke

′′ −
√

(k + v)(k − v + 1)Ake)

+ rvC
−1
k+1(−sv+1h−Rk−v−1Cka

′′ +
√

(k − v)(k + v + 1)Aka).

Substituting Eh to get rid of sve
′′ we have

Ck+1Wh = −2v(2k + 3)C2
k+1h

−
2(k + 2)

√
(k + 1)2 − v2Ak+1

Rk−v
(rva−Rk+vCkb

−
√

(k + v + 1)(k − v)Akh)− (sv+1rv − svrv−1)h

+ 2v(2k − 1)C2
kh− 2(k − 1)

√
k2 − v2CkAk−1b

− sv

√
(k + v)(k − v + 1)Ake+ rv

√
(k − v)(k + v + 1)Aka.
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Notice that a′′ does not appear in the last equation. Substituting Wb to get
rid of sve we have

Ck+1Wh

= −2v(2k + 3)C2
k+1h

− 2(k + 2)Ak+1

√
k + 1 + v

k − v
(rva−Rk+vCkb

−
√

(k + v + 1)(k − v)Akh)

+ Ck(−2(k − 1)
√
k2 − v2Ak−1b+ 2v(2k − 1)Ckh)

+

√
k + v

k − v
Ak(−2v(2k + 1)Ckb− 2(k + 1)

√
k2 − v2Akh+Rk+vrva)

+ rv
√

(k − v)(k + v + 1)Aka+ (svrv−1 − sv+1rv)h

= −2v(2k + 3)C2
k+1h+

− 2(k + 2)Ak+1

√
k + 1 + v

k − v
(rva−Rk+vCkb)

+ 2(k + 2)Ak+1Ak(k + 1 + v)h

+ Ck(−2(k − 1)
√
k2 − v2Ak−1b+ 2v(2k − 1)Ckh)

+

√
k + v

k − v
Ak(−2v(2k + 1)Ckb− 2(k + 1)

√
k2 − v2Akh+Rk+vrva)

+ rv
√

(k − v)(k + v + 1)Aka− 2vc
= 0.

�

3.11. Suppose π2 = π(s = −1, ε,m), k0 ≥ 1 and k0 + m is even. If we
apply the proof in §3.9 to (iv) and (v) of Proposition 3.5, then we can show
that the dimension of invariant forms on π1 ⊗ π2 is one if c 6= 0 and two if
c = 0. This shows that Assumption 3 of Theorem 1.3 is necessary.

3.12. Proof of Corollary 1.5. Let π2 be the principal series representa-
tion with finite quotient πf of dimension n. π2 contains the discrete series
representation dn:
(i) An invariant form on π1⊗πf will pull back to an invariant form on π1⊗π2

which is unique.
(ii) If π1 contains a n dimensional K-type, then by Theorem 1.3 π1⊗dn does
not have an invariant form. The invariant form on the tensor product π1⊗π2

must vanish on π2 ⊗ dn and so it filters through the quotient π1 ⊗ πf . �
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3.13. Proof of Proposition 1.4. Note that Proposition 1.4(i) (resp. (ii)) is
equivalent to the condition that k0 = 0 (resp. c = 0, 2k0 even). If k0 = 0,
then the invariant form exists by Corollary 1.5(ii).

Suppose φ is an infinitesimal GL+
2 (R)-invariant form and we denote φk

v :=
φ(fk

v ). The action of −1 ∈ K implies that 2k0 is even. The action of H3

shows that φk
v = 0 unless v = 0. The actions of F+ and F− give (k ≥ 1)

Ckφ
k−1
0 −Akφ

k
0 + Ck+1φ

k+1
0 = 0

Ckφ
k−1
0 +Akφ

k
0 + Ck+1φ

k+1
0 = 0.

Solving the two equations gives

Ckφ
k−1
0 = −Ck+1φ

k+1
0 , Akφ

k
0 = 0.(24)

If c 6= 0 and k0 6= 0, then Ak 6= 0 and φk
0 = 0 for all k ≥ k0.

If c = 0 or k0 = 0, then Ak = 0. The first equation in (24) inductively
implies that φk0

0 determines φk0+2n
0 . Similarly φk0+2n+1

0 = 0 because Ck0 = 0.
This gives rise to a non-trivial invariant form which is uniquely determined
by φk0

0 .
Finally the action of ω gives φk0+2n

0 = (−1)m0+mφk0+2n
0 . Here we set

m = 0 (resp. m = 1) if we are considering GL2(R)-invariant form (resp. the
sign character of GL2(R)). Clearly φk

0 has a non-trivial solution if and only
if m0 + m ≡ l + m ≡ 0 (mod 2). Hence the invariant form will extend to
a GL2(R)-invariant form if and only if l is even. Otherwise we get the sign
character. �

3.14. Generic statements. Given m0 ∈ Z and k0 a non-negative half
integer, define

C = {c ∈ C : c2 6= (k0 + n)2 for all positive integer n}.

Let π2 = π(s, ε,m) (s 6= 1) be a reducible principal series representation of
(h,K). We will denote the finite dimensional quotient or submodule of π2

by πf . Note that πf has dimension |s| − 1. We assume that:

1) s+ 1 ≡ ε ≡ 2k0 (mod 2).
2) |s|+ 1 ≤ 2k0.

Theorem 3.7. Suppose m0, k0 and π2 as above. Then for all but finitely
many c ∈ C, the following statements are true.

(i) π(k0, c,m0)⊗π2 exhibits a (h,K)-invariant form φ and it is unique up
to scalars.

(ii) The invariant form φ is non-zero on the vector fk0
v0+1⊗w−2v0−2 where

v0 = |s|−1
2 .

(iii) π(k0, c,m0)⊗ πf does not exhibit a (h,K)-invariant form.
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Note that (i) complements Theorem 1.3 for reducible principal series rep-
resentation of type II and (iii) is a generic converse statement of Corollary
1.5(ii).

Before proving the theorem we need a lemma.

Lemma 3.8. Let v0 = |s|−1
2 . Then for all but finitely many c, (s + 1 +

2v0)φk0
v0+1 = 0 implies that φk0

v = 0 for all |v| ≤ v0.

Proof. We will only prove the case when s + 1 is negative even. The other
cases are similar and we will leave them to the reader.

Let w = (φk0
0 , φ

k0
1 , . . . , φ

k0
v0

) and we want to show that w = 0. First we
define a (v0 + 1) by (v0 + 1) matrix A = (aij) where i, j = 0, . . . , v0 and

a11 = 4k0c, a12 = −Rk0(s+ 1)(1 + (−1)m0+m),
at,t−1 = Rk0−t, at,t+1 = Rk0+t,

att = −2ic
√
k2

0 − t2,

aij = 0 otherwise

and t 6= 0. Then Wh and (23) implies that Aw = 0. Since detA is a
polynomial in c of degree v0 + 1, w = 0 for all but finitely many c ∈ C. �

Proof of Theorem 3.7. (i) We only have to deal with s < 0. Lemma 3.8
implies that given an arbitrary value of φk0

v0+1, φ
k
v = 0 for all 0 ≤ v ≤ v0. We

can deduce φk0
v using Wh and E0

k0,v. The same constructions as in the proofs
of Propositions 3.3 and 3.5 give rise to an invariant form on π(k0, c,m0)⊗π2.

(ii) This follows from Lemma 3.8.

(iii) Let π′2 be the principal series with finite quotient πf . If π(k0, c) ⊗ πf

exhibits an invariant form, then the form will pull back to an invariant form
φ on π1 ⊗ π′2. The form φ vanishes on the subspace π1 ⊗ ds by Theorem
1.3. In particular it is zero on the vector fk0

v0+1 ⊗w−2v0−2. This contradicts
(ii). �

4. GL2(C).

4.1. In this section we investigate the invariants on the tensor products
of three infinitesimal representations of GL2(C). Similar to the last two
sections, it suffices to restrict our attention to infinitesimal representations
of SL2(C). Let K = SU2(C) be the maximal compact subgroup of SL2(C)
and let j be the complexified Lie algebra of SL2(C). Note that since K
is connected, its action is completely determined by its Lie algebra k :=
Lie(K)⊗ C.



138 HUNG YEAN LOKE

4.2. Let Vi (i = 1, 2, 3) be the standard representation of SU2(C) with
standard basis {xi, yi}. Let V ∗

i be its dual space with dual basis {x∗i , y∗i }.
We will denote SymnV by SnV . Then the SU2(C) equivariant pairing of
Sn(V ∗

i )× SnVi is given by

〈(x∗)a(y∗)n−a, xbyn−b〉 =
n!

a!(n− a)!
δab.

Theorem 4.1. Sn1(V1)⊗Sn2(V2)⊗Sn3(V3) has a SU2(C)-invariant linear
form if and only if there exists non-negative integers α1, α2, α3 such that
n1 = α2 + α3, n2 = α3 + α1 and n3 = α1 + α2. In this case, the invariant
form is a scalar multiple of∣∣∣∣ x∗1 x∗2

y∗1 y∗2

∣∣∣∣α3
∣∣∣∣ x∗2 x∗3
y∗2 y∗3

∣∣∣∣α1
∣∣∣∣ x∗3 x∗1
y∗3 y∗1

∣∣∣∣α2

.(25)

Proof. This is a consequence of the Clebsch-Gordan formula. �

We will denote the function in (25) by φ(k1, k2, k3) where ki = ni/2 so
that αi = ki+1 + ki−1 − ki for i ∈ Z/3Z.

4.3. We start with three representations πi = π(k0i, ci) (i = 1, 2, 3) as
in Theorem 3.1 with basis fk

v,i. Without loss of generality, we assume that
k01 ≥ k02 ≥ k03. We define

xk−v
i yk+v

i = (−1)ki−vi
√

(ki − vi)!(ki + vi)!fk
v,i(26)

so that H+ = yi
∂

∂xi
and H− = xi

∂
∂yi

. Note that

S2k(Vi) = Span of {xa
i y

b
i : a+ b = 2k}(27)

is an irreducible K-type of πi.
By Theorem 4.1, Π = π1 ⊗ π2 ⊗ π3 will exhibit an invariant form of

K = SU2(C) if and only if k01 + k02 + k03 is an integer.

4.4. Suppose φ is a (j,K)-invariant form on Π. Then by Theorem 4.1

φ =
∑

k1,k2,k3

d(k1, k2, k3)φ(k1, k2, k3)(28)

where d(k1, k2, k3) ∈ C. Define

φ(v1, v2, v3; k1, k2, k3) := φ(fk1
v1,1 ⊗ fk2

v2,2 ⊗ fk3
v3,3)

Φ(v1, v2, v3; k1, k2, k3) := φ(xk1−v1
1 yk1+v1

1 ⊗ xk2−v2
2 yk2+v2

2 ⊗ xk3−v3
3 yk3+v3

3 )

= (−1)k1+k2+k3−v1−v2−v3

3∏
j=1

√
(kj + vj)!(kj − vj)!φ(v1, v2, v3; k1, k2, k3).

It is relatively easy to show uniqueness of φ in some cases.
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Proposition 4.2. Suppose k01 ≤ k02 + k03 and let φ be an invariant form
on π1 ⊗ π2 ⊗ π3 as given in (28). Then:

(i) φ is unique up to scalars.
(ii) It is non-zero if and only if it is non-zero on (cf. (27))

S2k01(V1)⊗ S2k02(V2)⊗ S2k03(V3).(29)

Proof. By Theorem 4.1 (ii) implies (i). Consider the Cartan decomposition
of j = k + p where p is spanned by {F+, F−, F3}. The action of p on the
K-types of πi defines the following maps of SU2 representations.

p⊗ Sn(Vi) ' S2(Vi)⊗ Sn(Vi)
ϕi−→ Sn+2(Vi)

where ϕi denotes the multiplication of polynomials of degree 2 and n.
To prove (ii), we suppose φ is zero on (29). We will now prove that φ ≡ 0

by induction. Suppose φ is zero on

S(a, b, c) := Sa(V1)⊗ Sb(V2)⊗ Sc(V3)

for all k01 + k02 + k03 ≤ a+ b+ c ≤ n. The action of p defines an action

p⊗ S(a, b, c)

' S2 ⊗ S(a, b, c)
ϕ−→ S(a+ 2, b, c)⊕ S(a, b+ 2, c)⊕ S(a, b, c+ 2)

where ϕ = ϕ1 ⊗ 1 ⊗ 1 + 1 ⊗ ϕ2 ⊗ 1 + 1 ⊗ 1 ⊗ ϕ3. The kernel of ϕ lies in∑
S(a, b, c) where the sum is taken over all a+ b+ c ≤ n. By induction, φ

is zero on the kernel of ϕ. Since φ is j-invariant, it is zero on the image of
ϕ. On the other hand, the restriction of φ on the codomain of ϕ is a linear
combination L of functions φ(a

2 + 1, b
2 ,

c
2), φ(a

2 ,
b
2 + 1, c

2) and φ(a
2 ,

b
2 ,

c
2 + 1).

The following lemma completes the induction by showing that φ = 0 on the
codomain of ϕ.

Lemma 4.3. Let L be a linear combination of φ(a
2 + 1, b

2 ,
c
2), φ(a

2 ,
b
2 + 1, c

2)
and φ(a

2 ,
b
2 ,

c
2 + 1). Suppose L is zero on the image of ϕ, then L is zero.

Proof. We assume that a ≤ b ≤ c and c ≤ a+ b. Let α1 = 1
2(b+ c− a) and

α2 = 1
2(a+ c− b). Clearly α1 ≥ α2 and we further assume that α1 ≥ 1.

If e is a non-negative integer, we denote %(e) = 1
2e(e+ 1). Suppose

L =
z1

%(a+ 1)
φ

(
a

2
+ 1,

b

2
,
c

2

)
+

z2
%(b+ 1)

φ

(
a

2
,
b

2
+ 1,

c

2

)
+

z3
%(c+ 1)

φ

(
a

2
,
b

2
,
c

2
+ 1

)
where zi ∈ C. If α2 = 0, then a = 0, b = c and φ(a

2 ,
b
2 + 1, c

2) = φ(a
2 ,

b
2 ,

c
2 +

1) = 0. In this case we set z2 = z3 = 0.
Consider

v1 := x2 ⊗ xa
1x

α1−1
2 yα3+1

2 yc
3, v2 := x2 ⊗ xa

1y
b
2x

α1−1
3 yα2+1

3
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in S2 ⊗ S(a, b, c). By (25), L(ϕ(v1)) = L(ϕ(v2)) = 0 shows that the coeffi-
cients zi must satisfy

%(a+ 1)−1z1 + %(α1)−1z2 + %(α1)z3 = 0(30)
%(a+ 1)−1z1 + %(α1)z2 + %(α1)−1z3 = 0.(31)

If α2 = 0, then z2 = z3 = 0 and (30) implies that z1 = 0.
From now on we suppose that α2 ≥ 1. Solving (30) and (31) we get

z2 = z3. By symmetry we have z1 = z3. Putting these back into (30) gives
(%(a + 1)−1 + %(α1)−1 + %(α1))z1 = 0. Since the coefficients are strictly
positive, z1 = 0. Hence z1 = z2 = z3 = 0. This proves the lemma and the
proposition. �

4.5. Considering the action of F3 (see (15)) on φ we have

0 =
√
k2

1 − v2
1Ck1φ(v1, v2, v3; k1 − 1, k2, k3) +√

k2
2 − v2

2Ck2φ(v1, v2, v3; k1, k2 − 1, k3) +√
k2

3 − v2
3Ck3φ(v1, v2, v3; k1, k2, k3 − 1) +

− (v1Ak1 + v2Ak2 + v3Ak3)φ(v1, v2, v3; k1, k2, k3) +

−
√

(k1 + 1)2 − v2
1Ck1+1φ(v1, v2, v3; k1 + 1, k2, k3) +

−
√

(k2 + 1)2 − v2
2Ck2+1φ(v1, v2, v3; k1, k2 + 1, k3) +

−
√

(k3 + 1)2 − v2
3Ck3+1φ(v1, v2, v3; k1, k2, k3 + 1).

If we perform a change of coordinates using (26), we get

0 = −(k2
1 − v2

1)Ck1Φ(v1, v2, v3; k1 − 1, k2, k3) +(32)

−(k2
2 − v2

2)Ck2Φ(v1, v2, v3; k1, k2 − 1, k3) +

−(k2
3 − v2

3)Ck3Φ(v1, v2, v3; k1, k2, k3 − 1) +
− (v1Ak1 + v2Ak2 + v3Ak3)Φ(v1, v2, v3; k1, k2, k3) +
+ Ck1+1Φ(v1, v2, v3; k1 + 1, k2, k3) +
+ Ck2+1Φ(v1, v2, v3; k1, k2 + 1, k3) +
+ Ck3+1Φ(v1, v2, v3; k1, k2, k3 + 1).

Define the polynomial

P (x1, x2, x3, y1, y2, y3)

:=
3∑

j=1

Ckj
d(kj−1, kj − 1, kj+1)xjyjφ(kj−1, kj − 1, kj+1) +
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− 1
2
Akj

d(kj−1, kj − 1, kj+1)
(
yj

∂

∂yj
− xj

∂

∂xj

)
φ(k1, k2, k3) +

− Ckj+1d(kj−1, kj + 1, kj+1)
∂

∂xj

∂

∂yj
φ(kj−1, kj + 1, kj+1).

Let p =
∏3

i=1(ki + vi)!(ki − vi)!, then the left hand side of (32) is p times
the coefficient of xki−vi

i yki+vi
i , (|vi| ≤ ki) in P . Hence (32) is equivalent to

the following polynomial being zero.

φ(k1 − 1, k2 − 1, k3 − 1)−1P (x1, x2, x3, y1, y2, y3)(33)

= x1y1D
2
1d1 + x2y2D

2
2d2 + x3y3D

2
3d3 +

+ (Ak1D1(k1x2x3y
2
1 + (k3 − k2)x1y1D1 − k1x

2
1y2y3) +

+Ak2D2(k2x3x1y
2
2 + (k1 − k3)x2y2D2 − k2x

2
2y3y1) +

+Ak3D3(k3x1x2y
2
3 + (k2 − k1)x3y3D3 − k3x

2
3y1y2))d+

+ (D2
3α2β2x3y3 +D2

2α3β3x2y2 −D3D2β2β3(x3y2 + x2y3))l1 +

+ (D2
1α3β3x1y1 +D2

3α1β1x3y3 −D1D3β3β1(x1y3 + x3y1))l2 +

+ (D2
2α1β1x2y2 +D2

1α2β2x1y1 −D2D1β1β2(x2y1 + x1y2))l3
where

li = Cki+1d(ki−1, ki + 1, ki+1), Di =
∣∣∣∣ xi+1 xi+2

yi+1 yi+2

∣∣∣∣ ,
βi = αi + 1, di = Cki

d(ki−1, ki − 1, ki+1), d = d(k1, k2, k3).

There are seven non-zero coefficients in the polynomial (33) and three of
them are

d1 − β2β3l1 + β3(1 + 2k2)l2 + β2(1 + 2k3)l3 +(34)
+ ((Ak2 −Ak1)k2 + (Ak1 −Ak3)k3)d = 0

d2 + β3(1 + 2k1)l1 − β1β3l2 + β1(1 + 2k3)l3 +(35)
+ ((Ak3 −Ak2)k3 + (Ak2 −Ak1)k1)d = 0

d3 + β2(1 + 2k1)l1 + β1(1 + 2k2)l2 − β1β2l3 +(36)
+ ((Ak1 −Ak3)k1 + (Ak3 −Ak2)k2)d = 0.

The rest of the coefficients are linear combinations of the above three equa-
tions. Solving for l1, l2, l3 gives

R1l1 = −α1β1d1 + β2(1 + 2k2)d2 + β3(1 + 2k3)d3 +(37)

+ α1(1 + k)(−Ak2 +Ak3 +Ak1k2 −Ak2k2 −Ak1k3 +Ak3k3)d

R2l2 = β1(1 + 2k1)d1 − α2β2d2 + β3(1 + 2k3)d3 +(38)

+ α2(1 + k)(Ak1 −Ak3 +Ak1k1 −Ak2k1 +Ak2k3 −Ak3k3)d

R3l3 = β1(1 + 2k1)d1 + β2(1 + 2k2)d2 − α3β3d3 +(39)
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+ α3(1 + k)(−Ak1 +Ak2 −Ak1k1 +Ak3k1 +Ak2k2 −Ak3k2)d

where k = k1 + k2 + k3 and Ri = −(1 + k)(2 + k)
∏

j 6=i βj .

Lemma 4.4. The linear form φ in (26) is j-invariant if and only if its
coefficients d(k1, k2, k3) satisfy (37), (38) and (39).

Proof. φ is K-invariant. Since k = Lie(K) ⊗ C and F3 generates j, φ is j-
invariant if and only if F3φ = 0. The latter is true if and only if (33) is zero
if and only if (37), (38) and (39) are satisfied. �

4.6. For technical reasons which will be clear later, we assume that in
addition to k01 ≥ k02 ≥ k03, πi satisfy the following condition:

If ka := k01 − k02 − k03 > 0, then there does NOT exist non-negative
integers r, s and r + s = ka − 1 satisfying

c1 =
c2

k02 + r
+

c3
k03 + s

.(40)

Proposition 4.5. Assuming §4.6, then the dimension of (j,K)-invariant
trilinear form on π1 ⊗ π2 ⊗ π3 is at most 1.

Proof. Suppose k01 ≤ k02 +k03. Note that the leading coefficients of Ri of li
in (37), (38) and (39) do not vanish. By induction d(k1, k2, k3) is determined
by d(k01, k02, k03).

Next if k01 > k02 + k03, then by (37), (38) and (39) we deduce that
d(k1, k2, k3) is determined by d(k01, k02 + r′, k03 + s) where r′ + s = k01 −
k02−k03. We will show that d(k01, k02 + r′, k03 + s) determines one another.
Suppose r′ = r + 1 ≥ 1, then (38) (resp. (39)) gives a linear relation
between d(k01, k02 + r + 1, k03 + s) (resp. d(k01, k02 + r, k03 + s + 1)) and
d′ := d(k01, k02 + r + 1, k03 + s + 1). Hence d(k01, k02 + r + 1, k03 + s) and
d(k01, k02 + r, k03 + s + 1) are linearly related provide d′ 6= 0. By (37) and
(38) d′ = 0 if and only if (40) holds. �

Corollary 4.6. The invariant φ is nonzero on the subspace:
(i) S(2k01, 2k02, 2k03) if k01 ≤ k02 + k03.
(ii) S(2k01, a, b) if k01 > k02 +k03, a ≡ k02 (mod Z), b ≡ k03 (mod Z) and

a+ b = k01. (Under the assumption in §4.6.)

If (40) holds, then there are at most 2 solutions of (r, s). It follows from
the last proof that the dimension of the trilinear form is at most 3. We
conjecture that Proposition 4.5 is still true without the assumptions in §4.6.

4.7. Proof of Theorem 1.2 for F = C. The proof of Proposition 4.5
provides a way of constructing φ. We will inductively construct d(k1, k2, k3)
in the following way. Suppose we have already determined d(k1, k2, k3) for
k1+k2+k3 ≤ n and (37), (38) and (39) are satisfied whenever the d(k1, k2, k3)
in the equations have been defined.



TRILINEAR FORMS OF gl2 143

We define d(k1, k2, k3) for k1 + k2 + k3 = n+ 1 using either (37), (38) or
(39). It remains to show that d(k1, k2, k3) is independent of the equations
used.

Consider Figure 5 below where the integral points (k1, k2, k3) are labeled
1 to 14.

k3

k2

k1

3
2

14

9 8 7

11

5 46

1213

10

1

Figure 5.

We will denote the values of d(k1, k2, k3) at point s simply by ds. Suppose ds

are defined except d1. d1 can be determined by d2, d3, d5 and d10 using (38).
d3 is a linear combination of d6, d9, d5 and d13. d2 is a linear combination
of d5, d6, d8 and d12. d10 is a linear combination of d12, d13, d14 and d5.
Hence d1 = L2(d5, d6, d8, d9, d12, d13, d14) where L2 is a linear combination
of its entries.

Alternatively d1 can be determined by d4, d5, d7 and d11 using (37). Sub-
stituting d4, d7 and d11 in a similar manner as in the last paragraph indicates
that d1 = L1(d5, d6, d8, d9, d12, d13, d14) where L1 is a linear combination of
its entries. The following lemma completes the proof of Theorem 1.2.

Lemma 4.7. L1 = L2.

Proof. The proof is simply achieved by writing out L1 and L2 in full, simplify
and compare. However the equations are long and tedious and we omit the
details. �

4.8. Question. We conjecture that Theorems 1.2 and 1.3 can be extended
to include reducible infinitesimal principal representations of GL2(C).
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